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ABSTRACT

By offering high availability and elastic access to resestchird-
party cloud infrastructures such as Amazon AWS and Micrtosof
Azure are revolutionizing the way today’s businesses dpetan-
fortunately, taking advantage of their benefits requiresirnmsses
to accept a number of serious risks to data security. Fastotsas
software bugs, operator errors and external attacks caoralbro-
mise the confidentiality of sensitive data on external ciyuiaking
them vulnerable to unauthorized access by malicious gartie

In this paper, we study and seek to improve the confidentiafit
application data stored on third-party computing cloudse [b-
pose to identify and encrypt dlinctionally encryptablelata, sen-
sitive data that can be encrypted without limiting the fimality
of the cloud service. Such data would only be stored on thedclo
in an encrypted form, accessible only to users with the cokeys,
thus ensuring its confidentiality against unintentionabes and at-
tacks alike. We describ@ilverling a set of tools that automatically
1) identify all functionally encryptable data in a cloud &pation,
2) assign encryption keys to specific data subsets to mieilkey
management complexity while ensuring robustness to keypoom
mise, and 3) provide transparent data access at the useeaddvile
preventing key compromise even from malicious clouds. Tigho
experiments with real applications, we find that many webiegp
tions are dominated hyata sharingcomponents that do not require
access to raw data. Thus, Silverline can protect the vagirityaj
of data on these applications, simplify key management,paae
tect against key compromise. Together, our techniquesigeav
substantial first step towards simplifying the complex pss of
incorporating data confidentiality into cloud applicaon

1. INTRODUCTION

Third-party computing clouds, such as Amazon’s EC2 and Mi-
crosoft’s Azure, provide support for local computationtadanan-
agement in database instances, and Internet services|dsyral
organizations to efficiently outsource computation anchaaan-
agement, they greatly simplify the deployment and managéwofe
Internet applications.
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Unfortunately, these game-changing advantages come wigh a
nificant price in data confidentiality. Using a multi-tenanbdel,
clouds co-locate applications from multiple organizasiom a sin-
gle managed infrastructure. This means application dataliger-
able not only to operator errors and software bugs in thedclbut
to also attacks from other organizations. With unencrypmtath
exposed on disk, in memory, or on the network, it is not ssrpri
ing that organizations cite data confidentiality as thejigleist con-
cern for cloud computing [12, 39, 24]. In fact, researchecently
showed that attackers can effectively target and obsefoenia-
tion from specific cloud instances on third party clouds [34$ a
result, many recommend that cloud providers should nevgiviea
access to unencrypted data [32, 4].

Organizations can achieve strong data confidentiality loyygt-
ing data before it reaches the cloud, but naively encryptiata
severely restricts how data can be used. The cloud canriotper
computation on any data it cannot access in clear text. Faicap
tions that want more than just pure storag), a web service, this
is a significant hurdle. There are efforts to perform spedcifier-
ations on encrypted data such as searches [35, 6, 1, 10, 28, 7,
34]. A recent proposal of a fully homomorphic cryptosystelii][
even supports arbitrary computations on encrypted dateeier,
these techniques are either too costly or only support vemyed
functionality. Thus, users that need real application supfsom
clouds must choose between the benefits of clouds and stoong ¢
fidentiality of their data.

In this paper, we take a first step towards improving data con-
fidentiality in cloud applications by proposing a new appio#o
balance confidentiality and computation on the cloud.

Our key observation is that for applications that can benafit
from a cloud model, the majority of their computations hasdl
data in an opaque way.e. without interpretation. For example,
a SELECT query looking for all records matching userlBob’
does not interpret the actual string, and would succeeaistting
was encrypted, as long as the query value matched the eadrypt
string. We refer to data that is never interpreted by theiegiibn
asfunctionally encryptablgd.e. encrypting them does not limit the
functionality of the cloud application. Consider, for exam a
message board where clients post and view messages ingide sp
cific groups based on membership. Users can only store aedscc
information that is relevant to them. In this case, différgroups
of users access messages, but the cloud does not intepretitie
of the message contents, and only treats it as opaque date (if
ignore full text search for the moment). Instead, the clonty o
needs to know users’ group memberships, and use that tocenfor
access control. Similar arguments apply to applicatidresdbcial
networks or shopping carts.



Thus our key insight is to separate an application’s datatimb
subsets: functionally encryptable data, and data thateslegt in
cleartext for computation in the cloud. As we later show, rgda
majority of application data is functionally encryptaléed we fo-
cus in this paper on how to efficiently encrypt and manage such
data. As shown in Figure 1, data would be encrypted by users be
fore uploading to the cloud, and it would be decrypted bysiaéer
receiving from the cloud. While this idea sounds concepysin-
ple, realizing it requires us to solve three significant mgjes: 1)
identifying functionally encryptable data in a cloud apglion, 2)
assigning encryption keys to data while minimizing key ng@ia
ment complexity and risks to key compromise, and 3) progdin
secure and transparent data access at the user device.

Identifying functionally encryptable data. The first chal-
lenge is to identifying data that can be functionally entegowith-
out breaking application functionality. To this end, wegaet an
automated technique that marks data using tags and traaksléh
pendencies through dynamic program analysis. We identifig-f
tionally encryptable data by removing all data marked wipst
that correspond to actual computations in the cloud. Niyuthe
size of this subset of data depends on the type of serviceexor
ample, for programs that compute values based on all da¢etsbj
our techniques will not find any data suitable for encryptidn
practice, however, results show that for many applicatiomdud-
ing social networks or message boards, a large fractioneodidia
can be encrypted.

Encryption key assignment. Once we identify the data to

be encrypted, we must choose how many keys to use for encryp-

tion, and the granularity of encryption. In the simpleste;ase
can encrypt all such data using a single key, and share theikey
all users of the service. Unfortunately, this has the prokieat a
malicious or compromised cloud could obtain access to the/pn
tion key, e.g. by posing as a legitimate user, or by compromising
or colluding with an user. In all cases, confidentiality oé tbn-
tire dataset would be compromised. In the other extreme oukelc
encrypt each data object with a different key. This increasbust-
ness to key compromise, but drastically increases key nesmeigt
complexity.

Thus we need to automatically infer the right granularitydata
encryption that provides the best tradeoff between rolegstiand
management complexity. Our goal is to partition the data suib-
sets, where each data subset is accessed by the same greepsof u
We can then encrypt each data subset using a different keglign
tribute keys to groups of users that should have accessdmse
desired access control policies). Thus, a malicious or petmud
that compromises a key can only access the data that is ¢edryp
by that key, minimizing its negative impact. We introduceya d
namic access analysis technique that identifies user gtbapsan
access different objects in the data set. In addition, werdesa
key management system that uses this information to assigrch
user all keys that she would need to properly access her Siatze
key assignment is based on user access patterns, we cam aitai
assignment that uses a minimal number of encryption keyssaec
sary to “cover” all data subsets with distinct access grpugsle
minimizing damage from key compromise. Key management can
be handled by the organization We also consider mechanisms

that we need to manage keys when users or objects are dynami-

cally added to or removed from the application or service.

