Key-Value Datastores Comparison in AppScale

Chris Bunch Navraj Chohan Chandra Krintz ~ Jovan Chohan
Jonathan Kupferman Puneet Lakhina Yiming Li Yoshihide Neahu

Computer Science Department fSoftware Innovation Laboratory
University of California, Santa Barbara Fujitsu Labs Ltthpan
February 17, 2010 UCSB Tech Report 2010-03

Abstract

We present a simple framework that employs a single API — titadibre API from the Google App
Engine cloud computing platform — to interface to differepen source distributed database technologies
in use today. We use the framework to “plug in” different daaes to the API so that they can be used
by web applications and services without modification. Tystesn facilitates empirical evaluation and
comparison of these disparate systems by web softwareopeve] and reduces the barrier to entry for the
use of such systems by automating their configuration ankbgment.

1 Introduction

Highly available, scalable, relational database managemsyestems (RDBMS), such as those offered by
MySQL, Oracle, PostgreSQL, Sybase, and others, haveitnaality been employed by the commercial sec-
tor for mission-critical, enterprise business appliaagioThese applications commonly require fault tolerant,
high-throughput transaction processing and implementpbexmueries that access data across multiple ta-
bles. Administrators of these RDBMSs configure fixed schefmathe tables prior to deployment and use
by applications. Static schemas enable query optimizainmhstatic error checking of structured query lan-
guage (SQL) code, among other benefits. RDBMSs vary in castageé model, distribution and replication
strategy, scale, and performance. Although highly effector the enterprise application domain, recent
advances in distributed database technologies have siatfot web applications, simpler datastores may
be sufficient and potentially more scalable.

One reason behind this trend is that web applications andicesrexhibit significantly different data
access behavior than that of enterprise software. For deameb-based software (e.g. distributed sys-
tems based on the model-view-controller pattern writtehigh-level languages) is typically read-heavy
and string-oriented, employs finer-grain data accessgs (edividual keys rather than entire tables and
individual tables rather than multiple tables, per quengg a small subset of the SQL language, and rarely
make use of the full feature sets that relational systenes.offs a result, many new database technologies
have emerged in support of web applications.

For example, Google and Amazon both employ distributedodates for use by web services that im-
plement simple key-value datastores, the data format grdifaf which can be dynamically controlled by
the application. These systems are optimized for readsmalecing, can be accessed using arbitrary strings,
and are optimized for key-level synchronization and tratisa support. Such systems are highly scalable
and very efficient for the application domain that they targéoogle’s offering, BigTable [6], provides
strong consistency and high availability, but does noticaf@ the actual data. It employs the distributed and
proprietary Google File System [8] (GFS) for transpareptication beneath Bigtable. Amazon implements
Dynamo [2] which replicates data, is eventually consistantl highly available. Both Google (via Google

App Engine (GAE)) and Amazon (via Amazon Web Services (AWSBgke their proprietary implemen-
tations of these datastores available through high-leb&tractions within their cloud computing platform
(GAE) and infrastructure (AWS). Cloud computing in the coermial sector as offered by GAE, AWS, and
others, provides pay-per-use rental of remote resourced) (@etwork, disk, etc.) based on service-level
agreements, and is currently employed primarily for webelleapplications.

When the descriptions of BigTable and Dynamo were publiskaedumber of open source offerings
emerged that emulated the functionality of these systemsch $fferings include HBase [13], Hyper-
table [14], and Cassandra [5]. These distributed dataleab@aologies aim to provide scalable storage along
with fast indexing, a variety of data models, query supploat is simple and specific to the data model,
and fault-tolerance. In addition, like BigTable and Dynariney offer different consistency and fault toler-
ance policies. In addition, they vary in the programmingglzage employed for their implementation, the
distributed computing topology (master-slave and pegeier), and the programming interfaces they offer.
As a result, the use and deployment of any of these systemssesm significant learning curve on web
application developers, making it challenging to compane evaluate these systems for their applications.

To address this challenge, we present a simple framewotkwiliich different database technologies
can be employed by web applications easily and automaticdlle enable this through an open-source,
distributed implementation of the Google App Engine (GABud computing platform. This system, called
AppScale, facilitates “plugging in” different databasesthe implementation of the Google Datastore API,
used by GAE for its BigTable implementation. That is, we emgphis API as a universal substrate through
which web applications access data stored in a wide varfadifferent database back-ends.

In this paper, we describe the design and implementatidn®gtpport and the ways in which AppScale
eases the installation, configuration, and deploymenteddidisparate software systems. We use the terms
datastore and database interchangeably. We considerggyelar open source distributed database systems
including MySQL cluster. We provide an overview of each @b technologies, Google App Engine and
its Datastore API, and the AppScale platform. We detail oyplémentation of this APl and our experience
with using it as a unifying abstraction for each of these lolata systems. We employ AppScale with these
extensions to empirically compare and evaluate each indhiegt of activities typical of web services. The
systems vary in terms of ease of use and integration, as well gerformance and scalability. Our results
measure of how well each implements the Google DatastorenAiRif the box (i.e. without optimization).
We begin with an introduction to the database systems thaonsider.

