
Silverline: Toward Data Confidentiality in Third-Party Clo uds

Krishna P. N. Puttaswamy, Christopher Kruegel, and Ben Y. Zhao
Computer Science Department, UC Santa Barbara

{krishnap,chris,ravenben}@cs.ucsb.edu

ABSTRACT
By offering high availability and elastic access to resources, third-
party cloud infrastructures such as Amazon AWS and Microsoft
Azure are revolutionizing the way today’s businesses operate. Un-
fortunately, taking advantage of their benefits requires businesses
to accept a number of serious risks to data security. Factorssuch as
software bugs, operator errors and external attacks can allcompro-
mise the confidentiality of sensitive data on external clouds, making
them vulnerable to unauthorized access by malicious parties.

In this paper, we study and seek to improve the confidentiality of
application data stored on third-party computing clouds. We pro-
pose to identify and encrypt allfunctionally encryptabledata, sen-
sitive data that can be encrypted without limiting the functionality
of the cloud service. Such data would only be stored on the cloud
in an encrypted form, accessible only to users with the correct keys,
thus ensuring its confidentiality against unintentional errors and at-
tacks alike. We describeSilverline, a set of tools that automatically
1) identify all functionally encryptable data in a cloud application,
2) assign encryption keys to specific data subsets to minimize key
management complexity while ensuring robustness to key compro-
mise, and 3) provide transparent data access at the user device while
preventing key compromise even from malicious clouds. Through
experiments with real applications, we find that many web applica-
tions are dominated bydata sharingcomponents that do not require
access to raw data. Thus, Silverline can protect the vast majority
of data on these applications, simplify key management, andpro-
tect against key compromise. Together, our techniques provide a
substantial first step towards simplifying the complex process of
incorporating data confidentiality into cloud applications.

1. INTRODUCTION
Third-party computing clouds, such as Amazon’s EC2 and Mi-

crosoft’s Azure, provide support for local computation, data man-
agement in database instances, and Internet services. By allowing
organizations to efficiently outsource computation and data man-
agement, they greatly simplify the deployment and management of
Internet applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10,October 4-8, 2010, Chicago, IL
Copyright 2010 ACM xxx-x-xxxx-xxxx-x/xx/xx ...$10.00.

Unfortunately, these game-changing advantages come with asig-
nificant price in data confidentiality. Using a multi-tenantmodel,
clouds co-locate applications from multiple organizations on a sin-
gle managed infrastructure. This means application data isvulner-
able not only to operator errors and software bugs in the cloud, but
to also attacks from other organizations. With unencrypteddata
exposed on disk, in memory, or on the network, it is not surpris-
ing that organizations cite data confidentiality as their biggest con-
cern for cloud computing [12, 39, 24]. In fact, researchers recently
showed that attackers can effectively target and observe informa-
tion from specific cloud instances on third party clouds [31]. As a
result, many recommend that cloud providers should never begiven
access to unencrypted data [32, 4].

Organizations can achieve strong data confidentiality by encrypt-
ing data before it reaches the cloud, but naively encryptingdata
severely restricts how data can be used. The cloud cannot perform
computation on any data it cannot access in clear text. For applica-
tions that want more than just pure storage,e.g., a web service, this
is a significant hurdle. There are efforts to perform specificoper-
ations on encrypted data such as searches [35, 6, 1, 10, 18, 7,23,
34]. A recent proposal of a fully homomorphic cryptosystem [17]
even supports arbitrary computations on encrypted data. However,
these techniques are either too costly or only support very limited
functionality. Thus, users that need real application support from
clouds must choose between the benefits of clouds and strong con-
fidentiality of their data.

In this paper, we take a first step towards improving data con-
fidentiality in cloud applications by proposing a new approach to
balance confidentiality and computation on the cloud.

Our key observation is that for applications that can benefitmost
from a cloud model, the majority of their computations handles
data in an opaque way,i.e. without interpretation. For example,
a SELECT query looking for all records matching userID’Bob’
does not interpret the actual string, and would succeed if the string
was encrypted, as long as the query value matched the encrypted
string. We refer to data that is never interpreted by the application
asfunctionally encryptable, i.e. encrypting them does not limit the
functionality of the cloud application. Consider, for example, a
message board where clients post and view messages inside spe-
cific groups based on membership. Users can only store and access
information that is relevant to them. In this case, different groups
of users access messages, but the cloud does not interpret the value
of the message contents, and only treats it as opaque data (ifwe
ignore full text search for the moment). Instead, the cloud only
needs to know users’ group memberships, and use that to enforce
access control. Similar arguments apply to applications like social
networks or shopping carts.

1

Thus our key insight is to separate an application’s data into two
subsets: functionally encryptable data, and data that is needed in
cleartext for computation in the cloud. As we later show, a large
majority of application data is functionally encryptable,and we fo-
cus in this paper on how to efficiently encrypt and manage such
data. As shown in Figure 1, data would be encrypted by users be-
fore uploading to the cloud, and it would be decrypted by users after
receiving from the cloud. While this idea sounds conceptually sim-
ple, realizing it requires us to solve three significant challenges: 1)
identifying functionally encryptable data in a cloud application, 2)
assigning encryption keys to data while minimizing key manage-
ment complexity and risks to key compromise, and 3) providing
secure and transparent data access at the user device.
Identifying functionally encryptable data. The first chal-
lenge is to identifying data that can be functionally encrypted with-
out breaking application functionality. To this end, we present an
automated technique that marks data using tags and tracks their de-
pendencies through dynamic program analysis. We identify func-
tionally encryptable data by removing all data marked with tags
that correspond to actual computations in the cloud. Naturally, the
size of this subset of data depends on the type of service. Forex-
ample, for programs that compute values based on all data objects,
our techniques will not find any data suitable for encryption. In
practice, however, results show that for many applications, includ-
ing social networks or message boards, a large fraction of the data
can be encrypted.
Encryption key assignment. Once we identify the data to
be encrypted, we must choose how many keys to use for encryp-
tion, and the granularity of encryption. In the simplest case, we
can encrypt all such data using a single key, and share the keywith
all users of the service. Unfortunately, this has the problem that a
malicious or compromised cloud could obtain access to the encryp-
tion key, e.g. by posing as a legitimate user, or by compromising
or colluding with an user. In all cases, confidentiality of the en-
tire dataset would be compromised. In the other extreme, we could
encrypt each data object with a different key. This increases robust-
ness to key compromise, but drastically increases key management
complexity.

Thus we need to automatically infer the right granularity for data
encryption that provides the best tradeoff between robustness and
management complexity. Our goal is to partition the data into sub-
sets, where each data subset is accessed by the same group of users.
We can then encrypt each data subset using a different key, and dis-
tribute keys to groups of users that should have access (based on
desired access control policies). Thus, a malicious or buggy cloud
that compromises a key can only access the data that is encrypted
by that key, minimizing its negative impact. We introduce a dy-
namic access analysis technique that identifies user groupsthat can
access different objects in the data set. In addition, we describe a
key management system that uses this information to assign to each
user all keys that she would need to properly access her data.Since
key assignment is based on user access patterns, we can obtain an
assignment that uses a minimal number of encryption keys neces-
sary to “cover” all data subsets with distinct access groups, while
minimizing damage from key compromise. Key management can
be handled by the organization1. We also consider mechanisms
that we need to manage keys when users or objects are dynami-
cally added to or removed from the application or service.
Secure and transparent user data access. Edge devices are
given decryption keys by the organization to provide users with

1In this paper, we use “organization” to refer to the entity that wants
to securely deploy its application and data on the cloud.