Secure and transparent user data access. Edge devices are
given decryption keys by the organization to provide useits w

!In this paper, we use “organization” to refer to the entigttvants
to securely deploy its application and data on the cloud.
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Figure 1: A depiction of our approach. The cloud stores encrypted
data, the organization stores decryption keys, and the cligs fetch the
two and decrypt the data locally to obtain the application’sservice.

transparent data access. Of course, these devices (as)l nnsest
protect these keys from compromise. For example, an uettust
(or compromised) cloud can serve customized attack codé-to o
tain encryption keys and decrypted data. To ward off these at
tacks, we propose a client-side component (which runs inskes’
browsers) that allows users to access cloud services aeeTsfy,
while preventing key compromise (even from a malicious djou
Our solution works by leveraging already available featimemod-
ern web browsers such as same-origin policies and suppdfivIL5
postMessagealls. As aresult, our solution works without any browser
modifications, and can be easily deployed today.

We implemented our techniques as part of Silverline, a pypto
of software tools designed to simplify the process of sdguran-
sitioning applications into the cloud. Our prototype takssnput
an application and its data (stored in a database). Fiftd@mat-
ically identifies that data that is functionally encryp&@biThen, it
partitions this data into subsets that are accessible ferélift sets
of users (groups). We assign each group a different key, And a
users obtain a key for each group that they belong to. Thisvall
the application to be run on the cloud, while all data notatiye
used for computation is encrypted. By applying our systesetoe
eral popular applications, we show that our system cantioarti
data and assign keys to maximize data protection with a naihim
number of keys. In addition, we find that a large majority ofeda
can be encrypted on each of our tested applications.

In summary, the main contributions of this paper are thefalhg:

e We introduce a novel approach to provide data confidential-
ity on the cloud, while maintaining the functionality of cid
applications. Our approach works by automatically idgntif
ing subsets of an application’s data that are not directidus
in computation, and exposing them to the cloud only in en-
crypted form.

We present a technique to partition encrypted data intes part
that are accessed by different sets of users (groups)liintel
gent key assignment limits the damage possible from a single
key compromise, and strikes a good tradeoff between robust-
ness and key management complexity.

e We present a technique that enables clients to store and use
their keys safely while preventing cloud-based servicenfro
stealing the keys. Our solution works today on unmodified

web browsers.

We describe Silverline, a prototype toolset that impleraent
our ideas, and discuss the results of applying Silverline to
three real-world applications.

2. OVERVIEW OF SILVERLINE
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Figure 2: An example message board application’s database schema.

Our overarching goal is to improve the confidentiality of i&pp
cation data stored on the cloud. We assume that the thitgi-par
computing cloud provides service availability accordingérvice
level agreements, but is otherwise untrusted. More spatiifieve
assume cloud servers may be compromised or may malicioolsly ¢
lude with attackers to compromise data confidentialityaljnwe
focus in this work on issues of data confidentiality and leater
issues, such as denial-of-service attacks, data and catiguin-
tegrity issues for future work.

Our solution to improving data confidentiality on the clowdls
for the end-to-end encryption of data by its owner (the oimn
tion) and its consumers (the users). In this paper, we cormar
selves with the data persistently stored in the databasasteth-
niques apply to both traditional relational databases enctoud,
and to databases specifically designed for the cloud [3,]12®@
cess to encrypted data is granted through selective disitsib of
encryption keys, but only to users that have legitimate sste
the data. We use symmetric keys to encrypt the data — synametri
keys are highly efficient and would provide confidentialitigrwiow
computational overhead.

2.1 An lllustrative Application

We illustrate our approach using an online message board ap-

plication, where users use topic-based forums for excihangies-

Storing and querying data on the cloud. In Silverline, data
in the database (running on the cloud) is encrypted, but kegs
not revealed to the cloud. The keys are stored by the orgamiza
that “outsources” its application and data to the cloud. &wh
data from the cloud, the user first contacts the organizatayet
the appropriate key(s), and then sends the query to the ¢toud
fetch the data. The input parameters to the query are alsdrsen
encrypted form. The cloud executes the query using thisyptex
input and then sends back the results, also in encrypted fbinen,
the user’s device decrypts the data and displays it to the use

For example, consider the qUelSELECT » FROM Users WHERE
Userld = 'Bob’ . Here, Bob queries the cloud for his detailed
profile information. In current systems, the username wdngd
in plaintext. But in Silverline, the username is encryptesing a
key that is known only to the organization and Bob. Bob otsdin
this key when he registered with the organization. Thusgtray
usesF(Bob, Kp.) as the input parameter. The results returned
from the cloud are also encrypted with the k&y;,,, which Bob
decrypts upon receipt.

If some data is to be known to a group of users, then the same
key is shared by all the users. For example, all the membetseof
groupLi t er at ur e would obtain the keys;,;: when they join the
group, and a query to fetch the messages sent to this geaupCT
» FROM Messages VHERE Groupl d=’ Li terat ure’ )would have
E(Literature, K1;)astheinput parameter. If a member wants

to post a message to the group, the message would be encrypted

before sending it to the cloud, using the group’s key. Theidlo
would then store the encrypted blob of text in the databarstg@d
the message itself). Once the keys are received, the cheotse
them to reduce future key requests to the organization, lang| t
reduce the load induced on the organization.

To leverage this model, the organization's developers rieed
modify their database schema deployed on the cloud. Siheerl
tools will inform developers which fields can be encryptedttos
cloud without affecting the application. These encrypteddf
should then be modified to an appropriate typg. ani nt now

sages and discussions. We show a sample database schehis. for t PECOMeSs &l ob of text.

application in Figure 2, and will use this example throughthe
paper to illustrate our approach. The schema consistdJsiea s
table to store user profile information such as name, userid,
email, aGr oups table to store information on discussion groups,
aUser sToG oups table that maps users to the groups they are
members of, and Bessages table that contains individual mes-
sages sent to the groups.

Storing and managing keys in the organization.  In our ap-
proach, the role of the organization is to store all keys sguand
to provide users with only the keys that they should havesscte
We take a fine-grained encryption approach to provide stoomg
fidentiality guarantees. A database consists of tableledaonsist
of rows; and rows consist of cells. As a result, in our apphodd-
ferent parts of a single table may be encrypted with sevéfalent

Today, an organization would deploy the above message boardkeys. If necessary, we encrypt each cell in each row of a taitte

on the cloud by directly running it on the cloud. Data would be
stored in plaintext in a database, and queries from the ugarkl

be executed directly on this database. In this simple approa
user data confidentiality can be compromised in several wHys
cloud operators have access to cloud hardware and the applic
tion data. A bug in the software managing the cloud may reveal
user data to attackers. Finally, the multi-tenant naturtaefcloud
brings a unique challenge: a compromised application nghim

the cloud can “infer” data that belongs to the users of otppliea-
tions running on the same hardware [31]. A recent surveyrd@pe
describes these and other threats in more detail.