2 Open Source Distributed Database Technologies

In this section, we overview seven distributed databadentdogies. We selected these systems based on
their maturity, widespread use, documentation, and diffedesign choices made for distribution, scale,
and fault tolerance. We also include MySQL Cluster, whiclikenthe others, is a relational database
management system. We include it to show the extensibiliyyioDatastore APl implementation and so that
we can compare it to the others using the AppScale framewdrl technologies we consider are Cassandra,
HBase, Hypertable, MemcacheDB [16], MongoDB [17], Voldetja3], and MySQL Cluster [18].

2.1 Cassandra

Facebook engineers designed, implemented, and releasddagsandra datastore as open source [5] in
2008. Cassandra offers a hybrid approach between the etapridatastore implementations of Google
BigTable and Amazon Dynamo. It takes the flexible column layaffered by the former and combines it
with the peer-to-peer layout of the latter in the hopes ohiga greater scalability over other open source
solutions. Cassandra is currently in use internally at bagk, Twitter, Cisco, among other web companies.
The Apache Incubator Project page states that Cassando@éagmployed on a production cluster 150
machines) to manage over 100TB of data [5].

Cassandra is eventually consistent. In this model, theesystropogates data written on any node to
all other nodes in the system. These multiple entry poinfgaves read performance, response time, and
faciliates high availability even in the face of network iitaons. However, there is a period of time during
which the state of the data is inconsistent across the nédigmugh algorithms are employed by the system
to ensure that propagation is as fast as possible, two Usgrad¢cess the same web site may see different
results. Eventual consistency cannot be tolerated by sppieations; however, for many web services and
application, it is not only tolerated but a popular tradefof the increased scalabilty it enables.

Cassandra is written in the Java programming language a@uses its API through the Thrift software
framework [22]. Thrift enables different programming laages to communicate efficiently and share data
through remote procedure calls. Cassandra internally doease a query language, but instead supports
range queries. Range queries allow users to batch printifieeations and simplify query programming.

While Cassandra allows users to statically specify the rermabd layout of tables used in the system,
we were unable utilize this system since it failed when dpeg more than one table. This seems to be an
issue with the version used for testing. Regardless, tajslesot be created dynamically, as a result users
must store all of their data within a single table. Facebawk @her commercial entities use a proprietary
extension of Cassandra internally. We find that there is @ifsgignt gap between the open source offering
and the proprietary versions, in terms of reported perfoceascalability, and usability.

2.2 HBase

Developed and released by PowerSet as open source in 20@8gHiBcame an official Hadoop subproject
with the goal of providing an open source version of GoogRigTable [13]. HBase employs a master-
slave distributed architecture. The master stores onhadath and redirects clients to a slave for access to
the actual data. Clients send all reads / writes to the ma$tas model ensures data consistency across
the system. HBase also provides flexible column suppoawaily users to define new columns on-the-fly.
Currently, HBase is in use by PowerSet, Streamy, and Stusplole, amongst other commercial entities.

HBase is written in the Java programming language (althaarhe of the code base, e.g. for data
compression, are written in C). HBase exposes its AP ushrgtnd provides a shell through which users
can directly manipulate the database using the HBase Quaryuage (HQL). For users accessing the Thrift
API, HBase exports a Scanner interface with which devebpaverse the database while maintaining a
pointer to their current location. This scanner functidgak useful when multiple items are retrieved a
“page” at a time. Although any database can perform scanmifase provides developers with direct
control over the scanning process which can be used to irmgrerformance.

HBase is deployed over the Hadoop Distributed File SysteBHS) [9]. HDFS is written in Java and
for each node in the cluster, it runs on top of the local hasgtisrating system file system (e.g. ext2, ext3 or
ext4 for Linux). HDFS employs a master-slave architectuitbiwwhich the master node runs a NameNode
daemon, responsible for file access and namespace mandg@&imeslave nodes run a DataNode daemon,
responsible for the management of storage on its respewtive. Data is stored in blocks (the default size
is 64 MB) and replicated throughout the cluster automdyic&teads are directed to the nearest replica to
minimize latency and bandwidth usage. Like Google’s Biddalver GFS, by running over a distributed file
system, HBase achieves fault tolerance through file sységiication and implements strong consistency.

2.3 Hypertable

Hypertable was developed by Zvents in 2007 and later redeasepen-source with the same goal as HBase:
to provide an open-source version of Google’s BigTable. éfigble employs a master-slave architecture
with metadata on the master, data on the slaves, and alt ofignests going though the single entry point

of the master to ensure data consistency. Currently, Hyblers largest user is the Chinese search provider
Baidu which reports running Hypertable over 120 nodes aading in roughly 500 GB of data per day [15].

In contrast to Cassandra and HBase, Hypertable is writt€ht+th in an attempt to enable better perfor-
mance. The designers of Hypertable claim that using C++sgivem greater control of memory manage-
ment (caching, reuse, reclamation, etc.) [14]. Hypertallgoses its API using Thrift and provides a shell
with which users can access the datastore directly usinglypertext Query Language (HQL). Hypertable
also provides a Scanner interface to clients.

