
UCSB Computer Science Technical Report 2010-05.

Who’s Driving this Cloud?
Towards Efficient Migration for Elastic and

Autonomic Multitenant Databases

Aaron Elmore Sudipto Das Divyakant Agrawal Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara, CA, USA
{aelmore, sudipto, agrawal, amr}@cs.ucsb.edu

Abstract

The success of cloud computing as a platform for deploying web-

applications has led to a deluge of applications characterized by

small data footprints but unpredictable access patterns. An auto-

nomic and scalable multitenant database management system (DBMS)

is therefore an important component of the software stack for plat-

forms supporting these applications. Elastic load balancing is a

key requirement for effective resource utilization and operational

cost minimization. Efficient techniques for database migration are

thus essential for elasticity in a multitenant DBMS. Our vision

is a DBMS where multitenancy is viewed as virtualization in the

database layer, and migration is a first class notion with the same

stature as scalability, availability etc. This paper serves as the first

step in this direction. We analyze the various models of database

multitenancy, formalize the forms of migration, evaluate the off-

the-shelf migration techniques, and identify the design space and

research goals for an autonomic and elastic multitenant database.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational databases

General Terms

Design

Keywords

Cloud computing, multitenancy, elastic data management, database

migration

1. INTRODUCTION
Elasticity, pay-per-use, low upfront investment, low time to mar-

ket, and transfer of risks are some of the enabling features that make

cloud computing a ubiquitous paradigm for deploying novel appli-

cations which were not economically feasible in a traditional en-

terprise infrastructure settings. This transformation has resulted in

an unforeseen surge in the number of applications being deployed

in the cloud. For instance, the Facebook platform1 has more than

a million developers and more than 500K active applications [12].

In addition to the sheer scale of the number of applications de-

veloped, these applications are characterized by high variance in

popularity, small data footprints, unpredictable load characteristics,

flash crowds, and varying resource requirements. As a result, PaaS

providers, such as Joyent [15], Google App Engine [1], hosting

these applications face unprecedented challenges in serving this

1The Facebook platform closely resembles the PaaS paradigm [11].

emerging class of applications and managing their data. Sharing

the underlying data management infrastructure amongst a pool of

tenants is thus essential for efficient use of resources and low cost

of operations. Large multitenant databases are therefore an inte-

gral part of the infrastructure to serve such large number of small

applications [16, 19, 20].

The concept of a multitenant database has been predominantly

used in the context of Software as a Service (SaaS). The Sales-

force.com model [19] is often cited as a canonical example of this

service paradigm. However, various other models of multitenancy

in the database tier [14, 16] and their interplay with resource shar-

ing in the various cloud paradigms (IaaS, PaaS, and SaaS) are often

overlooked. A thorough understanding of these models of mul-

titenancy is crucial for designing effective database management

system (DBMS)2 targeting different application domains. Further-

more, irrespective of the multitenancy model or the cloud paradigm,

autonomic management of large installations supporting thousands

of tenants, tolerating failures, with elastic load balancing for ef-

fective resource utilization and cost optimization are some of the

major challenges for multitenant databases for the cloud. Large

distributed Key-Value stores – such as Bigtable [6], Dynamo [10],

PNUTS [8], and their open source counterparts HBase [13] and

Cassandra [5]– are designed to scale to large numbers of concurrent

requests using commodity infrastructure of thousands of servers

while being elastic and fault-tolerant. Although extremely success-

ful, the Key-Value stores’ simplified data model, lack of transac-

tional support, and lack of attribute based accesses can result in

considerable overhead in re-architecting legacy applications which

are predominantly based on RDBMS technology. Additionally, an

application with smaller storage requirements (tens of MBs to a

few GB) would not utilize these scaling advantages of Key-Value

stores. Hence, from an individual application’s perspective, devel-

opers have to trade the lack of features and less portable code for

unnecessary scale capabilities. There is therefore a need for a scal-

able multitenant RDBMS [20].