2.2 Proposed Approach

In Silverline, we improve data confidentiality by encrypfias
much of the application data as possible on the cloud (withrak-
ing the application’s functionality). This enables orgaations to
use existing clouds and protect their data and the data iofithers.
The high level ideas of our approach are shown in Figure 1.

a different key. For example, in thdser s table above, consider a
situation where all users can see all users’ Userld and WseeNn
the system. However, only the user can see her email adtreas,
tion, and gender. In this scenario, the ideal key assignmventd
be to encrypt all Userld and UserName cells in the table with o
key, and to give that key to all the users. But the cells cpord-
ing to email, location, and gender of Bob must be encryptead wi
another key K 5.5), and that key should be accessible only to Bob.
The organization is responsible for securing the creatfarser
accounts. For instance, a University deploying a messagedbo
for its employees is in charge of ensuring that each appbicatc-
count is actually an employee. This is important to prevést t
cloud from gaining access to all keys by creating many usettssi
application’s database to perform a Sybil attack [15].
The organization is also responsible for using Silverlioalé-
termine the key assignment, store these keys, and to praeitkss
to keys to users as they need them. Of course, all keys must be
stored by the organization in a secure fashion. Since keysraall



in size, and they can be cached on users’ machines, the |od@ on
organization is quite low, and so is the hardware cost. Asaltie
Silverline enables the organizations to use the elastiedglavhile
preserving data confidentiality with only a small investiierthe
in-house hardware.

Data access on user devices. In our model, users download
data from the cloud, keys from the organization and decriypt t
data locally to obtain the application’s functionality. $kéop ap-
plications can protect keys locally using standard tealesq For
example, by storing the keys in the disk with permission®igiv
only to the user that represents the organization. Howexeneed

an approach to provide similar isolation properties in wepliaa-
tions, where data, code and keys are combined in the samsdrow
Silverline provides a solution that works without browseodifi-
cations. To leverage this, applications on user devices ragsest
keys on behalf of the local user, decrypt data from the cloeid b
fore displaying them to the user, and encrypt any user ddtade
sending it to the cloud.

Outlook. The key questions to answer when implementing
our approach are the following: 1) Which portion of the dada c
be encrypted without breaking the functionality of the aggtion,

2) which keys are used to encrypt what portions of the data and

how are they managed, 3) how is encrypted data managed at the

end users’ devices. The answers to these questions arsskstin
more detail in the following Section 3.

2.3 Confidentiality vs. Key Management

Before discussing the detailed design of our system, wehise t
section to introduce and define some terminology.

A user has access to a set of cells, and hence is given a sgfsof ke
that decrypt these cells. We describe the tradeoffs indoineas-
signing these keys to the cells starting with some basic itiefiss.

Our main goal is to maintain the confidentiality of the datsba
on the cloud. This is achieved as long as the confidentialigaoh
cell is protected. A cell’s confidentiality is defined as:

DEFINITION 1. Theconfidentialityof a cell is maintained when
no user that does not have access to the cell is able to deitrypt

We use the notion of thecope of a keto quantify the confiden-
tiality properties in Silverline.

DEFINITION 2. The scope of a key is the number of cells in the
database that the key can decrypt.

A user may receive multiple keys to decrypt all her cells. Mhe
her scope is the sum of all her keys.

DEFINITION 3. The scope of a user is the union of the scopes
of all her keys.

To reduce the management overhead on the organization @nd th
users, the number of keys given to each user should be miimiz
The obvious solution to give no key to any user. However, this
is not valid because it does not provide any functionalitythte
user. Of course, the applicatiorfisnctionality must be preserved
after applying our mechanisms. That is, there is a tradevbére
the organization aims to distribute as few keys as possibtaput
denying any user access to data that this user is entitled to.

DEFINITION 4. An user is said to have minimal keys, when re-
ducing her keys any further leads either to breaking the iappl
tion’s functionality or to a loss of data (cell) confidenttgl

Thus the end points in the spectrum of choices to tradeoff be-
tween confidentiality and key management do not meet ouinequ
ments. A key with absolute scope on the entire databasetesola
confidentiality. On the other hand, a key per cell with a scope
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Application Running in a Modified Runtime Database Backend

Figure 3: Encrypted data tracking: We train Silverline with a set of
user inputs to the application, which generates queries tdhe database
back-end. The database responds with data, and the modifiechalica-
tion runtime tags each data with a unique query number. The apli-
cation runtime propagates tags through computational depedencies,
and logs warnings whenever a tagged piece of data is involvéaa com-
putation or function.

one leads to high key management overhead. For a given databa
the best tradeoff is the one where each user has minimal keys a
cording to Definition 4. If each user has minimal key assignime
then the key assignment for the entire database is saidaptbmeal
Silverline aims to achieve thigptimal key assignment

Finally, the cloud’'s scope must be zero. If the cloud colkide
with a small set of users, then its scope is the union of thpesob

all users it colludes with. As long as the organization sesuhe
account creation process, the cloud cannot gain access émtine
database by performing a large-scale Sybil attack.

3. DETAILED DESIGN

The goal of our work is to enable organizations to easily mi-
grate existing Internet applications to a more secure modetre
the majority of application data is protected from vulnélities in
the cloud using end-to-end encryption. Our work on Silverlin-
cludes three techniques that help automate the transdianrore
confidential application modeéncrypted data trackingp identify
functionally encryptable datajatabase labeling and key assign-
mentto partition functionally encryptable data into differgmoups
and assign each encryption keys, atiént-side key management
to protect keys from compromised clouds. For now, we describ
our techniques with the assumption that application dastoised
in a static database, and no rows are added or deleted. later,
present extensions to deal with database changes.

3.1 Encrypted Data Tracking

Silverline uses a combination of information tagging and dy
namic analysis to determine the types of da& (vhich database
fields) are functionally encryptable. We apply our techejby
modifying the application runtime interpreterg. PHP interpreter
in our examples, to tag information associated with diffeéatabase
queries, and propagate them throughout the applicatian. &y
training Silverline with a representative set of applioatgueries,
we expose the computational requirements of the applitatind
determine whether each database field is functionally @tabje
or not. We show a simple example in Figure 3, and describélsleta
of our approach below.

Dynamic Program Analysis.  To find encryptable data, one can
perform static or dynamic program analysis. In both casesgoal

is to find database cells that are used by the applicationrimpoe
tations, such as string operators, numerical operatonspamators
and counters. To this end, one needs to track the use of gesult
from the database and analyze their usage. In this papersae u
a dynamicapproach, based on a set of manually crafted training
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Figure 4: Database labeling in action. The application executes in aadified runtime that implements database labeling. The resits produced after
performing database labeling on theUser s table for two queries: SELECT User Nanme from Users and SELECT Locati on from Users

WHERE User | d="i d" are shown. The first query returns all users’ names,

queries that exercise the application. Given a set of tigigueries
that are representative of application-to-database egiesie mod-
ify the interface between the database and the applicatiotinme
to automatically extract meta-information as data is re¢drfrom
the database. We use this to build a table that maps the sigsat
of specific queries to fields accessed in the database.