Like HBase, Hypertable also runs over HDFS to leverage tienaatic data replication and fault toler-
ance that it provides. Hypertable splits up tables into getentiguous row ranges and delegates each set to
a RangeServer. The RangeServer communicates with a DF8Boodnable Hypertable to run over various
distributed file systems. RangeServers also share accassrtall amount of metadata, which is stored in a
system known as Hyperspace. Hyperspace acts similarly églés Chubby [4], a highly available locking
and naming service that stores very small files.

2.4 MemcacheDB

Open source developer, Steve Chu, modified the popularr@gaél@imework, memcached, to add data per-
sistence and replication. He released the resulting syageeMemcacheDB in 2007 [16]. MemcacheDB
employs a master-slave approach for accessing data, withwlients can read data from any node in the
system but can only write to the master node. This keeps tteeadmsistent while allowing for multiple
read entry points. MemcacheDB is currently in use at thedin&ring site Reddit.

MemcacheDB uses a combination of memcached and Berkelepiiafa persistence. Both are written
in the C programming language. Clients access the datalsasg any existing memcached library. Using
such libraries, clients can create a shell to access thbakgalirectly using any programming language that
implements the libraries. Clients perform queries on thalsise via the memcachgdt _nmul t i function
which request multiple keys at once. Since the system doesauk of all the items in the cache, a true
guery that retrieves all the data is not possible: devetopdio require this functionality must manually add
and maintain a special key that stores all of the keys in use.

MemcacheDB runs with a single master node and multiple stades. Therefore, users instantiate the
MemcacheDB service on the master node and then invoke agpdides with a command line argument that
identifies the location of the master. Since the master doebave a configuration file specifying which
nodes are replicas in the system, any node can potentiafiythe system as a slave. This flexibility can
present a security hole, as a malicious user can run theilfd@mcacheDB replica and have it connect to
the master node in an attempt to acquire its data. Clientergiioy Linux iptables or other firewalling
mechanisms to restrict access to MemcacheDB master aredrsides.

25 MongoDB

MongoDB was developed and released as open source in 2008y 117]. MongoDB was designed to
provide both the speed and scalability of key-value datastas well as the ability to customize queries
for the specific structure of the data. MongoDB is a docunoei@nted database, like CouchDB, since
clients can specialize their queries based on document g/ge template and legal documents, among
others. MongoDB offers three replication styles: maskaves replication, a “replica-pair” style, and a
limited form of master-master replication. We consider tmaslave replication in this work. For this
architecture, all clients read and write by accessing thstenaTherefore, the data is consistent across the
system. Commercially, MongoDB is used by SourceForgeubitEA, and others.

Like Hypertable, MongoDB is written in C++ so that memory ragament of the system can be con-
trolled more precisely by developers. Users can access MaBgia language bindings which have been
implemented for many popular languages. MongoDB providemteractive shell with its own unnamed
query language. Queries are performed in a manner similaB@N, using a hashtable-like format. The

system exposes a cursor that identifies the current poieirdatabase that is being queried. Clients can
use this support to traverse the data in a similar fashiohadtBase and Hypertable Scanner interface.

MongoDB is deployed over a cluster of machines in a manneilaino that of MemcacheDB. No
configuration files are used and once the master node is giramadministrator invokes the slave nodes
using a command line that identifies the location of the seMM®ngoDB suffers from the similar security
problem of unauthenticated slaves attaching to a masteninggtratrators can use iptables or other measures
to restrict such access to authorized machines.

2.6 Voldemort

Developed and currently in use internally at LinkedIn, \ttbrt emulates Amazon Dynamo and combines
it with the caching framework of memcached [23]. It was retghas open source in 2009. Voldemort
provides eventual consistency; reads or writes can be npegeith at any node by clients. There is a short
duration during which the view of the data across the systeimconsistent. Fetches on a key may result in
Voldemort returning multiple values with their version noen, as opposed to Cassandra which only returns
the newest version. It is up to the application to decide twhiue is valid. Voldemort uses memcached to
cache data and improve access times. It persists data usikglByDB [3] (or other backends) and allows
the developer to specify the replication factor for eachnghaf the distributed hash table employed for
distribution. This entails that the developer also panitihe key space manually.

Voldemort is written in the Java programming language ambses its API via Thrift; there are native
bindings to high-level languages as well that employ sedtibn via Google protocol buffers [21]. A shell
is also provided for interactive queries. In older versibVademort, users cannot obtain all the data for a
table in Voldemort; if they wish to do so, they must keep a Eddey whose value is a list of all the keys
in the given table and maintain it accordingly. This funo@bty has been added in subsequent versions
through the geall function.

27 MySQL

MySQL is a well-known relational database that we employhia work as a key-value datastore. We store
a list of columns and the value for it in the “value” column. iF lgives us a new key-value datastore that
provides replication and fault-tolerance. There are mag®IL distibution models available; we employ
MySQL cluster for this work. This version precludes manuaititioning of the key space and complex
client forwarding (sharding). MySQL cluster employs a msahpler distribution model than sharding by
using a coordinator to handle writes and replication. Thaenthiat performs this function is referred to as
the master node, while the other nodes store the actual datefarred to as APl nodes. Unlike HBase
and Hypertable where clients make requests only to the mastie, clients using MySQL cluster can make
requests to any of the API nodes. The system can survive ithesfaf an API node but not the master node.
Additionally, the management node is only required foriahitonfiguration and cluster monitoring.