Our vision is to develop an architecture of a multitenant DBMS

that is scalable, fault-tolerant, elastic, autonomic, consistent, and

supports a relational data model. We report a work in progress

in designing such a system targeted to serve a large number of

small applications typically encountered in a DBMS for the PaaS

paradigm. In this paper, we concentrate on the system level is-

sues related to enabling a multitenant DBMS for a broader class

of systems. We specifically focus on elastic load balancing which

ensures high resource utilization and lowers operational costs. We

2DBMS refers to the general class of data stores, including non-
relational systems while RDBMS refers to a subclass of systems
supporting the traditional relational model, like MySQL etc.

1

A. Elmore et al., Who’s Driving this Cloud? Towards Efficient Migration for Elastic and Autonomic Multitenant Databases

Sharing Mode Isolation IaaS PaaS SaaS

1. Shared hardware VM X X

2. Shared VM OS User X

3. Shared OS DB Instance X

4. Shared instance Database X

5. Shared database Schema X

6. Shared table Row X X

Table 1: Multitenant database models and corresponding cloud

computing paradigms.

view multitenancy as analogous to virtualization in the database tier

for sharing the DBMS resources. Similar to virtual machine (VM)

migration [7], efficient database migration in multitenant databases

is an integral component to provide elastic load balancing. Further-

more, considering the scale of the system and the need to minimize

the operational cost, the system should be autonomous in dealing

with failures and varying load conditions. Migration should there-

fore be a first class notion in the system having the same stature

as scalability, consistency, fault-tolerance, and functionality. Even

though some known commercial solutions, such as Microsoft SQL

Azure [18], possess some of the aforementioned goals of a multi-

tenant database, no solution exists in published literature or is sup-

ported by open-source systems. This paper serves as the first step

in this direction where we analyze the various models of multite-

nancy in the database tier [14, 16] and extend this classification to

map to the IaaS, PaaS, and SaaS paradigms. We also categorize

the forms of migration, evaluate the state of the art migration tech-

niques available off-the-shelf, and identify the design space and

research goals for an autonomic, elastic, and scalable multitenant

database. Additionally, preliminary experimental results are pro-

vided for the different forms of migration. While much research

has examined the various models of multitenancy [14, 16], to the

best of our knowledge this is the first work which analyzes the rela-

tionship of different database multitenancy models, formalizes mi-

gration for a multitenant database, and evaluate the trade-offs based

on a number of measures.

2. CLOUD MULTITENANT DATABASES
We now analyze the various database multitenancy models and

relate them to the different cloud paradigms to determine the trade-

offs in supporting multitenancy.

2.1 Multitenancy for Databases
Multitenancy in databases has been prevalent for hosting multi-

ple tenants within a single DBMS while enabling effective resource

sharing [3, 14, 16]. SaaS providers like Salesforce.com [19] are the

most common use cases for database multitenancy. Sharing of re-

sources at different levels of abstraction and distinct isolation levels

results in various multitenancy models. The three models explored

in the past [14] consist of: shared machine, shared process, and

shared table. The Salesforce.com model uses shared table, while

the other models of multitenancy have not been widely used; Das

et al. [9] propose a design that uses the shared process model, and

Soror et al. [17] propose using the shared machine model to im-

prove resource utilization. Nevertheless, some features of cloud

computing increases the relevance of the other models. To improve

understanding of multitenancy, we use the classification recently

proposed by Reinwald [16] which uses a finer sub-division (see

Table 1). Though some of these models collapse to the more tra-

ditional models of multitenancy. However, the different isolation

levels between tenants provided by these models make this classi-

fication interesting.

The models corresponding to rows 1–3 share resources at the

level of the same machine with different levels of abstractions, i.e.,

whether sharing resources at the machine level using multiple VMs

(VM Isolation) or sharing the VM by using different user accounts

or different database installations (OS and DB Instance isolation).

There is no database resource sharing, and the database instances

remain independent. Rows 1–3 only share the machine resources

and thus correspond to the shared machine model in the traditional

classification. On the other hand, rows 4–6 involve sharing the

database process at various isolation levels – from sharing only

the installation binary (database isolation), to sharing the database

resources such as the logging infrastructure, the buffer pool, etc.

