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Abstract

We present a simple framework that employs a single API – the Datastore API from the Google App
Engine cloud computing platform – to interface to differentopen source distributed database technologies
in use today. We use the framework to “plug in” different databases to the API so that they can be used
by web applications and services without modification. The system facilitates empirical evaluation and
comparison of these disparate systems by web software developers, and reduces the barrier to entry for the
use of such systems by automating their configuration and deployment.

1 Introduction

Highly available, scalable, relational database management systems (RDBMS), such as those offered by
MySQL, Oracle, PostgreSQL, Sybase, and others, have traditionally been employed by the commercial sec-
tor for mission-critical, enterprise business applications. These applications commonly require fault tolerant,
high-throughput transaction processing and implement complex queries that access data across multiple ta-
bles. Administrators of these RDBMSs configure fixed schemasfor the tables prior to deployment and use
by applications. Static schemas enable query optimizationand static error checking of structured query lan-
guage (SQL) code, among other benefits. RDBMs vary in cost, storage model, distribution and replication
strategy, scale, and performance. Although highly effective for the enterprise application domain, recent
advances in distributed database technologies have shown that for web applications, simpler datastores may
be sufficient and potentially more scalable.

One reason behind this trend is that web applications and services exhibit significantly different data
access behavior than that of enterprise software. For example, web-based software (e.g. distributed sys-
tems based on the model-view-controller pattern written inhigh-level languages) is typically read-heavy
and string-oriented, employs finer-grain data accesses (e.g. individual keys rather than entire tables and
individual tables rather than multiple tables, per query),use a small subset of the SQL language, and rarely
make use of the full feature sets that relational systems offer. As a result, many new database technologies
have emerged in support of web applications.

For example, Google and Amazon both employ distributed databases for use by web services that im-
plement simple key-value datastores, the data format and layout of which can be dynamically controlled by
the application. These systems are optimized for reads and indexing, can be accessed using arbitrary strings,
and are optimized for key-level synchronization and transaction support. Such systems are highly scalable
and very efficient for the application domain that they target. Google’s offering, BigTable [6], provides
strong consistency and high availability, but does not replicate the actual data. It employs the distributed and
proprietary Google File System [8] (GFS) for transparent replication beneath Bigtable. Amazon implements
Dynamo [2] which replicates data, is eventually consistent, and highly available. Both Google (via Google
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App Engine (GAE)) and Amazon (via Amazon Web Services (AWS))make their proprietary implemen-
tations of these datastores available through high-level abstractions within their cloud computing platform
(GAE) and infrastructure (AWS). Cloud computing in the commercial sector as offered by GAE, AWS, and
others, provides pay-per-use rental of remote resources (CPU, network, disk, etc.) based on service-level
agreements, and is currently employed primarily for web-based applications.

When the descriptions of BigTable and Dynamo were published, a number of open source offerings
emerged that emulated the functionality of these systems. Such offerings include HBase [13], Hyper-
table [14], and Cassandra [5]. These distributed database technologies aim to provide scalable storage along
with fast indexing, a variety of data models, query support that is simple and specific to the data model,
and fault-tolerance. In addition, like BigTable and Dynamo, they offer different consistency and fault toler-
ance policies. In addition, they vary in the programming language employed for their implementation, the
distributed computing topology (master-slave and peer-to-peer), and the programming interfaces they offer.
As a result, the use and deployment of any of these systems imposes a significant learning curve on web
application developers, making it challenging to compare and evaluate these systems for their applications.

To address this challenge, we present a simple framework with which different database technologies
can be employed by web applications easily and automatically. We enable this through an open-source,
distributed implementation of the Google App Engine (GAE) cloud computing platform. This system, called
AppScale, facilitates “plugging in” different databases for the implementation of the Google Datastore API,
used by GAE for its BigTable implementation. That is, we employ this API as a universal substrate through
which web applications access data stored in a wide variety of different database back-ends.

In this paper, we describe the design and implementation of this support and the ways in which AppScale
eases the installation, configuration, and deployment of these disparate software systems. We use the terms
datastore and database interchangeably. We consider sevenpopular open source distributed database systems
including MySQL cluster. We provide an overview of each of these technologies, Google App Engine and
its Datastore API, and the AppScale platform. We detail our implementation of this API and our experience
with using it as a unifying abstraction for each of these database systems. We employ AppScale with these
extensions to empirically compare and evaluate each in the context of activities typical of web services. The
systems vary in terms of ease of use and integration, as well as in performance and scalability. Our results
measure of how well each implements the Google Datastore APIout of the box (i.e. without optimization).
We begin with an introduction to the database systems that weconsider.