MySQL is written in C and C++. As it is a mature product, it hasers available in most programming
languages that allow programs to access its API. A shelldsiged for interactive queries written in SQL,
and programs using the native drivers provided can alsohgsedme query language to interact with the
database. Bindings allow for query strings to be passede@#étabase, giving application designers full
access to SQL's capabilities.

Setup for MySQL Cluster begins with running the managementes (ndomgmd). The master node
setup uses configuration file specifying the number of rapliand specifying the role of each slave: as a
data node, API node, or both. In our configuration, each dadke s also an APl node. The master node
runs ndbmgmd, which allows the slave nodes to connect to it after skule is started.

3 Google App Engine and AppScale

As the success and wide spread use of web-based softwareraiws for commercial, social, and personal
endeavors continues to grow, so do the offerings availableupport of development of such software.
Many recent frameworks provide implementation, libramgss-language interoperability, and deployment
support and automation for a number of different languageas,(Ruby on Rails, Django for Python, Trax for
PHP, Struts and Spring MVC for Java). Concurrently, clouchpoting is experiencing rapid uptake in the
commercial sector, offering an attractive utility-compgt paradigm based on Service-Level Agreements
(SLAs). Cloud systems offer public access at very low cosagt proprietary compute, storage, and network
resources, along with per-user and per-application isolatnd customization via a service interface that is
typically implemented using high-level language techgae, APIs, and web services.
Google combines these two offerings within a single platfoalled g
App Engine. Google App Engine (GAE) is a software developgmen ;’. mm"érmﬁm%un)
framework for implementation of Python and Java web aptitioa.
These applications respond to user requests on a web pagg liisi :ﬁ%am. —
braries and GAE services, access structured data in a keg-datas- g ==& %
Figure 1: Google App Engine.

-
:
§

tore, and execute tasks in the background. Figure 1 depkis TGhe set
of available libraries is restricted by Google, i.e. theg #irose “white-
listed” as activities that Google is able to support scglabid safely
(in isolation). Google provides well-defined APIs for eadhtlie GAE services. When a user uploads
her GAE application to Google resources (made availabléNigApp”.appspot.com) the APIs connect to
proprietary, scalable, and highly available implementeiof each service.

Today, Google offers this platform-as-a-service (Paa8)dlfree of charge. However, applications
must consume resources below a set of fixed quotas and liévitisc@lls per minute and per day, bandwidth
and CPU used, disk space, request response and task duraddreent). Users can pay for additional
bandwidth, CPU hours, disk space, and mail.

The GAE Datastore APl is implemented via BigTable [6], ano\vates the following primitives:

Put(k, v): Add keyk with valuewv into the database, creating the table for the entity if ndede
Get(k): Acquire the value associated with key

Delete(k): Remove ke¥ and its associated value from the database

Query(q): Perform query on a single entity and return a list of entities

Count(t): Determine the number of entities in table

Begin/End Transaction: Indicates when transactions begamd

Google provides a simple query language that is encodedawiiite Query interface. Data is serialized using
Google Protocol Buffers [21]. Google provides other forrhdata management via the Memcache API for
caching of non-persistent data using an interface sinoléie Datastore API, and the Blobstore API which
enables users to store/retreive large files (up to 50MB).

To test their GAE applications and to build the datastorexed, users execute their application using
an open source software development kit (SDK) provided bygBo This SDK implements the GAE APIs
using simple, sequential, non-scalable implementatiorssubs.

We extend this SDK to implement AppScale. We decouple thdementations from the API and
replace them with more scalable and distributed versions.erfable this, we build upon and extend a
number of different open technologies (including langumgelementations, communication and language
interoperability frameworks, and databases). AppScaleiges a robust, cluster-based implementation of
GAE that scales with the size of the cluster available; icexes over virtualized cluster resources and over
cloud infrastructures such as AWS and Eucalyptus [20]. Waildbe AppScale system in [7] and overview
in the subsections that follow. In this paper, we focus onrtiementation of the Google Datastore APl and

AppScale support for integrating and automating deployiméthe open source database implementations
for use by web applications and services.

3.1 AppScale Components

Figure 2 depicts an example AppScale deployment. Syste =
administrators configure and deploy and AppScale cloudyusi =% ’@ Wy
a set of command-line tools. The tools enable users to configfeem |~ == N wm s
ure/start/stop a cloud, upload/remove a GAE application, a @)
retrieve statistics on resources availability/use. AgdSalso
implments a web-based interface to the tools for manimgdadi Figure 2: AppScale Deployment.
extant cloud and viewing the cloud status. For the configamahat we employ for this study, the cloud is
static — the size is specified at cloud instantiation and mesrthe same until the cloud is destroyed.

