Vshmem: Shared-Memory OS-Support for
Multicore-based HPC systems

Lamia Youseff-? Rich Wolski’
lyouseff@csail.mit.edu rich@cs.ucsb.edu
@ MIT CSAIL B University of California, Santa Barbara,
Cambridge, MA 02139 Santa Barbara, CA 93106
Abstract— next decade, with core numbers in the range of one-hundred

As a result of the huge performance potential of multi-core thousand to one million and more [1]. However, while multi-
microprocessors, HPC infrastructures are rapidly integrding ~5res are offering unprecedented power and performance for

them into their architectures in order to expedite the perfaomance - . .
growth of the next generation HPC systems. However, as the HPC, they are posing revolutionary challenges to the variou

number of cores per processor increase to 100 or 1000s of cere aspects of the software stack, including operating systems
they are posing revolutionary challenges to the various asggts compilers, tools, languages, runtime systems and apiolitat

of the software stack. In our research, we endeavor to inveigate The operating system is one of the most important compo-
novel solutions to the problem of extracting high-performaice. — ants i the software stack, as it impacts all the other sétw

In this paper, we advocate for the use of virtualization as ts | d ab it Li d Unixlike OS k |
an alternative approach to the traditional operating systens for components layered above It. _Inux an nix-li e_ erneis
the next generation multicore-based HPC systems. In partidar, have emerged as the operating system-of-choice for many
we investigate an efficient mechanism for shared-memory com HPC infrastructures as a result of its wide-range of readily
munlc_atlon be;ween HPC applications executing within virual gyailable programming support tools and specialized flibsa
machine (VM) instances that areco-located on the same hardware - ¢, thermore, it is becoming the preferred OS in academic and

platform. This system, called Vshmem, implements low latency . L . . .
IPC communication mechanism that allows the programmer to Production scientific computing settings as a result of gein

selectively share memory regions between user-space preses an open-source freely-available and easy to use operating
residing in collocated virtual machines. Our contributions ad- system. As a result, many of the scientific programmers are

dressed familiar with Linux as a development platform. However,
Linux and Unix-like operating systems are monolithic késne

hvsical ints lik d heat dissipati where all of the system tasks take place in the kernel space.
Physical constraints like power and heat dissipation prever, clarify, Figure 1 shows a simplified representation of a

hardwar_e vendqrs f_rom increasing the speed of the ProcessBfiware stack based on monolithic OS-kernels. The operati
through increasing Its frequency. Instead, the hard_wa]‘a_sn system in monolithic kernels is responsible for managing an
Iry has rgce.ntly reV|3|te_d the micro-processor de5|g.n with multiplexing the different processors /cores, hardwangods
goal of finding alterpatlve tephnlques to increase |ts_perfoand components. It is also responsible for process manageme
mance growth. Mult.|—cor_e microprocessor — i.e, conflgurlnﬁ‘;lCIuding process creation, scheduling, context-switghind
more hcoreshp_er ch|fp r\]N'.th ﬁhgredAmemorylbetw;e_en thebrpe_rmination, memory management, employing the protection
was the technique of their choice. As a result, multi-core fhechanisms, and file-system management among other things.

came the norm in contemporary microprocessor archite‘s:turﬁs a result, the monolithic-kernel operating system is a

Furthermore, the ngmber of cores per chip is continuing %ry complicated and huge software component. In addition,
increase, such that it is even expected that the number e$cor; systems have become a performance hurdle for high-
ivggdoubi%&\)/eryfyear. Therﬁfore, WZ exp((jact to see chiph W'berformance computing applications because of their high O

AS or ls Of cr(])reﬁ n the nfext ecade. ial of | noise [2], [3], [4]. In fact, some studies have reported tha

S @ result of the huge performance potential of Multiyg oise js the primary bottleneck for application scailgbi

COré microprocessors, HPQ mfrastrqctures are ramdlg-mﬁn HPC systems [2]. Other studies have also shown that the
gra]'Emg them into thhe|r farc;]hnectures In ord_er t%;épedm thuge memory-footprint and the decreasing cache efficiefcy o
performance growth of the next generation _systen}ﬁe Linux kernel is among the limiting performance bottle-
Start_lng in Ju_ne 2007, the top500 supercomputers list becaﬂ%cks for contemporary HPC applications [2], [3], [5H.[
dominated with dual-core and quad-core microprocessars [1 e the increasing memory foot-print and system noise as

g%ragxgggleérézzsgggbﬁ;\g ;?lc?vtvenmzeltcvéztra\ lisgt Sistggggell as the decreasing cache efficiency of the Linux kernels
) deployed in contemporary HPC systems, the HPC and OS
June 2007 to 336 systems in June 2009. Furthermore @E) yee | porary 4

ted that this trend i gt i ¢ t’cbtmmunity expect that these limitations will be magnified

was expecte at this trend 1S going to continue for Wﬁ the future [2], [3], [6], [7] as the number of cores in
OThis work was done while the author was at the University off@mia MiCroprocessors increases. This becomes clear as we eonsid

Santa Barbara and was funded in part by NSF Grants 044441238i645. the diversity in the processes workloads deployed, seryed b

|I. INTRODUCTION

____________ Traditional Software Stack by virtualization to HPC infrastructures, such as proactault
1 tolerance [8] and load-balancing through OS migration [9],
[10] and VM consolidation for power-saving in HPC data
centers [11], . Furthermore, virtualization ability to gapt
specialized and customized OS kernels can provide enhanced
scalability, reliability and low OS-noise [12], [13], [14]15],
[14], [16], [17] to HPC applications. Additionally, recent
: research in dynamic kernel adaptation [18] has uncovered
Omni-kernel OS 5 potential performance benefits for applications deployetié@
: virtualized software stack.
; Furthermore, the ability to continue to support UNIX pro-
Multi-gore S m
GCora) Cora 2 Xcoras Xcorei Y core BXcot 6 gramming in HPC has made the virtualized software stack ap-
core 7 core 8 core X ... core pealing, as UNIX and UNIX-like OS kernels can be deployed
within a virtual machine. Particularly, Linux has emergadaa
nearly ubiquitous, open-source operating system with awid
Fig. 1. This figure shows a simplified representation of trelitional range of readily available programming support tools and
software stack, demonstrating the deployment of one dpgratstem which - . . . -
is managing all the cores and the processes. specialized libraries. It is currently the system-of-cf@in
academic and production scientific computing settings and a
, , a result, many — if not the majority of — scientific programmer
............. V 'rtua"zed §°ftware Stac{‘,,_,___,_,,,, being trained today are familiar with Linux as a development

Process A
Process B
Process Z

COC

' E i platform. Therefore, virtualization will enable us to cionte to
< f - Fach 0S is N 1 support the familiar Linux API without possibly encountegi
g N specialized g 1 the limitations of monolithic OS kernels. Furthermore,eetc
2 { and pinned e advances in OS research have addressed the performance
: fo "":OZS’”"” 5 § issues — historically associated with virtualization—hwiiovel
: e i — ‘ techniques that reduce their performance overhead. Orie suc
[0S 1] [0S 2] technique is paravirtualization [19], [20] which is the pess
: . v : ' of strategically modifying a small segment of the interface
H ;Hypervisor (VMM) ’ l that the VMM exports along with the OS that executes using
§+ ¥ Mutti-core System v it. Paravirtualization significantly simplifies the prosesf
(cave 1 Xcore 2)Xcore 3Xcore 4Xcore 5Ycore 6 virtualization (at the cost of perfect hardware compaitipil
gore ZXcore 8ACore OX gore by eliminating special hardware features and instructibias

are difficult to efficiently virtualize. Paravirtualizatiosys-
Fig. 2. This figure shows a simplified representation of theualized tems thus, have the.pOtemlal ITOI‘ |mproved_ scalability and
software stack, demonstrating the deployment of a hypenamd several Performance over prior VMM implementations. Our own
VMs, each of which is managing a subset of the cores and atsabsee research [21], [22], as well as other groups [23], [24], [25]
processes. [26], [27] have advocated the benefits of virtualization for

HPC and rigorously investigated its performance overhead

for HPC micro-benchmarks, macro-benchmarks and common
the OS as well as the potential diversity of the architecturgPC applications. They also showed that various scientifit a
of the cores, frequency and memory hierarchy. Deploying or#PC workloads deployed on virtualized software stack demon
monolithic kernel like Linux to manag#0's to 1000's diverse strated a statistically insignificant performance degtiada
cores and diverse processes in future multi-core micropie have also carefully studied its impact on the differentle
cessor systems, will make the OS a significant performangethe memory hierarchy for memory-intensive and memory-
bottleneck and will cause the overall performance of thgnsative application in [28], [29].
system to deteriorate. That is to say that, alternativeaijyer In sum, the virtualized software stack can offer many
system approaches and software stacksstbe explored to benefits to HPC community and enhance the reliability of
solve this performance quandary for these future multecothe current infrastructures. However, in order for virtzation
microprocessors. to be successful in multi-core microprocessor in HPC envi-

