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ABSTRACT

The growing popularity of cloud computing as a platform for de-

ploying internet scale applications has seen a large number of web

applications being deployed in the cloud. These applications (or

tenants) are typically characterized by small data footprints, dif-

ferent schemas, and variable load patterns. Scalable multitenant

database management systems (DBMS) running on a cluster of

commodity servers are thus critical for a cloud service provider to

support a large number of small applications. Multitenant DBMSs

often collocate multiple tenants’ databases on a single server for

effective resource sharing. Due to the variability in load, elastic

load balancing of tenants’ data is critical for performance and cost

minimization. On demand migration of tenants’ databases to dis-

tribute load on an elastic cluster of machines is a critical technol-

ogy for elastic load balancing. Therefore, efficient live database

migration techniques with minimal disruption and impact in ser-

vice is paramount in such systems. Unfortunately, most popular

DBMSs were not designed to be nimble enough for efficient mi-

gration, resulting in downtime and disruption in service when the

live databases need migration. We focus on this problem of live

database migration in a multitenant cloud DBMS. We evaluate dif-

ferent database multitenancy models in the context of migration

and propose an efficient technique for live migration of a tenant’s

database with minimal downtime and impact on performance. We

implement the proposed migration technique in a database system

designed for the cloud. Our evaluation using standard OLTP bench-

marks shows that our proposed technique can migrate a live tenant

database with as low as 70 ms service disruption; an order of mag-

nitude improvement compared to known heavy weight techniques

for migrating a database.
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1. INTRODUCTION
The last couple of years have seen the widespread popularity of

cloud computing platforms for deploying scalable and highly avail-

able web applications. This popularity has resulted in the emer-

gence of a number of cloud platforms (Google AppEngine, Mi-

crosoft Azure, and Facebook for instance), and a deluge of appli-

cations developed for and deployed in the cloud. For instance, the

Facebook platform has more than a million developers and more

than 550K active applications [18]; other cloud application plat-

forms such as Google AppEngine and Microsoft Azure are also

growing in popularity. In addition to the traditional challenges of

scalability, fault-tolerance, and high availability, database manage-

ment systems (DBMS) that serve these cloud platforms face the

challenge of managing small data footprints of a large number of

tenants with erratic load patterns [24, 34] – a characteristic feature

of these new applications. To minimize the operating cost in a sys-

tem with thousands of such applications (referred to as the tenants

in the system), effective resource sharing amongst the tenants is

critical. Multitenancy, a technique to consolidate multiple customer

applications in a single operational system, is frequently used to

obviate the need for separate systems for each tenant. This con-

solidation has resulted in different multitenancy models at different

levels of the software stack. Multitenancy in the database layer –

an aspect often neglected in the design of traditional DBMSs– is

the focus of this paper. Considering the application domain, we re-

strict our discussion to OLTP systems executing short update trans-

actions.

Different models for database multitenancy have been proposed [24]

and used [3, 11, 31, 33] for different application domains. Irrespec-

tive of the multitenancy model, the pay-per-use pricing of cloud

resources necessitates effective resource sharing and elastic load

balancing1 to deal with variations in load and to minimize the op-

erating costs of the system. Multitenant DBMSs serving thousands

of tenants scale up by collocating multiple tenant databases at the

same machine, and scale out by spanning to a cluster of nodes. In

such an architecture, as the load on the system changes during dif-

ferent usage periods, migration of tenant databases is critical for

elasticity.2 Furthermore, such systems cannot tolerate downtime

or disruption in service since unavailability is invariably associated

with lost revenue and customer dissatisfaction [14]. Thus, to be

1Elasticity is the ability to adapt to varying loads by adding more
resources when the load increases, or consolidating the system to
lesser number of nodes as the load decreases; all in a live system
without disruption in the service.
2Note that our use of the term migration does not refer to data mi-
gration due to schema evolution, or data migration between DBMS
versions, or data migration different database systems.
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effectively used for elasticity, database migration should not cause

downtime or long disruption in service for the tenants whose data is

being migrated; a feature referred to as Live Migration in the virtu-

alization literature [7]. Traditional relational databases (RDBMS)

were designed to typically deal with static over provisioned infras-

tructures, and focus was primarily on optimizing the performance

of the system for a given infrastructure. Elasticity and hence mi-

gration of a live tenant database within a multitenant DBMS was

not an important feature in the design space. Even though most

Key-Value stores (such as Bigtable [6], PNUTS [8], Dynamo [14],

etc.) support migration of data fragments for fault-tolerance or load

balancing, they commonly use heavyweight techniques like stop-

ping a part of the database and then moving it to the new node and

restarting (referred to as stop and copy); or simple optimizations

to this common technique [6, 8]. Existing DBMSs (both RDBMSs

and Key-Value stores) are therefore not amenable to migration, and

require heavyweight techniques that lead to downtime, disruption

in service, and high overhead; thus making database migration not

attractive.

Our focus is the problem of efficient live migration of tenant

databases in a multitenant DBMS such that database migration can

be effectively used for elastic load balancing. Database multite-

nancy is analogous to virtualization in the database tier. Similar to

virtual machine (VM) technologies which are a critical component

of cloud infrastructures, our vision is that database multitenancy is

one of the critical factors for the success of cloud data platforms.

Live migration in a multitenant DBMS not only allows effective

elastic load balancing, but also eases administration and manage-

ment, decoupling a tenant’s database from the node in the cluster

hosting the database. We thus propose elasticity, enabled through

live database migration, as a first class feature similar to consis-

tency, scalability, fault-tolerance, and availability. We propose a

technique for live migration in an operational DBMS where logi-

cally contained portions of a DBMS representing a tenant’s data are

migrated from one node to another. We refer to this proposed tech-

nique as Iterative Copy. In addition to minimizing the disruption

in service of the tenant whose database is being migrated, Iterative

Copy results in no downtime of the overall system while provid-

ing proven safety and liveness guarantees. We implemented the

proposed migration technique in ElasTraS [11, 12], a scalable and

multitenant DBMS for the cloud. Our evaluation of the proposed

design using YCSB [9] and TPC-C [32] shows that the migration

of a live tenant database can be achieved with as low as 70 ms

window of service disruption for the tenant whose data is being

migrated without any disruption in the rest of the system. The ef-

fectiveness of Iterative Copy is evident when compared to the tens

of seconds to minutes of disruption when migrating a tenant in a

traditional RDBMS like MySQL, and more than 500 ms disruption

for a simple stop and copy migration technique in ElasTraS. This

further asserts the need for efficient live migration techniques to

enable systems to effectively use the elasticity in cloud computing

infrastructures. The major contributions of this paper are:

• We formalize the problem of live migration in a multitenant DBMS

for cloud platforms and propose a technique for effective live mi-

gration. To the best of our knowledge, this is the first work that

addresses live migration in the context of databases and proposes

a solution.

• We prove the safety and liveness of the proposed Iterative Copy

technique and characterize its behavior under different failure

scenarios. We demonstrate the effectiveness of the proposed

technique by experimental evaluation using standard OLTP bench-

marks.

The rest of the paper is organized as follows: Section 2 provides

background on the different database multitenancy models, formal-

izes the problem of live migration, and provides a survey of some

known migration techniques. Section 3 explains the proposed mi-

gration technique and proves the safety and liveness guarantees.

Section 4 provides details of implementing the proposed technique

in a cloud DBMS. Section 5 provides experimental evaluation of

the proposed migration technique. Section 6 provides a survey and

background on the state of the art in data management in cloud,

database virtualization, and multitenancy, and Section 7 concludes

the paper. In Appendix A, we explore some future extensions of

these techniques.

2. PRELIMINARIES

2.1 Multitenancy Models and Migration
Database multitenancy allows effective resource sharing for cus-

tomer applications that have small but varying resource require-

ments [3, 24]. SaaS providers like Salesforce.com [33] are the

most common use cases for multitenancy in both the application

as well as the database tier. A tenant is a customer application

instance with its own set of clients and data associated with the

instance. Sharing of resources amongst tenants at different levels

of abstraction and distinct isolation levels results in various mul-

titenancy models. The three multitenancy models explored in the

past [24] are: shared machine, shared process, and shared table.