(schema isolation), to sharing the same schema and tables (table

row level isolation). Rows 4–6 thus span the traditional classes

of shared process (for rows 4 and 5)3 and shared table (row 6).

Shared tables typically involve a design which allows for extensible

data models to be defined by a tenant with the actual data stored in

single shared table. The design often utilizes ‘pivot tables’ to pro-

vide rich database functionality such as indexing and joins. At one

extreme is the shared hardware model which uses virtualization to

multiplex multiple VMs on the same machine with strong isolation.

Each VM has only a single database process with the database of a

single tenant. At the other extreme is the shared table model which

stores multiple tenants’ data on shared tables with the finest level

of isolation.

In the different models, tenants’ data is stored in various forms.

For shared machine, an entire VM corresponds to a tenant, while

for shared table, a few rows in a table correspond to a tenant. Thus,

the association of a tenant to a database can be more than just the

data for the client, and can include metadata or even the execution

state. To span this spectrum, we define a common logical concept

of cell:

DEFINITION 1. A cell is the self-contained granule represent-

ing a tenant in the database.

We henceforth use the term cell to represent all information that

is sufficient to serve a tenant. A multitenant database instance con-

sists of thousands of cells, and the actual physical interpretation of

a cell depends on the form of multitenancy. With this understand-

ing of the models and the abstraction corresponding to tenants, we

now delve into analyzing the interplay of the different forms of

multitenancy and the cloud paradigms.

2.2 Multitenancy for the Cloud
While broad in concept, three main paradigms have emerged for

cloud computing: IaaS, PaaS, and SaaS. We now establish the con-

nection between the database multitenancy models with the cloud

computing paradigms (Table 1 summarizes this relationship), while

analyzing the suitability of the models for various multitenancy

scenarios. IaaS provides the lowest level of abstraction such as raw

computation, storage, and networking. Supporting multitenancy in

the IaaS layer thus allows much flexibility, and different schema

for sharing. The shared hardware model is however best suited in

IaaS. A simple multi-tenant system could be built of a cluster of

high end commodity machines, each with a small set of virtual ma-

chines. Each virtual machine would host a few database tenants.

3The shared instance model is primarily supported by commer-
cial databases that allows multiple databases (processes) to share a
common installation (or binary). Example usage includes running
isolated production and test databases. This model can map to both
shared machine as well as shared process based on the implemen-
tation.

2

UCSB Computer Science Technical Report 2010-05.

This model provides isolation, security, and efficient migration for

the client databases with an acceptable overhead, and is suitable for

applications with lower throughput but larger storage requirements.

PaaS providers, on the other hand, provide a higher level of abstrac-

tion to the tenants. There exist a wide class of PaaS providers, and a

single multitenant database model cannot be a blanket choice. For

PaaS systems that provide a single data store API, a shared table

or shared instance could meet data needs for the platform. For in-

stance, Google App Engine uses the shared table model for its data

store referred to a MegaStore [4]. However, PaaS systems with

the flexibility to support to a variety of data stores, such as App-

Scale [2], can leverage any multitenant database model. SaaS has

the highest level of abstraction in which a client uses the service to

perform a limited and focused task. Customization is typically su-

perficial and workflows or data models are primarily dictated by the

service provider. With rigid definitions of data and processes, and

restricted access to a data layer through a web service or browser,

the service provider has control over how the tenants will interact

with a data store. The shared table model has thus been success-

fully used by various SaaS providers [3, 14, 19].

3. FORMS OF MIGRATION
The unpredictable usage patterns for the tenants in a multitenant

DBMS mandate the need for elasticity. Migration is a key compo-

nent for elasticity and load balancing, and hence, migration should

be supported as a first class notion in any multitenant DBMS. We

now classify forms of migrations and identify state of the art migra-

tion techniques. But before we delve into the details of migration,

we define the granule for migration. Recall that a cell corresponds

to a tenant in the DBMS, and multiple cells will share some com-

mon system resources. When migrating, the system will therefore

migrate one or more cells. For convenience we refer to a set of one

or more cells for migration as a colony.