Organization

Third-Party Cloud

Alice Bob

Keys

Encrypted(Data)

Figure 1: A depiction of our approach. The cloud stores encrypted
data, the organization stores decryption keys, and the clients fetch the
two and decrypt the data locally to obtain the application’sservice.

transparent data access. Of course, these devices (and users) must
protect these keys from compromise. For example, an untrusted
(or compromised) cloud can serve customized attack code to ob-
tain encryption keys and decrypted data. To ward off these at-
tacks, we propose a client-side component (which runs in theusers’
browsers) that allows users to access cloud services transparently,
while preventing key compromise (even from a malicious cloud).
Our solution works by leveraging already available features in mod-
ern web browsers such as same-origin policies and support for HTML5
postMessagecalls. As a result, our solution works without any browser
modifications, and can be easily deployed today.

We implemented our techniques as part of Silverline, a prototype
of software tools designed to simplify the process of securely tran-
sitioning applications into the cloud. Our prototype takesas input
an application and its data (stored in a database). First, itautomat-
ically identifies that data that is functionally encryptable. Then, it
partitions this data into subsets that are accessible to different sets
of users (groups). We assign each group a different key, and all
users obtain a key for each group that they belong to. This allows
the application to be run on the cloud, while all data not directly
used for computation is encrypted. By applying our system tosev-
eral popular applications, we show that our system can partition
data and assign keys to maximize data protection with a minimal
number of keys. In addition, we find that a large majority of data
can be encrypted on each of our tested applications.

In summary, the main contributions of this paper are the following:

• We introduce a novel approach to provide data confidential-
ity on the cloud, while maintaining the functionality of cloud
applications. Our approach works by automatically identify-
ing subsets of an application’s data that are not directly used
in computation, and exposing them to the cloud only in en-
crypted form.

• We present a technique to partition encrypted data into parts
that are accessed by different sets of users (groups). Intelli-
gent key assignment limits the damage possible from a single
key compromise, and strikes a good tradeoff between robust-
ness and key management complexity.

• We present a technique that enables clients to store and use
their keys safely while preventing cloud-based service from
stealing the keys. Our solution works today on unmodified
web browsers.

• We describe Silverline, a prototype toolset that implements
our ideas, and discuss the results of applying Silverline to
three real-world applications.

2. OVERVIEW OF SILVERLINE

2

Figure 2: An example message board application’s database schema.

Our overarching goal is to improve the confidentiality of appli-
cation data stored on the cloud. We assume that the third-party
computing cloud provides service availability according to service
level agreements, but is otherwise untrusted. More specifically, we
assume cloud servers may be compromised or may maliciously col-
lude with attackers to compromise data confidentiality. Finally, we
focus in this work on issues of data confidentiality and leaveother
issues, such as denial-of-service attacks, data and computation in-
tegrity issues for future work.

Our solution to improving data confidentiality on the cloud calls
for the end-to-end encryption of data by its owner (the organiza-
tion) and its consumers (the users). In this paper, we concern our-
selves with the data persistently stored in the databases. Our tech-
niques apply to both traditional relational databases on the cloud,
and to databases specifically designed for the cloud [3, 25, 9]. Ac-
cess to encrypted data is granted through selective distribution of
encryption keys, but only to users that have legitimate access to
the data. We use symmetric keys to encrypt the data – symmetric
keys are highly efficient and would provide confidentiality with low
computational overhead.

2.1 An Illustrative Application
We illustrate our approach using an online message board ap-

plication, where users use topic-based forums for exchanging mes-
sages and discussions. We show a sample database schema for this
application in Figure 2, and will use this example throughout the
paper to illustrate our approach. The schema consists of aUsers
table to store user profile information such as name, userid,or
email, aGroups table to store information on discussion groups,
a UsersToGroups table that maps users to the groups they are
members of, and aMessages table that contains individual mes-
sages sent to the groups.

Today, an organization would deploy the above message board
on the cloud by directly running it on the cloud. Data would be
stored in plaintext in a database, and queries from the userswould
be executed directly on this database. In this simple approach,
user data confidentiality can be compromised in several ways. The
cloud operators have access to cloud hardware and the applica-
tion data. A bug in the software managing the cloud may reveal
user data to attackers. Finally, the multi-tenant nature ofthe cloud
brings a unique challenge: a compromised application running in
the cloud can “infer” data that belongs to the users of other applica-
tions running on the same hardware [31]. A recent survey paper [8]
describes these and other threats in more detail.

2.2 Proposed Approach
In Silverline, we improve data confidentiality by encrypting as

much of the application data as possible on the cloud (without brak-
ing the application’s functionality). This enables organizations to
use existing clouds and protect their data and the data of their users.
The high level ideas of our approach are shown in Figure 1.

Storing and querying data on the cloud. In Silverline, data
in the database (running on the cloud) is encrypted, but keysare
not revealed to the cloud. The keys are stored by the organization
that “outsources” its application and data to the cloud. To fetch
data from the cloud, the user first contacts the organizationto get
the appropriate key(s), and then sends the query to the cloudto
fetch the data. The input parameters to the query are also sent in
encrypted form. The cloud executes the query using this encrypted
input and then sends back the results, also in encrypted form. Then,
the user’s device decrypts the data and displays it to the user.

For example, consider the query:SELECT * FROM Users WHERE
UserId = ’Bob’. Here, Bob queries the cloud for his detailed
profile information. In current systems, the username wouldbe
in plaintext. But in Silverline, the username is encrypted,using a
key that is known only to the organization and Bob. Bob obtained
this key when he registered with the organization. Thus, thequery
usesE(Bob,KBob) as the input parameter. The results returned
from the cloud are also encrypted with the keyKBob, which Bob
decrypts upon receipt.

If some data is to be known to a group of users, then the same
key is shared by all the users. For example, all the members ofthe
groupLiteraturewould obtain the keyKLit when they join the
group, and a query to fetch the messages sent to this group (SELECT

* FROM Messages WHERE GroupId=’Literature’) would have
E(Literature,KLit) as the input parameter. If a member wants
to post a message to the group, the message would be encrypted
before sending it to the cloud, using the group’s key. The cloud
would then store the encrypted blob of text in the database (instead
the message itself). Once the keys are received, the clientscache
them to reduce future key requests to the organization, and thus,
reduce the load induced on the organization.

To leverage this model, the organization’s developers needto
modify their database schema deployed on the cloud. Silverline
tools will inform developers which fields can be encrypted onthe
cloud without affecting the application. These encrypted fields
should then be modified to an appropriate type,e.g. an int now
becomes ablob of text.
Storing and managing keys in the organization. In our ap-
proach, the role of the organization is to store all keys securely, and
to provide users with only the keys that they should have access to.
We take a fine-grained encryption approach to provide strongcon-
fidentiality guarantees. A database consists of tables; tables consist
of rows; and rows consist of cells. As a result, in our approach, dif-
ferent parts of a single table may be encrypted with several different
keys. If necessary, we encrypt each cell in each row of a tablewith
a different key. For example, in theUsers table above, consider a
situation where all users can see all users’ UserId and UserName in
the system. However, only the user can see her email address,loca-
tion, and gender. In this scenario, the ideal key assignmentwould
be to encrypt all UserId and UserName cells in the table with one
key, and to give that key to all the users. But the cells correspond-
ing to email, location, and gender of Bob must be encrypted with
another key (KBob), and that key should be accessible only to Bob.

The organization is responsible for securing the creation of user
accounts. For instance, a University deploying a message board
for its employees is in charge of ensuring that each application ac-
count is actually an employee. This is important to prevent the
cloud from gaining access to all keys by creating many users in the
application’s database to perform a Sybil attack [15].