The Salesforce.com model uses shared table [33], Das et al. [11]

propose a design that uses the shared process model, and Soror

et al. [31] propose using the shared machine model to improve re-

source utilization.

In the different multitenancy models, tenants’ data are stored in

various forms. For shared machine, an entire VM corresponds to a

tenant, while for shared table, a few rows in a table correspond to a

tenant. Furthermore, the association of a tenant to a database can be

more than just the data for the client, and can include metadata or

even the execution state. We thus define a common logical concept

of tenant cell as:

DEFINITION 1. A Tenant Cell (or Cell for brevity) is a self-

contained granule of application data, meta data, and state repre-

senting a tenant in the database.

A multitenant DBMS consists of thousands of cells, and the ac-

tual physical interpretation of a cell depends on the form of multi-

tenancy used in the DBMS. The stronger the isolation between the

cells, the easier it is to compartmentalize a tenant’s data for migra-

tion. For instance, in the shared hardware model, the VM level

isolation between tenants allows effective resource provisioning,

security, and isolation from misbehaving tenants – which is much

stronger compared to the row level isolation in the shared table

model. On the other hand, stronger isolation comes at the cost of

limiting the number of tenants that can be hosted at a node. For in-

stance, only a few VMs or independent DBMS processes can be ex-

ecuted efficiently at a single node. The multitenancy model there-

fore impacts the ability to migrate, and for a system designed for

migration, the goal is to select the sweet spot between the two ends

of the spectrum. Note that even though the shared table model has

been popularized and used successfully by Salesforce.com [33],

such a multitenancy model leads to various technical challenges.

These challenges include dealing with different schemas across ten-

ants, operational reasons of complexity involved in meeting the per

tenant service level agreements, and practical reasons of security

and isolation of tenant’s data. Therefore, even though popular, the
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Figure 1: Reference database system model.

shared table model is not an ideal multitenancy model. With this

understanding, we now present an abstract multitenant DBMS ar-

chitecture that allows effective migration, while effectively sharing

the resources to minimize the operating cost.

2.2 Design Rationale and Reference System Model
Our vision of database migration is based on the concept of vir-

tualization in the database layer. The goal is to decouple the logical

representation of a cell from the node hosting it. This is analogous

to how the software stack of a cloud server is decoupled from the

hardware executing the server by use of virtualization technolo-

gies. With this intent, we abstract the model of a DBMS for the

cloud, and develop techniques which are not specific to any DBMS

implementation. Figure 1 provides an overview of the proposed

multitenant database system model which spans a cluster of nodes.

Application clients connect through a query router which hides the

distributed nature of the underlying system. A set of DBMS nodes

execute the client operations. A network attached storage abstrac-

tion provides scalable, available, and fault-tolerant storage for data.

A system controller is responsible for cluster control operations in-

cluding initiating migration. Each tenant’s cell is uniquely owned

by a single DBMS node, and the system supports a relational data

model and transactional guarantees on a cell. This multitenant

DBMS model reflects five design rationales for designing an elas-

tic and scalable multitenant DBMS that is amenable to migration,

while being representative of typical DBMS cluster installations in

cloud and enterprise infrastructures.

RATIONALE 1. Limit tenant transactions to single nodes. In

a majority of scenarios, a tenant’s cell is small enough to be served

at a single node [24, 34]. Designing the system to host a cell at

only a single node rather than distributing it over a cluster allows

transactions on a cell to be executed locally without the need for

distributed synchronization. This is a crucial aspect of the overall

design to ensure high scalability and availability [1, 22]. Thus,

transaction processing on a particular cell is handled only by a

single node in the cluster. Each such cluster node exclusively owns3

a number of cells.

RATIONALE 2. Decouple Ownership from Data storage. Even

though the DBMS nodes are independent in terms of cell owner-

ship, they use a network attached storage (NAS) (a storage area

network or a distributed file system for instance) where the actual

DBMS data is stored persistently. Abstracting the storage as a sep-

arate network attached device is common in DBMS installations

3Ownership refers to the exclusive rights to execute transactions on
a cell.

and allows fault-tolerance and linear scaling of the storage layer

in terms of capacity and throughput. Furthermore, this decoupling

allows light weight transfer of ownership from one DBMS node to

another during migration, without need for large data transfers.

The NAS abstraction is also common in cloud infrastructures, for

instance, Elastic Block Storage (EBS) in Amazon EC2. Such de-

coupling is also observed in a number of other systems [13, 28].

RATIONALE 3. Tenants are oblivious of the physical location

of their data. Tenants interact with their corresponding cells in the

DBMS cluster through gateway node(s) referred to as the query

router. The query router is responsible for routing the transactions

to the appropriate DBMS node hosting the cell. Since the clients

need not be aware of the node executing the transactions on the

cell, this abstraction hides the dynamics within the DBMS, such as

migration of cells and failures.

RATIONALE 4. Balance resource sharing and tenant isola-

tion. Each DBMS node in the cluster runs a single DBMS instance

and hosts multiple cells. Each cell has its independent transaction

manager (TM) and data manager (DM), but shares the logging in-

frastructure for maintaining the transaction log. Since tenants are

independent of each other and transactions and data do not span

tenants, isolating the tenants’ TMs provides better isolation and

scalability, while isolating the DM eases guaranteeing the quality

of service guarantees and the service level agreements (SLAs) for

the tenants.4 The log is shared amongst the cells to prevent multiple

independent and competing disk writes arising from appends to the

log by different cells. Sharing a common log allows batching of ap-

pends which also results in considerable performance improvement

during normal operation. Internally, each cell contains a cached

memory image of the tenant’s database (e.g., cached pages) and the

state of the active transactions (e.g., lock tables for a locking based

scheduler; read and write sets for a validation based scheduler).

RATIONALE 5. Balance functionality with scale. Key-Value

stores [6, 8, 14] are often the preferred systems for scalable and

fault-tolerant data management in the cloud. Due to the require-

ments imposed by the application domains for which Key-Value

stores were originally designed – for instance high availability, al-

most infinite scalability, geographic replication– they support con-

siderably simpler functionality compared to RDBMSs. For instance,

Key-Value stores support a simple data model, with no transac-

tional support or attribute based accesses. Even though multi-

tenant systems host thousands of tenants, each tenant’s data is

small. In this context, a Key-Value data model is not attractive from

a single tenant’s perspective since the developers have to trade

the lack of features for scaling which is not to their direct bene-

fit. Therefore, our system model supports a relational model and

provides transactional support for individual cells, providing sup-

port for rich functionality and flexibility.

2.3 Cost of Migration
In order to make migration attractive, it must be “inexpensive.”

Recall that in a cloud infrastructure, in addition to optimizing per-

formance (throughput and latency of operations), the goal is also to

optimize the operating cost, i.e., money spent for cloud resources.

Thus, the metrics for measuring the cost of migration depend on

whether the system is trying to optimize the operating cost of the

4Some DBMSs, like MySQL, do not support independent TM and
DM for different tenants, primarily because such systems were not
designed for multitenancy, rather for databases where transactions
can span entire data in an instance. As multitenancy becomes more
prevalent, tenant level isolation is expected to become a norm.
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system or performance, or a combination of the two. Irrespective

of the choice of the cost metric, we identify some factors that con-

tribute to the “cost” of migration and should be considered for eval-

uating a migration technique.

• Downtime or Service Interruption during migration. Since

the primary goal of these DBMSs is to serve online web-applications,

high availability is a critical requirement. Therefore, downtime

and interruption in service as a result of migration should be

minimized. Downtime refers to the overall system unavailabil-

ity, while service interruption is unavailability or aborted trans-

actions for the tenant whose cell is being migrated.

• Migration Overhead. To minimize the effect of migration on

the normal operation of the DBMS, migration should incur low

overhead on the tenant transactions. We define overhead as the

additional work done and the corresponding impact on transac-

tion execution to facilitate migration. The overhead can be fur-

ther sub-divided into the following classes:

– Overhead before migration. The overhead incurred during

normal operation, if any, to facilitate migration.

– Overhead during migration. Unless migration is instantaneous,

the overhead incurred on the system while a cell is being mi-

grated.