An autonomic DBMS needs multiple forms of migration to sup-

port the variety of SLAs and applications found in the cloud. With

this understanding we propose a classification of migration tech-

niques along with a set of metrics to compare the proposed forms.

Downtime is the time a cell may be unavailable during migration.

Interruption of service is the number of in-flight transactions of a

tenant that fail during migration due to loss of transaction state,

or not meeting the transactional requirements. Required coordina-

tion refers to the extent of coordination needed to initiate as well

as complete the migration. Note that in an autonomic system, a

component within the DBMS should coordinate migration, i.e. de-

termine when to migrate as well as the source and destination ma-

chines, and colonies to migrate. The overhead in the system can

be separated into: operation overhead which is the overhead on the

DBMS during normal operation that might be incurred to make the

system amenable to migration; and migration overhead which is

the system overhead during migration. The abstract form defini-

tions below identify the goals of migration and are independent to

any multitenancy model.

Live migration involves a seamless, instantaneous migration of a

colony from a source host directly to a destination host. All client

connections are migrated without the need to reconnect. To initiate

migration a coordinating process simply notifies the source host of

the destination and relies on the live migration process to indepen-

dently manage itself.

Synchronous migration is a real time, non-blocking migration4

4Blocking and non-blocking migration refers to potential blocking
of client database calls, and not the internal implementation used to
achieve the migration.

where a source and destination operate as a synchronized cluster.

While the destination host gradually acquires a synchronized state,

reads and writes are performed on the host DBMS. Once a stable

state is reached, the coordinating process notifies the source host to

stop serving the colony, and all future connections are sent to the

destination host. A minimal amount of downtime and interruption

of service may occur while switching hosts. The minimal opera-

tional overhead originates from the hosts needing to run in a mode

which is ready for clustering. The coordinator is responsible for

redirecting client connections of all cells of the migrated colony to

the destination host.

Asynchronous migration is an eventual, blocking migration4 which

relies on a coordinating process to copy the colony from a source

host to a destination host. The coordinator will track changes to

the source during migration and potentially block transactions to

ensure consistency. This might cause periods of downtime and ser-

vice interruption. Once the migration has completed, the coordi-

nator will redirect traffic to the destination. As the coordinator has

more control over the migration initialization, this form works well

for large cells with regular periods of inactivity.

Live migration is the utopian world for database migration and is

the most desirable as well as hardest to implement form of migra-

tion. Asynchronous migration is at the other end of the spectrum

and the baseline form of migration in system implementations not

designed for migration, while synchronous migration strikes a mid-

dle ground. An elastic DBMS must at least support synchronous

migration to minimize the impact of migration on the tenants and

clients, while the goal will be to approach live migration. Table 2

summarizes these forms of migrations and compares their relative

costs.

Several existing techniques can be utilized for database migra-

tion. VM migration has been thoroughly researched and provides

an effective means for live migration of a VM without interrupting

processes [7]. A lightweight virtual machine running a database

process can use live migration for database migration. Many pop-

ular RBDMSs have the ability to run in a master-slave mode in

order to efficiently replicate data across hosts in a cluster. Syn-

chronous migration can be achieved via the method proposed by

Yang et al. [20] which uses two-phase commit and a read one/write

all master-slave mode. However, while some commercial DBMSs

support a clustered mode off the shelf, running this mode for open

source alternatives would require some scripting and short periods

of downtime to change server states. Without a coordinating pro-

cess, flushing table locks and a database copy tool could be used

for consistent asynchronous migration. Additionally, a master-

slave replication without two-phase commit could be used to asyn-

chronously migrate cells between hosts. In both synchronous and

asynchronous migration, a coordinating process will need to route

application connections to the updated hosts and potentially needs

to make configuration changes on both hosts to reflect the updated

state. In contrast, live VM migration transfers client connections

during migration.