In the operating system community, several approachemmentsall software components must be able to leverage

were explored to address this problem and provide mechie shared memory offered by the architecture in order to be
nisms to enhance the OS scalability, fault-tolerance,ieffey able to extract the performance potential of the multi-core
and performance, such as research in micro-kernels, singleroprocessors.
address-space operating systems, type-safe operatitegrsys In a virtualized environment, there is no such direct suppor
and virtualization. In our research, we chose to explorevihe of inter-VM shared memory although it is available at the
tualization approach because of the numerous benefitedffenardware level. This is a result of tiperfectmemory isolation

dictated by the virtualization technology between theualt HPC infrastructure. With virtualization, OS-specialipatand
machines. Therefore, user-space processes, which arefpadustomization can address those impediments and sigrifican
the same HPC application and executing in collocated Virtuzgduce the OS-noise in the system.
machine on the same hardware, endure unnecessary commio clarify, figure 2 demonstrates one example of the power
nication overhead and higher latency than processes rgnnai virtualization in leveraging the potential of multi-aor
within the same monolithic kernel. This aspect is curreatlg systems through OS-specilization and customization. is th
limitation to the efficient utilization of the virtualizedfware figure, each OS kernel can specialized for a specific core
stack in HPC. In order to solve this performance quandary, wge or workload such that it extract all the computational
need a user-controlled memory sharing mechanism througbwer of the core without adding unnecessarily OS-overhead
which programmers can utilize the shared memory between other cores and applications. The software stack of this
the cores. Such mechanism should provide a programmimgdel is composed of a slim hypervisor deployed to manage
interface to support user-level applications. It shoukbaler- the entire hardware and multiplex the resources between the
ifiably enhance the performance and programming efficiendifferent virtual machines. Each VM deploy an OS kernel
of the machine. which can be specialized, optimized and/or pinned to one
In this paper, we present an efficient mechanism for sharext- more type of cores such as computational cores and 10
memory communication between HPC applications executirgabled cores. One recent virtualization technique thapeut
within virtual machine (VM) instances that ace-locatedon this software stack without introducing significant ovextiés
the same hardware platform. It also provides this mechanigaravirtualization. In paravirtualization, the interfaexported
through a familiar programming interface that can be wdiz by the hardware through the hypervisor is simplified in a way
to can be utilized to control the degree of isolation betweghat eliminates hardware features that are difficult taualize.
virtual machine to enable low-latency shared-memory corexamples of such features asensitiveinstructions that must
munication This system, dubbedshmem implements low be intercepted and interpreted by the virtualization layer
latency Sys V [30] IPC-style shared-memory, synchronourstroducing significant overhead. There are a small number o
and asynchronous communication mechanisms allows the piftese instructions that the guest OS uses that must be eeplac
grammer to selectively share memory regions between usr-enable execution of the OS over the VMM. Although the
space processes residing in collocated virtual machines. @uest OS kernel has to be modified, no application code need
also verified the performance of our system using various HR€be changed to execute using a paravirtualizing systetm suc
computational kernels and applications. Our results deveas Xen. Although this software stack has a superb potential
that HPC can leverage the power of virtualization as tecfer extracting the computational power per core, the exghan
nology trends drive multi-core architectures and hetemegg of data between processes experience unnecessary communi-
forward. cation latency as a result of perfect isolation between VMs.
The rest of this paper is organized as follows. Section 8pecifically, the communication between user-space pseses
presents the motivation and background for our work. Seanning in different OS kernels endure significantly higher
tion Il describes the design and implementation of Vshmenatency than the processes executing within the same OS
as well as details the xen-port we implemented for the systekernel.
Section V displays the performance evaluation of the Vshmem Early on, the operating systems (OS) community recog-
using various scientific dwarfs and applications. We discusized shared-memory Inter-Process Communications (IPC)
the performance results and potential impact of our systarapability as an essential OS service. UNIX, for example
in section VI. We compare our work to other research ioriginally supported a number of process communication
section??. Finally, we conclude our paper and present owonstructs including lock files, signals and pipes [30]. agsl
future research directions in section VIl . Linux and UNIX-like systems support more communications
constructs between processes. Arguably, the System Vdhare
memory interface is one of the most popular IPC constructs
The next generation HPC systems are adapting unpreaeiong UNIX-programmers The System V shared memory
dented hardware complexity in the form of increasing numbiterface provides abstractions that enable memory shadfin
of cores per processor in order to sustain the performanegell-defined regions of a process address space, as well as
growth and to maintain the increase in tihMFLOPS of- synchronous and asynchronous communication between the
fered to the computationally-intensive HPC applicatidt®n- processes in the form of semaphores and message queues.
ever, the quest for an efficient software stack for such syBherefore, user-space processes can establish comnionicat
tems is a challenge facing the HPC community. Specificallysing shared memory if they are executing within the same
the “monolithic-kernel” traditional software stack appoth OS-kernel. Another IPC facility is sockets which allows ise
presents serious impediments for next generation HPCragstespace processes to establish a communication channeldsetwe
as a result of its increasing memory foot-print and systethemselves to facilitate data exchange, but which is uguall
noise and decreasing cache efficiency [2], [3], [4]. On thgsed in a networked setting, to allow processes belonging to
other hand, the virtualized software stack presents aacsitte different hosts on the network to communicate.
approach in addressing this complexity in the next germrati Although IPC socket interface can be used for commu-

II. MOTIVATION AND BACKGROUND

Traditional Software Stack Virtualized Software Stack

nication between user-space processes in collocatedalirtu
machines, data exchange over the network protocols add
unnecessary communication latency. This is caused by IP(Discovery
socket interface, which lacks the capability of providirigedt SZ?SD
(i.e. zero copy) shared memory between processes as WE ppases
as the overhead introduced by the IP stack. In addition, it = P |
requires several cross address-spaces copies (i.e. p&mE-s 5 o

to kernel-space copy and kernel-space to user-space cop [e] [s]
that adds to the communication latency. In essence, thit @ ®
unnecessary latency is a consequence ofpréectmemory

isolation between virtual machines, which necessitatesiie

of communication protocols to transfer data between mashin Data

<
@
?
o
153
<)
a

Process B

<
@
@?
@
o
<)
a

Process B

Process B
Process A
Process B

Process A

using standard network protocols. Exchange |

To exemplify, Xen is an example of a hypervisor that is ¢ i | |
widely deployed. It enables user-space processes to commi '~ '
nicate across VMs using TCP/IP sockets. Xen implements
a split device driver architecture for the network subayste (@

c)
For that, anetbackis deployed in the privileged VM, com- Fig. 3. This figure portrays the difference in the communizamechanisms

; ; between user-space processes collocated in the same @8s wer different
monly referred to as DomO andreetfrontis deployed in the S and using SYS V IPC versus socket programming respactiveere (a)

unprivileged .VMS, and t_hey both interacts using high-levebpresents the discovery and setup phases in SYS V IPC irrdbigidnal
network device abstractions. When a user process needstdok, (b) shows the same phases in the virtualized stadig usbcket

exchange data with another user process in a collocated \Vypgramming, (c) represents the direct data-exchangeg IS V IPC in

. . tradjtional stack while (d) shows the data-exchange in tineialized stack

it can use socket network interface. The data to be exchangggly socket programming.

is then copied to the kernel-space \dapy from_user, and

uses the networking subsystem to encapsulate them in IP

packets. Once the IP packets are ready, the DomU kerHt Virtualized software stack (on the right) through theeéh

a ring buffer that transfers the packets to Dom0. The lattBpases of inter-process communication: the discoveryghas

domain which acts as the software bridge in this scenarlbe setup phase (both shown in the upper row) and the data

Upon the reception of the packets, Dom0 copies the packet€tghange phase (shown in the bottom row). Note that, for

its own address space in order to process them and deternfifi@plicity, we consider Dom0 in this diagram as part of the

the receiver domain, and then adds them to the ring buffer fpervisor layer. In the traditional software stack, therski

that receiver domain. Once the packets are transfered to fgmory discovery and setup for IPC is done via the operating

receiver domain, they gets copied to its own address-sp&¥ystem which is the common layer between the two user-

which then determine the receiver process. The packets @P&ce processes: the sender process and the receiversproces

then copied viacopy to_user to the user address space oPuring the discovery and setup phases (i.e. subfigure (@), t

the receiver process [20], [31], [32]. This communicatio®S kernel registers the shared memory to its IPC facilities

pattern endures significant performance penalty sincehall 2nd makes it available for other processes to connect to by

data exchange from the sender process to the receiver pro@$igning it a key and shmem identifying number (akenkey

is redirected through Domo0, and involves several copierssacrand shmid. Once the receiver process identifies this shmem

the address-spaces. The System V shared memory interfacd@§ion via the shmkey and request to have it attached via a

the other hand presents an efficient, low latency communid¥stem call, the OS kernel maps it to the process'’s address-

tion between the processes executing in the same user sp@@ce. Once mapped, low-latency data exchange between the

through direct zero-copy memory sharing between them. WO User-space processes is facilitated as demonstratbe in

However, it lacks the capability of enabling processes srdoWer left cartoon in figure 3 through direct zero-copy skare

VMs to communicate. Several projects, such as Xenloop [3€mory communication.