– Overhead after migration. The overhead on transactions exe-

cuting on the new DBMS node after migration of the cell has

completed.

In order to allow effective and regular use of migration for elas-

ticity and load balancing, the goal is to minimize the overhead asso-

ciated with migration. We therefore define “Live Migration” (sim-

ilar to that used in VM migration [7]) for low overhead migration

as:

DEFINITION 2. Live Migration in a database management sys-

tem is the process of migrating a cell (or a logically contained

part of the database) with minimal service interruption, no system

downtime, and minimal overhead resulting from migration.

Live migration in a multitenant DBMS is our focus in this paper.

In Section 3, we present techniques for live migration in a multi-

tenant DBMS for the cloud, but before that, we present some mi-

gration techniques supported by present DBMSs, and reason why

such techniques are not effective.

2.4 Known Migration Techniques
Stop and copy. The simplest approach for migrating a cell is to

stop serving the cell at the source DBMS node, move data to the

destination DBMS node, and start serving the cell at the desti-

nation. This approach is referred to as stop and copy technique.

Though extremely simple, this approach results in considerably

long down times for clients of the tenant whose cell is being mi-

grated. Furthermore, the entire database cache is lost when the cell

is restarted at the destination DBMS node, thereby incurring a high

post migration overhead for warming up the database cache. Thus,

even though safe migration can be achieved using stop and copy,

the accompanying disruption in service during migration does not

make it a suitable technique for live migration.

On demand migration. To minimize the downtime resulting from

migration, a technique outlined in [10] proposes transferring mini-

mal information during a fast stop and copy migration that moves

“control” of the cell and minimal information about the cell. New

transactions start executing at the destination DBMS once the cell

comes online at the destination. Since data is not moved imme-

diately, transactions that access data which has not been migrated

Figure 2: Database migration timeline (times not drawn to

scale).

incur expensive “cache misses” followed by the on demand fetch-

ing of database pages from the remote source node. Even though

this technique is effective in reducing service interruption, not only

does it introduce a high post migration overhead resulting from

page faults, but recovery in the presence of failures is also com-

plicated and would require expensive synchronization between the

source and destination servers.

3. LIVE DATABASE MIGRATION
We now explain our proposed Iterative Copy technique for the

live migration of a tenant’s cell. We describe this technique us-

ing the abstract database system model described in Figure 1. The

actual implementation details inside a specific DBMS engine are

explained in Section 4. In general, the problem of database migra-

tion can be sub-divided into two sub problems: (i) modeling system

behavior to determine when to migrate which cell and where to mi-

grate; and (ii) performing the actual migration. Sub problem (i) is

beyond the scope of this paper. This paper focusses on (ii): given a

cell and the destination DBMS node, how to perform efficient and

safe live migration of the cell.

3.1 Iterative Copy Migration
In our system model, the persistent data of a cell is stored in

shared storage and hence does not need migration. To minimize

the service disruption and low post migration overhead, the Itera-

tive Copy technique focusses on transferring the main memory state

of the cell so that the cell restarts “warm” at the destination node.

As depicted in Figure 1, the main-memory image of a cell con-

sists of the cached database state (DB state), and the transaction

execution state (Transaction state). For most common database

engines [21], the DB state includes the cached database pages or

buffer pool, or some variant of this. The transaction state, on the

other hand, includes the state of the active transactions and in some

cases a subset of committed transactions needed to validate the ac-

tive transactions. For instance, in a locking based scheduler (2PL

for instance), the transaction state consists of the lock table; while

for validation based schedulers (like optimistic concurrency con-

trol [26]), this state consists of the read-write sets of active transac-

tions and a subset of committed transactions.

Figure 2 depicts the timeline of the operations performed during

the migration of a cell; refer to Table 1 for notational conventions.

All the actions depicted in Figure 2 are at the cell being migrated

(Cmigr) and the DBMS nodes (Nsrc and Ndst) involved in the

process. The overall timeline is divided into three broad phases

– Phase 0: the pre-migration phase when Cmigr is served from

4
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Table 1: Notational Conventions.

Notation Description

Cmigr The cell being migrated
Nsrc Source DBMS node for Cmigr

Ndst Destination DBMS node for Cmigr

Nsrc; Phase 1: the migration phase when Cmigr is migrated from

Nsrc to Ndst; and Phase 2: post-migration phase when Cmigr

is served from Ndst. We first conceptually explain the steps for

migrating Cmigr; failure handling and optimizations are explained

in Section 3.2. Note that an owner of a cell is the DBMS node

which has the exclusive rights to processing transactions on the cell

and updating the persistent image of the database resident in the

network attached storage (NAS). There are no replicas of a cell in

the DBMS nodes, all replication for fault-tolerance is abstracted by

the NAS.5

Phase 0: Pre Migration Phase: In this phase, the database is op-

erating in normal mode, executing transactions as they arrive.

Transactions T01, T02, . . . , T0k are the transactions which have

completed (i.e., either committed or aborted) in this phase.

Phase 1: Migration Phase: This phase is initiated by the controller

notifying Nsrc and Ndst to start the migration. T11, T12, . . . , T1n

are the transactions that are executing in this phase. This phase

can be sub divided into the following sub-phases:

Phase 1a: Begin Migration: Migration is initiated by a quick

snapshot of the database state at Nsrc. This snapshot is then

moved to Ndst and Cmigr is initialized. Nsrc continues pro-

cessing transactions while this migration is in progress.

Phase 1b: Iterative Copy: Since Nsrc continues serving Cmigr

while the snapshot is being migrated, the state of Cmigr at

Ndst will lag behind that at Nsrc. In this phase, Ndst tries

to “catch-up” and synchronize the state of Cmigr at Nsrc and

Ndst. The state of Cmigr is copied iteratively: in iteration

i, the changes to the state of Cmigr since the snapshot at it-

eration i − 1 are copied and transferred to Ndst. In order to

ensure that no changes are lost during migration, Nsrc must

track the changes between the snapshots. Since this tracking is

not needed during normal operation, this contributes to the mi-

gration overhead. T11, T12, . . . , T1m are the transactions that

have completed at Nsrc during this phase. This phase is ter-

minated when the amount of state transferred in subsequent

iterations converges.

Phase 1c: Atomic Handover: In this phase, the ownership of

Cmigr is transferred from Nsrc to Ndst. During this phase,

Nsrc stops serving Cmigr , copies the final un-synchronized

state to Ndst, flushes changes from committed transactions to

the persistent storage, and transfers control of Cmigr to Ndst

while informing the query router of the new location of Cmigr .

This operation should be atomic to deal with failures; details

of the atomicity guarantees is explained in Section 3.2. Trans-

actions T1m+1, . . . , T1n are the transactions that were active

at the start of this handover phase. Since these transactions

have not committed, the system can decide to abort them en-

tirely, abort at Nsrc and restart at Ndst, or migrate them in a

way that the transactions start execution at Nsrc and complete

at Ndst. Irrespective of the choice, correctness is guaranteed.

The choice, however, has an impact on the disruption in service

5Note that having replicas of tenant databases does not help with
elastic load balancing, since addition of new capacity in the system
requires migration of databases to these newly added nodes which
will not have database replicas.

which clients of Cmigr observe. The successful completion of

this phase makes Ndst the owner of Cmigr .

Phase 2: Post Migration Phase: This phase marks the resump-

tion of normal operations on Cmigr at Ndst. The query router

sends all future transactions (T21, T22, . . . , T2p) to Ndst. Trans-

actions T1m+1, . . . , T1n which were in-flight when the handover

started, are completed at Ndst depending on the decision taken

in Phase 1c.

Note that the proposed technique involves a step similar to stop

and copy in the atomic handover phase; the goal is to minimize

the amount of state to be copied and flushed in the stop and copy

phase so that the disruption in service observed by the clients is

minimized. If the transactional workload on Cmigr is not write-

heavy, the amount of state that needs synchronization in Phase 1c

will be small.

3.2 Failure Handling during Migration
We now discuss failure handling during the various phases of mi-

gration. We assume a reliable communication channel and hence

we only consider node failures (and possibly network partitions).

Furthermore, node failures do not lead to complete loss of data –

either the node recovers or the data is recovered from NAS where

data persists beyond DBMS node failures. We do not consider ma-

licious node behavior.