The organization is also responsible for using Silverline to de-
termine the key assignment, store these keys, and to provideaccess
to keys to users as they need them. Of course, all keys must be
stored by the organization in a secure fashion. Since keys are small

3

in size, and they can be cached on users’ machines, the load onthe
organization is quite low, and so is the hardware cost. As a result,
Silverline enables the organizations to use the elastic clouds while
preserving data confidentiality with only a small investment in the
in-house hardware.
Data access on user devices. In our model, users download
data from the cloud, keys from the organization and decrypt the
data locally to obtain the application’s functionality. Desktop ap-
plications can protect keys locally using standard techniques. For
example, by storing the keys in the disk with permissions given
only to the user that represents the organization. However,we need
an approach to provide similar isolation properties in web applica-
tions, where data, code and keys are combined in the same browser.
Silverline provides a solution that works without browser modifi-
cations. To leverage this, applications on user devices must request
keys on behalf of the local user, decrypt data from the cloud be-
fore displaying them to the user, and encrypt any user data before
sending it to the cloud.
Outlook. The key questions to answer when implementing
our approach are the following: 1) Which portion of the data can
be encrypted without breaking the functionality of the application,
2) which keys are used to encrypt what portions of the data and
how are they managed, 3) how is encrypted data managed at the
end users’ devices. The answers to these questions are discussed in
more detail in the following Section 3.

2.3 Confidentiality vs. Key Management
Before discussing the detailed design of our system, we use this

section to introduce and define some terminology.
A user has access to a set of cells, and hence is given a set of keys

that decrypt these cells. We describe the tradeoffs involved in as-
signing these keys to the cells starting with some basic definitions.

Our main goal is to maintain the confidentiality of the database
on the cloud. This is achieved as long as the confidentiality of each
cell is protected. A cell’s confidentiality is defined as:

DEFINITION 1. Theconfidentialityof a cell is maintained when
no user that does not have access to the cell is able to decryptit.

We use the notion of thescope of a keyto quantify the confiden-
tiality properties in Silverline.

DEFINITION 2. The scope of a key is the number of cells in the
database that the key can decrypt.

A user may receive multiple keys to decrypt all her cells. Then
her scope is the sum of all her keys.

DEFINITION 3. The scope of a user is the union of the scopes
of all her keys.

To reduce the management overhead on the organization and the
users, the number of keys given to each user should be minimized.
The obvious solution to give no key to any user. However, this
is not valid because it does not provide any functionality tothe
user. Of course, the application’sfunctionality must be preserved
after applying our mechanisms. That is, there is a trade-offwhere
the organization aims to distribute as few keys as possible,without
denying any user access to data that this user is entitled to.

DEFINITION 4. An user is said to have minimal keys, when re-
ducing her keys any further leads either to breaking the applica-
tion’s functionality or to a loss of data (cell) confidentiality.

Thus the end points in the spectrum of choices to tradeoff be-
tween confidentiality and key management do not meet our require-
ments. A key with absolute scope on the entire database violates
confidentiality. On the other hand, a key per cell with a scopeof

Application Running in a Modified Runtime Database Backend

Q1

Q4Q2

Q3

User

Request

+

Q1

Q4

Q2

Q3

Q4

Q3

User

Response

Q2

Package Result

Q1

Fetch Result

Q2,Q3

Q4

Figure 3: Encrypted data tracking: We train Silverline with a set of
user inputs to the application, which generates queries to the database
back-end. The database responds with data, and the modified applica-
tion runtime tags each data with a unique query number. The appli-
cation runtime propagates tags through computational dependencies,
and logs warnings whenever a tagged piece of data is involvedin a com-
putation or function.

one leads to high key management overhead. For a given database,
the best tradeoff is the one where each user has minimal keys ac-
cording to Definition 4. If each user has minimal key assignment,
then the key assignment for the entire database is said to beoptimal.
Silverline aims to achieve thisoptimal key assignment.

Finally, the cloud’s scope must be zero. If the cloud colludes
with a small set of users, then its scope is the union of the scope of
all users it colludes with. As long as the organization secures the
account creation process, the cloud cannot gain access to the entire
database by performing a large-scale Sybil attack.

3. DETAILED DESIGN
The goal of our work is to enable organizations to easily mi-

grate existing Internet applications to a more secure model, where
the majority of application data is protected from vulnerabilities in
the cloud using end-to-end encryption. Our work on Silverline in-
cludes three techniques that help automate the transition to a more
confidential application model:encrypted data trackingto identify
functionally encryptable data,database labeling and key assign-
mentto partition functionally encryptable data into differentgroups
and assign each encryption keys, andclient-side key management
to protect keys from compromised clouds. For now, we describe
our techniques with the assumption that application data isstored
in a static database, and no rows are added or deleted. Later,we
present extensions to deal with database changes.

3.1 Encrypted Data Tracking
Silverline uses a combination of information tagging and dy-

namic analysis to determine the types of data (i.e. which database
fields) are functionally encryptable. We apply our techniques by
modifying the application runtime interpreter,e.g.PHP interpreter
in our examples, to tag information associated with different database
queries, and propagate them throughout the application logic. By
training Silverline with a representative set of application queries,
we expose the computational requirements of the application, and
determine whether each database field is functionally encryptable
or not. We show a simple example in Figure 3, and describe details
of our approach below.
Dynamic Program Analysis. To find encryptable data, one can
perform static or dynamic program analysis. In both cases, the goal
is to find database cells that are used by the application in compu-
tations, such as string operators, numerical operators, comparators
and counters. To this end, one needs to track the use of results
from the database and analyze their usage. In this paper, we use
a dynamicapproach, based on a set of manually crafted training

4

Application

Server

Database

BackendInternet

Example Table With Labels

UserId UserName Location

1 {a} Alice {a, b, c} Loc
A {a}

2 {b} Bob {a, b, c} Loc
B {b}

3 {c} Carl {a, b, c} Loc
C {c}

Carl (c)

Bob (b)

Alice (a)

Figure 4: Database labeling in action. The application executes in a modified runtime that implements database labeling. The results produced after
performing database labeling on theUsers table for two queries: SELECT UserName from Users and SELECT Location from Users
WHERE UserId=’id’ are shown. The first query returns all users’ names, while thesecond returns only the querying user’s location.

queries that exercise the application. Given a set of training queries
that are representative of application-to-database queries, we mod-
ify the interface between the database and the application runtime
to automatically extract meta-information as data is returned from
the database. We use this to build a table that maps the signatures
of specific queries to fields accessed in the database.
Data tagging and propagation. At a high level, Silverline tags
data entering the application from the database, and tracksthem
through computational dependencies in the application until they
are used in a computation, or returned to the user without access-
ing its values. Data is sent from the database to the application in
response to application queries. As each piece of data is retrieved
from the database, it is tagged with aquery numberthat corre-
sponds to the query that generated it. Query numbers are positive
integers that uniquely identify a query by its semantic signature,i.e.
SQL operators and fields queried.

As operations are performed on data, the modified application
runtime or interpreter propagates the tags as follows. An assign-
ment operation propagates the union of all tags of the right-hand
side (RHS) operand to the left-hand side (LHS) operand. Any pre-
vious tags for the LHS are overwritten. For arithmetic, string, log-
ical, or comparison operators as well as library functions,tags are
propagated in the same way. In addition, if any of the operands
in the RHS are tagged, then a warning event is generated for each
tagged operand. This event includes query numbers of all tagged
operands and the source code location where it originated.

After all queries in the training set have been executed, Silver-
line collects the logs containing all warning events generated in the
application. We aggregate all warning events to produce a unique
list of query numbers that tagged non-encryptable data. Using the
previously-produced table (which maps query signatures tofields
in the database), we then produce a list of all data fields whose
values must be exposed in cleartext for the application to function
properly. These fields are not functionally encryptable. All other
fields are.
Modifying Application Runtime. We demonstrate our tech-
niques on PHP applications, and modified the PHP interpreterand
the PHP-MySQL interface to support data tagging and propagation.
We store the tags by extending the_zval_structdata structure that
is at the base of all data types in the PHP interpreter. This ensures
that our tag propagate correctly for all data types and persist as long
as an object remains.