Data tagging and propagation. At a high level, Silverline tags
data entering the application from the database, and triheka
through computational dependencies in the applicatioi tigy
are used in a computation, or returned to the user withowdsaec
ing its values. Data is sent from the database to the apiolicat
response to application queries. As each piece of datariewed
from the database, it is tagged withqaiery numbetthat corre-
sponds to the query that generated it. Query numbers arévposi
integers that uniquely identify a query by its semantic atgre,i.e.
SQL operators and fields queried.

As operations are performed on data, the modified applicatio
runtime or interpreter propagates the tags as follows. Aigas
ment operation propagates the union of all tags of the itgimel
side (RHS) operand to the left-hand side (LHS) operand. Ary p
vious tags for the LHS are overwritten. For arithmetic,regrilog-
ical, or comparison operators as well as library functidags are
propagated in the same way. In addition, if any of the opevand
in the RHS are tagged, then a warning event is generated ¢br ea
tagged operand. This event includes query numbers of aktag
operands and the source code location where it originated.

After all queries in the training set have been executede8il
line collects the logs containing all warning events getestén the
application. We aggregate all warning events to produceiguen
list of query numbers that tagged non-encryptable datandJsie
previously-produced table (which maps query signaturegetds
in the database), we then produce a list of all data fields &hos
values must be exposed in cleartext for the application notfan
properly. These fields are not functionally encryptablel odher
fields are.

Modifying Application Runtime. We demonstrate our tech-
niques on PHP applications, and modified the PHP interpaeter
the PHP-MySQL interface to support data tagging and pramaga
We store the tags by extending theval_structdata structure that
is at the base of all data types in the PHP interpreter. Thigres
that our tag propagate correctly for all data types and gieaisilong
as an object remains.

3.2 Database Labeling and Key Assignment

We now explain how Silverline addresses the challenge of as-
signing encryption keys to sets of data objects with the dipro-
ducing a minimal key assignment for each user. To do so, we nee
to automatically determine the appropriate scope for iifiekeys.

while thesecond returns only the querying user’s location.

We solve the problem by, again, relying on a (relatively com-
plete) training set of application requests. We assumenbdtave
access to a snapshot of the application database, eitfear fiadm
a running instance, or produced by a sequence of user request
We use the training set and the snapshot to generate a wdrkloa
of database queries, allowing us to infer user access pattard
identify the optimal key assignments.

3.2.1 Labeling Algorithm

Given a sufficiently detailed set of requests, we can idgiatiif
database cells accessible by each user. By modifying theaee
between the application runtime and the database, we caa use
“database labeling” technique to capture and store thetterps
Later, we explain how these labels are used to produce a minim
key assignment. Figure 4 depicts labeling with an example.

In Silverline, the modified application runtime accessegdiap-
tion userlIDs, and associates all queries to the datababkeheitD
of the user whose application request generated that qlieiyal-
lows Silverline to assign to each cell in the databaksdal. A label
is a set of all userIDs (users) who have access to that celh Eell
¢i, its label can be written ab., = {o1, 02, ..., 05}, whereo; is
the ID of a user can accessBYy definition, a user who runs a query
has access to all cells returned as the result of that qudrgret
fore, we can build up a label for each cell in the database iying
our training set of application requests. As each user runsay
that accesses a cell, her userID is appended to the celésifab
is not already there. For example, if the queBELECT Userld
FROM Users where Gender=0" is executed by two user&ob
and Admin, Silverline will label theUser | d cells of the male
users Gender =0) in the table with labelogob, 0 4dmin }-

Our approach uses a training set of either logged or sygtheti
user inputs (SELECT statements) to drive the databaseats|-I
ing process. For extremely large databases with compleensasb,
it can be difficult for a training set to cover the bulk of thesus
cell combinations possible in the application. In this cage pro-
pose to augment an existing training set with additionattsstic
requests using an approach similar to protocol input fuz#Q],
dynamic input generation for testing Web applications [&§,and
dynamic input generation for high-coverage tests in daimlzg-
plications [16, 36]. For example, we can add queries to theyqu
above withGender as input parameter for all values Génder ,
e.g.{0, 1}. For fields with a large number of potential valueg.a
long type, we can use sampling guided by the applicationldpve
ers. To provide comprehensive coverage, we can continuatingd
cell labels until the query has been executed for all (orifgmt
sample) of parameter values and user accounts.

Of course, even after using the aforementioned techniduiss,
possible that our training data is incomplete. In this casers
are not provided keys to cells that they have access to. \Whige
does not interfere with the confidentiality of data, it migtgny



legitimate users access. We handle omissions due to inetenpl
training in the same way as dynamic updates to the database (i

both cases, some new information is added or discoveredg Th
mechanism to handle this is described in Section 3.2.3.
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3.2.2 Key Assignment

Once the labeling step is done, all cells will have labels tep-
resent users who can access them. Our key assignment pusesss
this information to assign keys to groups of database dwllshtave
common access patterns. Keys are then distributed to uaseslb
on their accessibility to groups of cells. The goal is to el a
minimal number of keys in the application while guarantgeimat
each user can 1) decrypt all the cells she owns, but 2) camot d 5 ,5e they infer a user's access privileges based on acteriés,
crypt any cell that she does not own. ] rather than usernames. For example, regular users can eun th

The key assignment is a simple process. We want an assngnmenhuery SELECT * FROM users WHERE User | d=' xxx' for their
that guarantees the constraint that each user’s keys rbeidwith own userlDadni n can run the qUErgELECT + FROM user s to
access to the cells she should access (based on our tratilg d et data on all users. When these queries run in the traiging s
and no more. We also want to use a minimal number of total keys. gijjyerline naturally addadmi n to the labels of all the cells in the

We compute the initial key assignment by examining all s users table. This easily extends to a complex hierarchy efsus
in the entire database. We group all cells together that lfewe ity escalated access privileges.

same label, and assign these cells a single, unique keydividges
all cells into a number of groups, each defined by a commor labe 3.3 Safe Key Management on User Devices
and a common key. Cells that share a common label are accessed T provide users transparent access to their data, theipagjan
by the same set of users, and thus share the same encrypfion ke - myst distribute decryption keys to users’ edge devices. isalt,
There is an additional constraints to consider. Cells immwis Silverline must ensure that a compromised cloud cannot lstga
that queries use to perforjoin on tables need to be either unen- o gecrypted data from user devices. In particular, whercliet
crypted, or encrypted using a single key. This is necesseajtaw accesses the application on the cloud and downloads erdrgipta
users to join tables without decrypting the involved talgimns. with a web browser, a malicious cloud could inject cliertestode
This means that giving a user access to a single cell in theraols (a piece of JavaScript, for instance) into the output. ThiEnt
the same as giving her access to all cells in the column. WeMeel  gjge code is then executed on the user's device, which stoees
keeping these join columns unencrypted is generally red¥en — gecryption keys. Clearly, we need to ensure that this el
since joins are almost always performed on columns repliegen  code cannot access or leak keys, and that the decryptionesan b
IDs of entities, and would not expose real valuable data. done in a secure fashion before the data is presented toeheAus