The primary components of AppScale are the AppControler AppServer, the AppLoadBalancer, and
the AppDB. We briefly overview each. We discuss the AppDB congmt in the next section as it is the key
component for integrating the variety of database systbatste discuss in the previous sections.
AppController. The AppController is a SOAP server written in Ruby that rumsewery node in the
system. It is spawned by either the AppScale tools if it isfttet node or by the first AppController if
it is not. An AppController is aware of the layout of the cloadd starts up the necessary services in the
required order. The AppController is able to customize aen@ith any component and service available
in AppScale. If the node instantiates a database that esqoonfiguration files, the AppController writes
the files in a known locations. The AppController also useahles to close all ports that are not used
by the cloud. Once the system has been set up, all AppCarsdleep waiting for instructions from the
first AppController. This AppController sends a heartbeassage every ten seconds to all nodes in the
system, recording whether or not the node is alive. It alsfilps the other nodes, recording metrics such as
CPU and memory usage to employ for dynamically scaling tbad(starting/stopping components). The
AppController uses tcpdump to estimate the network traffic.

Cloud
GAE App = Sy
Developer
{AppScale Admin)

“+—AppScale Tools

AppServer. The AppServer component is the Google open source GAE SDiKtivit non-scalable API
implementations replaced with distributed and open souecsions, that we describe above. We use avail-
able Python and Java libraries for many of the services (@amcache, Instant Messaging (IM), Images),
the local system for others (Mail, Cron), and hand-builiddor others (Tasks, URL Fetch). For the Datas-
tore API, we modify the SDK to open a socket and forward théqual buffer to a remote server (the SDK
simply puts/gets protocol buffers to/from a file). We havmoeged the quota and programming restrictions
that Google places in GAE applications that execute witisicloud and have added new APIs including one
that provides GAE applications with direct access to a lEwk-map-reduce implementation if available.

AppLoadBalancer. To partition the access by users to a GAE application web gagess multiple
servers, we employ the AppLoadBalancer. This componert thgenginx web server [19] to serve static
content and haproxy [12] to selectively choose which App&eshould receive incoming traffic. The cur-
rent implementation does not use the AppLoadBalancer asgaseproxy as is commonly done, to prevent
it from becoming a single point of failure. Users insteadessca Ruby on Rails service that authenticates
the user (providing support for the Google Users API), idiest a target AppServer for the GAE appli-
cation and redirects the request to that AppServer. UsershgeURL change in their address bar. If the
AppLoadBalancer fails, the AppServers are not affected.

4 AppScale Distributed Database Support

In this section, we describe how AppScale integrates diffedatabases. Such support is key for easy use
and investigation of the vast open source offerings aviailtdo web service developers today. AppScale
employs the Google Datastore API as a universal API to thifeeaht offerings. In this section, we discuss
this design and implementation and our experiences cauhis API with extant database systems.

The AppServers send data requests to the datastore satializGoogle Protocol Buffers. In front of
the datastores is a server to which we refer to as the ProBadtdr Server (PBServer). This service is a
database-agnostic, multi-threaded, Python HTTP senatrctinsumes requests from an AppServer. The
PBServer extracts the request (the Datastore API call) franProtocol Buffer and calls the API function
for the instantiated datastore, passing the Protocol Bulst of the databases that we have considered
use a combination of the application’s name, class namekendame as the true key name in the database,
with the class contents as the value for the object.

4.1 Deploying a Database

AppScale automates the deployment of distributed datababaologies, significantly reducing the learning
curve and barrier to entry in using these typically complistributed systems. We release AppScale as an
operating system image by which users can instantiatetljireeer virtualized cluster resources or cloud
infrastructures without any manual configuration or depient. This essentially provides functionality
similar to that of Hadoop-on-Demand (HOD) but for all sevarpiemented databases [11]. AppScale
generates configuration files, command line arguments, mntbament variables automatically.

Databases in AppScale currently implement either a masdge or peer-to-peer (P2P) topology. For
master-slave, the AppController designates one node aBdtebase Master (DBM) and the others as
Database Slaves (DBS). For P2P, the AppController desgrat nodes as Database Peers. DBM/DBS
comprise the AppDB component in AppScale. The distributimates the number of entry points for each
database, which are the locations to which reads and wigtede directed. A PBServer executes in front
of each entry point. For databases with a master-slave ewafign, this is the master node. The AppCon-
troller starts the first AppDB node (master or peer). The Appi@ller then starts all other AppDBs as
appropriate, each contacting the first node to join the myste

4.2 Adding a Databaseto AppScale

To add a new database to AppScale, we modify the PBServerh@ndgpController. In the PBServer,
we add a single function to each of the API calls and includiébmbries employed in the function imple-
mentations. If the database implements all of the API diyebien this addition is simple. However, if it
only implements a subset of the API, the developer must whigecode that emulates the functionality. For
example, if the database does not provide support for addimgw table at runtime or count support, then
this functionality must be written by hand. Once the databaterface has been implemented it must pass a
series of regression tests to verify that database noddarar#oning properly in terms of communication,
performance, consistency, and APl implementation.