3.2 Database Labeling and Key Assignment
We now explain how Silverline addresses the challenge of as-

signing encryption keys to sets of data objects with the aim of pro-
ducing a minimal key assignment for each user. To do so, we need
to automatically determine the appropriate scope for different keys.

We solve the problem by, again, relying on a (relatively com-
plete) training set of application requests. We assume thatwe have
access to a snapshot of the application database, either taken from
a running instance, or produced by a sequence of user requests.
We use the training set and the snapshot to generate a workload
of database queries, allowing us to infer user access patterns and
identify the optimal key assignments.

3.2.1 Labeling Algorithm
Given a sufficiently detailed set of requests, we can identify all

database cells accessible by each user. By modifying the interface
between the application runtime and the database, we can usea
“database labeling” technique to capture and store these patterns.
Later, we explain how these labels are used to produce a minimal
key assignment. Figure 4 depicts labeling with an example.

In Silverline, the modified application runtime accesses applica-
tion userIDs, and associates all queries to the database with the ID
of the user whose application request generated that query.This al-
lows Silverline to assign to each cell in the database alabel. A label
is a set of all userIDs (users) who have access to that cell. For a cell
ci, its label can be written asLci = {o1, o2, ..., oj}, whereoj is
the ID of a user can accessc. By definition, a user who runs a query
has access to all cells returned as the result of that query. There-
fore, we can build up a label for each cell in the database by running
our training set of application requests. As each user runs aquery
that accesses a cell, her userID is appended to the cell’s label if it
is not already there. For example, if the query “SELECT UserId
FROM Users where Gender=0” is executed by two usersBob

andAdmin, Silverline will label theUserId cells of the male
users(Gender=0) in the table with label{oBob, oAdmin}.

Our approach uses a training set of either logged or synthetic
user inputs (SELECT statements) to drive the database cell label-
ing process. For extremely large databases with complex schemas,
it can be difficult for a training set to cover the bulk of the user-
cell combinations possible in the application. In this case, we pro-
pose to augment an existing training set with additional synthetic
requests using an approach similar to protocol input fuzzing [40],
dynamic input generation for testing Web applications [38,30] and
dynamic input generation for high-coverage tests in database ap-
plications [16, 36]. For example, we can add queries to the query
above withGender as input parameter for all values ofGender,
e.g.{0, 1}. For fields with a large number of potential values,e.g.a
long type, we can use sampling guided by the application develop-
ers. To provide comprehensive coverage, we can continue updating
cell labels until the query has been executed for all (or significant
sample) of parameter values and user accounts.

Of course, even after using the aforementioned techniques,it is
possible that our training data is incomplete. In this case,users
are not provided keys to cells that they have access to. Whilethis
does not interfere with the confidentiality of data, it mightdeny

5

legitimate users access. We handle omissions due to incomplete
training in the same way as dynamic updates to the database (in
both cases, some new information is added or discovered). The
mechanism to handle this is described in Section 3.2.3.

3.2.2 Key Assignment
Once the labeling step is done, all cells will have labels that rep-

resent users who can access them. Our key assignment processuses
this information to assign keys to groups of database cells that have
common access patterns. Keys are then distributed to users based
on their accessibility to groups of cells. The goal is to produce a
minimal number of keys in the application while guaranteeing that
each user can 1) decrypt all the cells she owns, but 2) cannot de-
crypt any cell that she does not own.

The key assignment is a simple process. We want an assignment
that guarantees the constraint that each user’s keys provide her with
access to the cells she should access (based on our training data),
and no more. We also want to use a minimal number of total keys.
We compute the initial key assignment by examining all cell labels
in the entire database. We group all cells together that havethe
same label, and assign these cells a single, unique key. Thisdivides
all cells into a number of groups, each defined by a common label
and a common key. Cells that share a common label are accessed
by the same set of users, and thus share the same encryption key.

There is an additional constraints to consider. Cells in columns
that queries use to performjoin on tables need to be either unen-
crypted, or encrypted using a single key. This is necessary to allow
users to join tables without decrypting the involved table columns.
This means that giving a user access to a single cell in the column is
the same as giving her access to all cells in the column. We believe
keeping these join columns unencrypted is generally reasonable,
since joins are almost always performed on columns representing
IDs of entities, and would not expose real valuable data.

Once assignment finishes, we create for each cell group an en-
cryption key, encrypt the cells, and then distribute the keyto all
users identified in the group label. This ensures that each user has
all the keys necessary to access all cells she should have access to.

3.2.3 Incompleteness and Database Dynamics
So far, we have described our mechanisms under the assumption

of a static database. However, databases change for a numberof
reasons: new users join groups and are given access to existing
data, and existing users leave groups. In addition, our training set
of queries may not trigger all codes paths in the application, thus
omitting some users from labels of data they should have access to.

Our approach is to accept that results of the initial training pro-
cess can be incomplete or outdated. We introduce an online moni-
toring component inside the modified application runtime that no-
tifies the organization whenever a query is executed where a user
accesses cells for which she does not have the proper keys. A sim-
ilar notification is generated whenever a user leaves a groupand its
access should be reduced. When the organization receives a notifi-
cation, it updates the key assignment appropriately. If a new user is
gaining access, she receives the appropriate key. If a user is losing
her access, the organization might need to re-key groups of data
cells, i.e. decrypt the data using the old key and re-encrypt using a
new key. Data re-keying is undesirable, because it exposes data as
cleartext, and must be performed on the organization’s own com-
pute resources. Data re-keying is a rare event in most applications,
and its impact can be reduced by batching tasks.

A final note. Finally, most applications control data access
using different hierarchies of users,e.g. the admin user versus
regular users. Silverline mechanisms support this naturally be-

Organization

Third-Party Cloud

Client Browser

Key Store

Trusted

iFrame

Cloud’s

iFrame
Keys + Code

Encrypted(Data)

Figure 5: Our design of safe data processing in the user’s browser.

cause they infer a user’s access privileges based on actual queries,
rather than usernames. For example, regular users can run the
querySELECT * FROM users WHERE UserId=’xxx’ for their
own userID,admin can run the querySELECT * FROM users to
get data on all users. When these queries run in the training set,
Silverline naturally addsadmin to the labels of all the cells in the
users table. This easily extends to a complex hierarchy of users
with escalated access privileges.

3.3 Safe Key Management on User Devices
To provide users transparent access to their data, the organization

must distribute decryption keys to users’ edge devices. As aresult,
Silverline must ensure that a compromised cloud cannot steal keys
or decrypted data from user devices. In particular, when theclient
accesses the application on the cloud and downloads encrypted data
with a web browser, a malicious cloud could inject client-side code
(a piece of JavaScript, for instance) into the output. This client-
side code is then executed on the user’s device, which storesthe
decryption keys. Clearly, we need to ensure that this client-side
code cannot access or leak keys, and that the decryption can be
done in a secure fashion before the data is presented to the user. A
solution to the problem is presented in the following paragraphs.
Secure data access on user devices. The key insight behind
our approach is to isolate (prevent) the untrusted code fromthe
cloud from accessing sensitive data (such as keys or decrypted data
values) on user devices. Only the code from the organizationis al-
lowed to access such data. We accomplish this by leveraging func-
tionality that is already present in modern Web browsers. Inpartic-
ular, we make use of the Same Origin Policy (SOP) and HTML5.
As a result, our solution works in current browsers without modifi-
cation.

We leverage iFrames to isolate and restrict access to sensitive
data in the Web browser. The idea is to use two iFrames in design-
ing web applications hosted on the cloud. One frame belongs to
the cloud, and one belongs to the organization. The keys are stored
in the user’s web browser (as cookies, or on disk with HTML5)
under the sameorigin (the source site details) as the organization.
As a result, the browser’s SOPs prevent the untrusted cloud frame
from accessing keys that belong to the organization, due to differ-
ent origins. Keys are only accessible by the organization’sframe,
protecting them from a potentially compromised cloud.