4. MULTITENANCY AND MIGRATION
Having defined the multitenant models and forms of migration,

we now examine some strengths and weaknesses of the different

multitenancy models for supporting migration. We also evaluate

the applicability of “off the shelf” migration solutions and provide

preliminary experimental results for the various forms.

4.1 Shared Table Migration
It is important to note that while the shared table model does

offer many advantages and is the best fit for SaaS applications, mi-

3

A. Elmore et al., Who’s Driving this Cloud? Towards Efficient Migration for Elastic and Autonomic Multitenant Databases

Form of Downtime Interruption External Operation Migration
Migration of Service Coordination Overhead Overhead

Live None Very Minimal Minimal Low/Moderate Minimal
Synchronous Minimal Minimal Moderate Minimal Moderate
Asynchronous Moderate Moderate High None High

Table 2: Summary of the forms of migration and the associated costs.

gration is extremely challenging and any potential method is cou-

pled to the implementation. In systems without elastic migration,

isolation controls must be present to prevent high load tenants from

degrading system wide performance. Apex, a proprietary multi-

tenant aware programming language implemented by SalesForce,

is an example of delegating resource control to an external compo-

nent [19]. Additionally, many shared table models use tenant iden-

tifiers or entity keys as a natural partition to control physical data

placement [6, 19]. It is our belief that data placement and resource

management decisions should be encapsulated within the DBMS in

order to support robust migration for an elastic multitenant system.

Lastly, the popular approach of using a ‘single’ heap storage for all

tenants [3, 19] makes isolating a cell for migration extremely chal-

lenging. Without the ability to isolate a cell, none of the techniques

in Section 3 allow for migration. This leaves efficient migration of

shared tables an open problem.

4.2 Shared Hardware Migration
Using the shared hardware model gives flexibility for migration

options. The ease, isolation, and performance of VM migration

makes this an ideal form of migration. Additionally, using VM mi-

gration abstracts the complexity of managing memory state, file mi-

gration and networking configuration. Live migration only requires

Xen be configured to accept migrations from a specified host. Us-

ing Xen and a 1 Gbps network switch, we were able to migrate

an Ubuntu image running MySQL with a 1 GB TPC-C database

between hosts on average in only 20 seconds. Running the TPC-

C benchmark in a standard OS versus a virtual OS, we observed

an average increase of response times by 5-10%. In summary, the

major benefits of using shared hardware and live migration for cell

migration are:

• Isolation, ease of use, and no network configuration updates.

• No downtime and minimal interruption of service.

• Determining when and what to migrate becomes a simple ex-

amination of resources available compared to resources con-

sumed.

Disadvantages of using this multitenancy model:

• Potential need for shared filesystem or disk snapshots.

• Low to moderate operation overhead.

• If a VM is a cell then redundancy is high due to replicated

OS and DB services across VMs.

• Number of tenants is coupled with the amount and quality of

hardware available. Requires more horizontal growth.

4.3 Shared Instance Migration
For shared instance, we can have near independent DB instances

spawned from a single binary installation. In this model each cell

has a unique database process, resulting in replicated resources

such as logging, caching, and query optimizers. While redundant,

this replication simplifies cell migration by having isolation at the

database level. This isolation provides the ability to leverage syn-

chronized migration. As stated before, this migration form is not

supported by all RDBMS implementations off the shelf. It is worth

noting that the concepts outlined are applicable for the shared OS

and VM models with a slight increase in configuration complex-

ity and redundancy. The synchronized replication implementation

by Yang et al. [20] only incurred a 5-25% overhead compared to

stand alone database. As the amount of time required for the syn-

chronized mode is limited, this overhead is acceptable. A non-

synchronized master-slave configuration replicated a 1 GB TPC-C

database in 500 seconds on average. If replication is desired for

durability, this form can be leveraged for handling failures along

with migration [20]. Primary benefits of using shared DB instance

and synchronous migration are:

• Reduced redundancy compared to shared hardware.

• Good for DBMSs not optimized for multi-cores (each core

can focus on a low number of databases).