2 Open Source Distributed Database Technologies

In this section, we overview seven distributed database technologies. We selected these systems based on
their maturity, widespread use, documentation, and different design choices made for distribution, scale,
and fault tolerance. We also include MySQL Cluster, which unlike the others, is a relational database
management system. We include it to show the extensibility of our Datastore API implementation and so that
we can compare it to the others using the AppScale framework.The technologies we consider are Cassandra,
HBase, Hypertable, MemcacheDB [16], MongoDB [17], Voldemort [23], and MySQL Cluster [18].

2.1 Cassandra

Facebook engineers designed, implemented, and released the Cassandra datastore as open source [5] in
2008. Cassandra offers a hybrid approach between the proprietary datastore implementations of Google
BigTable and Amazon Dynamo. It takes the flexible column layout offered by the former and combines it
with the peer-to-peer layout of the latter in the hopes of gaining greater scalability over other open source
solutions. Cassandra is currently in use internally at Facebook, Twitter, Cisco, among other web companies.
The Apache Incubator Project page states that Cassandra hasbeen employed on a production cluster (> 150

machines) to manage over 100TB of data [5].
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Cassandra is eventually consistent. In this model, the system propogates data written on any node to
all other nodes in the system. These multiple entry points improves read performance, response time, and
faciliates high availability even in the face of network partitions. However, there is a period of time during
which the state of the data is inconsistent across the nodes.Although algorithms are employed by the system
to ensure that propagation is as fast as possible, two users that access the same web site may see different
results. Eventual consistency cannot be tolerated by some applications; however, for many web services and
application, it is not only tolerated but a popular trade-off for the increased scalabilty it enables.

Cassandra is written in the Java programming language and exposes its API through the Thrift software
framework [22]. Thrift enables different programming languages to communicate efficiently and share data
through remote procedure calls. Cassandra internally doesnot use a query language, but instead supports
range queries. Range queries allow users to batch primitiveoperations and simplify query programming.

While Cassandra allows users to statically specify the number and layout of tables used in the system,
we were unable utilize this system since it failed when specifying more than one table. This seems to be an
issue with the version used for testing. Regardless, tablescannot be created dynamically, as a result users
must store all of their data within a single table. Facebook and other commercial entities use a proprietary
extension of Cassandra internally. We find that there is a significant gap between the open source offering
and the proprietary versions, in terms of reported performance, scalability, and usability.

2.2 HBase

Developed and released by PowerSet as open source in 2007, HBase became an official Hadoop subproject
with the goal of providing an open source version of Google’sBigTable [13]. HBase employs a master-
slave distributed architecture. The master stores only metadata and redirects clients to a slave for access to
the actual data. Clients send all reads / writes to the master. This model ensures data consistency across
the system. HBase also provides flexible column support, allowing users to define new columns on-the-fly.
Currently, HBase is in use by PowerSet, Streamy, and StumbleUpon, amongst other commercial entities.

HBase is written in the Java programming language (althoughsome of the code base, e.g. for data
compression, are written in C). HBase exposes its API using Thrift and provides a shell through which users
can directly manipulate the database using the HBase Query Language (HQL). For users accessing the Thrift
API, HBase exports a Scanner interface with which developers traverse the database while maintaining a
pointer to their current location. This scanner functionality is useful when multiple items are retrieved a
“page” at a time. Although any database can perform scanning, HBase provides developers with direct
control over the scanning process which can be used to improve performance.

HBase is deployed over the Hadoop Distributed File System (HDFS) [9]. HDFS is written in Java and
for each node in the cluster, it runs on top of the local host’soperating system file system (e.g. ext2, ext3 or
ext4 for Linux). HDFS employs a master-slave architecture within which the master node runs a NameNode
daemon, responsible for file access and namespace management. The slave nodes run a DataNode daemon,
responsible for the management of storage on its respectivenode. Data is stored in blocks (the default size
is 64 MB) and replicated throughout the cluster automatically. Reads are directed to the nearest replica to
minimize latency and bandwidth usage. Like Google’s BigTable over GFS, by running over a distributed file
system, HBase achieves fault tolerance through file system replication and implements strong consistency.