XenSocket [33], Xway [34] and MMNet [35] have looked On the other hand, the virtualized software stack experi-

at optimizing the socket communication path between usemnces much higher latency in inter-process communication

space processes in collocated VMs by supporting them wltletween user-space processes in collocated virtual meghin

shared memory. However, none of these systems can achi€éhe cartoon at the upper right corner of figure 3 demonstrates

comparable performance to low SYS V IPC latency of twthe discovery and the setup phases in the alternative saftwa

communicating processes inside the same address spase. Staick. The discovery mechanism in this scenario is done

is a result of the IP stack overhead in some of these projeeta Dom0O which acts as the software bridge between the

and the number of memory copies in the other projects. different domains. As described earlier and demonstrated i
Figure 3 illustrates this comparison between System tiie lower right cartoon (i.e. subfigure (d)), the actual exae

IPC via shared memory in the “monolithic-kernel” traditadn of data between the two processes uses socket programming

software stack (on the left) versus the IPC socket interfiacewhich involves several copies from and to the user-space and

Comparison of communication latency of ping-pong experiment between two user-space processes,
communicating via SYS V IPC in the traditional software stack versus
Inter-VM TCP and UDP socket communication in the virtualized software stack

T T T T T
SYSV IPC Communications between 2 processes in traditional stack —+—
TCP Communications between 2 processes in virtualized stack 9
UDP Communications between 2 processes in virtualized stack ---*---

1000

__— TCP/IP Socket

[
Q
<}

~
"~ UDPI/IP Socket

[[111
/N i | 1

f ‘I ﬁ
H \Jﬁ‘ \E \‘ J\‘" T I + H T I
PSS |19 0 PN O 1 W OO P VOO IO 0 I

=
15
T

I

-

average latency in micro-seconds (logscale)

0.1

1 1 1 1
400 600 800 1000
Size of the exchanged buffer in bytes

1
0 200

Fig. 4. This figure portrays the difference in the communmicatatency of
user-space processes using SYS V IPC in the same operastensyersus
socket programming across virtual machines respectively.

Ill. V SHMEM DESIGN AND FUNCTIONAL REQUIREMENTS

Towards the goal of supporting an efficient low-latency
communication methodology in the virtualized softwarekta
we implemented/shmemVshmenextends the System V IPC
to enable zero-copy communication between user-space pro-
cesses running in distinct VMs deployed on the same physical
host. Vshmem furthermore harnesses the familiarity of the
UNIX programmers with System V IPC syntax and semantics
for shared-memory, synchronous and asynchronous communi-
cation without disabling the isolation boundary betweetuail
machines. In this section, we describe the general desigis go
of Vshmem, its principle operations, the necessary extassi
to the SYS V IPC.

Vshmenextends the existing SYS V IPC semantics [30] to
enable processes executing in separate VMs to discover SYS V
IPC constructs in other VMs collocated on the same physical
node.

In order to enable user-space inter-VM direct shared mem-
ory, synchronous and asynchronous communication, Vshmem

the kernel-space, entails packet processing and the IR stB@!Stsupport three principle operations in order to allow seem-
overhead. All these operations add a considerable ovetioeadNgdly transparent SYS V IPC communication across virtual

the communication latency between the processes.

machines. The three main required operations are:

To characterize this overhead, we designed a simple pingl) Inter-VM IPC Constructs Discovery: This operation

pong experiment of a buffer of data between two user-space
processes, which send the buffer back and forth between
them for 1000 times for each run. Figure 4 illustrates the
communication latency in microseconds (dhaxis) on log

scale as a function of the exchanged buffer of data in bytes

(on the X -axis). The figure compares between the latency of 2)

SYS V shared memory IPC in the traditional software stack
versus Inter-VM communications using TCP/IP and UDP/IP
sockets in the virtualized software stack. The numbersrtego
here are the averages of 10 runs. This experiment signifées th
overhead introduced by socket programming in the virtedliz
software stack, and how it compares with SYS V IPC shared
memory communications. The communication between vir-
tual machines using socket programming introduces a much
higher latency in communication in the order of 56 times
more. For example, TCP and UDP average communication
latency between user-space processes in virtualizedcgnvir
ments are 117.66 and 106.94 microseconds respectivelle whi
the average of the communication latency between useespac
processes using SYS V IPC is 1.923 microseconds. This is
a serious impediment for the new virtualized software stack
since it will hinder the user-space from achieving nearkpea
performance of the machine. In turn, efficient low-latency
inter-VM communication leveraging the shared memory in
multi-core machines is indispensable for the virtualizett-s
ware stack, and is more compelling now than before. The
goal of this work is to address this limitation by providing a

refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled virtual
machine tofind other Vshmem IPC constructs through
the Vshmem system in collocated Vshmem-enabled vir-
tual machines.

Inter-VM IPC Constructs Setup: This operation
refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled virtual
machine toshare some or all of its IPC constructs
with some or all of the user-space processes executing
in collocated Vshmem-enabled virtual machines. This
abstraction also refers to the conceptual procedure
of equipping any user-space process executing in a
Vshmem-enabled virtual machine toap some of the
existing Vshmem IPC constructs through the Vshmem
system in collocated Vshmem-enabled virtual machines
to its own address space.

3) Inter-VM IPC Constructs Tear-down: This operation

refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled vir-
tual machine tounmap previously-mapped Vshmem
IPC constructs from its own address space. Further-
more, it enables any user-space process executing in
a Vshmeme-enabled virtual machine tm-sharel|PC-
constructs with other user-space processes in collocated
Vshmem-enabled virtual machines, which it previously
had shared.

efficient low-latency mechanism between user-space pseses These three operations demonstrate the necessary fualction

in the virtualized software stack, which allows the prognaen

requirements for the Vshmem system to support inter-VM IPC

to selectivelycontrol the degree of isolation between the useconstructs. In this respect, the implementation of theser-op
space processes in the virtualized software stack througlateons is the basic spine of thésshmensystem. Furthermore,

familiar and standard programming interface.

their implementation constitutes the main mechanisms for

Vshmem port to any hypervisor or virtualization technology
as we exemplify later in this section. By providing a diffetre
implementation to each of these operatiodshmencan be

simply ported to various hypervisors and virtual machine

monitors. For that reason, we ensured in our curkésttmem
implementation to separate the functional requiremers fr
their implementations in order to facilitate future deymtoent
of Vshmemports to other virtualization technologies. Fur-
thermore, by separating théshmenrequirements from their

implementations, SYS V IPC Shared memory applications can

be portably deployed across different traditional and Vehm
enabled virtualized systems with minimal code modificatjon
since the API remains unchanged.

processes residing in different virtual machines. We also
extend SYS V APIs to support thé-msggabstraction.

As a result, aV-msgqcan be created and used by
two processes using thmsgget(), msgctl(), msgrcv()
and msgsnd(pystem calls. IPC keys are further used
to support identifying message queues across virtual
machines running on the same physical nodensgq
presents the asynchronous communication methodology
between process iWshmem Reasonablyy-msgqwas
implemented using/-shmemand V-sem and support
the same syntax and semantics of the SYS V message
queues.

In sum, Vshmemis intended to transparently broaden the

In addition to the required principle operations, a number @YS V IPC calls to extend the IPC capability across virtual
extensions to the current SYS V IPC are necessary to supp@échines on the same physical host. As described above,
inter-VM communications. We designed these extensions jtoextends the SYS V IPC shared memory ABthmget(),
the semantics of SYS V IPC with the goal of allowing diSshmat(), shmdt(), shmctl(synchronous communication via
covery, setup and tear-down of shared-memory communitatisemaphore AP$emget(), semctl(), semog(@d asynchronous
channels between user-space processes executing inateloccommunication via message queues ARdgget(), msgctl(),
virtual machines®. The three different IPC extensions tomsgrev(), msgsnd(d allow efficient inter-VM communication
support our efficient low-latency communication goal are: between user-space processes. We also designed several new

V-sem and V-msgq as the Vshmem constructs.