The AppController must also be updated to configure and glepleew database automatically. It must
be able to deploy the various database nodes in the necesdary For example, in all our implementations,
we always deploy the master node (or one peer node) first,rmmddeploy the slave nodes (or remaining
peer nodes). The AppController must also identify the epbtints to the database (specifically, where to
run the PBServer). A last series of top level regressiors @& performed to verify correctness for Google
App Engine applications that will run over this new database

4.3 Our Experience With Integrating Extant Database Technologies

The operating system distribution that we support is Ublumux v. 9.04. Thus, our experience with the
installation and integration of the open source databagsesonsider is specific to it. However, it is similar
to a wide range of other operating systems. We have expet@sienith others internally and have found
that minor modifications are needed to build the AppScalegena

Cassandra. As in the BigTable model, Cassandra implements range quasepposed to a query lan-
guage. Range queries allow a developer to access a groupitedsethat have their key fall in between a
certain lexigraphical range. That is, a range query allowsex to use a single access to the database to
retrieve multiple data elements. Since Cassandra dodmit far dynamic table creation, we simulate mul-
tiple tables in a single table. A special meta-table keyester list of all the tables that exist and is updated
accordingly whenever a table is created or deleted. Sitpilarspecial key is used for each table to store
a list of entities currently stored in the table (updatedilgsirty). This is necessary for the query operation,
which returns the entire contents of a table. In AppScakeAghpController is configured to run a PBServer
on every Database Peer.

HBase. One discernable difference with HBase, compared to ther afiiabases, is the amount of time
it takes to create a table (approximately five seconds). iEhisticable on the first usage of an application
because we create new tables when the first put request isag.cdloreover, we found an issue with the
jar libraries which HBase was using. An exception would bewm concerning the use of IP’s instead of
fully qualified domain names. This problem was fixed with achab the HDFS code [10]. A frequent
problem we faced came when starting HBase right after HDHf®&revall the nodes have not come online
in HDFS. This caused a failure for HBase to start becauseuiidcoot successfully write to HDFS. Our
solution for this problem was to poll the number of slave amtions made by the master node using the
linux command "Isof”. Lastly, when doing clean initializans of the datastore, one had to make sure that
all the cluster nodes removed the previous data files. Faitudo so led to HDFS throwing an exception
about incorrect versions of itself running.

Hypertable. Hypertable’s Thrift interface includes the ability to do H@tring queries. Our interface
uses both of Thrift's HQL calls and API function calls. The HQueries require us to i build the string
to execute based on the table name, keys, and column nanstsaneat ZEvent have shown that thrift is
less than 2bindings [1]. As with HBase, we also use a scrigemif HDFS has come up with all slave
nodes before starting Hypertable. Keys must be alphanamamd require us to use base 64 encoding if
application names, or keys require a non-alphanumericacker Failure to do so causes HQL parsing
exceptions. Moreover, we had to patch two files in the codederao successfully compile it.

MemcacheDB. MemcacheDB is accessed via the standard memcached Iéhrand like memcached,
provides neither a query langauge nor range queries. Itplaesde the ability to do bulk reads and writes
via the “getmulti” and “setmulti” API calls, respectively. Since table creation is pobvided by Mem-
cacheDB, we emulate it via the method described for Casaankir order to perform query operations
efficiently, we perform one “get” call to the special tableyl@ntaining the list of keys in the given table
and then a “gemulti” call to do a bulk read of all the keys in the table. Thikas us to use only two API
calls to acquire a table’s contents as opposed to having ke aéget” call for each item listed in the special
table key. Since MemcacheDB exhibits a master-slave oalstip, the AppController starts the Protocol
Buffer Server only on the master node.

MongoDB. The API is translated using their native python interfades b document oriented database,
but used as a key-value store for our analysis. Configuriisimple; start the master and have slaves point
to it via the command line argument. No configuration filesrageded.

Voldemort. Voldemort exposes its APl over the Thrift software framew@o we have constructed the
necessary library to interface with it from the Protocol BufServer. Voldemort does not expose either
a query language or the ability to do range queries. Sincdevbbrt does not allow for dynamic table
creation, we use a single table with the table layout use€C&msandra and MemcacheDB. To implement
the query operation, we make a single request to the datébasguire a list of the keys for a given table,
and then requests to the database to fetch each key. The nomii@abase requests made for a query
operation is therefore dependent on the size of the tablaéstipn. Newer versions of Voldemort alleviate
this problem by exposing a “getll” API call that allows for bulk reads, which we suspect vilhprove
query performance. In Voldemort, any node is an entry pairthé database, so the AppController runs a
Protocol Buffer Server on all nodes.

MySQL. Our initial version of AppScale ran into multiple issuestwilysgl Cluster 5.0. Fixed width
columns caused for wasted space, and limitations on theo§iaer entities and applications. The current
version in AppScale, MySQL 5.1 NDB 6.3.20, features vagalidth columns, alleviating the problem.
Another limitation is the number of data nodes must be eveilsiable by the configured number of
replicas. Moreover, tables must begin with a letter, and tive prepend a character to each table name
as to act in accordance with the AppScale Datastore API. @nugt we have a script which polls the
management console on the head node to verify that all slastesnhave come online before creating our
initial tables. The default maximum packet size was alsceiase in this newer version from 1MB to 16MB.
In version 5.0 we would get packet-too-large errors if thiadk size was not changed.

Database Error Handling. Each database reports errors and exceptions up the chaiocgdure calls.
How we handle each error and exception depends on the tdatastore API interface specification. For
example, if the AppServer requests a key that does not éweserror should be passed all the way up to
the application level. Conversely, if a put operation caws@&ableNotFound exception (e.g., this is the first
write operation for the given table), the implementationsireatch this error, create the table, and re-insert
the given entity. All database interfaces return an arrataining the results of a given database operation,
reserving the first field for potential errors that may arise.