Once assignment finishes, we create for each cell group an en-g|ytion to the problem is presented in the following paaags.
cryptlo_n ke_y,_ en_crypt the cells, and then distribute the te@ypll Secure data access on user devices. The key insight behind
users identified in the group label. This ensures that eaghhazs our approach is to isolate (prevent) the untrusted code f

all the keys necessary to access all cells she should hagssat cloud from accessing sensitive data (such as keys or dechyiatia
3.2.3 Incompleteness and Database Dynamics values) on user devices. Only the code from the organizigiah
So far, we have described our mechanisms under the assamptio lowed to access such data. We accomplish this by leveragimg f

of a static database. However, databases change for a nwiber E(I);ral\:\t/)é tr:‘gtk'g 3g§‘ﬁ%ﬁée§'§nmténor?io?r?g‘0\(¥eb grggszrr%alﬂ'_:EMLS
reasons: new users join groups and are given access tongxisti ' 9 y ( ) :

data, and existing users leave groups. In addition, ounitigiset As a result, our solution works in current browsers withowifi-

of queries may not trigger all codes paths in the applicatibos cation.

omitingsome ser o abes o e hey should navsados 14 V268 e 1 sote sl sccess o seret
Our approach is to accept that results of the initial trajrpno- ) 9

cess can be incomplete or outdated. We introduce an onlimé mo 'Eg V\llebdapplcljcatlonbs Ihosted or;] the cloyd. 'One :]rarl?e belongs t
toring component inside the modified application runtimet tho- t € cloug, e}n one belongs to the organnzaﬂon. T € t_ayst

tifies the organization whenever a query is executed whesern u in the user's Wel.) prowser (as coqkles, or on disk with H.TM.LS)
accesses cells for which she does not have the proper keysi-A s under the samerigin (the source site details) as the organization.

ilar notification is generated whenever a user leaves a gaodpts ﬁgrﬁ ;ecilg;’;i:e ﬁ‘reovsvstﬁ;ts fe?ois Ft):)e%een;hznui;;?;efjg!mrru o del
access should be reduced. When the organization receivagia n g key g 9 ’

cation, it updates the key assignment appropriately. Ifaaumer is erstgzg:]nsihzfny?r:rr:;nglt:rc]:t(i:ae”sst)éfnb)rlotgtiesg:jgggﬁgtlﬁame,
gaining access, she receives the appropriate key. If asifesing P Once kge s are 'solate% the neyt ste p's to isolate thé d e
her access, the organization might need to re-key groupsitaf d Y ! ! x P! :

cells,i.e. decrypt the data using the old key and re-encrypt using a tion pr?ctgss, tsho tha': unten(;:rylpte dd, dfata doss nolt Iegk iﬂdbd'dlg
new key. Data re-keying is undesirable, because it expasesad gur S? u |or;], ? ug ruhs edc Ocl; Sh rame owndoad s Wgﬂed
cleartext, and must be performed on the organization’s com-c ata _rom_t ?cou ,t_en sends this (encrypted) data taw &3.
pute resources. Data re-keying is a rare event in most apiolits, org.anlyzatlon S framg via a HTMLpost Message call. Thg organi-
and its impact can be reduced by batching tasks. zation’s frame receives the encrypted data, decrypts dlpcand
renders or processes the data based on user requirementdatan

Client Browser

Figure 5: Our design of safe data processing in the user’s browser.

A final note. Finally, most applications control data access sent back to the cloud is first encrypted with appropriateskay
using different hierarchies of users,g. the adm n user versus side the organization’s frame, then sent back to the cloudiae,
regular users. Silverline mechanisms support this nayubed- which posts the message to the cloud. Because the framestcann



directly access each others’ data inside the browser, peghyata PROOF The key assignment algorithm assigns keys using the
is never accessed by the cloud’s frame. Our solution is tkgia labels acquired by cells during the labeling phase. By déedimi
Figure 5. the labeling algorithm adds an user to a cell’s label onlhé tiser
Trusting the browser-side code.  The final detail is to deter- ~ has access to the cell. But a user without access to a cellrtgn o
mine how the code is sent safely to user devices. In our imptem et the key to that cell if she is in the label of the cell. Thisai
tation, the organization hosts the entire code that rurisantrusted ~ contradiction. Hence, our key assignment algorithm neseeals
frame and sends it to the user, which is then cached in herserow  the key to a cell to a user without access to that cefl

Then, the cloud’s frame only needs to download encrypted dat

from the cloud, and then upload encrypted data generatetieby t  proof of key minimality. By Lemma 1, the total number of
user to the cloud. Since the code is generally small is siaé, a keys assigned to encrypt the whole database is equal to thieatu

is cached on the client, the load incurred on the organizatio  of unique labels in the database. Now we prove that this is the
hosting the code is also small. While we chose this approach f  gptimal number of keys. Suppose there is an assignment lower

its simplicity, an alternative approach based on code eatifin, than the total number of unique labels in the database. s ¢
similar to BEEP [22], is also possible. only happen itwo different labelsre given the same key. But this

We implemented a prototype application to validate thisgies s a contradiction to Lemma 2, which is already proven. Hence
as shown in Figure 5. We hosted data on one server (acting asthere is no assignment with fewer keys than the number ofueniq
the cloud), code on another server (acting as the orgaoipaind labels in the database. Thus, Silverline achieves key nailityn

ran the application on a separate user machine. Our pretotyys
successfullwithout any browser modificatioon Internet Explorer lated only if the key to decrypt this cell is given to an uset no

8, Firefox 3.5.8, Google Chrome 5.0.3, and Safari 4.0.5. in the label of the cell. But this is a contradiction to the gfrof
Key indexing to guide data access. ~ To enable user devices | emma 3. Thus, Silverline preserves confidentiality of all<in
to decrypt data received from the cloud, each piece of etedyp  the database.

data must have an accompanying piece of metadata that teslica

the key necessary for decryption. Thus, we assign indi@s (r 4.2 Limitations of Silverline

dom numbers) to each key generated at the organizationgdiinin
database labeling phase. The index of a key is essentisifaihe,
and is distributed with the key or data encrypted with the Kéye
cloud sending encrypted data to the user also sends allsages
key indices, thus allowing the trusted user frame to use tbpgy