• Minimal downtime, interruption of service, and operation

overhead.

Disadvantages of using this multitenancy model and synchronous

migration:

• Network configuration changes to reflect the new location of

a colony.

• Isolation and impact on cells not in the migration colony will

be implementation dependent.

4.4 Shared Database Migration
Using a single database instance and having cells isolated on

schemas (or tablespaces supported in Oracle), potentially removes

the ability to use synchronized database replication as these mi-

grations occur at the database level within the process. Since the

colony being migrated might be a proper subset of all cells located

on a database, the migration process will need to be selective in

building the colony to be migrated. Therefore, asynchronous mi-

gration is an ideal candidate for shared database migration. With

state information, such as transactions logs, shared amongst cells

connected clients may be affected by the locking required to achieve

a consistent copy. To test the impact of asynchronous migration we

created a shared MySQL database with five small TPC-C databases

(200 MB) in different schemas. TPC-C load testing applications

were run against four of the databases to measure change in re-

sponse time during the asynchronous replication of the fifth database.

With a moderately high load (five threads per cell testing maximal

throughput), we observed average response times degrade by 10%

during a transaction wrapped online copy to a destination host. At-

tention must be paid to the locking schemes used; For example

MySQL allows for all tables to be locked during a copy, which re-

sults in blocking non-migrating cells for the duration of the copy.

Without any locking or transactions the copy process had minimal

impact on performance, but without a coordinating process this can

lead to consistency problems. This model’s reduced replication’s

impact on migration isolation and consistency, demonstrates the

need for an autonomic migration process. A naive asynchronous

migration using an export and import tool (MySQLDump), took an

average 920 seconds for a 1 GB TPC-C database. It is worth noting

that for the naive migration 95% of the time was spent on importing

the database, with only 5% of the time for exporting and copying.

In summary, benefits of using shared database and asynchronous

migration include:

4

UCSB Computer Science Technical Report 2010-05.

• Reduced redundancy allows for a higher number of cells to

be hosted on a single host.

• No operational overhead.

Disadvantages of using shared database and asynchronous migra-

tion:

• Requires greater coordination and a longer migration win-

dow.

• Moderate downtime and interruption of service.

• Locking and heavy reads during migration may degrade per-

formance of non-migrating cells on the same physical disk.

5. DISCUSSION AND FUTURE WORK
Elasticity, and database migration to enable elasticity, is critical

for the efficient operation of scalable multitenant databases which

drive large cloud platforms. We expanded existing multitenancy

models and provided a coupling of these models to the various

cloud paradigms. We also formalized the forms of migration clas-

sifications, introduced the concept of a cell to abstract the tenants

and the granule of migration, analyzed the trade-offs associated

with the different multitenancy models, and discussed some pre-

liminary techniques for migration of a colony using “off-the-shelf”

technology. In summary, we observed that even though a shared ta-

ble is the most common form of multitenancy in a database, some

other lesser known models are more suitable for designing an elas-

tic multitenant DBMS. Furthermore, even though shared hardware

provides the best isolation amongst tenants and allows near ideal

migration, practical hardware limitations restrict the scale of such

a design in terms of number of tenants that can be hosted. Thus,

even though virtualization and virtual machine migration [7] have

been heavily studied from the systems perspective, the state-of-the-

art in virtualization for databases and migration of databases have

significant shortcomings which need to be addressed for design-

ing a scalable, fault-tolerant, elastic, and autonomic multitenant

database for scalable cloud platforms.

Projecting into the future, our observation is that migration tech-

niques should be embedded into the fabric of multitenant DBMSs

to allow efficient migration as supported by the shared hardware

model, while minimizing the redundancy shortcomings observed

here. Much of these shortcomings can be attributed to replicated

OS and DB processes which restrict the number of tenants due

to hardware limits. A system designed to scale to a large num-

ber of clients should minimize redundancy. The shared DB and

shared instance models minimize this redundancy, and we aim to

focus our efforts on these models. Evaluating the trade-offs be-

tween the amount of redundancy and the degree of isolation, and

their impact on migration is an interesting research problem. At

this time it is uncertain if the ideal multitenancy model for an elas-

tic DBMS is shared instance, shared DB, or a marriage of the two.