2.3 Hypertable

Hypertable was developed by Zvents in 2007 and later released as open-source with the same goal as HBase:
to provide an open-source version of Google’s BigTable. Hypertable employs a master-slave architecture
with metadata on the master, data on the slaves, and all client requests going though the single entry point
of the master to ensure data consistency. Currently, Hypertable’s largest user is the Chinese search provider
Baidu which reports running Hypertable over 120 nodes and reading in roughly 500 GB of data per day [15].
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In contrast to Cassandra and HBase, Hypertable is written inC++ in an attempt to enable better perfor-
mance. The designers of Hypertable claim that using C++ gives them greater control of memory manage-
ment (caching, reuse, reclamation, etc.) [14]. Hypertableexposes its API using Thrift and provides a shell
with which users can access the datastore directly using theHypertext Query Language (HQL). Hypertable
also provides a Scanner interface to clients.

Like HBase, Hypertable also runs over HDFS to leverage the automatic data replication and fault toler-
ance that it provides. Hypertable splits up tables into setsof contiguous row ranges and delegates each set to
a RangeServer. The RangeServer communicates with a DFS Broker to enable Hypertable to run over various
distributed file systems. RangeServers also share access toa small amount of metadata, which is stored in a
system known as Hyperspace. Hyperspace acts similarly to Google’s Chubby [4], a highly available locking
and naming service that stores very small files.

2.4 MemcacheDB

Open source developer, Steve Chu, modified the popular caching framework, memcached, to add data per-
sistence and replication. He released the resulting systemas MemcacheDB in 2007 [16]. MemcacheDB
employs a master-slave approach for accessing data, with which clients can read data from any node in the
system but can only write to the master node. This keeps the data consistent while allowing for multiple
read entry points. MemcacheDB is currently in use at the link-sharing site Reddit.

MemcacheDB uses a combination of memcached and Berkeley DB for data persistence. Both are written
in the C programming language. Clients access the database using any existing memcached library. Using
such libraries, clients can create a shell to access the database directly using any programming language that
implements the libraries. Clients perform queries on the database via the memcachedget multi function
which request multiple keys at once. Since the system does not track of all the items in the cache, a true
query that retrieves all the data is not possible: developers who require this functionality must manually add
and maintain a special key that stores all of the keys in use.

MemcacheDB runs with a single master node and multiple slavenodes. Therefore, users instantiate the
MemcacheDB service on the master node and then invoke replica nodes with a command line argument that
identifies the location of the master. Since the master does not have a configuration file specifying which
nodes are replicas in the system, any node can potentially join the system as a slave. This flexibility can
present a security hole, as a malicious user can run their ownMemcacheDB replica and have it connect to
the master node in an attempt to acquire its data. Clients canemploy Linux iptables or other firewalling
mechanisms to restrict access to MemcacheDB master and slave nodes.

2.5 MongoDB

MongoDB was developed and released as open source in 2008 by 10gen [17]. MongoDB was designed to
provide both the speed and scalability of key-value datastores as well as the ability to customize queries
for the specific structure of the data. MongoDB is a document-oriented database, like CouchDB, since
clients can specialize their queries based on document type, e.g. template and legal documents, among
others. MongoDB offers three replication styles: master-slave replication, a “replica-pair” style, and a
limited form of master-master replication. We consider master-slave replication in this work. For this
architecture, all clients read and write by accessing the master. Therefore, the data is consistent across the
system. Commercially, MongoDB is used by SourceForge, github, EA, and others.

Like Hypertable, MongoDB is written in C++ so that memory management of the system can be con-
trolled more precisely by developers. Users can access MongoDB via language bindings which have been
implemented for many popular languages. MongoDB provides an interactive shell with its own unnamed
query language. Queries are performed in a manner similar toJSON, using a hashtable-like format. The
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system exposes a cursor that identifies the current point in the database that is being queried. Clients can
use this support to traverse the data in a similar fashion to the HBase and Hypertable Scanner interface.

MongoDB is deployed over a cluster of machines in a manner similar to that of MemcacheDB. No
configuration files are used and once the master node is running, an administrator invokes the slave nodes
using a command line that identifies the location of the server. MongoDB suffers from the similar security
problem of unauthenticated slaves attaching to a master; administratrators can use iptables or other measures
to restrict such access to authorized machines.

2.6 Voldemort

Developed and currently in use internally at LinkedIn, Voldemort emulates Amazon Dynamo and combines
it with the caching framework of memcached [23]. It was released as open source in 2009. Voldemort
provides eventual consistency; reads or writes can be performed at any node by clients. There is a short
duration during which the view of the data across the system is inconsistent. Fetches on a key may result in
Voldemort returning multiple values with their version number, as opposed to Cassandra which only returns
the newest version. It is up to the application to decide which value is valid. Voldemort uses memcached to
cache data and improve access times. It persists data using BerkeleyDB [3] (or other backends) and allows
the developer to specify the replication factor for each chunk of the distributed hash table employed for
distribution. This entails that the developer also partition the key space manually.