In the presence of a failure, the first goal is to ensure safety of

data; progress towards successful completion of migration is sec-

ondary. If either Nsrc or Ndst fails before Phase 1c, migration of

Cmigr is aborted. As a result, no logging of migration is necessary

until Phase 1c. Failures in Phase 0 and 2 are handled as normal

DBMS node failures. If Nsrc fails during phases 1a or 1b, the state

of Nsrc is recovered and the migration progress is lost during this

recovery, since there is no persistent information of migration in

the commit log of Nsrc. Ndst eventually detects this failure and in

turn aborts this migration. If Ndst fails, again migration is aborted.

Since no log entries exist at Ndst indicating this migration, the re-

covery state of Ndst does not have any migration progress. Thus, in

case of failure of either node, migration is aborted and the recovery

of a node does not require coordination with any other node in the

system.

Atomic Handover: The atomic handover phase (Phase 1c) con-

sists of the following major steps: (i) ensure that changes from

all completed transactions (T01, . . . , T0k, T11, . . . , T1m) at Nsrc

have been flushed to stable storage; (ii) synchronize the remain-

ing state of Cmigr; (iii) transfer ownership of Cmigr from Nsrc to

Ndst; and (iv) notify the query router that all future transactions

(T21, . . . , T2p) must be routed to Ndst. Steps (i) and (ii) can be

done in parallel; steps (iii) and (iv) can only be performed once the

previous steps have completed. This transfer involves three partic-

ipants – Nsrc, Ndst, and the query router– and requires that the

transfer is atomic (i.e., either all or nothing). We perform this han-

dover as a transfer transaction and use a protocol similar to Two

Phase Commit (2PC) [20], a standard protocol with guaranteed

atomicity used in distributed transaction commitment, with Nsrc

as the coordinator. Even though we use a protocol similar to 2PC

for atomic handover, our adaptation of the protocol does not suffer

from blocking, a common criticism of 2PC. In the first phase of the

handover, Nsrc initiates the process by executing steps (i) and (ii)

in parallel, and soliciting a yes vote from the participants. Once all

the sites acknowledge and vote yes, the transaction enters the sec-

ond phase, where Nsrc relinquishes control of Cmigr and transfers

it to Ndst. In case, one of the participants votes no, the transfer

transaction is aborted and Nsrc remains the owner of Cmigr . This
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step completes the transfer transaction at Nsrc, and after logging

the outcome, Nsrc notifies the participants about the decision. If

the handover was successful, Ndst assumes ownership of Cmigr

once it receives the notification from Nsrc. Every protocol action

involves logging, similar to that used in 2PC.

3.3 Correctness Guarantees
Safety and liveness are two important properties which are needed

for ensuring the correctness of the system in the presence of differ-

ent types of failures. Safety implies that the system’s state or data

is not left in an inconsistent state by migration, or due to a failure

during any stage of migration, while liveness ensures progress. In

this section, we formally define safety and liveness of migration

and prove that the guarantees are satisfied.

DEFINITION 3. Safe Migration. A migration technique is safe

if the following conditions are met even in the presence of arbitrary

failures: (i) Data Safety and Unique ownership: The disk resident

image of a cell is consistent at any instant of time. This is in turn

guaranteed if at any instant of time, only a single DBMS node owns

the cell being migrated; and (ii) Durability: Updates from commit-

ted transactions are either in the disk resident database image or

are recoverable.

DEFINITION 4. Liveness: The liveness of a migration tech-

nique requires that: (i) If Nsrc and Ndst are not faulty and can

communicate with each other for a sufficiently long duration in

Phase 1, migration of Cmigr is successfully completed; and (ii) Fur-

thermore, Cmigr is not orphaned (i.e., left without an owner) even

in the presence of repeated failures.

THEOREM 1. Atomicity of handover. In spite of failures, Cmigr

is owned by exactly one of Nsrc and Ndst, i.e. Cmigr has at least

and at most one owner.

PROOF. The atomicity proof is similar to that of 2PC. With

no failures, the handover transaction commits, and ownership of

Cmigr is transferred. We prove that logging during normal opera-

tion combined with recovery is sufficient to ensure atomicity.

Failure in the first phase of handover: If either of Nsrc or Ndst

fails during the prepare phase of handover, migration can be safely

aborted, and Nsrc remains the owner of Cmigr . If Nsrc fails,

Cmigr is unavailable until Nsrc recovers. If Ndst fails, it recovers

its own state and “forgets” about the migration in progress. Failure

in this phase does not need coordinated recovery.

Failure in the second phase: After receiving responses (both yes

and no votes), Nsrc is ready to complete the transfer transaction.

Once the decision about the outcome is forced into the log, the

transfer transaction enters the second phase. A failure in this phase

requires coordinated recovery. If Nsrc decided on a commit, Ndst

is now the new owner of Cmigr , otherwise Nsrc continues as the

owner. If Nsrc failed before notifying Ndst, Ndst has to wait till

the state of Nsrc is recovered before it can start serving Cmigr .

At least one owner: We can see that Cmigr , even in the presence

of failures, has at most one owner. A pathological condition arises

when after committing the transfer transaction at Nsrc, both Nsrc

and Ndst fail. But the synchronized recovery of the participants as

outlined above ensures that Ndst knows about the outcome once

both nodes have recovered.

We now articulate two important properties which allows the

system to gracefully tolerate failures.

THEOREM 2. Independent Recovery. Except during the exe-

cution of the atomic handover protocol, recovery from a failure of

Nsrc or Ndst can be performed independently.

PROOF. The ability to safely abort migration at an incomplete

state and the single owner philosophy ensures that a failure during

migration would allow independent recovery of the failed node’s

state, without synchronizing state with any other node. At any point

of time before the commit phase, Nsrc is the owner of Cmigr . If

Nsrc fails, it recovers without any interaction with Ndst, still being

the owner of Cmigr . Similarly, if Ndst fail, it recovers its state.

Unless the handover phase was initiated (Phase 1c), Ndst has no

log record about the migration in progress, so it “forgets” the mi-

gration and continues normal operation. Similarly, once handover

has been successfully completed, Ndst becomes the new owner of

Cmigr . A failure of Nsrc at this instant can be recovered indepen-

dently as Nsrc does not need to recover state of Cmigr . Similarly,

a failure of Ndst requires recovery of only its state, and it can also

independently recover state of Cmigr , since it had successfully ac-

quired the ownership of Cmigr .

THEOREM 3. A single failure does not incur additional un-

availability. Any unavailability of Cmigr resulting from a failure of

one of Nsrc or Ndst during migration is equivalent to unavailabil-

ity due to failure during normal operation.

PROOF. From an external observer’s perspective, Nsrc is the

owner of Cmigr until the atomic handover phase (Phase 1c) has

successfully completed. Any failure of Ndst before Phase 1c does

not affect the availability of Cmigr . A failure of Nsrc during this

phase makes Nsrc unavailable, but this is equivalent to a failure

of Nsrc under normal operation where Cmigr would also become

unavailable. Similarly, after migration is complete (Phase 2), Ndst

becomes the owner of Cmigr . Any failure of Nsrc does not af-

fect Cmigr , and a failure of Ndst which makes Cmigr unavailable

is equivalent to the failure of Ndst during normal operation. The

only complexity arises in the case of a failure in Phase 1c when

a coordinated recovery is needed. If Nsrc fails before successful

completion of Phase 1c, even if Nsrc had locally relinquished own-

ership of Cmigr , if the transaction did not complete, Ndst cannot

start serving Cmigr in which case it becomes unavailable. This is

similar to the blocking behavior in 2PC [20]. But since the han-

dover transaction did not complete, from an observer’s perspective,

Nsrc was still the owner of Cmigr , and hence this unavailability

is equivalent to the failure of Nsrc during normal operation. Thus,

it is evident, single site failures during migration does not impact

availability of Cmigr .

The properties of independent recovery and graceful handling of

failures during migration are crucial for effective use of migration

for elasticity. Furthermore, one of the implications of Theorem 3

is that in spite of using a protocol similar to 2PC, the handover

phase does not block any system resource in the presence of a fail-

ure. The following corollary follows directly from Theorem 1 and

guarantees unique ownership.