5 Evaluation

We next employ AppScale and our Datastore API extensionsaluate how well the different databases
support the API. We first overview our experimental methodgland then present our results.

5.1 Methodology

To evaluate the different databases we construct a GAEcioin that exercises the Datastore API’s
primitive operations. We fill a table in each database witbGLiems and perform the put, get, delete,
and query operations. We repeatedly execute (1000 timgsutsfgets/deletes and 100 times for queries)
the different operations in order. For each experiment, eeess the web page using a machine on the
same network. Our measurements therefore consist of thnel+ioip time to/from the AppServer as well
as all database activity. We measure this time using a [wenito-op operation. We include this operation
(executing it 1000 times) as part of the scenario. We varnthmber of threads that execute the scenario to

10

consider the impact of load on the system. We consider (i} lgad: one thread; (i) medium load: three
concurrent threads; and (iii) heavy load: nine concurrkrgads. To lend some insight into the duration of
the scenario, we find that a scenario executed by a singladtoe a 2-node configuration (more on this
below) exercises the system at approximately 25 requestsepend.
We execute the application in an AppScale cloud. We con-

sider three static cloud configurations: 1 node, 2 nodes4and o S ‘Gﬁ'nmad"‘m "?JE';EI
nodes. Each node is a Xen guestVM that executes with 2 vir- [get 027 0.24]
tual processors, 10GB of disk (maximum), and 4GB of mem- [delete .24 0.28
ory, on a quad-core 2.83GHz machine with 8GB of RAM and [24&T 284 i

nio-op .24 0.18

a Gb/s network. Only one guestVM executes per physical ma-
chine. The 1-node configuration implements an AppLoadBal- .
ancer (ALB), AppServer (AS), AppDB Master (DBM), and Ap_Flgure_ 3 Avgrage time (secs) for egch
pDB Slave (DBS) (or two peers). For the 2- and 4-node confi peratlo’n using Google App Engine
urations, the first node implements an ALB and DBM and t 0ogle’s resources).

remaining nodes implement an AS and DBS. For heavy load, visogrthe 4-node configuration. Although
the creators of these datastores use many more nodes iptbeirction servers, we believe there is merit in
using four nodes since the datastores still perform welhiatlevel and show variations amongst each other
even at this level.

5.2 Experimental Results

The average time (measured in seconds) for each operatinrFigure 3, showing the GAE application’s
performing using Google's resources. Note that the numbeodes is unknown here and Google spawns
new front-ends in response to load. We consider light andumetbad (GAE returned server errors under
heavy load). The round-trip time to the application at Geagl240ms with a standard deviation of 4ms,
as shown by the no-op data; using AppScale on our local clasgrage no-op times range from 77-79ms
with a standard deviation of 1-3ms (not shown).

We next present data for the primitive operations. Figureots three graphs, showing the performance
of the put, get, and delete primitive operations, respelstivThe medium load case consists of 3 threads
accessing the application. Each graph contains three datisef different AppScale configurations we con-
sider. The x-axis identifies the database used, while thdasysihows the average query time in seconds.
From the left graph, we can see that the master-slave degagterform the fastest, while the peer-to-peer
datastores are slower. As the number of nodes increase sysklem, we also see an improvement in put per-
formance across all databases except for Cassandra. Boafeshind Cassandra’s slow-down is unknown,
and is work we are actively investigating. We see similaultesor the get scenario. Here, all databases
perform similarly and improve as the number of nodes in@gdsut the peer-to-peer databases and MySQL

Medium load, Database size: 1000 Medium load, Database size: 1000 Medium load, Database slze: 1000

o e e
BT o [LR o e
= ~ Bfour Nodes > .21 5 020 + ~ — . s -
Btou ordes our Nodes
-
018 15 s 4
|
o —N M| - = Ed £ wi— . a Fe = = 164 g
e
|
0105 1 01 0 = | i
on + = = | = - L= oop MBS d = .| 2 Y
Wime dpenabls ML Cusand Vodenon MongodE MemwacheDi Wipetatle WSO Cwancn VoWemort Mongi0l Wemcacheos W yperisble ML Cassaed e ——

a vodemort

o
e
e
]
z
£
B
o
e
B
o
i
[]

2
-1
a
2
-
2
[}

o
=
o

)
]
a

Average Put Tima (seconds)
Average Get Time (seconds)
Average Delete Time {seconds)

o
R

‘.
o

B
2

Figure 4: Average time for put (left), get (middle), and delé&ight) operations for the different databases
using AppScale. We show results for medium load (three tiweaThe data includes round-trip (no-op)
time. For each graph, we show three bars for different nusbkecloud nodes (1, 2, and 4).

11

Light load, Database size: 1000 Medlum Iouc, Databiney sl 1000 Heavy load, Database size: 1000, 4 Nodes

-]
g

o
ds)

3
°
Average Query Time (s conds)
&
|
=
°

Average Query Time (secon!

=
=
B
=
EE.