Once keys are isolated, the next step is to isolate the data decryp-
tion process, so that unencrypted data does not leak to the cloud. In
our solution, the untrusted cloud’s frame downloads the encrypted
data from the cloud, then sends this (encrypted) data to the trusted
organization’s frame via a HTML5postMessage call. The organi-
zation’s frame receives the encrypted data, decrypts it locally, and
renders or processes the data based on user requirements. Any data
sent back to the cloud is first encrypted with appropriate keys in-
side the organization’s frame, then sent back to the cloud’sframe,
which posts the message to the cloud. Because the frames cannot

6

directly access each others’ data inside the browser, decrypted data
is never accessed by the cloud’s frame. Our solution is depicted in
Figure 5.
Trusting the browser-side code. The final detail is to deter-
mine how the code is sent safely to user devices. In our implemen-
tation, the organization hosts the entire code that runs in the trusted
frame and sends it to the user, which is then cached in her browser.
Then, the cloud’s frame only needs to download encrypted data
from the cloud, and then upload encrypted data generated by the
user to the cloud. Since the code is generally small is size, and
is cached on the client, the load incurred on the organization in
hosting the code is also small. While we chose this approach for
its simplicity, an alternative approach based on code verification,
similar to BEEP [22], is also possible.

We implemented a prototype application to validate this design,
as shown in Figure 5. We hosted data on one server (acting as
the cloud), code on another server (acting as the organization) and
ran the application on a separate user machine. Our prototype runs
successfullywithout any browser modificationon Internet Explorer
8, Firefox 3.5.8, Google Chrome 5.0.3, and Safari 4.0.5.
Key indexing to guide data access. To enable user devices
to decrypt data received from the cloud, each piece of encrypted
data must have an accompanying piece of metadata that indicates
the key necessary for decryption. Thus, we assign indices (ran-
dom numbers) to each key generated at the organization during the
database labeling phase. The index of a key is essentially its name,
and is distributed with the key or data encrypted with the key. The
cloud sending encrypted data to the user also sends all necessary
key indices, thus allowing the trusted user frame to use the proper
key for decryption.

4. SYSTEM ANALYSIS
In this section we present an analysis of Silverline’s confidential-

ity properties and discuss its current limitations.

4.1 Key Assignment Properties
As defined in Section 2.3, optimal key assignment for a database

is one that assigns the minimal number of keys to each user, such
that the keys for this user 1) decrypt all her cells, and 2) do not
decrypt any cell that she does not have access to. We now show
that our key assignment achieves this optimality and confidentiality
properties.

Our key assignment algorithm achieves the optimal assignment
because of the three steps we follow in our assignment algorithm:
1) cells with same labels are assigned the same key, 2) cells with
different labels are assigned different keys, and 3) a key isgiven to
a user only when this user (its ID) included in the corresponding
label. We prove three Lemmas first, and then use them to prove
optimality and confidentiality.

LEMMA 1. The key assignment algorithm assigns the same key
to cells with same labels.

PROOF. This is by definition of our key assignment algorithm.

LEMMA 2. The key assignment algorithm assigns different keys
to cells with different labels.

PROOF. This is also achieved by definition of our key assign-
ment algorithm as unique keys are assigned to labels.

LEMMA 3. The key assignment algorithm never assigns a key
to a user that does not have access to a cell.

PROOF. The key assignment algorithm assigns keys using the
labels acquired by cells during the labeling phase. By definition,
the labeling algorithm adds an user to a cell’s label only if the user
has access to the cell. But a user without access to a cell can only
get the key to that cell if she is in the label of the cell. This is a
contradiction. Hence, our key assignment algorithm never reveals
the key to a cell to a user without access to that cell.

Proof of key minimality. By Lemma 1, the total number of
keys assigned to encrypt the whole database is equal to the number
of unique labels in the database. Now we prove that this is the
optimal number of keys. Suppose there is an assignment lower
than the total number of unique labels in the database. This can
only happen iftwo different labelsare given the same key. But this
is a contradiction to Lemma 2, which is already proven. Hence,
there is no assignment with fewer keys than the number of unique
labels in the database. Thus, Silverline achieves key minimality.
Proof of cell confidentiality. A cell’s confidentiality is vio-
lated only if the key to decrypt this cell is given to an user not
in the label of the cell. But this is a contradiction to the proof of
Lemma 3. Thus, Silverline preserves confidentiality of all cells in
the database.

4.2 Limitations of Silverline
Not all data on the cloud is encrypted. While we would like to
encrypt the entire database’s content on the cloud, in this work, we
focus on encrypting functionally encryptable data. We recognize
this limitation and are designing techniques to cover more data as
part of our ongoing work.
Cloud can learn some metadata. Even after encryption, the
cloud can learn some metadata about the data stored on it. For
example, if two usersalice andbob send each other messages, the
cloud would know the number of messages sent between two users
E(alice) andE(bob). While this alone is not sufficient to break
either users’ privacy, if the cloud were to combine this withsome
outside data, it might be able to determine the number of messages
exchanged betweenalice andbob.
Executing unequality comparisons on encrypted cells. Once
the cells are encrypted, queries such asSELECT * FROM Messages

WHERE MessageId > 10 no longer work, as non-equality com-
parisons over encrypted data fail. We leave techniques to resolve
such queries to future work, too.
Attacks on community data. Data encrypted with a single
key (to protect from the cloud) that is shared with all the registered
users in an application (called community data hereafter) are vul-
nerable to a variety of attacks by the cloud. The cloud can mount
a known-plaintext attackor adistribution-based attack. Consider a
community field with a fixed set of values, such asGender. In a
known-plaintext attack, the cloud can join the system as twousers
(or collude with two users), one with each gender. Based on the en-
crypted value learned, the cloud now knows the actual genderof all
other users in the database. In the distribution attack, thecloud can
use some external information to learn the gender of all users in the
system. For example, if the cloud knows that there are more male
Star Trek fans, then it can easily guess the gender of all the users
in the Star Trek message board on the cloud using the distribution
of encrypted values. Note, however, that such attacks workonly
against community data. Data encrypted with user-specific keys is
still secure.

5. EVALUATION

7

Application Purpose Lang. LOC Queries
AstroSpaces2 Social Networking PHP 14790 51

UseBB3 Complex Message Board PHP 21264 114
Comendar4 Community Calendar PHP 23627 42

Table 1: Details of the applications used in our evaluation. We only
list the number of SELECT queries in the application in this table.

We now evaluate the efficacy of Silverline techniques on exist-
ing, real-world applications. Our evaluation is geared towards an-
swering two key questions: 1) How much of the data in today’s
applications can be encrypted without breaking any functionality?
and 2) Does our labeling identify all the different types of data shar-
ing between users and assign the right keys to the right users?

5.1 Setup and Implementation
Evaluation setup. We applied our techniques to three different
real-world PHP applications hosted onsourceforge.net. We chose
these applications because they represent a good mix of features
commonly found in real applications, which lead to several inter-
esting data sharing characteristics. The details of the applications
used in our evaluation are presented in Table 1. Each of theseap-
plications has tens of thousands of lines of code, and all contain a
significant number of database queries.
Implementing encrypted data tracking. Our modification to
the PHP interpreter and the PHP-MySQL interface were based on
the code for phptaint [37]. We modified this code to incorporate
our tag propagation policies as described in Section 3.1. Our im-
plementation logs a warning every time a tagged data item is used
in a computation. We ran each application in our modified inter-
preter, exercising different paths of the program via “normal” user
interactions. Then, we analyzed the contents of the log to identify
those cells that cannot be encrypted. Note that we do not consider
using data in display functions, such asecho andprint, as com-
putation. Data in such functions can be sent encrypted to theuser,
where it is transparently decrypted and displayed.
Implementing database labeling and key assignments. All
the applications that we used for our evaluation use MySQL astheir
back-end database. We implemented labeling in a MySQL-proxy
between the database and the PHP Runtime. For each of these ap-
plications, we used the following setup. We 1) create a database
with the exact same schema used in the application, 2) insertsample
data into the database to create a training database for labeling, 3)
identify all SELECT queries in the application that read data from
the database, 4) perform database labeling on SELECT queries in
the applications, and finally 5) analyze the labels attachedto the
cells to verify the data classification and key assignment performed
by our techniques.