COROLLARY 4. Provided Cmigr had a unique owner (Nsrc)

before migration, Cmigr continues to have a unique owner (Ndst

if migration was successful, and Nsrc if it failed) during as well as

after the migration phase.

LEMMA 5. Changes made by aborted transactions are neither

persistently stored or copied over during migration.

PROOF. This proof follows from the assertion that in the steady

state, the combination of the database buffer and the persistent disk

image do not have changes from aborted transactions. In locking

based schedulers, the buffer or the disk images might have changes

from uncommitted transactions, but changes from aborted trans-

actions are undone as part of processing the abort. For validation

6



UCSB Computer Science Technical Report 2010-09.

based schedulers like OCC, changes from aborted transactions are

never made visible to other transactions from the system. The goal

of the iterative copy phase is to replicate this buffer state at Ndst

and hence, effects of aborted transactions which might have been

copied over, are guaranteed to be undone by the last stop-and-copy

phase, at which point buffers at both Nsrc and Ndst are synchro-

nized.

LEMMA 6. Changes made by committed transactions are per-

sistently stored and the log entries of completed transactions on

Cmigr at Nsrc can be discarded after successful migration.

PROOF. Changes from a committed transactions are recoverable

by definition due to the forcing of log entries before a commit. One

of the steps in the handover protocol enures that changes from com-

pleted transactions are persisted to disk as part of the handover.

LEMMA 7. Migration of active transactions during migration

does not violate the durability condition even if the write ahead log

at Nsrc is discarded after successful migration.

PROOF. In progress transactions (T1m+1, . . . , T1n) transferred

from Nsrc to Ndst might have some entries in the commit log at

Nsrc. Ensuring that those entries are re-inserted into the log at

Ndst during commit of the transactions T1m+1, . . . , T1n ensures

that they are recoverable, and hence does not violate the durability

condition even if the log is discarded at Nsrc.

Corollary 4 guarantees the data safety condition and Lemmas 5,

6, and 7 together guarantee the durability condition, thus proving

the safety of the proposed migration technique. As noted earlier,

in the presence of a failure of either Nsrc or Ndst, the migration

process is aborted without jeopardizing the safety of the system.

LEMMA 8. Progress guarantee. Migration succeeds if Nsrc

and Ndst can communicate during the entire duration of Phase 1

of migration.

3.4 Minimizing service disruption
Cmigr is unavailable during Phase 1c when ownership is trans-

ferred from Nsrc to Ndst. The goal of Phase 1b is to minimize this

service disruption by minimizing the amount of state that needs

copying in the final step. Another optimization to minimizing dis-

ruption is how transactions T1m+1, . . . , T1n, which were active at

the start of the atomic handover process, are handled – i.e., whether

they are aborted and restarted, or carried over to complete execu-

tion at Ndst.

The easiest choice is to abort transactions T1m+1, . . . , T1n at

Nsrc and notify the clients who might restart them at a later time.

In this case, no active transaction state needs transfer from Nsrc

to Ndst. Nsrc only has to ensure that the effects of the aborted

transactions have been undone. But this behavior might not be

acceptable for many applications that cannot tolerate such heavy

disruptions. We now present two techniques to minimize the dis-

ruption in service: one to deal with transactions whose logic is be-

ing executed at the client, another technique for dealing with stored

procedures. In both the techniques, the clients do not notice trans-

actions aborted by the system, rather some transactions having a

higher than average latency.

In the case where the transaction logic is executed at the client (or

any node other than Nsrc) and the DBMS node is serving only the

read/write requests, the transactions can be seamlessly transferred

from Nsrc to Ndst without any loss of work. The stop-and-copy

phase copies the active transaction state along with the database

state. For a 2PL scheduler, this amounts to copying the state of

Figure 3: System architecture of ElasTraS and its mapping to

the components of the reference architecture in Figure 1.

the lock table, and for an OCC scheduler, this amounts to copy-

ing the read/write sets of the active transactions and the subset of

committed transactions whose state is needed for validation. For

a 2PL scheduler, updates of active transactions are done in place

in the buffer pool, and hence are copied over during the final copy

phase. While for OCC, the local writes of the active transactions

must be copied to Ndst. Note that irrespective of the concurrency

control technique used, to ensure the recoverability of transactions

T1m+1, . . . , T1n which complete at Ndst, the part of the commit

log for these transactions must also be transferred from Nsrc to

Ndst. Furthermore, since these transactions are still active when

they resume execution at Ndst, the log entries of these transactions

need to be persistently stored only during commit and not during

the handover.

For efficiency and to minimize the number of network round-

trips needed by a transaction, many OLTP systems support trans-

actions whose logic is represented by stored procedures which are

executed locally in the DBMS node, with the clients initiating the

transactions by passing the necessary parameters. These transac-

tions execute as threads within the DBMS engines or processes lo-

cal to the node. Since we do not perform any process level trans-

fer during migration, it is not straightforward to migrate such live

executing transactions. Therefore, we have to abort these transac-

tions at Nsrc. But since the client only passes the parameters to the

transactions, these transactions can be restarted at Ndst without the

client’s intervention, and the parameters passed by the client must

be migrated to Ndst. In such a scenario, these transactions are sim-

ilar to new transactions T21, . . . , T2p arriving directly to Ndst, the

only difference being that they are carried over transactions and are

restarted as part of starting Cmigr at Ndst. For Nsrc, these transac-

tions are like aborted transactions whose effects must be undone.

4. IMPLEMENTATION DETAILS

4.1 System Architecture
We implemented the proposed migration technique in ElasTraS [11],

a database system designed for supporting multitenant cloud appli-

cations. Figure 3 provides a high level illustration of the architec-

ture of ElasTraS. ElasTraS has been designed to provide scalable,

elastic, and fault-tolerant data management functionality for a mul-

titenant environment, and adheres to the design principles outlined

in Section 2.2. At the bottom of the stack is a distributed fault-

tolerant storage layer, equivalent to the NAS abstraction, which

stores the persistent image of the database and the write ahead logs.

ElasTraS uses the Hadoop distributed file system (HDFS) for pro-
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viding a fault-tolerant file system interface. At the heart of the sys-

tem are the Owning Transaction Managers (OTM), equivalent to

the DBMS nodes, which own one or more cells and provide trans-

actional guarantees on them. Each OTM owns a number of cells

and is responsible for executing the transactions for those cells.

The TM Master acts as the controller of the system and monitors

the correct operation, and in our implementation, initiates migra-

tion. The TM master only performs control operations and is not

in the data path. ElasTraS provides a client library that abstracts

the logic of connecting to the appropriate OTM. The client library

uses a collection of metadata tables that stores the mappings of a

cell to the OTM which is currently serving the cell. Thus, the com-

bination of the client library and the metadata tables together con-

stitute the query router. For fault-tolerance and loose synchroniza-

tion between the different components in the system, ElasTraS uses

Zookeeper [23], a replicated and fault-tolerant leasing and notifica-

tion service. Each of the components in the system obtains leases

from the Zookeeper installation. The owning of a lease guaran-

tees mutual exclusion that allows the TM master and the OTMs to

perform their operations independently without requiring any dis-

tributed synchronization. More details about the design of ElasTraS

can be found in [11].

ElasTraS operates in the granularity of database partitions. Each

partition encapsulates a cell which has its independent transaction

manager (TM), data manager (TM), and database buffer. All cells

at a single OTM share a common commit log. ElasTraS uses op-

timistic concurrency control [26] for providing serializable trans-

action execution. In OCC, updates made by an active transaction

are initially kept local and are applied to the database only if the

transaction commits. One important difference in the implemen-

tation of ElasTraS when compared to traditional RDBMSs is that

it uses a append only log structured representation of data. Since

there are no in-place updates to database pages, the database buffer

is split between a read cache and a write cache, and read requests

are answered by a merged view of the two caches. All incoming

write requests are cached in the write buffer, which is periodically

flushed to the persistent storage. Periodic compactions are used

for garbage collecting the entries that are obsolete due to more re-

cent updates or deletes, and for reducing the number of files [6,11].