Voldemort is written in the Java programming language and exposes its API via Thrift; there are native
bindings to high-level languages as well that employ serialization via Google protocol buffers [21]. A shell
is also provided for interactive queries. In older version of Voldemort, users cannot obtain all the data for a
table in Voldemort; if they wish to do so, they must keep a special key whose value is a list of all the keys
in the given table and maintain it accordingly. This functionality has been added in subsequent versions
through the getall function.

2.7 MySQL

MySQL is a well-known relational database that we employ in this work as a key-value datastore. We store
a list of columns and the value for it in the “value” column. This gives us a new key-value datastore that
provides replication and fault-tolerance. There are many MySQL distibution models available; we employ
MySQL cluster for this work. This version precludes manual partitioning of the key space and complex
client forwarding (sharding). MySQL cluster employs a muchsimpler distribution model than sharding by
using a coordinator to handle writes and replication. The node that performs this function is referred to as
the master node, while the other nodes store the actual data are referred to as API nodes. Unlike HBase
and Hypertable where clients make requests only to the master node, clients using MySQL cluster can make
requests to any of the API nodes. The system can survive the failure of an API node but not the master node.
Additionally, the management node is only required for initial configuration and cluster monitoring.

MySQL is written in C and C++. As it is a mature product, it has drivers available in most programming
languages that allow programs to access its API. A shell is provided for interactive queries written in SQL,
and programs using the native drivers provided can also use the same query language to interact with the
database. Bindings allow for query strings to be passed to the database, giving application designers full
access to SQL’s capabilities.

Setup for MySQL Cluster begins with running the management server (ndbmgmd). The master node
setup uses configuration file specifying the number of replicas and specifying the role of each slave: as a
data node, API node, or both. In our configuration, each data node is also an API node. The master node
runs ndbmgmd, which allows the slave nodes to connect to it after eachslave is started.
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3 Google App Engine and AppScale

As the success and wide spread use of web-based software and services for commercial, social, and personal
endeavors continues to grow, so do the offerings available in support of development of such software.
Many recent frameworks provide implementation, library, cross-language interoperability, and deployment
support and automation for a number of different languages (e.g., Ruby on Rails, Django for Python, Trax for
PHP, Struts and Spring MVC for Java). Concurrently, cloud computing is experiencing rapid uptake in the
commercial sector, offering an attractive utility-computing paradigm based on Service-Level Agreements
(SLAs). Cloud systems offer public access at very low cost tovast proprietary compute, storage, and network
resources, along with per-user and per-application isolation and customization via a service interface that is
typically implemented using high-level language technologies, APIs, and web services.

Google combines these two offerings within a single platform called

Figure 1: Google App Engine.

App Engine. Google App Engine (GAE) is a software development
framework for implementation of Python and Java web applications.
These applications respond to user requests on a web page using li-
braries and GAE services, access structured data in a key-value datas-
tore, and execute tasks in the background. Figure 1 depicts GAE. The set
of available libraries is restricted by Google, i.e. they are those “white-
listed” as activities that Google is able to support scalably and safely
(in isolation). Google provides well-defined APIs for each of the GAE services. When a user uploads
her GAE application to Google resources (made available via“MyApp”.appspot.com) the APIs connect to
proprietary, scalable, and highly available implementations of each service.

Today, Google offers this platform-as-a-service (PaaS) cloud free of charge. However, applications
must consume resources below a set of fixed quotas and limits (API calls per minute and per day, bandwidth
and CPU used, disk space, request response and task duration, mail sent). Users can pay for additional
bandwidth, CPU hours, disk space, and mail.

The GAE Datastore API is implemented via BigTable [6], and provides the following primitives:

• Put(k, v): Add keyk with valuev into the database, creating the table for the entity if needed

• Get(k): Acquire the value associated with keyk

• Delete(k): Remove keyk and its associated value from the database

• Query(q): Perform queryq on a single entity and return a list of entities

• Count(t): Determine the number of entities in tablet

• Begin/End Transaction: Indicates when transactions beginor end

Google provides a simple query language that is encoded within the Query interface. Data is serialized using
Google Protocol Buffers [21]. Google provides other forms of data management via the Memcache API for
caching of non-persistent data using an interface similar to the Datastore API, and the Blobstore API which
enables users to store/retreive large files (up to 50MB).