5.2 Application Descriptions
AstroSpaces: A social networking service. AstroSpaces is a
social networking application that provides the followingfeatures
to users: 1) create user profiles, 2) add users to their friendlist,
3) send private messages to friends, 4) create blog posts, 5)write
comments to friends on their profiles and 6) create content ontheir
own profiles. These features are based on 7 database tables, and the
application uses a total of 51 SELECT queries.

2http://sourceforge.net/projects/astrospaces/
3http://sourceforge.net/projects/usebb/
4http://sourceforge.net/projects/comendar/

Application # of Database Fields
Total User Data Encryptable Non-Encryptable

AstroSpaces 37 24 17 (71%) 7 (29%)
UseBB 106 81 67 (83%) 14 (17%)

Comendar 105 57 41 (72%) 16 (28%)

Table 2: Encrypted data tracking results. We show the # of fields a) in
total, b) storing user data, that c) can, and d) cannot be encrypted.

UseBB: A full-featured message board. UseBB is a popu-
lar, full-fledged bulletin board service that provides manyadvanced
features to users, including the ability to 1) create accounts, 2) cre-
ate and moderate groups, 3) join groups, and 4) post new topic
messages or reply to existing topics. UseBB administratorshave
access to advanced features such as banning users (by email or
username or IP address), banning keywords and configuring re-
placement words, sending mass emails, editing/deleting users, and
many other options to configure user forums. These features are
implemented using 12 tables, and a total of 114 SELECT queries.
Comendar: A community calendar. Comendar is a commu-
nity calendar service that provides users with the ability to: 1) cre-
ate user accounts, 2) create groups (for communities), 3) join com-
munities (or groups) of interest, 4) create new personal andcom-
munity events, 5) view personal and community events, 6) setup re-
minders to be sent via email (for both personal and group events),
and 7) set display and privacy preferences. This application pro-
vides the services of an online calendar service – but for both per-
sonal and community uses. There were a total of 13 tables in the
database and 42 SELECT queries in the application’s source code.

5.3 Amount of Functionally-Encryptable Data
In a first step, we evaluate the amount of functionally encrypt-

able data in the applications. We consider all database fields that
store user data (only excluding the auto-increment IDs usedto iden-
tify entities in the tables) as sensitive. These ID fields aretypically
integers that do not reveal any information about a user. Hence,
they can remain in plaintext. To understand the fraction of sensi-
tive fields that can be encrypted, we use our modified PHP inter-
preter and track the usage of sensitive data. By analyzing the warn-
ings produced by our tracking system, we could understand which
fields were used in computations and why. Table 2 summarizes the
results, which we discuss below.
AstroSpaces social networking service. Out of the 24 user
data fields (those that did not store UserId, GroupId, or any other
IDs), we find that only seven fields were used in computations,in-
cluding: Username (to search the system based on partial names),
read/unread status of messages (to display unread messagesin bold),
accepted/unaccepted status of friendship requests (to display friend
request status in categories), theme and style chosen by theuser
(again, for display), activation status of the account (to decide if
users are allowed to login or not) that users are required to set by
confirming account creation, and finally the user’s email (tosend
emails, search by email for existing accounts during account cre-
ation, and send password reminders).

Interestingly, most of these fields store information not directly
related to the user. On the other hand, personal data such as the
user’s first name, her last name, the messages exchanged between
friends, the user’s address, the phone number, blog posts, and wall
posts are never used in any computation or interpreted, onlyread
and sent to users. Thus these fields are all functionally encryptable,
and protected by Silverline.

8

UseBB message board. As Table 2 shows, out of a total 81 user
data fields in the UseBB database, only 14 fields are used in compu-
tations. Furthermore, a detailed analysis shows that most of these
14 fields do not contain personal information, and more than half of
them are used for formatting the content displayed to users.The 14
user data fields used in computations are the following: The names
of the users, title and content of their posts (to enable searching by
keywords, and replace banned keywords), emails (to send emails
and password reminders), the level of the user (guest, standard user,
or admin; to decide what operations they can perform), activation
status of user accounts (for login purposes), and the user’sprivacy
and display preferences.

Nearly half of the functionality that requires interpretation of
data is related to content formatting. This functionality can be
easily moved to client-side scripting code, thus removing those
computation dependencies and making the data fields they touch
functionally encryptable. Several remaining fields store informa-
tion that is not related to personal user data (e.g. user’s level, and
activation status of the accounts). This leaves us with onlythe fields
used for keyword search (user names, title and content of theposts).
They are personal, used in computation, and should preferably re-
main encrypted on the cloud. Fortunately, work on keyword search
on encrypted data [34, 35] can help in encrypting these fieldsalso.
Comendar community calendar. Comendar performs more
computations than the two previous applications. Out of a total
of 57 sensitive fields, 16 were used in computations. These are:
an user’s email, magic string (for password reminders and account
activation), the account activation status, user’s genderand level,
group and event security settings (public or private), event titles
and contents (for keyword search), start and end date for reminders,
reminder and event repetition interval, and event attendance status
(yes, no, or maybe).

Similar to the two previous applications, half of the computation
(8 out of 16) were performed on fields that were used to format
the data displayed to the user. For example, user’s gender isused
to decide if “he” or “she” should be displayed. A majority of the
computation that needs to remain on the cloud, such as start and
end date of reminders, reminder and event interval, etc. caneven
be stored in unencrypted form on the cloud. Only search on event’s
title and description should preferably remain on the cloudin en-
crypted form. In short, despite more computation, almost all of the
features can be functionality encrypted.
Summary. For the three applications that we examined, we
find that themajority of fields that store personal informationare
never used in any computation. These fields include address, phone
number(s), messages exchanged between users, and other personal
details. Many fields used in computation store information about
users that are unlikely to be sensitive. Only a handful of fields
stored sensitive information and were used in computation (mostly
keyword searches), which the organization can still encrypt with
specialized encryption schemes [35]. In short, the organization can
encrypt most sensitive fields with the most efficient symmetric keys
of their choice and obtain confidentiality from today’s clouds.

5.4 Evaluating the Key Inference Techniques
Now we evaluate whether our labeling and key assignment tech-

niques correctly identify those different groups of users that have
access to different cells in the database, and if they assignappro-
priate, shared keys to each group.
AstroSpaces social network. This application has significant
pair-wise user interactions, as can be expected from a social net-
work. More precisely, most queries were involved in creating the
friendship graph and exchanging messages between friends.

There are basically three types of data in AstroSpaces: 1) data
that is publicly visible to all users (Blogs, Username, UserId, pro-
file content), 2) data that is viewed only by a pair of users, and 3)
data that is viewed only by the owner (details about the user,such
as gender, email, and last login time). We first create a database
with 50 users, then make each user connect with a random number
of randomly chosen friend users. After that, we make users inter-
act with their friends by sending private messages and by writing
comments on profiles. We make this interaction realistic by biasing
the frequency of interactions towards a handful of “close” friends.
Finally, users create blogs and embellish their profile pages.

At this point, we run the queries in the application on this sample
database, and analyze the labels acquired by the cells. A total of 51
labels, and hence, keys, are assigned to theUsers table. Out of
these, 50 user-specific keys are assigned to the 50 users (onekey
each) to encrypt all columns, with the exception of Usernameand
UserId. All publicly accessible columns are encrypted withjust
one key, which is given to all users.