Proof of cell confidentiality. A cell's confidentiality is vio-

Not all data on the cloud is encrypted.  While we would like to
encrypt the entire database’s content on the cloud, in tbikwve
focus on encrypting functionally encryptable data. We geize
this limitation and are designing techniques to cover maita ds
part of our ongoing work.

key for decryption.
Cloud can learn some metadata.  Even after encryption, the
cloud can learn some metadata about the data stored on it. For
4. SYSTEM ANALYSIS example, if two useralice andbob send each other messages, the
In this section we present an analysis of Silverline’s canftdhl- cloud would know the number of messages sent between tws user
ity properties and discuss its current limitations. E(alice) and E(bob). While this alone is not sufficient to break
. . either users’ privacy, if the cloud were to combine this vdtime
4.1 Key Assignment Properties outside data, it might be able to determine the number of agess

As defined in Section 2.3, optimal key assignment for a databa exchanged betweetice andbob.
is one that assigns the minimal number of keys to each usell, su  Executing unequality comparisons on encrypted cells. Once
that the keys for this user 1) decrypt all her cells, and 2) db n  the cells are encrypted, queries SUCBEISECT * FROM Messages
decrypt any cell that she does not have access to. We now ShomAHERE Messagel d > 10 no longer work, as non-equality com-

that our key assignment achieves this optimality and confidity parisons over encrypted data fail. We leave techniquessive
properties. such queries to future work, too.

Our key assignment algorithm achifeves the qptimal assign_me Attacks on community data. Data encrypted with a single
because of the three steps we follow in our assignment &gori  yay (10 protect from the cloud) that is shared with all theistged
1) cells with same labels are assigned the same key, 2) ci#lls W sers in an application (called community data hereafter)al-
different labels are assigned different keys, and 3) a kgjven to nerable to a variety of attacks by the cloud. The cloud canmnou

a user only when this user (its ID) included in the corresfiogd 5 known-plaintext attackr adistribution-based attackConsider a
label. We prove three Lemmas first, and then use them to prove ¢qmmunity field with a fixed set of values, such@sider . In a
optimality and confidentiality. known-plaintext attack, the cloud can join the system asusers
) ) ) (or collude with two users), one with each gender. Based @eith
LEMMA 1. The key assignment algorithm assigns the same key ¢rynted value learned, the cloud now knows the actual geofdt
to cells with same labels. other users in the database. In the distribution attackslthed can
use some external information to learn the gender of alklisghe
system. For example, if the cloud knows that there are moite ma
LEMMA 2. The key assignment algorithm assigns different keys Star Trek fans, then it can easily guess the gender of all shesu
to cells with different labels. in the Star Trek message board on the cloud using the digtibu
of encrypted values. Note, however, that such attacks wahk
PrRoOOF This is also achieved by definition of our key assign- against community dataData encrypted with user-specific keys is

PROOF This is by definition of our key assignment algorithii]

ment algorithm as unique keys are assigned to labéls. still secure.
LEMMA 3. The key assignment algorithm never assigns a key
to a user that does not have access to a cell. 5. EVALUATION



Table 1: Details of the applications used in our evaluation. We only
list the number of SELECT queries in the application in this table.

We now evaluate the efficacy of Silverline techniques ontexis
ing, real-world applications. Our evaluation is gearedamg an-
sweringtwo key questions1l) How much of the data in today’s
applications can be encrypted without breaking any funetiity?
and 2) Does our labeling identify all the different types afalshar-
ing between users and assign the right keys to the rightisers

5.1 Setup and Implementation

Evaluation setup.  We applied our techniques to three different
real-world PHP applications hosted saurceforge.netWe chose
these applications because they represent a good mix ofrésat
commonly found in real applications, which lead to sevenéi-
esting data sharing characteristics. The details of thécapions
used in our evaluation are presented in Table 1. Each of tqese
plications has tens of thousands of lines of code, and athoo@
significant number of database queries.

Implementing encrypted data tracking. Our modification to
the PHP interpreter and the PHP-MySQL interface were based o
the code for phptaint [37]. We modified this code to incorpera
our tag propagation policies as described in Section 3.I. iQu
plementation logs a warning every time a tagged data iteradd u
in a computation. We ran each application in our modifiedrinte
preter, exercising different paths of the program via “nalnuser
interactions. Then, we analyzed the contents of the logentify
those cells that cannot be encrypted. Note that we do notdems
using data in display functions, suchexsho andpri nt, as com-
putation. Data in such functions can be sent encrypted tasbe
where it is transparently decrypted and displayed.

Implementing database labeling and key assignments.  All

the applications that we used for our evaluation use MySQheis
back-end database. We implemented labeling in a MySQLyprox

between the database and the PHP Runtime. For each of these a

plications, we used the following setup. We 1) create a demb
with the exact same schema used in the application, 2) isaenple
data into the database to create a training database fdinigb®)
identify all SELECT queries in the application that readediabm
the database, 4) perform database labeling on SELECT guerie
the applications, and finally 5) analyze the labels attadbetthe
cells to verify the data classification and key assignmerfopaed
by our techniques.

5.2 Application Descriptions

AstroSpaces: A social networking service.  AstroSpaces is a
social networking application that provides the followifegtures
to users: 1) create user profiles, 2) add users to their frishd
3) send private messages to friends, 4) create blog postg;its)
comments to friends on their profiles and 6) create conteti@n
own profiles. These features are based on 7 database tafule¢bea
application uses a total of 51 SELECT queries.

2http://sourceforge.net/projects/astrospaces/
3http://sourceforge.net/projects/usebb/
“http://sourceforge.net/projects/comendar/

Application Purpose Lang. | LOC | Queries Application # of Database Fields
AstroSpace$ Social Networking PHP | 14790 51 Total | User Data| Encryptable| Non-Encryptable
UseBB?3 Complex Message Boarfl PHP | 21264 114 AstroSpaces| 37 24 17 (71%) 7 (29%)
Comendar Community Calendar | PHP | 23627 | 42 UseBB 106 81 67 (83%) 14 (17%)
Comendar | 105 57 41 (72%) 16 (28%)

Table 2: Encrypted data tracking results. We show the # of fields a) in
total, b) storing user data, that c) can, and d) cannot be engpted.