To test their GAE applications and to build the datastore indexes, users execute their application using
an open source software development kit (SDK) provided by Google. This SDK implements the GAE APIs
using simple, sequential, non-scalable implementations or stubs.

We extend this SDK to implement AppScale. We decouple the implementations from the API and
replace them with more scalable and distributed versions. To enable this, we build upon and extend a
number of different open technologies (including languageimplementations, communication and language
interoperability frameworks, and databases). AppScale provides a robust, cluster-based implementation of
GAE that scales with the size of the cluster available; it executes over virtualized cluster resources and over
cloud infrastructures such as AWS and Eucalyptus [20]. We detail the AppScale system in [7] and overview
in the subsections that follow. In this paper, we focus on theimplementation of the Google Datastore API and
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AppScale support for integrating and automating deployment of the open source database implementations
for use by web applications and services.

3.1 AppScale Components

Figure 2 depicts an example AppScale deployment. System

Figure 2: AppScale Deployment.

administrators configure and deploy and AppScale cloud using
a set of command-line tools. The tools enable users to config-
ure/start/stop a cloud, upload/remove a GAE application, and
retrieve statistics on resources availability/use. AppScale also
implments a web-based interface to the tools for manipulating a
extant cloud and viewing the cloud status. For the configuration that we employ for this study, the cloud is
static – the size is specified at cloud instantiation and remains the same until the cloud is destroyed.

The primary components of AppScale are the AppController, the AppServer, the AppLoadBalancer, and
the AppDB. We briefly overview each. We discuss the AppDB component in the next section as it is the key
component for integrating the variety of database systems that we discuss in the previous sections.
AppController. The AppController is a SOAP server written in Ruby that runs on every node in the
system. It is spawned by either the AppScale tools if it is thefirst node or by the first AppController if
it is not. An AppController is aware of the layout of the cloudand starts up the necessary services in the
required order. The AppController is able to customize a node with any component and service available
in AppScale. If the node instantiates a database that requires configuration files, the AppController writes
the files in a known locations. The AppController also uses iptables to close all ports that are not used
by the cloud. Once the system has been set up, all AppControllers sleep waiting for instructions from the
first AppController. This AppController sends a heartbeat message every ten seconds to all nodes in the
system, recording whether or not the node is alive. It also profiles the other nodes, recording metrics such as
CPU and memory usage to employ for dynamically scaling the cloud (starting/stopping components). The
AppController uses tcpdump to estimate the network traffic.

AppServer. The AppServer component is the Google open source GAE SDK with the non-scalable API
implementations replaced with distributed and open sourceversions, that we describe above. We use avail-
able Python and Java libraries for many of the services (e.g.Memcache, Instant Messaging (IM), Images),
the local system for others (Mail, Cron), and hand-built tools for others (Tasks, URL Fetch). For the Datas-
tore API, we modify the SDK to open a socket and forward the protocol buffer to a remote server (the SDK
simply puts/gets protocol buffers to/from a file). We have removed the quota and programming restrictions
that Google places in GAE applications that execute within its cloud and have added new APIs including one
that provides GAE applications with direct access to a back-end map-reduce implementation if available.

AppLoadBalancer. To partition the access by users to a GAE application web pageacross multiple
servers, we employ the AppLoadBalancer. This component uses the nginx web server [19] to serve static
content and haproxy [12] to selectively choose which AppServer should receive incoming traffic. The cur-
rent implementation does not use the AppLoadBalancer as a reverse proxy as is commonly done, to prevent
it from becoming a single point of failure. Users instead access a Ruby on Rails service that authenticates
the user (providing support for the Google Users API), identifies a target AppServer for the GAE appli-
cation and redirects the request to that AppServer. Users see the URL change in their address bar. If the
AppLoadBalancer fails, the AppServers are not affected.
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4 AppScale Distributed Database Support

In this section, we describe how AppScale integrates different databases. Such support is key for easy use
and investigation of the vast open source offerings available to web service developers today. AppScale
employs the Google Datastore API as a universal API to these different offerings. In this section, we discuss
this design and implementation and our experiences coupling this API with extant database systems.

The AppServers send data requests to the datastore serialized as Google Protocol Buffers. In front of
the datastores is a server to which we refer to as the ProtocolBuffer Server (PBServer). This service is a
database-agnostic, multi-threaded, Python HTTP server that consumes requests from an AppServer. The
PBServer extracts the request (the Datastore API call) fromthe Protocol Buffer and calls the API function
for the instantiated datastore, passing the Protocol Buffer. Most of the databases that we have considered
use a combination of the application’s name, class name, andkey name as the true key name in the database,
with the class contents as the value for the object.