Since constructing the merged view is expensive, the transfer of

these two caches during migration is important to ensure the low

overhead of migration.

4.2 Implementation Design
In ElasTraS, the TM master initiates the migration of a cell (Cmigr),

and its role in the migration is only limited to notifying the source

OTM (Nsrc) and the destination OTM (Ndst) to initiate migration.

Nsrc and Ndst coordinate to perform the migration and can com-

plete the migration without any further intervention of the master.

Recall that due to the NAS abstraction, migration does not need

the transfer of the persistent image of Cmigr from Nsrc to Ndst.

The goal of migration is to transfer the cached database state from

Nsrc to Ndst to minimize the overhead of migration for operations

post migration. We now explain the implementation details of the

different phases.

Copying the database cache. As noted earlier, the database

cache in ElasTraS is split into two components: the read cache

which caches the contents of the log structured files, and the write

cache which buffers the new writes till they are flushed to stable

storage. Recall that in the handover phase, any changes made by

committed transactions are flushed to the stable storage. Thus,

the write cache is not copied during migration. The iterative copy

phase thus only copies the read cache from Nsrc to Ndst. During

migration, the data manager of Cmigr tracks changes to the read

cache, and successive iterations only copy the changes to the cache

since the previous iteration. The write cache is flushed in the han-

dover phase, and is copied over into the read cache of Ndst. Thus,

Ndst starts serving Cmigr with an empty write cache, but the com-

bination of the read and write cache contains the same state of data.

Since the data manager hides this separation of caches and provides

the transaction manager an abstraction of the merged view, both

the active transactions T1m+1, . . . , T1n and the new transactions

T21, . . . , T2p for Cmigr can be begin execution at Ndst unaware of

the migration.

Copying the transaction state. ElasTraS uses OCC [26] for

concurrency control. In OCC, the transaction state comprises of the

read and write sets of the active transactions as well as the subset

of committed transactions which are needed for validating the new

transactions. Similar to the database cache, the transaction state is

also viewed as two subsets. The iterative copy phase copies over

only the state of the committed transactions, while the state of the

in-flight transactions is copied in the final handover phase. Recall

that in OCC, writes from an active transaction are maintained lo-

cally with the transaction. Therefore, while copying the state of the

active transactions, these local transaction writes are also copied

over to Ndst. Additionally, the TM maintains counters which are

used to assign identifiers for new and committed transactions. The

value of these counters are also copied over during the final han-

dover phase.

Handover phase. The handover phase starts with a flush of any

changes from committed transactions to the persistent storage. It

then copies over the state of the active transactions, the write cache,

and the changes to the read cache since the previous copy. In Elas-

TraS, the query router is a combination of the system metadata and

the client library that uses this metadata to route the transactions

to the appropriate OTM. The client library maintains a cache of

the pertinent system metadata state. Therefore, the transfer trans-

action must only update the metadata to reflect the new owner of

Cmigr . ElasTraS manages the metadata as a partition served by an

OTM, and the OTM serving the metadata partition is also a par-

ticipant in the transfer transaction. Once migration is complete,

the client cache will be invalidated by a failed attempt to access

Cmigr at Nsrc, at which time the updated meta information with

the new destination of Cmigr is read and cached by the client. Var-

ious optimizations are possible for improving client behavior and

redirecting client requests for Cmigr to Ndst. In our implementa-

tion, clients who have open connections with Cmigr at Nsrc are

directly notified about the migration and the address of Ndst. This

prevents the clients from making an additional network round-trip

to obtain the location from the OTM serving the metadata.

5. EXPERIMENTAL EVALUATION
We now experimentally evaluate our implementation of the pro-

posed migration technique. We implemented the iterative copy mi-

gration technique as well as the simple stop and copy migration

technique in the ElasTraS multitenant database system. The ex-

periments were performed on a cluster of nodes in Amazon Elas-

tic Compute Cloud (EC2). We use a ten node cluster for our ex-

periments, where each node is a “Standard Extra Large Instance”

(m1.xlarge) with 15 GB of memory, 8 EC2 Compute Units (4

virtual cores with 2 EC2 Compute Units each), and 1690 GB of lo-

cal instance storage. The distributed fault-tolerant storage (Hadoop
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distributed file system in our case) and the OTMs were co-located

in the cluster of ten worker nodes. The TM master (controller) and

the clients generating the workloads were executed on a separate

set of nodes. ElasTraS also uses a Zookeeper cluster [23] for loose

distributed synchronization, and a separate three node zookeeper

ensemble is used. These experiments measure the cost of migra-

tion in terms of disruption in service: number of tenant operations

failing, and the time window for which Cmigr is unavailable for

serving requests. Since during a specific instance of migration,

only the source and destination of migration are involved, the scale

of nodes in the system is irrelevant for this evaluation. We select a

system of ten nodes as a representative size; refer to [11] for scala-

bility experiments on ElasTraS. We use the stop and copy migration

technique as a baseline for comparison. Since in ElasTraS, the data

corresponding to a cell is stored in the NAS, stop and copy migra-

tion does not involve any movement of the persistent image of the

database, thus providing a fair baseline for comparison. In [16],

we evaluated various other off-the-shelf migration techniques on

popular open-source RDBMSs like MySQL. These techniques re-

sulted in tens of seconds to minutes of disruption in service for the

database being migrated [16]. We do not include these numbers in

this paper since they include the cost of migrating the tenant’s data

and are using a system not originally designed for such scenarios.

5.1 Workload Specification
The cost incurred due to migration depends on a number of fac-

tors: the type of workload on the system, the size of the database

cache, and the data access patterns for the transactions. To eval-

uate this spectrum of factors affecting the cost, we use two dif-

ferent OLTP benchmarks which have been appropriately adapted

for transactional workloads on a multitenant relational database:

(i) the Yahoo! cloud serving benchmark (YCSB) [9] adapted for

transactional workloads to evaluate performance of the proposed

technique under different read/write loads and access patterns; and

(ii) the TPC-C benchmark [32] representing a complex transac-

tional workload for typical relational databases. We focus on two

cost measures: the length of time for which a cell becomes unavail-

able during migration, and the number of operations that fail while

a cell is being migrated.

5.1.1 Yahoo! Cloud Serving Benchmark

YCSB [9] is a recently proposed benchmark for evaluating sys-

tems that drive web applications; the authors refer to such systems

as “serving systems.” The goal of this benchmark is complemen-

tary to that of traditional OLTP benchmarks like TPC-C, and is de-

signed to provide a comprehensive evaluation of the performance

space by varying the type of workloads (read-write percentage) and

the access patterns (uniform, zipfian, and latest). We extend the

benchmark by adding different transactional workloads and adapt-

ing it to a multitenant system where the system is viewed as a col-

lection of large number of small databases, instead of a single large

database.

5.1.2 TPC-C Benchmark

The TPC-C benchmark is an industry standard benchmark for

evaluating the performance of OLTP systems [32]. Our goal of us-

ing this benchmark in the evaluation is to determine the overhead

of migration on a complex transactional workload. The bench-

mark suite consists of nine tables and five transactions that por-

tray a wholesale supplier. The TPC-C transaction mix represents

a good mix of read/write transactions. The system comprises of a

number of warehouses which in turn determine the scale of the sys-

tem. More details about the benchmark can be found in [32]. For a

multitenant system, we configure the system such that a number of

warehouses comprise a tenant; the number determines the size of

the tenants. The benchmark is adapted to ensure that transactions

are always limited to a single tenant.

5.2 Evaluating Cost of Migration

5.2.1 Yahoo! Cloud Serving Benchmark

We first evaluate the cost of migration using the YCSB bench-

mark that allows us to vary different parameters that cover a wide

spectrum of workloads. The parameters varied in the experiments

include the percentage of reads in a transaction (default is 80%),

the number of operations in the transaction (default is 10), the size

of the tenant database (default is 200 MB), and the distribution of

the access patterns (default is uniform). In each of the experiments,

we vary one of these parameters while using the default values of

the rest of the parameters. In addition, the load on each cell is set

to a constant of about 2000 transactions per minute in all the exper-

iments. We evaluate the impact of load in our evaluation using the

TPC-C benchmark. Figures 4 and 5 plot the results from the various

experiments using YCSB; each sub-figure corresponds to the dif-

ferent experiments which we explain later in this section. Figure 4

plots the unavailability window (in ms) for the cell, while Figure 5

plots the number of failed operations for the cell being migrated.