0.0 m B J] 0.0 J
Hase Hypertable MysQL Cassandra Voldemort Hease Hypertable: MysaL

Figure 5. Average time for the query operation under diffieleads: light (left), medium (middle), and
heavy (right).

perform the best at four nodes. This is due to the increasetbeuof entry points to the database, allowing

for non-blocking reads to be done in parallel. Finally, tledete scenario shows a significant slow-down

across several databases at the two node case. This isteasfzebe due to the high amounts of database
contention on a single Protocol Buffer Server. We suspettgplitting delete requests between the Protocol
Buffer Servers on the two nodes would have improved perfaoaalue to the increased number of entry

points. We omit the data for the light and heavy loads due éosgonstraints.

Figure 5 shows the performance of the query operation. Thgdaph shows the system under a light
load, while the middle graph shows the system under a medyach bnd the right graph shows the system
under a heavy load. For light and medium loads, we show thedinpf AppScale configurations and
database performance. The x-axis identifies the databask while the y-axis shows the average query
time in seconds. Compared to the other primitive operationthe system, the query operation is the
slowest. There also are no clear trends across the datedmsess the case for the other primitives. We do
note that Cassandra performs the worst here at the four mwederso. We believe this is because the default
key-partitioning scheme is inefficient for any operatioatteeks to acquire all the keys in the system, but
are unable to account for why it perform significantly worséha four node case versus the two node case.
This key-partitioning scheme may also explain why Voldeinparforms better in the query operation. The
medium load case shows that all the databases perform stbamiin the light load case as expected, but
it is still hard to draw trends from it. The same general ragkiamongst the databases are preserved here,
and Cassandra still performs slower than the others. Vabtealso experiences an increase in performance
at four nodes as compared to two and one node, which is bélievee due to the increase in entry points.

In the right graph, we exclude Cassandra (due to its suliigrglower query performance) and put the
system under a heavier load of nine accessing threads imgle sfaur-node AppScale configuration. Once
more, the databases tend to perform slower and preservegdreral rankings compared to the light and
medium load scenarios. HBase, Voldemort, and MongoDB éxpes a higher degree of slow-down than
in the other scenarios, while MySQL and MemcacheDB are abdéetomodate the increased load.

6 Conclusions

We present an open source implementation of the Google AgmERGAE) Datastore API within a cloud
platform called AppScale. The implementation unifies ag¢esa wide range of open source distributed
database technologies and automates their configuratmulepioyment. However, each database differs
in the degree to which it implements the API, which we analyeeein. We describe this implementation
and use the platform to empirically evaluate each of theldestes we consider. In addition, we articulate
our experience using and integrating each database int&éghp. Our system (including all databases) is
available as a virtual machine imagehatt p: / / appscal e. cs. ucsb. edu.

12

References

[1] Personal Communication, 2009.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a pansnt dynamic optimization syste®dCM SIGPLAN
Notices 35(5):1-12, 2000.

[3] BerkeleyDB.htt p: // www. or acl e. coni t echnol ogy/ product s/ ber kel ey- db/i ndex. ht m .

[4] M. Burrows. The Chubby Lock Service for Loosely-Coupleitributed Systems. ISeventh Symposium on
Operating System Design and Implementgt03.

[5] Cassandrahtt p:/ /i ncubat or. apache. or g/ cassandra/.

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, Mrd&us, T. Chandra, A. Fikes, and R. Gruber.
Bigtable: A Distributed Storage System for Structured DdtaSymposium on Operating System Design and
Implementation2006.

[7]1 N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. 8opand R. Wolski. AppScale: Scalable and Open
AppEngine Application Development and Deploymentlrternational Conference on Cloud Computji@gct.
2009.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Biystem. In19th ACM Symposium on Operating
Systems Principle2003.

[9] Hadoop.ht t p: // hadoop. apache. org/ .
[10] Hadoopissueshtt ps://issues. apache. org/jiral/ browse/ HADOOP- 5191.
[11] Hadoop on demandt t p: / / hadoop. apache. or g/ cormon/ docs/r 0. 17. 1/ hod. ht i .
[12] HAProxy. htt p: // haproxy. 1wt . eu/ .
[13] HBase.htt p: // hadoop. apache. or g/ hbase/ .
[14] Hypertableht t p: // hypertabl e. org.
[15] D. Judd. Hypertable Talk at NoSQL meetup in San FramGi€A. June 2009.
[16] MemcacheDBhtt p: // nencachedb. org/ .
[17] MongoDB.htt p:// nongodb. org/.
[18] MySQL. htt p://ww. nmysqgl . com
[19] Nginx. htt p://ww. ngi nx. net .

[20] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.18an, L. Youseff, and D. Zagorodnov. The Eucalyptus
Open-source Cloud-computing System.IBEE International Symposium on Cluster Computing and thd,G
2009.ht t p: / / open. eucal ypt us. com docunent s/ ccgri d2009. pdf .

[21] Protocol Buffers. Google’s Data Interchange Fornhatt p: / / code. googl e. conl p/ pr ot obuf .

[22] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: ScallbhCross-Language Services Implementation, Apr.
2007. Facebook White Paper.

[23] Voldemort.htt p: // proj ect - vol denort. com .

13