4.1 Deploying a Database

AppScale automates the deployment of distributed databasetechnologies, significantly reducing the learning
curve and barrier to entry in using these typically complex distributed systems. We release AppScale as an
operating system image by which users can instantiate directly over virtualized cluster resources or cloud
infrastructures without any manual configuration or deployment. This essentially provides functionality
similar to that of Hadoop-on-Demand (HOD) but for all seven implemented databases [11]. AppScale
generates configuration files, command line arguments, and environment variables automatically.

Databases in AppScale currently implement either a master-slave or peer-to-peer (P2P) topology. For
master-slave, the AppController designates one node as theDatabase Master (DBM) and the others as
Database Slaves (DBS). For P2P, the AppController designates all nodes as Database Peers. DBM/DBS
comprise the AppDB component in AppScale. The distributiondictates the number of entry points for each
database, which are the locations to which reads and writes can be directed. A PBServer executes in front
of each entry point. For databases with a master-slave configuration, this is the master node. The AppCon-
troller starts the first AppDB node (master or peer). The AppController then starts all other AppDBs as
appropriate, each contacting the first node to join the system.

4.2 Adding a Database to AppScale

To add a new database to AppScale, we modify the PBServer and the AppController. In the PBServer,
we add a single function to each of the API calls and include all libraries employed in the function imple-
mentations. If the database implements all of the API directly then this addition is simple. However, if it
only implements a subset of the API, the developer must writethe code that emulates the functionality. For
example, if the database does not provide support for addinga new table at runtime or count support, then
this functionality must be written by hand. Once the database interface has been implemented it must pass a
series of regression tests to verify that database nodes arefunctioning properly in terms of communication,
performance, consistency, and API implementation.

The AppController must also be updated to configure and deploy a new database automatically. It must
be able to deploy the various database nodes in the necessaryorder. For example, in all our implementations,
we always deploy the master node (or one peer node) first, and then deploy the slave nodes (or remaining
peer nodes). The AppController must also identify the entrypoints to the database (specifically, where to
run the PBServer). A last series of top level regression tests are performed to verify correctness for Google
App Engine applications that will run over this new database.
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4.3 Our Experience With Integrating Extant Database Technologies

The operating system distribution that we support is UbuntuLinux v. 9.04. Thus, our experience with the
installation and integration of the open source databases we consider is specific to it. However, it is similar
to a wide range of other operating systems. We have experimented with others internally and have found
that minor modifications are needed to build the AppScale image.

Cassandra. As in the BigTable model, Cassandra implements range queries as opposed to a query lan-
guage. Range queries allow a developer to access a group of entities that have their key fall in between a
certain lexigraphical range. That is, a range query allows auser to use a single access to the database to
retrieve multiple data elements. Since Cassandra doesn’t allow for dynamic table creation, we simulate mul-
tiple tables in a single table. A special meta-table key stores a list of all the tables that exist and is updated
accordingly whenever a table is created or deleted. Similarly, a special key is used for each table to store
a list of entities currently stored in the table (updated similarly). This is necessary for the query operation,
which returns the entire contents of a table. In AppScale, the AppController is configured to run a PBServer
on every Database Peer.

HBase. One discernable difference with HBase, compared to the other databases, is the amount of time
it takes to create a table (approximately five seconds). Thisis noticable on the first usage of an application
because we create new tables when the first put request is received. Moreover, we found an issue with the
jar libraries which HBase was using. An exception would be thrown concerning the use of IP’s instead of
fully qualified domain names. This problem was fixed with a patch to the HDFS code [10]. A frequent
problem we faced came when starting HBase right after HDFS, where all the nodes have not come online
in HDFS. This caused a failure for HBase to start because it could not successfully write to HDFS. Our
solution for this problem was to poll the number of slave connections made by the master node using the
linux command ”lsof”. Lastly, when doing clean initializations of the datastore, one had to make sure that
all the cluster nodes removed the previous data files. Failure to do so led to HDFS throwing an exception
about incorrect versions of itself running.

Hypertable. Hypertable’s Thrift interface includes the ability to do HQL string queries. Our interface
uses both of Thrift’s HQL calls and API function calls. The HQL queries require us to i build the string
to execute based on the table name, keys, and column names. Test ran at ZEvent have shown that thrift is
less than 2bindings [1]. As with HBase, we also use a script tosee if HDFS has come up with all slave
nodes before starting Hypertable. Keys must be alphanumeric, and require us to use base 64 encoding if
application names, or keys require a non-alphanumeric character. Failure to do so causes HQL parsing
exceptions. Moreover, we had to patch two files in the code in order to successfully compile it.