1) V-shmem This first extension implements a partiakernel data structures to support Vshmem constructs. Hewev
address-space sharing between user space process@@lﬂqto space limitations, we refrain from discussing theda d
order to facilitate zero-copy communication betweegtructures. Interested readers in more detailed disaus$iour
them. Having the communicating processes executing tAplementation and the data structures should consgjlt [
the same physical nod¥;shmenallows one process to Several design considerations had shaped also our imple-
extent its virtual memory and permit other processes fpentation decisions. The first consideration deals with the
the same or different VMs to map this range of memor§iegree of the hypervisor modifications our implementation
addresses to their own address space. The interfaces g@ld include. In a virtualized environment, like in viatu
for these procedures are the familiar SYSskimget() clusters and cloud computing, modifications to the hypervis
andshmat()system calls. User-space processes identi@f€ strongly discouraged. This is because of their prosgect
shared memory offered by other process through an |P@pact on the stability of the cluster system, the OS kernels
key, which is passed to threhmget()to obtain ashmid and applications executing on this system. Therefore, the fi
Shmid is then used to map the memory region to thesign principle is to avoid any hypervisor modifications or
address space of the communicating process throu@ﬁensions. In addition, for fear that we introduce perfance
the shmat() API. Thereafter, communication betweerPr functional disturbance to the Linux kernel, we confined
the processes is a zero-copy communication with rfyr Vshmem extensions to a Linux device driver, which
latency. Theshmctl()andshmdt()system call is used to iS designed to be dynamically loadable and removable at
perform control operations on théShmemincluding runtime. Furthermore, in the hope that we support a portable
the removal of the shared memory constructs betwe#fplementation of Vshmem, we refrained from any hardware-
processes. specific codes in our implementation. In designing Vshmem,

2) V-sem: The second extensio'shmempresents isv- We gave special focus on the separation between the system
sem a virtual semaphore implementation which enabla@pstractions and their mechanisms. In turn, this will feti
synchronous communication between proces¥esem the process of porting the system to other hypervisor and vir
also extends the SYS V semaphore implementation #éalization technologies by reusing several parts of theec
work across virtual machines. It implements the saméshmem port. Specifically, we designed our implementaton t
APIs, and syntax as SYS V. Also, it uses an IP@n upper half which contain the Vshmem-generic codes, and
key to identify sets of semaphore and attach to theghbottom-half which is hypervisor-technology dependehtsT
through thesemget(system call. It further usesemop() Way, our system can be simply extended to a wide-range of
andsemctl()to set, get and test-and-set the semaphof@C systems and to a wide-range of virtualization technietag
between the processes.

3) V-msgq: The third extension isv-msgq which im- V. IMPLEMENTATION OF VSHMEM XEN PORT

plements a virtual message queue between different/Ve implemented the firsyshmenmport for the Xen hyper-
visor [20]. Xen is a popular open-source hypervisor devetbp

originally for the X86 architectures and implements patavi

1We also commonly refer to these three Vshmem extensionsimém, S) X ’ =
alization to run virtual machines without requiring hardea

virtualization support. Recently, Xen has been ported taymaVshmem constructs creations and registration calls to élo&-b
OS kernels, and hardware architectures. Accordingly, veseh end, which creates them on its behalf. This way, we allow both
to first port theVshmemPC system to Xen because if its wide-the front-end and the back-end of the Vshmem device driver to
adoption, its performance characteristics which we ergii§i create, register and destruct Vshmem SYS V IPC constructs.
evaluated in [28], [21], [22], in addition to its recent merglt is important to mention that only the owner/creater of a
to the Linux kernel main-tree. In this section, we detail theshmem SYS V IPC constructs can register, set the ownership,
implementation specifies of our Vshmem system. set the access flags, and destructs its Vshmem constructs.
Given the implementation considerations and principles weWe also divided the implementation of each end of the
outlined in previous section, we implemented the Vshmerdevice driver to an upper-half and a bottom half. The upper
Xen system as a Linux device driver. We deployed the concdptlf of each device driver implements Vshmem extensions to
of Xen split device driver in our implementation of Vshmemthe syntax and semantics of the SYS V IPC, and is hypervisor-
where the driver is divided into two ends: front-end and backechnology independent. It implements the mechanisms of
end. Furthermore, each of the two ends is divided into twbe shared memory, semaphore and message queue constructs
further parts: an upper half and a bottom half. Figure through the Vshmem kernel data structure. It is this half of
overview the architecture of our Vshmem-Xen split devicthe device driver that interacts with the user-space pesses

driver. It also communicates with the bottom half through a set of
function calls and well defined API.
Node A The bottom half is the hypervisor-dependentimplememntatio
() and uses the hypervisor-specific API in order to share memory
3 3 pages with other virtual machines, to register Vshmem con-
3 EYZZZW 3 structs or to destruct existing ones. By isolating hypenvis
Vshmem " g specific implementation in the bottom-half of the devicever;j
upper Vshmem — we simplify the procedure of extending Vshmem to other
half~< ,,E,;é ': FJ[;;Z;/’ virtualization technology since each hypervisor techggloas
Vshmem J:&.g——- : its own memory management mechanisms and API. Should
bottorm 22 1. | Discovery L Vshmem the open-source community decide to extend the Vshmem
half ——\~ andsetup bottom —jmplementation to other hypervisor, they only need to re-
(Neywervisa” hall implement the set of function calls of the bottom half.
In order to describe the bottom half device driver im-
[Multi H/W] plementation, we need to highlight some Xen specific tools
ulti-core System - . . .
L J and subsystems. Xen originally provides a basic mechanism

for memory sharing and data transfers between kernel-space
processes in virtualized environments, which is callechgra

Fig. 5. The figure demonstrates the architecture of the Vafxen split table (a.k.a. gnttab). The grant table mechanism mainbyvall

device driver, with its two halves: the upper and bottom ealas well as its Sharing .Of memory_ pages betwekernel SpaceS_Of the dif-
front-end and its back-end. ferent virtual machines. However, the granularity of meynor

sharing is typically coarse (e.g. 4096 bytes in x86 archite)

The Vshmem-Xen split device driver, as shown, consists ahd is only allowed between kernel space processes. Despite
the front and back device ends. The back-end is the devide-¢he recent introduction of gntdev [36] to the Xen tree, which
which is responsible for creating and offering the Vshmeia device to allow user-space processes to gain access to gran
SYS V IPC constructs. On the other hand, the front-end table pages, user-space processes continue to not be dlowe
the device connecting to an existing SYS V IPC constructsieate, manage and remove grant tables pages. In additen, t
This distinction is necessarily since the procedure oftarga discovery of the different grant table entries is not supgubby
and registering the new SYS V IPC construct to Vshmethe basic functionality of grant table or gntdev. Furtherejo
system is different and requires more complicated pro@slugntdev does not provide a programming interface that the use
than the process of discovering and connecting to an egistispace processes can utilize. In this respect, the gntdev and
construct. Normally —although not necessarily—, the devignttab are very limited subsystems for our purposes.
back-end is loaded to the DomO kernel, since it usually hasln order to discover and setup the different Vshmem IPC
more hypervisor-privileges which would facilitate effiote constructs between the domain, some form of basic configu-
creation, registration and destruction of Vshmem SYS V IP@tions communication is needed between the Xen domains.
constructs. On the other hand, the front-end is loaded in tRertunately, Xen provides a key-value store — dubkedStore
less-privileged virtual machines: DomUs. This is one use-which is shared between the VMs, and used to negotiate
scenario for the Vshmem device driver that supports effayiengeneral device settings and configurations.
and performance effectiveness. However, the virtual nmechi We use both Xen grant table aXeénstoreto implement the
loading the front-end can also create and register SYS V IRGhmem-Xen port. Vshmem is deployed on Xen in order to
constructs. This is supported by having the front-end fodwaenable sharing and coordination between virtual machfas.