The x-axes of the figures corresponds to the parameter being var-

ied. In all the figures, the two bars correspond to the two migration

techniques being evaluated: the proposed iterative copy technique

and the hitherto used stop and copy technique implemented in Elas-

TraS.

In the first experiment (Figures 4(a) and 5(a)), we vary the per-

centage of read operations in a transaction from 50% to 90%. The

goal of this experiment is to evaluate the impact of update load on

the cost of migration. As evident from Figures 4(a) and 5(a), the

cost of migration is higher when the percentage of updates in the

workload is higher. The increased cost of migration is because a

higher update rate results in larger amount of data which need to be

synchronized as well as flushed during migration. This results in

a longer unavailability window which translates to a larger number

of operations failing which the cell becomes unavailable.

In the next experiment (Figures 4(b) and 5(b)), we vary the num-

ber of operations in a transaction from 4 to 20. The goal of this

experiment is to evaluate the impact of the duration of transactions

on the disruption observed by the tenants. Since the applied load

on each cell is kept a constant irrespective of the size of the transac-

tion, the larger the number of operations in a transaction, the larger

is the percentage of update operations. We therefore see a trend

similar to that observed in the previous experiment where the cost

of migration increases as the update load on the cell increases.

In the third experiment (Figures 4(c) and 5(c)), we vary the size

of a cell from 100 MB to 500 MB. Even though none of the migra-

tion techniques being evaluated involve migration of the persistent

image of the cell, the size of the cell has an impact on the size of the

cache which is flushed by both the techniques as well as migrated

in the iterative copy technique. With uniform access patterns, the

size of the cache is a fraction of the size of the cell, and therefore,

a larger cell size implies greater amount of data being flushed as

well as synchronized. This increase in the cost of migration with

an increase in the size of the cell is also observed in Figures 4(c)

and 5(c).

In the final experiment using YCSB (Figures 4(d) and 5(d)), we

vary the distributions driving the access patterns for the transac-

tions. The access pattern determines the size of the hot data as well

the amount of state that must be flushed and synchronized during
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(a) Varying read percentage.
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(b) Varying transaction sizes.
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(c) Varying the size of the database.
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(d) Varying the access pattern.

Figure 4: Time duration for which a Tenant cell is unavailable during migration. Evaluation using YCSB.

migration. We use three different access patterns in this experi-

ment: uniform, zipfian, and latest. Refer to [9] for a discussion

on these access patterns. With both latest as well as zipfian, only

a small subset of a tenant’s data is hot, while a uniform distribu-

tion does not result in hot spots. Therefore, the amount of state

that changes as a result of uniform access distribution is expected

to be greater compared to that of zipfian or latest. This trend is also

evident in the cost of migration shown in Figures 4(d) and 5(d).

In summary, for all the workload types, the proposed iterative

copy migration technique outperforms the stop and copy migra-

tion technique; both in terms of service disruption as well as the

number of failed operations. For a lightly loaded cell, we observe

an unavailability window as low as 70 ms using the proposed it-

erative copy technique, compared to about 500 ms unavailability

window in stop and copy. Even for heaver workloads, the unavail-

ability window for iterative copy is between 3 to 10 times smaller

compared to stop and copy. The ElasTraS client retries (or query

router) the operations that failed during the unavailability window.

With the unavailability window less than a second in all but one

of the experiments, using the iterative copy technique allows the

system to migrate the cell within the retry interval (which is typi-

cally set to one second). This successful retry reduces the number

of failed operations which the application clients observe. Using

stop and copy, the longer unavailability window results in the retry

operations failing as well. This explains the very small number

of failed operations in iterative copy compared to that of stop and

copy. Furthermore, in iterative copy, transactions active during mi-

gration start at Nsrc and commit at Ndst. Therefore, there are no

transaction aborts. Whereas in stop and copy, all transactions ac-

tive during migration are aborted which further contributes to the

number of failed oeprations. We are currently working on optimiz-

ing our implementation to further minimize the cost of migration.

The amount of data to be synchronized and flushed in the final han-

dover step has a big impact on performance; and our future work

is focussed on further minimizing the amount of data transferred in

the handover phase of iterative copy.

5.2.2 TPC-C Benchmark

We now evaluate the iterative copy technique using the industry

standard TPC-C benchmark [32], adapted for a multitenant setting.

The goal of this evaluation using the TPC-C benchmark is to eval-

uate the performance of iterative copy with complex transaction

workloads representing real-life business logic and larger tenant

databases. We made two modifications to the TPC-C benchmark:

first, instead of having a single large TPC-C database, we set up

the system as a collection of small to medium TPC-C databases

comprised of a number of warehouses; and second, we limit all

transactions to a single tenant cell. Figure 6 plots the results from

the experiments using the TPC-C benchmark where we varied the

load on each of the tenant cells. The y-axes plot the cost of migra-

tion measures, while the x-axes plots the load on the system. In

these experiments, each tenant database size was about 1 GB and

contained four TPC-C warehouses. We vary the load on each ten-

ant from 500 tpmC (transactions per minute TPC-C) to 2500 tpmC.

As the load on each cell increases, the amount of state that needs

to be synchronized and copied over also increases, since the TPC-

C benchmarks has a high percentage of update transactions (more

than 90% of the transactions have a minimum of one update). As

a result, the length of the unavailability window increases with an

increase in the load of the system (see Figure 6(a)). Furthermore,

since at higher load, the rate of arrival of operations is larger, an in-

crease in the unavailability window has a greater impact at higher

loads, as more operations fail during the period when the cell is be-

ing migrated. This increase can be observed in Figure 6(b) where

the number of failed operations increases with an increase in the

the load on the system. Note that even at such high loads, migration
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Figure 5: Number of operation and transaction failures during migration. Evaluation using YCSB.

can be performed with a low overhead and without any disruption

in service of other tenants. Furthermore, the performance of the

iterative copy technique is considerably better than that of the stop

and copy technique; up to 3–5 times in terms of unavailability win-

dow, and up to 10 times in terms of failed operations. As seen in the

experiments with YCSB, the longer unavailability window in stop

and copy results in a considerable higher number of failed opera-

tions. From the experiments, it is evident that migrating a cell with

a smaller load causes less disruption compared to a heavily loaded

cell. Therefore, when a DBMS node becomes heavily loaded, it

is prudent to migrate the less loaded cells to other lightly loaded

nodes. Migrating the less loaded cells helps ensure the SLA’s of

these cells without incurring high overhead due to migration.

6. RELATED WORK
A lot of research has focussed on cloud DBMSs, DMBSs in a vir-

tualized environment, and multitenancy data models. However, to

the best of our knowledge, this is the first work that focuses on live

database migration for elastic load balancing. Multitenancy in the

database tier is common in various systems that support Software as

a Service paradigms such as Salesforce.com [33]. Different forms

of multitenancy have been proposed in the literature [3,24,33], the

predominant forms being: shared table [33], shared process [11],

and shared machine [31, 34]. Jacobs et al. [24] provide a summary

of these different multitenancy models and the different tradeoff as-

sociated with each such form. Elmore et al. [16] extend these mul-

titenancy models and propose a finer sub-division specific to the

different cloud computing models. Aulbach et al. [3] and Weiss-

man et al. [33] explain the design of two large multitenant systems

built using the shared table model. They also explain the different

optimizations and structures used to efficiently processing tenant

transactions in the shared table model. Soror et al. [31] analyze the

shared machine model where they leverage virtualization technolo-

gies to collocate multiple tenant databases on the same machine,

and evaluate the different implications of such a design.