MemcacheDB. MemcacheDB is accessed via the standard memcached libraries, and like memcached,
provides neither a query langauge nor range queries. It doesprovide the ability to do bulk reads and writes
via the “getmulti” and “set multi” API calls, respectively. Since table creation is notprovided by Mem-
cacheDB, we emulate it via the method described for Cassandra. In order to perform query operations
efficiently, we perform one “get” call to the special table key containing the list of keys in the given table
and then a “getmulti” call to do a bulk read of all the keys in the table. This allows us to use only two API
calls to acquire a table’s contents as opposed to having to make a “get” call for each item listed in the special
table key. Since MemcacheDB exhibits a master-slave relationship, the AppController starts the Protocol
Buffer Server only on the master node.
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MongoDB. The API is translated using their native python interface. It is a document oriented database,
but used as a key-value store for our analysis. Configurationis simple; start the master and have slaves point
to it via the command line argument. No configuration files areneeded.

Voldemort. Voldemort exposes its API over the Thrift software framework, so we have constructed the
necessary library to interface with it from the Protocol Buffer Server. Voldemort does not expose either
a query language or the ability to do range queries. Since Voldemort does not allow for dynamic table
creation, we use a single table with the table layout used forCassandra and MemcacheDB. To implement
the query operation, we make a single request to the databaseto acquire a list of the keys for a given table,
and then requests to the database to fetch each key. The number of database requests made for a query
operation is therefore dependent on the size of the table in question. Newer versions of Voldemort alleviate
this problem by exposing a “getall” API call that allows for bulk reads, which we suspect will improve
query performance. In Voldemort, any node is an entry point to the database, so the AppController runs a
Protocol Buffer Server on all nodes.

MySQL. Our initial version of AppScale ran into multiple issues with Mysql Cluster 5.0. Fixed width
columns caused for wasted space, and limitations on the sizeof our entities and applications. The current
version in AppScale, MySQL 5.1 NDB 6.3.20, features variable width columns, alleviating the problem.
Another limitation is the number of data nodes must be evenlydivisiable by the configured number of
replicas. Moreover, tables must begin with a letter, and thus we prepend a character to each table name
as to act in accordance with the AppScale Datastore API. On startup, we have a script which polls the
management console on the head node to verify that all slave nodes have come online before creating our
initial tables. The default maximum packet size was also increase in this newer version from 1MB to 16MB.
In version 5.0 we would get packet-too-large errors if the default size was not changed.

Database Error Handling. Each database reports errors and exceptions up the chain of procedure calls.
How we handle each error and exception depends on the top level Datastore API interface specification. For
example, if the AppServer requests a key that does not exist,the error should be passed all the way up to
the application level. Conversely, if a put operation causes a TableNotFound exception (e.g., this is the first
write operation for the given table), the implementation must catch this error, create the table, and re-insert
the given entity. All database interfaces return an array containing the results of a given database operation,
reserving the first field for potential errors that may arise.

5 Evaluation

We next employ AppScale and our Datastore API extensions to evaluate how well the different databases
support the API. We first overview our experimental methodology and then present our results.

5.1 Methodology

To evaluate the different databases we construct a GAE application that exercises the Datastore API’s
primitive operations. We fill a table in each database with 1000 items and perform the put, get, delete,
and query operations. We repeatedly execute (1000 times forputs/gets/deletes and 100 times for queries)
the different operations in order. For each experiment, we access the web page using a machine on the
same network. Our measurements therefore consist of the round-trip time to/from the AppServer as well
as all database activity. We measure this time using a primitive no-op operation. We include this operation
(executing it 1000 times) as part of the scenario. We vary thenumber of threads that execute the scenario to
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consider the impact of load on the system. We consider (i) light load: one thread; (ii) medium load: three
concurrent threads; and (iii) heavy load: nine concurrent threads. To lend some insight into the duration of
the scenario, we find that a scenario executed by a single thread on a 2-node configuration (more on this
below) exercises the system at approximately 25 requests per second.