that, it deploys the Vshmem back-end in a privileged virtugthe user processes, no further interaction is needed betivee
machine, i.eDomQ Other virtual machines run in unprivilegedvshmendriver and the hypervisor or Xen tools. Thereafter, a
mode, i.e.DomUs and deploys the Vshmem front-end. Forzero-copy methodology is in place which achieves the aimed-
the bottom half in both the front-end and the back-end, dar efficiency and low latency data exchange between the user
implementation of the three Vshmem principle operationspace processes. In this regard, the overhead of integaitin
Inter-VM IPC constructs discovery, Inter-VM IPC constrsictthe hypervisor, as reflected by the number of hyper-calleji k
setup and Inter-VM IPC constructs tear-down is provided. to a minimum in our implementation. Furthermore, Vshmem
The bottom-half useXenstoreto announce its participation constructs discovery, setup and tear down functionaldies
and availability for theVshmemsystem, a state which wenot on the critical path of the data exchange and therefore,
dub VshmemReadyThereafter, wheneveshmget(), semget() should not impact the performance and latency of the direct
or msgget(are called with anPC_CREATflag set, the bottom zero-memory copy between the user-space processes.
half is responsible to request a new page to be shared by the
requesting domain via the gnttab, a n&shmemconstruct
is created, and the new IPC key and Wshmemconstruct In this section, we describe the performance profile of the
gnttab reference(s) is/are announced throughXamestoreto Vshmem system. In addition, we compare the performance of
the othe’vshmemReadyomUs. When a new process executeSysV/Vshmem to two other popular parallel programming sys-
a shmget(), semget(br msgget()with the IPC CREAT flag tems: message-passing programming using MPI and shared-
unset, the bottom-half first looks for the requested IPC-kapemory programming using OpenMP. For this comparison,
in the XenStore, and connect to it if it exist. Otherwise, ive have selected four widely-used scientific dwarfs.
returns an error. If th&shmemPC key is found, the bottom-
half maps the shared memory region to the calling user-sp&e
process address space. In order not to break the isolatiohn this performance evaluation, we used a dual-core, 2.8-
between the VMs, DomO has the sole capability to create n€&Hz Intel Pentium D with an 800-MHz processor bus and
Vshmentonstructs. Howeve¥/shmenueploys a methodology 2 MB of L2 cache. The machine’s memory system uses a
through which a DomU may request from DomO to create E83-MHz bus with 1 GB of dual interleaved DDR2 SDRAM.
Vshmentonstruct on its behalf. This methodology allows user As we outlined before, we compared the performance of two
space processes in DomUs to use Wshmensystem without software stacks: the traditional and the virtualized safev
breaking the isolation barrier between the virtual machine stacks. The traditional software stack consists oL@auz
Once the key is configured/found in the XenStore, th@S-kernel version 2.6.18 with SMP support. We considered
bottom-half configures the shared memory, semaphores ahig OS-kernel our base performance kernel. In addition, we
message queues can to be mapped to the address-space afsbé GCC version 4.1.2 and GNU make version 3.81 in
user-space process. However, a normal kernel-space to usempiling this OS-kernel and the different benchmarks and
space mapping througmmap()does not work in this case, codes. We furthermore deployed fedora core-8 tools for file-
since the memory is owned by another domain. Every tingystem and software packages management. For the vigdaliz
the user-space process tries to access this memory regiospfiware stack, we employed Xen 3.3.0 hypervisoreenified
page fault is caused on this address although it owns all thénuxz OS-kernels version 2.6.18 for the virtual machines.
permissions needed and the page is in memory. The solutiime kernels for the virtual machines were configured with a
to this problem is by injecting the shared page to the domadimgle processor, i.e. non-SMP kernels. Both the hyperviso
address space througtlptn _remap range The final Vshmem and the OS-kernels were compiled from scratch with GCC
tear-down operation is done by removing the Vshmem keysrsion 4.1.2 and GNU make version 3.8.
from the XenStore, and un-sharing the memory between then order to compare the performance of the different pdralle
domains through the grant table interface. All that procedu programming models, we installed MPICH 1.2.7 runtime
is transparent to the user-space process, and are hiddee insystem [37] with P4 channel interface and configured it to
bottom-half. utilize openSSH version 4.7 and openSSL version 0.9.8b for
In terms of performance overhead, the creation of any ometablishing secure connections between the MPI thredus. T
Vshmenrconstructs costs th#shmem-backendne hypercall OMP benchmark executables were compiled and linked using
to map the shared grant table page, and costsv8famem- GCC version 4.1.2 with thefomp flag which supports the
frontendone hypercall to map the page into its address spa&@penMP v3.0 APl and executable directives [38].
To avoid this overhead on the execution time of the user-All the results of the experiments and benchmarks were
space applications, a mechanism which anticipates the eumtollected in run levebne A run-level in Unix is a mode of
of pages to be shared is needed such that the pages mperation that employs a specific set of services. Run level
be requested ahead of time and is part of our future worme is an intermediate state which starts single-user mode
The same number of hypercalls is needed for shared memand does not start the heavynuxr daemons. Offering only
tear-down. Discovery does not require invocations to amginimal OS services, d.inux kernel operating in run-level
hypercalls, but interacts with the Xenstore through its .APbneis usually more efficient than higher run-levels. In order to
Once the shared memory is mapped to the address-spacéeofible run MPI benchmarks at this run-level, we configured

V. VSHMEM PERFORMANCE EVALUATION

Methodology and Hardware Platform

the OS kernel to start the networking and sshd daemon Remmputing applications as well as other areas such as embed-
level five, on the other hand is a full mode operational kerneled systems, database systems, machine learning andagaphi
with multi-user support, a display manager and consolenkgi To contrast the performance of Vshmem to the performance of
In this evaluation, we employ run-levene for all of our popular parallel programming models, we have implemented
experiments since we intend to compare the raw performarssveral computational codes and methods in MPI and OpenMP
of the individual programming models. Using this run-lgvein addition to SYSV/ Vshmem.
we avoid both overhead and performance variation that OSWe chose four different dwarfs to use in the evaluation
daemons might introduce into the performance results. of Vshmem and we selected a simple representative problem
for each dwarf and studied its communication/computationa
B. Benchmarks pattern and data memory-layout as well as its parallel imple

For our empirical evaluation of Vshmem, we deployed th@entation considerations.
benchmarks summarized in table I. This set of programs canl) Dense Linear Algebra This dwarf represents the
be categorized into three groups . classical dense matrix and vector operations which is com-

a) Communication-latency Micro-code&he overarch- monly occurring in many applications in high performance

ing objective of Vshmem is to provide a low-latency communFomputing. Vector-vector multiplication is normally refed
cation mechanism between user-space processes in cetloct® as BLAS level 1 while matrix-vector and matrix-matrix
VMs in virtualized HPC environments. Therefore, the firsiultiplications are refereed to as BLAS level 2 and BLAS
set of evaluation codes we used was focused on assesdfygl 3 respectively. Linpack benchmark [39], for exame i
this communication latency in the virtual software staclene application of this dwarf which is customarily used to
Specifically, the objective of this set of micro-benchmaigks rank the different HPC infrastructures for the semi-anrogl
to contrast the communication-latency characterizatibthe 900 list [1].
current Vshmem implementation to other IPC communication We have adapted a simple MPI implementation of the
methodologies between user-processes in different aiboc matrix-matrix multiplication problem which is availableip-
virtual machines. Two micro-benchmarks were crafted iitly [40]. We modified this basic code to implement BLAS
this subcategory to measure the latency of process_tqapsodeve| 1 and 2. In this code, the work is distributed among
communication across different mechanisms. the different MPI threads by rows.As a result, the memory

Our intent is to measure the overhead of socket connectioh the applications in this dwarf is normally accessed in
management in comparison to the shared-memory mechani&ifisles of rows. In addition, we substantially modified this
for communicating short chunks of data. The first benchmargQde to convert it to the other two programming models:
denotedSyn¢ passes control back and forth between tw@MP and SysV/ Vshmem. Although we kept the same work
threads of execution for 100,000 turns by modifying datistribution among the threads, we replaced the MPI calls
in a memory region shared by the threads. The benchmafd data structures with OMRor-loop’ directives to obtain
was written in C relying neither on existing synchronizatiothe OMP version. We further placed matrix A, B and C in
libraries nor on hardware support for synchronizationtdad, OMP shared memory. The same work distribution and data
Sync uses classic P/V semaphores to impose the patterrayput was also adapted for the SysV/ Vshmem version of the
alternating accesses to the shared region, which is modifk@fe. All the BLAS codes repeat the multiplication for 1000
at each turn, as shown in figure 6. The benchmark uses biféyations and output the average execution time for differ
waiting to minimize context switches. matrices’ sizes.

The second micro-benchmark, denotgatket, uses a net-
work socket to pass back and forth a chunk of data between

two processes fat00,000iterations. Socket is configurable to 2) Structured Grids: The structured girds dwarf repre-
use UDP or TCP network protocols for the connection. sents a group of scientific problems which consist of data
points laid on n-dimensions grids. A sequence of time-

sen{0] = sem.init(0); steps, during which each data point is updated using values
sen{1] = seminit(1); of neighboring points is needed to solve these problems.
for (i =0; i < iter; i++) { K X .
sem P(sen{ny_id]); Parallel implementations of this dwarf are normally readiz
menset (region, ny_id, size); by dividing the problem into subgrids. Each thread keeps a
sem V(sen{!nmy_id]);
} local copy of one subgrid and updates the original grid at

Fig. 6. Simplified pseudo-code f@yncmicro-benchmark. The same codethe end of every step. Therefore, there is a significant dqta'
runs in two threads, with the value afy_i d being the only difference (it exchange phase between the boundary points of the neigh-

is 0 in one thread and 1 in the other). Varialllar n and the semaphore boring subgrids which occurs at the end of every time step
structures are in shared memory. . ’ S . . o
This pattern of communication is a common pattern in fluid
dynamics applications, finite elements methods, adaptiestiv
b) Scientific Dwarfs: This group of benchmarks repre-Refinement (AMR) applications, Partial differential edaas
sents algorithmic methods and communication-computati(fPPDE) solvers and weather modeling.
patterns that are commonly exhibited in high performanceWe used one simplified example of the structured grids

[Category [Type | Code

Code Description |

Micro-codes Communication | Sync ping-pong of a buffer via Vshmem memory.

latency Socket ping-pong of a buffer via TCP & UDP sockets.
Dense BLAS 1 Vector-Vector multiplication operations.
Linear BLAS 2 Matrix-Vector multiplication operations.

Scientific Algebra BLAS 3 Matrix-Matrix multiplication operations.
Structured Grids | Laplace Solver A Laplace solver using Jacobi method.