The data in thePrivate Messages table is read only by the
receiver of messages, and never read by the sender. Hence, Sil-
verline reuses the user-specific keys assigned to theUsers table to
encrypt this table as well. In particular, a message sent to auserA
is encrypted with the key of userA. The data in theFriendship
table, on the other hand, is accessed by the users at both endsof
friendship edges. As a result, the same label (key) is assigned to all
cells accessed by a particular pair of users. In our database, there
were 588 distinct pairs, and hence, 588 keys were created. Finally,
the content in the rest of the tables is public. For this, the key as-
sociated with public data (known to all users) is reused to encrypt
this content.

In summary, our labeling technique successfully identifiedthe
three different groups of data in this application, as well as the users
that belong to these groups. our system assigned a total 639 keys
to protect our AstroSpaces database.
UseBB message board. There are four types of data in UseBB,
data that is 1) visible to the entire world (public), 2) visible to all
registered UseBB users (community), 3) visible to a single user,
and 4) visible only to the admin. There is no data accessible to a
specific subset (or group) of users in UseBB, and most of the data
belongs to the first two types. Similar to other message boards, data
generated by users in UseBB is organized in different categories.
Each category has multiple forums. Each forum, in turn, has multi-
ple topics on which users discuss by sending posts. Topics are akin
to a new mail thread, and each post is akin to a response to thismail
thread. In UseBB, all posts in all forums and categories are public.
Even several details of the members that made the posts are public.
However, information such as statistics about members’ activities
and the full list of members is community data. Some information,
such as a user’s preferences (email is public or not, theme, etc.) are
accessible only to a particular user (and the admin). Finally, data
such as the banned users, words and IP addresses are accessible
only to the admin.

We create a sample database with 50 users, five categories, five
topics, and 20 forums. We then make random users send posts
to different topics. Finally, we use Silverline to examine the SQL
queries and perform key inference. Our system correctly classified
the data into the four types mentioned above, and identified the
fields that belonged to each type. The key assignment is simple,
due to the lack of complex groupings of users. A total of 53 keys
are assigned – 50 user-specific keys (one per user), one key for
public data, one key for community data, and finally one key for
admin’s data.

9

Comendar community calendar. There are four types of data
in Comendar: 1) data visible to the entire world (public), 2)data
visible to all registered users in the Comendar application(com-
munity), 3) data visible to all users in a group (group), and 4) data
visible only to the user that created it (personal data).

Comendar is interesting because some queries were dynamically
generated. More precisely, the application dynamically constructs
selection conditions used to query tables. As a result, although the
number of queries in the source code are 42, over several runs, we
identified 49 different queries. Since our technique depends on the
name of the user running a query, Silverline handled these dynamic
queries easily.

We run Silverline on a sample database with 50 users and 10
groups, and assign a random number of randomly chosen users to
each group. Each user creates one event for each of the different
access types (public, community, group, and personal). We then
assign group events to randomly chosen groups. Users then create
reminders for their own events and for community events. Finally,
we run the application so that Silverline could analyze theSELECT
queries.

Silverline correctly classified all four types of data. Morepre-
cisely, our system assigned a total of 61 keys to these four types. 50
out of 61 were used to encrypt user-specific data (personal events,
personal reminders, event attendance status, etc.). Sincethere were
10 groups, our technique was expected to assign 10 keys to pro-
tect the groups’ data. Interestingly, however, only 9 keys were cre-
ated. Closer examination revealed that one group containedonly
one user. As a result, our algorithm correctly re-used that user’s
personal key for this group’s data. Moreover, one key was assigned
to encrypt the community data, and finally, one key was assigned
to encrypt the public data.
Summary. Our evaluation shows that our labeling techniques
successfully identifies different types of sharing behaviors in pro-
duction applications, and classifies the data into groups. They also
identify all users that have access to these groups. Puttingthe eval-
uation results together, we learn that many of today’s applications
can easily migrate to an encrypted application architecture, and the
Silverline toolset greatly simplifies the process while minimizing
developer effort.

6. RELATED WORK
Encrypted databases. Encrypted databases [14, 19, 20] of-
fer database-as-a-service [20], where database run on an untrusted
third-party and operate on encrypted data. They aim to offload most
of the query execution from clients to the third-party, by inserting
additional columns in the encrypted database to provide hints for
query execution. Our work differs significantly in the threat mod-
els we consider. They consider a single server and a single client
(the organization hosting the DB), whereas we assume many clients
(other than the organization) in our model. As a result, their ap-
proach of using a single key for encryption is not sufficient for our
model, which supports mutually distrusting users.
Systems running on encrypted data. Persona [5] is a social
network where the server never sees any data in plaintext. Per-
sona uses attribute-based encryption to allow fine-grainedsharing
of encrypted information with friends. Similarly, we proposed in
prior work infrastructure primitives for building location-based ser-
vices while protecting sensitive location data using encryption [29].
These systems require applications to be rewritten to support en-
cryption natively. In contrast, Silverline focuses on using auto-
mated tools to simplify the transition of legacy applications to a
secure cloud platform.

Supporting security and privacy in clouds. Work on ac-
countable clouds [21] proposed an approach for users of third-party
clouds to verify that the cloud is operating “correctly” on their data.
Similarly, a recent paper [33] aimed to build trusted cloudsthat
protect user data against attacks from compromised cloud adminis-
trator accounts using TPMs. While these approaches are based on
modifying the cloud infrastructure to enforce security andprivacy
policies, Silverline targets a different model that includes attacks
from compromised or malicious cloud servers.
Taint tracking for security and software debugging. Taint
tracking has be used in a variety of contexts, detecting software
vulnerabilities [28] and malware [42], debugging applications [13],
and securing web applications [41]. More broadly, information
flow control has been used in the development of programming lan-
guages [27, 26], secure operating systems [44] and applications [43]
to prevent data from reaching untrusted entities. Our work differs
from these projects in the way we use data tagging and information
labelling. Our focus lies in identifying computational dependencies
on the data.

7. CONCLUSIONS AND FUTURE WORK
Data confidentiality is one of the key obstacles preventing or-

ganizations from widely adopting third-party computing clouds. In
this paper, we describe Silverline, a set of techniques and developer
tools that promotes data confidentiality on the cloud using end-to-
end data encryption. Encrypted data on the cloud prevents leak-
age to compromised or malicious clouds, while users can easily
access data by decrypting data locally with keys from the orga-
nization. Using dynamic program analysis techniques, Silverline
automatically identifies functionally encryptable application data,
data that can be safely encrypted without adversely affecting ap-
plication functionality. By modifying the application runtime, e.g.
the PHP interpreter, we show how Silverline can determine anopti-
mal assignment of encryption keys that minimizes key management
overhead and impact of key compromise. Silverline techniques sig-
nificantly reduce the developer effort involved in incorporating con-
fidentiality into applications running on the cloud. We demonstrate
the viability of our proposed approach by applying our techniques
to several production applications with a mix of commonly used
features. Our experiences show that applications running on the
cloudcanprotect their data from security breaches or compromises
in the cloud.

While our work provides a significant first step towards full data
confidentiality in the cloud, a significant number of challenges re-
main. We target two specific areas as topics of ongoing work.
Learning high-level intuitions for data classification. While
our database labeling currently classifies the cells in the database
that can be encrypted together, it does not tell the developers about
the reasons why such a classification happened. An intuitiverea-
soning for such a classification is more helpful for the developers
in later implementing encryption and decryption functionality in
the applications. We believe applying associative rule mining [2]
techniques can help us derive these intuitions.
Automatic partitioning of the applications. We are planning
on extending Silverline to automatically partition applications and
move sensitive data (and its computation) to client devices, similar
to Swift [11]. Swift only supports partitioning of static data in ap-
plications, but we plan to extend it to partitioning database content
using the labeling information dynamically learned by Silverline.