We execute the application in an AppScale cloud. We con-

Figure 3: Average time (secs) for each
operation using Google App Engine
(Google’s resources).

sider three static cloud configurations: 1 node, 2 nodes, and4
nodes. Each node is a Xen guestVM that executes with 2 vir-
tual processors, 10GB of disk (maximum), and 4GB of mem-
ory, on a quad-core 2.83GHz machine with 8GB of RAM and
a Gb/s network. Only one guestVM executes per physical ma-
chine. The 1-node configuration implements an AppLoadBal-
ancer (ALB), AppServer (AS), AppDB Master (DBM), and Ap-
pDB Slave (DBS) (or two peers). For the 2- and 4-node config-
urations, the first node implements an ALB and DBM and the
remaining nodes implement an AS and DBS. For heavy load, we employ the 4-node configuration. Although
the creators of these datastores use many more nodes in theirproduction servers, we believe there is merit in
using four nodes since the datastores still perform well at this level and show variations amongst each other
even at this level.
5.2 Experimental Results

The average time (measured in seconds) for each operation isin Figure 3, showing the GAE application’s
performing using Google’s resources. Note that the number of nodes is unknown here and Google spawns
new front-ends in response to load. We consider light and medium load (GAE returned server errors under
heavy load). The round-trip time to the application at Google is 240ms with a standard deviation of 4ms,
as shown by the no-op data; using AppScale on our local cluster average no-op times range from 77-79ms
with a standard deviation of 1-3ms (not shown).

We next present data for the primitive operations. Figure 4 shows three graphs, showing the performance
of the put, get, and delete primitive operations, respectively. The medium load case consists of 3 threads
accessing the application. Each graph contains three bars for the different AppScale configurations we con-
sider. The x-axis identifies the database used, while the y-axis shows the average query time in seconds.
From the left graph, we can see that the master-slave datastores perform the fastest, while the peer-to-peer
datastores are slower. As the number of nodes increase in thesystem, we also see an improvement in put per-
formance across all databases except for Cassandra. The reason behind Cassandra’s slow-down is unknown,
and is work we are actively investigating. We see similar results for the get scenario. Here, all databases
perform similarly and improve as the number of nodes increases, but the peer-to-peer databases and MySQL

Figure 4: Average time for put (left), get (middle), and delete (right) operations for the different databases
using AppScale. We show results for medium load (three threads). The data includes round-trip (no-op)
time. For each graph, we show three bars for different numbers of cloud nodes (1, 2, and 4).
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Figure 5: Average time for the query operation under different loads: light (left), medium (middle), and
heavy (right).

perform the best at four nodes. This is due to the increased number of entry points to the database, allowing
for non-blocking reads to be done in parallel. Finally, the delete scenario shows a significant slow-down
across several databases at the two node case. This is suspected to be due to the high amounts of database
contention on a single Protocol Buffer Server. We suspect that splitting delete requests between the Protocol
Buffer Servers on the two nodes would have improved performance due to the increased number of entry
points. We omit the data for the light and heavy loads due to space constraints.

Figure 5 shows the performance of the query operation. The left graph shows the system under a light
load, while the middle graph shows the system under a medium load, and the right graph shows the system
under a heavy load. For light and medium loads, we show the impact of AppScale configurations and
database performance. The x-axis identifies the database used, while the y-axis shows the average query
time in seconds. Compared to the other primitive operationsin the system, the query operation is the
slowest. There also are no clear trends across the databasesas was the case for the other primitives. We do
note that Cassandra performs the worst here at the four node scenario. We believe this is because the default
key-partitioning scheme is inefficient for any operation that seeks to acquire all the keys in the system, but
are unable to account for why it perform significantly worse at the four node case versus the two node case.
This key-partitioning scheme may also explain why Voldemort performs better in the query operation. The
medium load case shows that all the databases perform slowerthan in the light load case as expected, but
it is still hard to draw trends from it. The same general rankings amongst the databases are preserved here,
and Cassandra still performs slower than the others. Voldemort also experiences an increase in performance
at four nodes as compared to two and one node, which is believed to be due to the increase in entry points.

In the right graph, we exclude Cassandra (due to its substantially slower query performance) and put the
system under a heavier load of nine accessing threads in a single, four-node AppScale configuration. Once
more, the databases tend to perform slower and preserve their general rankings compared to the light and
medium load scenarios. HBase, Voldemort, and MongoDB experience a higher degree of slow-down than
in the other scenarios, while MySQL and MemcacheDB are able to accomodate the increased load.

6 Conclusions

We present an open source implementation of the Google App Engine (GAE) Datastore API within a cloud
platform called AppScale. The implementation unifies access to a wide range of open source distributed
database technologies and automates their configuration and deployment. However, each database differs
in the degree to which it implements the API, which we analyzeherein. We describe this implementation
and use the platform to empirically evaluate each of the databases we consider. In addition, we articulate
our experience using and integrating each database into AppScale. Our system (including all databases) is
available as a virtual machine image athttp://appscale.cs.ucsb.edu.
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