Furthermore, the scale of the cloud mandates autonomic migration

and management with minimal or no manual intervention and su-

pervision. Major research challenges for autonomic management

include modeling load patterns for determining the time for migra-

tion, and identifying the cells that need migration, thus leading to

systematic approaches to database migration for supporting elastic-

ity.

Acknowledgements

The authors would like to thank Ceren Budak and Shoji Nishimura

for their insightful comments on the earlier versions of the paper

which has helped in improving this paper. This work is partially

supported by NSF Grants IIS-0744539 and IIS-0847925.

6. REFERENCES
[1] Google App Engine.

http://code.google.com/appengine/, 2010. 1

[2] AppScale: Open Source Google AppEngine.

http://appscale.cs.ucsb.edu/, 2010. 3

[3] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.

Multi-tenant databases for software as a service:

schema-mapping techniques. In SIGMOD, pages 1195–1206,

2008. 2, 3, 4

[4] R. Barrett. Transactions Across Datacenters. Google IO,

May 2009. 3

[5] Cassandra: A highly scalable, eventually consistent,

distributed, structured key-value store, 2010.

http://incubator.apache.org/cassandra/. 1

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A Distributed Storage System for

Structured Data. In OSDI, pages 205–218, 2006. 1, 4

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of

virtual machines. In NSDI, pages 273–286, 2005. 2, 3, 5

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and

R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.

Proc. VLDB Endow., 1(2):1277–1288, 2008. 1

[9] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi.

ElasTraS: An Elastic, Scalable, and Self Managing

Transactional Database for the Cloud. Technical Report

2010-04, CS, UCSB, 2010.

http://www.cs.ucsb.edu/research/tech_reports/.

2

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available

key-value store. In SOSP, pages 205–220, 2007. 1

[11] Facebook Developer Platform.

http://developers.facebook.com/, 2010. 1

[12] Facebook Statistics.

http://www.facebook.com/press/info.php?statistics,

Retreived March 18, 2010. 1

[13] HBase: Bigtable-like structured storage for Hadoop HDFS,

2010. http://hadoop.apache.org/hbase/. 1

[14] D. Jacobs and S. Aulbach. Ruminations on multi-tenant

databases. In BTW, pages 514–521, 2007. 1, 2, 3

[15] Joyent: Enterprise Class Cloud Computing.

http://www.joyent.com/, 2010. 1

[16] B. Reinwald. Database support for multi-tenant applications.

In IEEE Workshop on Information and Software as Services,

2010. 1, 2

[17] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,

P. Kokosielis, and S. Kamath. Automatic virtual machine

configuration for database workloads. In SIGMOD, pages

953–966, 2008. 2

[18] Microsoft SQL Azure Database.

http://www.microsoft.com/windowsazure/sqlazure/,

2010. 2

[19] C. D. Weissman and S. Bobrowski. The design of the

force.com multitenant internet application development

platform. In SIGMOD, pages 889–896, 2009. 1, 2, 3, 4

[20] F. Yang, J. Shanmugasundaram, and R. Yerneni. A scalable

data platform for a large number of small applications. In

CIDR, 2009. 1, 3, 4

5

http://code.google.com/appengine/
http://appscale.cs.ucsb.edu/
http://incubator.apache.org/cassandra/
http://www.cs.ucsb.edu/research/tech_reports/
http://developers.facebook.com/
http://www.facebook.com/press/info.php?statistics
http://hadoop.apache.org/hbase/
http://www.joyent.com/
http://www.microsoft.com/windowsazure/sqlazure/

	Introduction
	Cloud Multitenant Databases
	Multitenancy for Databases
	Multitenancy for the Cloud

	Forms of Migration
	Multitenancy and Migration
	Shared Table Migration
	Shared Hardware Migration
	Shared Instance Migration
	Shared Database Migration

	Discussion and Future Work
	References