Dwarfs MapReduce Parallelr Calculation | Calculatesr using Simpson’s Integration Rule

N-Body Methods| Molecular Dynamics | MD simulations usingverlet scheme

TABLE |
AN OVERVIEW OF THE CODES AND BENCHMARKS USED IN EVALUATING THEV SHMEM SYSTEM

dwarf, which is theJacobi method for solving thd_aplace deployed computational methods in scientific applicatiane
Equation. The Laplace equation is a PDE system whose sotonsidered by some HPC scientists [42] a special case of the
tion is important in many scientific computations such ag heldlapReduce dwarf. Furthermore, a recent research projatt [4
conduction and fluid dynamics as well as areas like astronomgs stressed the potential of MapReduce methods for eescien
and electromagnetisnrdacobi methods a relaxation method and identified several scientific applications of this impot
generally used to find an approximation of the solution of algorithmic model such as High Energy Physics (HEP) data
linear system which we deploy here to find the solution @nalysis and K-means Clustering.

the Laplace PDE. During each time-step, each point in thewe chose a simple problem to mimic the computation-
Laplace mesh data-structure is updated by the average valggmunication pattern of the MapReduce dwarf. For that,
of the 4 neighboring points. we utilized a MPI implementation ofr-calculation using
we adapted a publicly-available MPI implementation of thiSimpson’s Discrete Integration Rulén this application,
problem in 2 dimensions [41], and modified the original codie evaluated as the value of the integral ©f(1 + z * z)
to simulate an increasing number of mesh points on abgtween 0 and 1. Since the value of an integral is the area
given number of processors. Furthermore, we substantiallyder the curve of the functiom; is approximated by the
altered the code to convert it to the two other programmirsgmmation ofn rectangles occupying the area under the
models, i.e. OMP and SysV/Vshmem. The work distributioourve. This approximation scheme is known as Simpson’s
for the three programming models is the same; each thragdigcrete integration rule. The local computation in thislhgem
is processing a subgrid and is communicating its own bounebmprises of an evaluation of the function at pointfor
ary points with the neighboring threads. The data layout ithe different x-values along the intervals assigned to each
however different between the three implementations. In,MRhread and a summation of the partial area under the curve
the points are distributed equally among the MPI threadsr the local intervals. Undoubtedly, the bigger the number
and the boundary points are exchanged at each time stffntervals, the more accurate the approximation is but the
using MPI_Send()and MPI_Recv() MPI_Reduce()is used larger the computation will be. Once the local computation
to check for the convergence of the Jacobi method. In tie completed, the approximated value ofis acquired by
OMP implementation, the original grid is placed in the OMRggregating the different local summations from the défer
shared memory. Each OMP thread keeps a local copy of tieeads. To summarize, the map operation for this problem is
grid and updates the original grid at the end of each tinazhieved by dividing the area into smaller intervals amdeg t
step. SysV/Vshmem deploys the same data layout as the OMifferent threads and the reduce operation is done through t
implementation. summation of the local calculations.

We have adapted a publicly-available MPI code that im-
plements this problem [44]. In this MPI version, the work
3) MapReduce The MapReduce dwarf presents an embagistribution is achieved by allocating equal numbers of in-
rassingly parallel algorithmic model that involves a mialm tervals to each MPI thread. The communication between the
amount of communication between the parallel threads.-Baﬁ‘ireadS occurs during the map phase' when the master thread
cally, it represents a pattern where repeated indepenask® t proadcast the total number of intervals to all the MPI thread
compute a certain function on a large data-set, and the fij@ MPI_Bcast() and during the reduce phase when the local
result of the parallel method is an aggregation of the locghiculated values are all summed throudRI_Reduce() We
computations. ported this MPI implementation to OMP and SysV/Vshmem
In addition to its wide-deployment in large-scale searcind the same work distribution scheme is followed in the two
applications, this dwarf has several applications in HPZ].[4 new ports. In OMP and SysV/Vshmem implementations, the
In scientific computing, Grid computing applications catocal values of ther calculation are placed in shared memory.
arguably be considered one variation of this dwarf [42]lhe OMP implementation utilize©MP reduce(+:localpi)
Monte Carlo methods, perhaps one of the most widelgirective to perform the summation of the value. In the

SysV/Vshmem implementations, we developed a reduction Comparison of atency between two user.space processes

running in the traditional and virtualized software stacks

function that allows the master thread to aggregate thd loca v v Socket using TP Communicatons T
summations of partialr values to realize the approximated séniiiﬁﬁé“ssi%‘ivﬁEEg‘émﬂﬂiﬁé‘iﬁgﬂi)

o
OVera” T Value. P Socket using TCP connection yne using Vshmem Communications
//A o g
100 f . 4
AN Socket using UDP connection

seconds

4) N-Body Methods The N-Body dwarf represents theé
classical algorithmic methods that rely on the interaction

of many points, where every point depends on all othazr 0} . * ., % .
points to update its status. These methods normally take an T * Sync using SYSV shared memory *
O(N?) computational complexity and appear in a wide-rangé ° -) / x *

of scientific applications in astrophysics, molecular dyies '

and computer graphics. Traditionally, the workloads arel th 1} N _ E
communication scheme of the applications in these areas Syne tsing Vehmem shared memory
change dramatically with time as a result of the dynamicneatu
of the problems [45].

it _ i~\Fig. 7. This figure depicts the communication latency in ttaelitional and
As an appllcatlon of the N BOdy dwarf, we used a pUb“CIie virtualized software stacks. In this figure, tBgncbenchmark is using

available [46] simple molecular dynamics simulation thake sysv shared memory in the traditional stack and the Vshriseusing
was developed in OMP.In this simulation, the commencinghmem shared memory in the virtualized stack. Bueketbenchmark is

positions and velocities ofV interacting particles are ini- using TCP and UDP connections, both in the virtualized stack
tialized to random values. The simulation, then calculates
the interaction between the particles and computes their ne
positions, velocities and accelerations using tleglet time VshmemSyncexchanges a buffer of data between two user-
integration schemeThe Verlet Time Integration Scheme is espace processes running in different virtual machines. The
numerical method used to calculate the integral of Newtor¥8Vis are collocated on the same physical node, but each
laws of motion at a reduced error level. It employs two TayldoVM is pinned to a different core to minimize the impact of
expansions — one forward and one backward in time— of théM context switching. As Figure 7 illustrate¥shmemnhas a
position vector. comparable performance to SysV IPC as both methodologies
We adapted this code in our evaluation and modified thise zero-memory copy. In addition, the Vshmem curve does
OMP version to simulate a varying number of particlag)(not exhibit the same variability as SYS V. Specifically, the
a varying number of dimensionsd) for any number of variance for SysV results i2.7 with standard deviation of
time steps fum step$. Furthermore, we exported the codd.66 while the variance for Vshmem measurement§.i¥)7
to SysV/Vshmem. The data layout for both versions of thaith standard deviation di.086. We believe that this is due to
code is similar where the arrays accessed by all the threadslass OS noise in the virtualized software stack caused by the
allocated in the shared memory. The work distribution betwelack of SMP support and unnecessary context switches. Other
the threads in OMP and SysV/Vshmem is also similar, wheresearch projects [3], [4] have also encountered the impiact
the points are divided equally between the threads. SMP support on OS-noise and presented its characterization
in their work.
Additionally, figure 7 demonstrates the outcome of the
Achieving a low communication latency between the useBocketbenchmark, which was run in the virtualized software
space processes in collocated VMs is one of our primagyack between two user-space processes residing in tvimadist
goals. Therefore, we crafted two benchmafkgicandSocket collocated VMs. The results show that the latency of TCP
to evaluate this latency. These benchmarks measure the tsme UDP communication is higher than shared memory. Our
for data exchange between the user-space process and @oedysis of the collected data also shows that the latency of
not include the setup or overhead associated with estaigishTCP and UDP is more variable than that of the shared memory
connections. communication methods, although it does not show in this
Figure 7 depicts the results of running the two benchmarkgure. Specifically, the variance of the TCP measurements
using traditional and virtualized software stacks. In figsre, is 6.28 with standard deviation oR.5 while the variance
the x-axis represents the size of the buffer communicatét UDP measurements i$1.2 with standard deviation of
in bytes while the y-axis represents the average latency 38. Furthermore, there was no network noise throughout the
100,000 iterations in micro-seconds. In this experim8&yfic experiment that would cause the high variability eviderthia
uses SysV shared memory to send the data buffer back ar@P and UDP data points. We believe that this difference is
forth using zero-copy between the two user-space procesdas to context switching and the network stack overheadnFro
running in the same OS kernel for the SysV case. these results, we conclude that Vshmem across VMs is an
The latency for sync using SysV is in the range of 1-@rder of magnitude faster than socket-based communication
microseconds, with a small number of outliers. In case &urthermore, it achieves more reliable and less variatéety

1 1 1
200 400 600 800 1000
Size of the exchanged buffer in bytes

C. Communication Latency Evaluation

in Communlcatlon As a result’ Vshmem achleves a |0w_ Laplace Solver using Jacobi iterations in MPI, OpenMP, SYS V, Vshmem

1le+06 T T T

latency communication between user-space processes in the MPI Rn Level 1 &
virtualized software stack. '

Openmp 5552272

Vshmem

D. Performance Evaluation using the Scientific Dwarfs 100000

1) Dense Linear Algebra:BLAS routines were the first
codes we used in comparing the performance across t
different programming models. Figure 8 shows the avera
execution times of the different matrix-vector multipfiican
operations for varying matrices’ sizes. Due to space limita ‘
tions, we present in this paper the performance resultsrfer o 1000 /1
level of BLAS operations. However, the interested readers
should consult7] for the complete set of results. For the two
of the subfigures, th&(-axis represents the matrix dimension 100 ” - -
while the y-axis represents the average execution time in Mesh dimension for the Laplace System
pseconds. In order to be able to capture the variability in the o o)
execution times, we ran each experiment for ten times affl-% 1 foure porvays he execuon tme of e Laplaober using
plotted the average execution times of all the runs, as showaxis while they axis present the average execution time of 10 runs, where
by the scattered graph. We also plotted the execution time&ggh run has 1000 iterations.
the ten runs, as portrayed by the solid line in the subfigures.