10

8. REFERENCES

[1] A BDALLA , M., BELLARE, M., CATALANO , D., KILTZ , E.,
KOHNO, T., LANGE, T., MALONE-LEE, J., NEVEN, G., PAILLIER ,
P.,AND SHI , H. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions.Journal of
Cryptology 21, 3 (2008), 350–391.

[2] A GRAWAL , R., IMIELI ŃSKI, T., AND SWAMI , A. Mining
association rules between sets of items in large databases.ACM
SIGMOD Record(1993).

[3] A MAZON. Amazon SimpleDB.
[4] A MAZON. Thread: Does amazon ec2 meet pci compliance

guidelines?http://developer.amazonwebservices.
com/connect/message.jspa?messageID=139547.

[5] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE, B., AND

STARIN , D. Persona: An online social network with user defined
privacy. InProc. of SIGCOMM(2009).

[6] BONEH, D., DI CRESCENZO, G., OSTROVSKY, R., AND
PERSIANO, G. Public key encryption with keyword search. In
Advances in Cryptology-Eurocrypt 2004(2004), Springer,
pp. 506–522.

[7] BONEH, D., AND WATERS, B. Conjunctive, subset, and range
queries on encrypted data.Theory of Cryptography(2007), 535–554.

[8] CACHIN , C., KEIDAR, I., AND SHRAER, A. Trusting the Cloud.
ACM SIGACT News 40, 2 (2009).

[9] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W., WALLACH ,
D., BURROWS, M., CHANDRA , T., FIKES, A., AND GRUBER, R.
Bigtable: A distributed storage system for structured data. In Proc. of
OSDI (2006).

[10] CHANG, Y., AND M ITZENMACHER, M. Privacy preserving keyword
searches on remote encrypted data. InApplied Cryptography and
Network Security(2005), Springer, pp. 442–455.

[11] CHONG, S., LIU , J., MYERS, A. C., QI , X., V IKRAM , K., ZHENG,
L., AND ZHENG, X. Secure web applications via automatic
partitioning. InProc. of SOSP(Oct. 2007), pp. 31–44.

[12] CIRCLEID. Survey: Cloud computing ’no hype’, but fear of security
and control slowing adoption.http://www.circleid.com/
posts/20090226_cloud_computing_hype_security/.

[13] CLAUSE, J.,AND ORSO, A. Penumbra: automatically identifying
failure-relevant inputs using dynamic tainting. InProc. of Symposium
on Software Testing and Analysis(2009), ACM, pp. 249–260.

[14] DAMIANI , E., VIMERCATI , S., JAJODIA, S., PARABOSCHI, S.,
AND SAMARATI , P. Balancing confidentiality and efficiency in
untrusted relational DBMSs. InProc. of CCS(2003).

[15] DOUCEUR, J. R. The Sybil attack. InProc. of IPTPS(March 2002).
[16] EMMI , M., MAJUMDAR, R., AND SEN, K. Dynamic test input

generation for database applications. InProceedings of the 2007
international symposium on Software testing and analysis(2007),
ACM, p. 162.

[17] GENTRY, C. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.
http://crypto.stanford.edu/craig.

[18] GOLLE, P., STADDON, J.,AND WATERS, B. Secure conjunctive
keyword search over encrypted data. InApplied Cryptography and
Network Security, Springer, pp. 31–45.

[19] HACIGUMUS, H., IYER, B., LI , C., AND MEHROTRA, S. Executing
SQL over encrypted data in the database-service-provider model. In
Proc. of SIGMOD(2002), ACM New York, NY, USA, pp. 216–227.

[20] HACIGUMUS, H., IYER, B., AND MEHROTRA, S. Providing
database as a service. InProc. of ICDE(2002).

[21] HAEBERLEN, A. A case for the accountable cloud. InLADIS(2009).
[22] JIM , T., SWAMY, N., AND HICKS, M. BEEP: Browser-enforced

embedded policies. InProc. of WWW(2007).
[23] KATZ , J., SAHAI , A., AND WATERS, B. Predicate encryption

supporting disjunctions, polynomial equations, and innerproducts.
Advances in Cryptology–EUROCRYPT 2008, 146–162.

[24] MESSMER, E. Are security issues delaying adoption of cloud
computing?
http://www.networkworld.com/news/2009/
042709-burning-security-cloud-computing.html.

[25] M ICROSOFT. Microsoft SQL Azure.

[26] MYERS, A., AND L ISKOV, B. A decentralized model for
information flow control. InProc. of SOSP(1997), ACM, p. 142.

[27] MYERS, A., ZHENG, L., ZDANCEWIC, S., CHONG, S.,AND

NYSTROM, N. Jif: Java information flow.Software release. Located
at http://www.cs.cornell.edu/jif 2005(2001).

[28] NEWSOME, J.,AND SONG, D. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploitson
commodity software. InProc of NDSS(2005).

[29] PUTTASWAMY, K. P. N.,AND ZHAO, B. Y. Preserving privacy in
location-based mobile social applications. InHotmobile(2010).

[30] RICCA, F., AND TONELLA , P. Analysis and testing of web
applications. InProceedings of the 23rd international conference on
Software engineering(2001), IEEE Computer Society, pp. 25–34.

[31] RISTENPART, T., TROMER, E., SHACHAM , H., AND SAVAGE , S.
Hey, You, Get Off of My Cloud: Exploring Information Leakagein
Third-Party Compute Clouds. InProc. of CCS(2009).

[32] ROITER, N. How to secure cloud computing.
http://searchsecurity.techtarget.com/generic/
0,295582,sid14_gci1349550,00.html.

[33] SANTOS, N., GUMMADI , K., AND RODRIGUES, R. Towards trusted
cloud computing.Proc. of HotCloud(2009).

[34] SHI , E.Evaluating Predicates over Encrypted Data. PhD thesis,
PhD Thesis, Carnegie Mellon University, 2008.

[35] SONG, D., WAGNER, D., AND PERRIG, A. Practical techniques for
searches on encrypted data. InProc. of Security and Privacy(2000).

[36] SUÁREZ-CABAL , M., AND TUYA , J. Using an SQL coverage
measurement for testing database applications.ACM SIGSOFT
Software Engineering Notes 29, 6 (2004), 253–262.

[37] VENEMA, W. Taint support for php.
http://wiki.php.net/rfc/taint.

[38] WASSERMANN, G., YU, D., CHANDER, A., DHURJATI, D.,
INAMURA , H., AND SU, Z. Dynamic test input generation for web
applications. InProceedings of the 2008 international symposium on
Software testing and analysis(2008), ACM, pp. 249–260.

[39] WESTERVELT, R. Researchers say search, seizure protection may
not apply to saas data.
http://searchsecurity.techtarget.com/news/
article/0,289142,sid14_gci1363283,00.html.

[40] WONDRACEK, G., COMPARETTI, P. M., KRUEGEL, C., AND

K IRDA , E. Automatic network protocol analysis. InProc. of NDSS
(2008).

[41] XU, W., BHATKAR , E., AND SEKAR, R. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of attacks.
In In 15th USENIX Security Symposium(2006), pp. 121–136.

[42] Y IN , H., SONG, D., EGELE, M., KRUEGEL, C., AND K IRDA , E.
Panorama: Capturing system-wide information flow for malware
detection and analysis. InProc. of CCS(2007).

[43] Y IP, A., NARULA , N., KROHN, M., AND MORRIS, R.
Privacy-preserving browser-side scripting with BFlow. InProc. of
EuroSys(2009), pp. 233–246.

[44] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E.,AND
MAZIERES, D. Making information flow explicit in HiStar. InProc.
of the 7th OSDI, pp. 263–278.

11