UseBB: A full-featured message board.  UseBB is a popu-

lar, full-fledged bulletin board service that provides madyanced
features to users, including the ability to 1) create actx®) cre-

ate and moderate groups, 3) join groups, and 4) post new topic
messages or reply to existing topics. UseBB administraiaxe
access to advanced features such as banning users (by email o
username or IP address), banning keywords and configuring re
placement words, sending mass emails, editing/deletiagspand
many other options to configure user forums. These featuees a
implemented using 12 tables, and a total of 114 SELECT gslerie

Comendar: A community calendar. Comendar is a commu-
nity calendar service that provides users with the abititylf) cre-

ate user accounts, 2) create groups (for communities),ji8@m-
munities (or groups) of interest, 4) create new personalcama-
munity events, 5) view personal and community events, @pse-
minders to be sent via email (for both personal and grouptsyen
and 7) set display and privacy preferences. This applicgiio-
vides the services of an online calendar service — but fdr pet-
sonal and community uses. There were a total of 13 tablesin th
database and 42 SELECT queries in the application’s sowae c

5.3 Amount of Functionally-Encryptable Data

In a first step, we evaluate the amount of functionally eneryp
able data in the applications. We consider all databasesfialt
store user data (only excluding the auto-increment IDs tesitkn-
tify entities in the tables) as sensitive. These ID fieldstgpéally
integers that do not reveal any information about a user. celen
they can remain in plaintext. To understand the fractioneoiss
tive fields that can be encrypted, we use our modified PHP-inter

reter and track the usage of sensitive data. By analyzmg/éin-
ngs produced by our tracking system, we could understaridnwh
fields were used in computations and why. Table 2 summafizes t
results, which we discuss below.

AstroSpaces social networking service.  Out of the 24 user
data fields (those that did not store Userld, Groupld, or ahgro
IDs), we find that only seven fields were used in computations,
cluding: Username (to search the system based on parti@s)am
read/unread status of messages (to display unread megsagkh),
accepted/unaccepted status of friendship requests fifagisiend
request status in categories), theme and style chosen hystre
(again, for display), activation status of the account @cide if
users are allowed to login or not) that users are requireettb\s
confirming account creation, and finally the user’s emailsgod
emails, search by email for existing accounts during accore:
ation, and send password reminders).

Interestingly, most of these fields store information noéclly
related to the user. On the other hand, personal data sudteas t
user’s first name, her last name, the messages exchangegebetw
friends, the user’s address, the phone number, blog postsyall
posts are never used in any computation or interpreted, rewlgt
and sent to users. Thus these fields are all functionallyyptetole,
and protected by Silverline.



UseBB message board. As Table 2 shows, out of a total 81 user
data fields in the UseBB database, only 14 fields are used ipgom
tations. Furthermore, a detailed analysis shows that nfdbese
14 fields do not contain personal information, and more trzdindh
them are used for formatting the content displayed to ugdrs.14
user data fields used in computations are the following: Emeeas
of the users, title and content of their posts (to enablecb@zy by

keywords, and replace banned keywords), emails (to senidsema

and password reminders), the level of the user (guest, atdnder,
or admin; to decide what operations they can perform), atitia
status of user accounts (for login purposes), and the usevacy
and display preferences.

Nearly half of the functionality that requires interprévat of
data is related to content formatting. This functionaligncbe
easily moved to client-side scripting code, thus removingse
computation dependencies and making the data fields thep tou
functionally encryptable. Several remaining fields starferima-
tion that is not related to personal user daay(user’s level, and
activation status of the accounts). This leaves us with trdyields
used for keyword search (user names, title and content gidsies).
They are personal, used in computation, and should préyerab
main encrypted on the cloud. Fortunately, work on keywoat e
on encrypted data [34, 35] can help in encrypting these fakis

Comendar community calendar. Comendar performs more
computations than the two previous applications. Out oftal to

of 57 sensitive fields, 16 were used in computations. These ar

an user’s email, magic string (for password reminders andwad
activation), the account activation status, user’'s geadelr level,
group and event security settings (public or private), evitles
and contents (for keyword search), start and end date fandars,
reminder and event repetition interval, and event attecelatatus
(yes, no, or maybe).

Similar to the two previous applications, half of the congtian

(8 out of 16) were performed on fields that were used to format

the data displayed to the user. For example, user’s gendses

to decide if “he” or “she” should be displayed. A majority dfet
computation that needs to remain on the cloud, such as stdrt a
end date of reminders, reminder and event interval, etc.eean
be stored in unencrypted form on the cloud. Only search ontisve
titte and description should preferably remain on the cloudn-
crypted form. In short, despite more computation, almdsifahe
features can be functionality encrypted.

Summary.
find that themajority of fields that store personal informatiane
never used in any computatiomhese fields include address, phone
number(s), messages exchanged between users, and oswmrgber
details. Many fields used in computation store informatibow
users that are unlikely to be sensitive. Only a handful ofifiel
stored sensitive information and were used in computatioos(ly
keyword searches), which the organization can still ertcwith
specialized encryption schemes [35]. In short, the orgsioia can
encrypt most sensitive fields with the most efficient symioéays

of their choice and obtain confidentiality from today’s aisu

5.4 Evaluating the Key Inference Techniques

Now we evaluate whether our labeling and key assignment tech

niques correctly identify those different groups of usérat thave
access to different cells in the database, and if they asggno-
priate, shared keys to each group.

AstroSpaces social network.  This application has significant
pair-wise user interactions, as can be expected from alsueta
work. More precisely, most queries were involved in cregtime
friendship graph and exchanging messages between friends.

For the three applications that we examined, we

There are basically three types of data in AstroSpaces: th) da
that is publicly visible to all users (Blogs, Username, Udgepro-
file content), 2) data that is viewed only by a pair of usersi 3n
data that is viewed only by the owner (details about the ssmih
as gender, email, and last login time). We first create a dawab
with 50 users, then make each user connect with a random mumbe
of randomly chosen friend users. After that, we make usees-in
act with their friends by sending private messages and biingri
comments on profiles. We make this interaction realisticibgihg
the frequency of interactions towards a handful of “clog&rds.
Finally, users create blogs and embellish their profile page

At this point, we run the queries in the application on thismpbke
database, and analyze the labels acquired by the cellsalfofdil
labels, and hence, keys, are assigned todhwe s table. Out of
these, 50 user-specific keys are assigned to the 50 user&dgne
each) to encrypt all columns, with the exception of Usernama
Userld. All publicly accessible columns are encrypted wyitst
one key, which is given to all users.

The data in thePri vate Messages table is read only by the
receiver of messages, and never read by the sender. Heliice, Si
verline reuses the user-specific keys assigned todhes table to
encrypt this table as well. In particular, a message sentuseaA
is encrypted with the key of uset. The data in théri endshi p
table, on the other hand, is accessed by the users at bottoénds
friendship edges. As a result, the same label (key) is asdigmall
cells accessed by a particular pair of users. In our datalizee
were 588 distinct pairs, and hence, 588 keys were creatadllyi
the content in the rest of the tables is public. For this, e &s-
sociated with public data (known to all users) is reused trygn
this content.

In summary, our labeling technique successfully identiftesl
three different groups of data in this application, as welle users
that belong to these groups. our system assigned a total@a&9 k
to protect our AstroSpaces database.