Given the above results, we observed that the

SysV/Vshmem achieves the shortest execution timi@)mputational load, the communication to computationi® rat
for all the differentBLAS levels and for the different data-Will decrease. In turn, the communication overhead becomes

types (i.e, the single and double precisions). Furthermo}@significant on t_he pverall processing time as the BLAS lleve
we observed that OMP achieves the second fastest execufifl the matrix size increases. As a result, the performaage g
time for almost all the different3LAS levels and for the Petween the different programming models diminishes.
different data-types. MPI implementation exhibits theastst ~ 2) Structured Grids:In this category, we chose an imple-
execution times among the three programming models. \Wentation of a structured-grids problem for a Laplace solve
also observed that the gap in execution times between ﬂlﬁng Jacobi methods in order to simulate the communication
three programming models diminishes as the BLAS lev@nd computation patterns of this scientific dwarf. We config-
and/or the matrix size increases. ured the codes for an increasing number of mesh points and
These results are due to the communication mechanisfigasured their execution times while calculating the ajera
deployed by each programming model as well as the comf-50 runs for each mesh size.
tational workload of each BLAS problem size. MPI uses the Figure 9 shows the average execution time of the Laplace
P4 channel, which establishes the communication between golver for 50 runs using the different programming models.
different MPI threads using regular UNIX sockets. This addghe number of mesh points in the system is shown ornzthe
an unnecessarily overhead to the execution of the apmiatiaxis while they-axis presents the execution timeiseconds.
especially that there is no data exchanged over the networkWe first observed that the Laplace SysV and Vshmem
However, the IP stack adds this performance overhead, whigkecution times are not significantly different. We further
we characterized in section V-C. OMP model, however usesticed that the execution time gap between the different
shared memory to exchange data between the OMP threptsgramming models diminishes as the mesh size increases,
which improves the overall execution times of the OMMhich is the same effect we detected in the BLAS results.
application in comparison with the MPI application. At thelhis is again results from the increase in the number of mesh
same time, the OMP model places an unnecessarily overhgaihts which caused computation to dominate communication
on the execution due to its advanced mechanisms for threadurprisingly, the OMP Laplace code execution was the
creation, synchronization and destruction. As a resuk, tlflastest of the three programming models, although it has the
SysV/Vshmem model achieve faster execution than OMP sintighest variability. We believe the reason for this diffece
it does not suffer from this overhead. We also observésl our implementation of the reduction operator. Early on,
that the performance gap — evident by the spacing betwamany studies have looked at optimizing the OMP reduction
the different curves representing the different prograngmidirective [47] as it was a main source of performance bot-
models — diminishes as th8LAS level increases or the tleneck in parallel programs for shared memory architestur
matrix size grows. In fact, as the computational workloaBome studies have shown this bottleneck may cost large-scal
of the problem increases, the ratio of the communicatiddMP parallel applications as much as half of their execution
to computation changes. As theLAS level or matrix size time [47]. These efforts have resulted in a highly-optimize
increases, the overall execution times become dominatedrieguction primitive that minimized the wait time of the othe
the computations. As a result of the tremendous increasein threads.

cullon Time
mgo-seconds

10000

verage %
of 1000 Nite

Execution time of DSGEMV Dense Matrix Multiplication

1e+06 T T T T
MPIRL1 O

100000

10000 b

1000

100 b o

Average Execution Time
of 1000 Niter in micro-seconds

10

01 L L L L L
100 150 200 250

Matrices’ Dimension

Average Execution Time
of 1000 Niter in micro-seconds

Execution time of DDGEMV Dense Matrix Multiplication
1le+06 T T T T

MPIRL1 O
MPI RL 5
OpenMP %
L “sysv 1
100000 Vshmem +
10000 |- R
] -84
1000 | e ‘f—Ji,i;:ri'*'i'*’
VI S Sl S-S
S B % B
100 | kXX v 1
o
10 /]
/
/
/
it 4
01
0 50 100 150 200 250

Matrices’ Dimension

Fig. 8. The two figures depict the execution time for difféarprogramming models of thewatriz — vector multiplication codes for single (left subfigure)

and double (right subfigure) dense matrix multiplicatiogspectively.

Calculating Pi with Simpson’s Integral Method using MPI, OpenMP, SYS V, Vshmem

MPI Run Level 1 &3 ' ' '

10000 - MPIRun Level 5

Vshmem

1000 -

Average Execution Time
of 1000 Niter in micro-seconds
=
o
o
T

10

1000

10000
Number of intervals

100000 1000000

Fig. 10.

the y-axis represents the average execution timgseconds.

3) MapReduce:The next scientific dwarf we used in our
evaluation is the MapReduce dwarf. We deployed a very sin
ple problem that reflects this dwarf’s embarrassingly pelral

This figure depicts the execution times for the dat@n of 7
using the different programming models. Theaxis represents the number
of intervals that was used for th@impson’s discrete integration rublghile

algorithmic method, which is @-calculation implementation
using Simpson’s Discrete Integration Rul@he MPI com-
munication pattern for this problem consist afbroadcast
operation at the beginning of execution to transmit the nemm
of intervals to the different threads amadreduction operation
at the end of execution to aggregate the local summatioreof th 4) N-Body Methods:The last scientific dwarf we used in

m values in order to calculate the total Each experiment in our evaluation is the N-body methods. In our own previous
this code consists of 1000 iterations and the average aéwmacutvork [48], [49], we have studied an actual computational

time is reported.

profile of the previous dwarfs. Therefore, the SysV/Vshmem
model exhibits the fastest execution times, followed by QMP
followed by MPI in run-levelone followed by MPI in run
level five Despite the similarity between the performance
ranking of the different models, the reasoning behind this
ranking is different. For the MapReduce dwarf, there is
minimal communication between the threads since this is an
embarrassingly parallel method. However, we notice that th
overhead of the runtime system of the different programming
models is dominating the performance, especially at lower i
tervals count. In case of the MPI implementation, the MPICH
runtime system is a middleware layer that slowed down the
overall execution of this code. OMP runtime overhead was
smaller, but it still imposed an unnecessary overhead on the
threads execution. SysV/Vshmem, on the other hand, is a
light-weight implementation thaselectivelyshares memory
regions between the processes without imposing a contsuou
overhead on their execution.

Furthermore, we noticed that Vshmem performance is
slower than the SysV execution times for th@0 intervals,
which is caused by the Vshmem operations’ overhead de-
cribed in sectior??. In addition, we also observed the same
diminishing performance gap in the execution times between
the programming models as the problem size increases.Shis i
due to the fact that, as the problem size increases, it bexome
more dominated by the computations, and the overhead of

bthe runtime system becomes negligible relative to the divera

execution time.

biology N-body problem and implemented its simulation in

Figure 10 presents the average execution times of 50 rundfl. In this evaluation, we deploy an implementation of a
the MapReduce experiment using the different programmingplecular dynamics simulation. This simulation was writte
models. Thez-axis represents the number of intervals thah OMP by John Burkardt in Florida State University [46]
was used in ther calculation while they axis represents the and we ported it to SysV/Vshmem. We modified the OpenMP

average execution time inseconds.

and SysV/Vshmem codes to simulate a varying number of

The results in this figure are similar to the performangearticles in a varying number of dimensions and time-steps.

Molecular Dynamics Simulation code for N particles in 2 dimensions Molecular Dynamics Simulation code for N particles in 3 dimensions
in OpenMP, SYS V, Vshmem in OpenMP, SYS V, Vshmem

1e+06

1e+06

Openmpin2d Openmpin3d
SYSVinad x SYSVinad x
Vshmemin2d o Vshmemin3d o

o
100000 + 100000

10000

10000

1000 [& 1000 (59

Average Execution Time
of 1000 iters for 100 time steps in micro-seconds

100 100

Average Execution Time
of 100 time steps in micro-seconds

1

L L L L L L L L 1 L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Number of Particles in Simulation System Number of Particles in Simulation System

Fig. 11. These figures represent the execution times of tHeawar dynamics code for an increasing number of partigie2d (left subfigure) and 3d
(right subfigure) for 100 time-steps simulations.