Even though very little work has focused on live migration of

databases, a number of techniques have been proposed in the vir-

tualization literature to deal with the problem of live migration of

virtual machines (VM) [7, 27]. VM migration is a standard feature

supported by most VMs, and is a primitive used for load balanc-

ing in large virtualized clusters, specifically the cloud infrastruc-

tures. Clark et al. [7] propose a migration technique similar to the

iterative copy technique proposed in this paper; the major differ-

ence being that Clark et al. use VM level memory page copying

and low level techniques for transferring network connects and live

processes, while we use database level cache copying and rely on

the query router to route transactions. Liu et al. [27] propose an im-

provement to minimize the downtime and the amount of database

synchronized by using a log based copying approach. Note that

in the database literature, migration has been studied in a differ-

ent context – migrating data as the database schema evolves, or be-

tween different versions of the database system, or from one system

to another. Different approaches have been proposed to perform

such a migration efficiently in an online system. Sockut et al. [30]

provide a detailed survey of the different approaches to this online

reorganization of databases. We study the migration problem in a

different context where migration is used for elasticity, and does

not involve schema evolution or version upgrades.

A vast body of work also exists in scalable and distributed database

management. Early work dates back two to three decades [15,

29]; and the evolution of these scalable data management systems

has continued, with different alternative designs such as Key-Value

stores [6, 8, 14] as well as other database systems for cloud com-

puting environments [2, 5, 10, 11, 13, 25, 28]. Even though a large

number of such systems exist, the focus of the majority of such
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(b) No. of failed operations.

Figure 6: Evaluating the cost of migration using the TPC-C benchmark.

systems is to scale single large databases to the cloud and the fo-

cus is on performance optimization. Kraska et al. [25] propose the

use of varying consistency models to minimize the operating cost

in a cloud DBMS. Our work is different from all these approaches

since we propose the use of live database migration as a primitive

for elastic load balancing, and rely on the peaks and troughs in the

workload to minimize the operating cost of the system.

7. CONCLUSION
With the growing number of applications being deployed in dif-

ferent cloud platforms, the need for a scalable, fault-tolerant, and

elastic multitenant DBMS will also increase. In such a large multi-

tenant system, the ability to seamlessly migrate a tenants’ database

is an important feature that allows effective load balancing and elas-

ticity for minimizing the operating cost and the efficient sharing of

the system resources amongst the tenants. We presented the Inde-

pendent Copy technique for live database migration that introduces

minimal performance overhead and minimal disruption in service

only for the tenant whose database is being migrated. This live mi-

gration technique decouples a cell from the DBMS node owning

it, and allows the system to regularly use migration as a tool for

elastic load balancing. Our evaluation using standard OLTP bench-

marks shows that our proposed technique can migrate a live tenant

database with as low as 70 ms service disruption which is orders

of magnitude better compared to simple heavy weight techniques

for migration of a database. In the future, we plan to extend the

design by adding an intelligent system control that can model the

cost of migration to predict its cost as well the behavior of the en-

tire system. This model can be used to autonomously determine

which cells to migrate, when to migrate, and to allow effective re-

source utilization in the system while maintaining the SLA’s for the

tenants of the system.
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Figure 7: Illustration of KCCA for modeling and predicting the

cost of migration. In the feature projection space, the spheres

represent clusters.

APPENDIX

A. FUTURE EXTENSIONS
We now discuss some extensions as part of our future work. We

first describe a new technique for synchronizing the state during

migration. We then discuss a technique for modeling the cost mi-

gration.

A.1 Replication based copy
The iterative copy technique assumes the database state is a black

box and performs copying at the level of database pages and other

main memory structures, similar to the memory page copying tech-

nique used in VM migration [7]. The replication based technique,

on the other hand, uses the operations of the transactions for syn-

chronizing the state of Cmigr . In addition to taking a snapshot of

the initial state of Cmigr during migration initialization (Phase 1a),

the query router is also notified of the impending migration – i.e.,

the destination node Ndst and the cell (Cmigr) being migrated.

All subsequent operations for Cmigr are then replicated and also

sent to Ndst, in addition to sending them to Nsrc. Even though

the operations of the transactions are replicated, Nsrc still remains

the owner of Cmigr and is responsible for executing the transac-

tions; Ndst batches the operations and applies them in the com-

mit order determined by Nsrc. Referring to Figure 2, transactions

T11, T12 . . . which are active at the start of the migration phase are

sent to both Nsrc and Ndst. Nsrc executes the transactions and

commits them in a serializable order. In the mean while, the trans-

actions are queued at Ndst. The serialization order of transactions

at Nsrc is copied to Ndst, and the batched transactions are then ex-

ecuted as per the equivalent serial order notified by Nsrc. The in-

tuition behind this approach is that given the initial state of Cmigr

which was captured at Nsrc, the state of the cell before the atomic

handover is an application of the operations of the transactions in

the same order as it was applied at Nsrc. Note that even though the

operations between two concurrently executing transactions can be

interleaved, serializability allows us to apply operations one trans-

action at a time in the equivalent serial order. This approach allows

replication without the use of expensive distributed commit or syn-

chronous replication protocols. As earlier, once the amount of state

(in this case the equivalent serial order of committed transactions)

converges in subsequent iterations, we initiate the atomic handover

phase (Phase 1c).

This technique relies on the equivalent serializable order of the

execution history. Determining this order can vary depending on

the concurrency control used for scheduling by the transaction man-

agers. For instance, in an OCC based scheduler [26], committed

transactions are assigned transaction numbers by the system, which

determines the equivalent serial order. On the other hand, in a 2PL

scheduler [17], transactions are not assigned numbers, but the or-

der in which transactions reach their lock point (i.e. the instant a

transaction releases its first lock and hence cannot reacquire another

lock) dictates the serializable order. Transactions can then be num-

bered in the order in which they reach the lock point. In the future,

we would like to extend this technique and compare the trade-offs

when compared to the iterative copy technique.

A.2 Cost Model
Live migration of a cell in a multitenant DBMS is one of the

critical features for load balancing and elasticity, and the controller

in the system (see Figure 3) decides which cell to migrate, when to

migrate, and the destination of migration. In order for the controller

to model the behavior of the system before, during, and after migra-

tion, an estimate of the cost of migration is important. In this sec-
tion, we discuss a technique to estimate and predict the cost of mi-

gration. Note that for a system, the cost of migration can have mul-

tiple dimensions, representative examples include: the time taken

to complete migration (Phase 1), the amount of data transferred

during migration, number of transactions aborted due to migration,

percentage increase in latency of transactions during and after mi-

gration. In a system trying to optimize cost of operation, the cost

can also be measured as the percentage change in operating cost.

Our goal is to develop a cost model that is extensible in terms of

predicting the cost(s) associated with migration as per the require-

ment of the system.

We use a statistical machine learning technique for multiple met-

ric performance predictions, a technique also used in a recent study

by Ganapathi et al. [19]. The authors propose the use of a technique

known as Kernel Canonical Correlation Analysis (KCCA) [4]. We

use a set of input features that describe the migration task, and the

corresponding set of performance features that describe the cost of

migration, and kernel functions are used to project the vectors onto

dimensions of maximum correlation. These projected vectors can

then be used for prediction for new workloads. Figure 7 provides

an illustration of the modeling technique. The model is first trained

using the input migration feature matrix and the corresponding per-

formance feature matrix obtained by performing the migration and

using the observed cost. More details about the internals of KCCA,

and the use of KCCA for prediction can in found in [4, 19]. In

this section, we focus on identifying the features that describe the

migration task. Recall that during migration, the database buffer

is being migrated. The size of the buffer, and the number of up-

dates to the buffer while the iterative copy is in progress would

impact the cost of migration. In addition, the load on the system

would also determine the impact of migration for transactions on

Cmigr as well as other cells on Nsrc and Ndst. Using this un-

derstanding, we use the following features for describing the mi-

gration task: (i) size of the database cache that needs migration;

(ii) expected transactional load (in transactions per second) during

migration; (iii) approximate read/write workload distribution; and

(iv) average load on Nsrc and Ndst. Selecting performance fea-

ture is straightforward, we use: (i) amount of data transferred dur-

ing migration; (ii) percentage increase in latency of transactions to

Cmigr; (iii) percentage increase in latency of transactions to other

cells at Nsrc and Ndst. (iv) time taken for migration; (v) time for

which Cmigr is unavailable; and (vi) number of aborted transac-

tions on Cmigr as a result of migration. In the future, we plan to

evaluate the effectiveness of this technique in predicting the cost of

migration.
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