UseBB message board. There are four types of data in UseBB,
data that is 1) visible to the entire world (public), 2) visitio all
registered UseBB users (community), 3) visible to a singleru
and 4) visible only to the admin. There is no data accessibie t
specific subset (or group) of users in UseBB, and most of tkee da
belongs to the first two types. Similar to other message Isodata
generated by users in UseBB is organized in different caiego
Each category has multiple forums. Each forum, in turn, hakim
ple topics on which users discuss by sending posts. Topicakan

to a new mail thread, and each post is akin to a response tm#iis
thread. In UseBB, all posts in all forums and categories abdi@
Even several details of the members that made the posts lalie.pu
However, information such as statistics about membersviaes
and the full list of members is community data. Some infororat
such as a user’s preferences (email is public or not, thetng age
accessible only to a particular user (and the admin). Rinddta
such as the banned users, words and IP addresses are decessib
only to the admin.

We create a sample database with 50 users, five categorees, fiv
topics, and 20 forums. We then make random users send posts
to different topics. Finally, we use Silverline to examihe SQL
queries and perform key inference. Our system correctlysdiad
the data into the four types mentioned above, and identified t
fields that belonged to each type. The key assignment is sjmpl
due to the lack of complex groupings of users. A total of 53skey
are assigned — 50 user-specific keys (one per user), one key fo
public data, one key for community data, and finally one kay fo
admin’s data.



Comendar community calendar.  There are four types of data
in Comendar: 1) data visible to the entire world (public),d2Ya
visible to all registered users in the Comendar applicaemm-
munity), 3) data visible to all users in a group (group), ahdaa
visible only to the user that created it (personal data).

Comendar is interesting because some queries were dyrigmica
generated. More precisely, the application dynamicallystaicts
selection conditions used to query tables. As a resultpatth the
number of queries in the source code are 42, over severglwens
identified 49 different queries. Since our technique depemtdthe
name of the user running a query, Silverline handled thesardic
queries easily.

Supporting security and privacy in clouds. Work on ac-
countable clouds [21] proposed an approach for users ofgarty
clouds to verify that the cloud is operating “correctly” dreir data.
Similarly, a recent paper [33] aimed to build trusted clotiaist
protect user data against attacks from compromised clooniést
trator accounts using TPMs. While these approaches arel loase
modifying the cloud infrastructure to enforce security gmiyacy
policies, Silverline targets a different model that in@adattacks
from compromised or malicious cloud servers.

Taint tracking for security and software debugging. Taint
tracking has be used in a variety of contexts, detectingvsoé
vulnerabilities [28] and malware [42], debugging applicas [13],

We run Silverline on a sample database with 50 users and 10 and securing web applications [41]. More broadly, inforiomt

groups, and assign a random number of randomly chosen wsers t
each group. Each user creates one event for each of theediffer
access types (public, community, group, and personal). H&fe t
assign group events to randomly chosen groups. Users thatecr
reminders for their own events and for community eventsalRin
we run the application so that Silverline could analyzeSEREECT
queries.

Silverline correctly classified all four types of data. Mqmee-
cisely, our system assigned a total of 61 keys to these fpassty50
out of 61 were used to encrypt user-specific data (persoealtgy
personal reminders, event attendance status, etc.). Bieieewere
10 groups, our technique was expected to assign 10 keys to pro
tect the groups’ data. Interestingly, however, only 9 kegseicre-
ated. Closer examination revealed that one group containsd
one user. As a result, our algorithm correctly re-used tisat’si
personal key for this group’s data. Moreover, one key waigasd
to encrypt the community data, and finally, one key was assign
to encrypt the public data.

Summary. Our evaluation shows that our labeling techniques
successfully identifies different types of sharing behavia pro-
duction applications, and classifies the data into groupgy&lso
identify all users that have access to these groups. Puktingval-
uation results together, we learn that many of today’s appibns
can easily migrate to an encrypted application architectmd the
Silverline toolset greatly simplifies the process while imizing
developer effort.

6. RELATED WORK

Encrypted databases. Encrypted databases [14, 19, 20] of-
fer database-as-a-service [20], where database run ontarsisal
third-party and operate on encrypted data. They aim to affloast
of the query execution from clients to the third-party, bgerting
additional columns in the encrypted database to provides fior
query execution. Our work differs significantly in the thresod-
els we consider. They consider a single server and a siniglet cl
(the organization hosting the DB), whereas we assume mantsl
(other than the organization) in our model. As a result,rthpr
proach of using a single key for encryption is not sufficiemtdur
model, which supports mutually distrusting users.

Systems running on encrypted data.  Persona [5] is a social
network where the server never sees any data in plaintext: Pe
sona uses attribute-based encryption to allow fine-grasheding

of encrypted information with friends. Similarly, we progeal in
prior work infrastructure primitives for building locatiebased ser-
vices while protecting sensitive location data using epiton [29].
These systems require applications to be rewritten to stigoe
cryption natively. In contrast, Silverline focuses on gsiuto-
mated tools to simplify the transition of legacy applicagoto a
secure cloud platform.

10

flow control has been used in the development of programnaimg |
guages [27, 26], secure operating systems [44] and applisd 3]
to prevent data from reaching untrusted entities. Our wifflerg
from these projects in the way we use data tagging and infioma
labelling. Our focus lies in identifying computational @égplencies
on the data.

7. CONCLUSIONS AND FUTURE WORK

Data confidentiality is one of the key obstacles preventing o
ganizations from widely adopting third-party computinguds. In
this paper, we describe Silverline, a set of techniques aweldper
tools that promotes data confidentiality on the cloud usimdyt®-
end data encryption. Encrypted data on the cloud preveats le
age to compromised or malicious clouds, while users caryeasi
access data by decrypting data locally with keys from thea-org
nization. Using dynamic program analysis techniques,e8ilve
automatically identifies functionally encryptable apption data,
data that can be safely encrypted without adversely affgcip-
plication functionality. By modifying the application rtime, e.g.
the PHP interpreter, we show how Silverline can determinapdia
mal assignment of encryption keys that minimizes key mamege
overhead and impact of key compromise. Silverline techescgig-
nificantly reduce the developer effort involved in incorgkimg con-
fidentiality into applications running on the cloud. We dersivate
the viability of our proposed approach by applying our teghas
to several production applications with a mix of commonlgdis
features. Our experiences show that applications runninthe
cloudcanprotect their data from security breaches or compromises
in the cloud.

While our work provides a significant first step towards fudtal
confidentiality in the cloud, a significant number of chafles re-
main. We target two specific areas as topics of ongoing work.

Learning high-level intuitions for data classification. ~ While
our database labeling currently classifies the cells in Hialzhse
that can be encrypted together, it does not tell the devesagdeout
the reasons why such a classification happened. An intuitisie
soning for such a classification is more helpful for the depefs
in later implementing encryption and decryption functidyan
the applications. We believe applying associative ruleimgiti2]
techniques can help us derive these intuitions.

Automatic partitioning of the applications. We are planning
on extending Silverline to automatically partition applions and
move sensitive data (and its computation) to client deyisisilar
to Swift [11]. Swift only supports partitioning of static @ain ap-
plications, but we plan to extend it to partitioning databasntent
using the labeling information dynamically learned by 8iline.
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