Our experiments simulated between 1 and 50 particles in two VI. DISCUSSION
and three dimensions for 100 time-steps.
Next-generation HPC infrastructures will deploy a mas-

ve number of cores per microprocessor in order to sustain

S
Figure 11 portray the execution times for the OMP a - :
SysV/Vshmem programming models in two and three dimgﬁ-e" performance growth. Although this model has a huge

;) . . .) erformance potential, managing those systems and bgildin
sions. The figures run in two dimensions. All the subfigures eir software stack can be very complex. The alternative

:Ee first rO\(/jv representthetsmulaponls L.” two dltrrrlwens(qunsleNh approach we advocate in this paper is to utilize the isatatio
€ second row represents the simufations In three dimesiSIO, o ¢ by the OS-virtualization technology to encapsuatd

The second vertical dimension represent the number of ti anage the complexity in those systems. In virtualization

steps in the simulation; the first column of subfigures repre- '

ts simulati for 10 fi ; hile th d col slim hypervisor is deployed to provide the multiplexing
Sents simufations for Ime-steps while the second COUMRyyeen the basic resources in the system. Several slim VMs
represents simulations for 100 time-steps. Thaxis in all

. : . would run on the hypervisor, each to manage a small count
sut_)ﬁgures represents the number .Of p{;\rtlcle_s in the SyStancores as well as to manage their user-space processes. By
while they axis presents Fhe EX.ECl:It.IOI’l- tlmespaecoqu. In isolating the management of the cores, the OS-noise can also
order to detect the potential variability in the executionés, e contained within each VM and the extraction of the perfor-
we plot the different times with the points in a scatter grap,

de while the i tth f the 50 ance potential of those system can be simplified. Arguably,
mode while the lines represent the average ot the exm:utmis alternative model is promising to deliver the nearkpea
times for each simulation.

potential performance of those machines by customizing the
VM kernels, and decreasing the OS noise, i.e. by avoiding
The results show that OpenMP always exhibits the slowa¥@sing the OS as the performance bottleneck.
execution time for the different dimensions, number of step Despite the attractive benefits of virtualization in thenfior
and number of particles in the simulation. This is a resulif complexity isolation, it comes at the cost of complicgtin
that the OMP model places an unnecessarily overhead on the programmability of those powerful HPC systems. Due to
execution due to its advanced mechanisms for thread creatithe lack of a simple and efficient communication mechanism
synchronization and destruction. The results also shotféha between virtual machines (VMs) to allow user-space pro-
small computational loads, such that in subfigure (a) and @}ss to communicate and co-ordinate their progress, the pro
for simulating 35 or less number of particles and subfigurgsammability of this alternative software stack is a diffigu
(b) and (d) for simulating 10 or less number of particle®revious studies had utilized network-based communicatio
Vshmem is slower than SysV implementation. This is a residetween the virtual machines for process coordination and
of the high overhead of the Vshmem setup operations that @ata exchange. UDP-socket and TCP-socket communications
measured in sectioB?. However, as the computations domihave been popular for communication between processes run-
nate the total execution time of the simulation, this Vshmening on different physical machines. However, using socket
setup operations overhead is amortized and the performapassed communications between virtual machines deployed
difference between Vshmem and SysV becomes insignificaoh the same physical machine can be inefficient, since it
We also observe the same effect of decreasing performamdl experience high latency and lower bandwidth. That is
gap between the models. This performance gap evident liiycause, for every packet send, it will endure the unnegessa
the spacing between the different curves representing twerhead of the IP stack and several memory copies across
different programming models diminishes as the computatioprivilege levels. Therefore, a more efficient communiaatio
dominates the overall execution time. methodology between VMs collocated on the same physical

machine is needed. Vshmem provide an OS-support for multi-core micropro-

In our experimentation, we used the Xen hypervisor as tlkessor that enables shared-memory zero-copy communmicatio
building block for the alternative software stack approachs well as synchronous and asynchronous communication
In order to provide an efficient communication mechanismechanisms between user-space processes in collocated VMs
between user-space processes in collocated VMs, we ikBwever, it does not implemented higher-level programming
plemented Vshmem. Vshmem provides zero-copy commugbnstructs that are needed in expressing parallel algoigth
cation (i.e, shared-memory, asynchronous and synchronousthods. For example, barrier and reduction operationighwvh
channels) between user-space processes running in diffeee common parallel operations provided in most parallel
Xen domains (VMs), using the SYS V IPC-interface. SY$@rogramming models, are not provided by the Vshmem pro-
V IPC interface is a familiar and efficient communicatiogramming support. However, in order to implemented the
and memory sharing mechanism between user-space proced#g=ent scientific dwarfs for our Vshmem performance eval
running inside the same OS. Vshmem leverage the simplicitation, we used a simple implementation of those operations
of SYS-V IPC interface to provide communication betweebased on shared memory, which we include its implementa-
user-space processes running in different collocated Vi¥s tion details in the appendices. The need to implement these
enabling SYSV IPC constructs like shared memory, messaggerations portrays the lower-level abstraction that Vsimm
gueues and semaphores to be deployed across distinct VMsesents to the programmers, in comparison with other highe

Our results have exhibited that Vshmem can be very effevel programming models. Although this might add a extra
cient and much lower in latency in communication overhegaogramming effort on the programmers, it gives them the
between the domains, in comparison with other inter-VMexibility to implement the most efficient form of the barrie
communication mechanisms. For a variety of scientific dsvarfand reduction to their problem. Higher-level programming
we have shown that Vshmem in the virtualized software statdnguages can also have the flexibility to add their own
can achieve comparable performance to Sys V IPC in timaplementation of these operations using the Vshmem shared
traditional software stack. We also compared Vshmem withemory, should they decided to add support of the Vshmem
other network-based communication mechanisms. The bagicheir runtime systems.
latency-inducing factor in network communication is the IP Another distinction between the MPI and the OpenMP
stack overhead and memory copies. In Vshmem, the mem@npgramming models and the SysV/Vshmem programming
is directly shared between the user-space processes, which sapport is the style of parallelism. Vshmem parallel model
use the memory region at zero-copy communication. Xedeploys several independent processes, running in isblate
socket [33], Xway [34] and Xenloop [31] are other Xen intervirtual machines. In this model, the address space of each
VM methodologies that leverage grant-tables to suppor n@rocess is separate from the other processes. However, the
work communications between Xen VMs on the same physiqalogrammer caselectivelyshare memory regions between the
machines. Vshmem is more efficient than those systems, sinlifferent processes using the Vshmem facility. The OpenMP
Vshmem does not involve any kernel-to-user space crossimgdel has, however a different style of parallelism. In the
neither copy data between the buffers in the data-path.erh@penMP model, the main thread starts the other threads when
methods mentioned above have two to 4 copies overheddenters a parallel region and exits them when it exit this
which in turns increase the data exchange latency between itbgion. This model is commonly referred to as fork-and-join
communicating user-space processes. Furthermore, Vshnieém MPI model is similar to the OpenMP model, in that the
gives the programmers a familiar programming interfacé thaain thread forks the other threads. However, the parallel
they can utilize to flexibly co-ordinate and program severatgion in MPI model cover the entire application execution
processes to work together and accomplish the general piiocre and MPI threads only exits at the end of the application
gram goal. execution.

We also compared the Vshmem programming support toThe Vshmem parallelism model in implementing indepen-
two familiar programming models: MPI and OpenMP basedent processes can offer a number of performance optimiza-
on their relative total execution time in solving specificion and simplifies the development of certain categories of
common scientific dwarfs. However, the three models: MP3cientific codes. Specifically, Vshmem processes’ affinity t
OpenMP and SysV/Vshmem differ in other aspects as well.dbres can be specified through setting the affinity of the VM-
is important before discussing these aspects to draw the discore, which can be simply supported through virtuaiorat
tinction between a programming model, like MPI and OpenM&apabilities. For example, in Xen, the programmer can use a
and programming OS-support, like Vshmem. A programmirgimple API like "xm pin Vcpt to set the affiliation of VMs
model is a complete set of API, library functions and/aio certain cores. Furthermore, the Vshmem shared memory
runtime system that allow the programmer to implement@n also be affiliated to physical memory through system
particular algorithmic method to solve a particular prable calls like “madvise(). In addition, this flexibility in providing
On the other hand, a programming OS-support is a set mdrallelism through independent processes can alsotéeili
OS-extensions that allows the programmers and the varidhe implementation of irregular scientific applications.
programming models to efficiently utilize the underlying in We believe our Vshmem system will have an impact
frastructures. on promoting mixed parallelism for next-generation high

performance computing infrastructures. In this mixed paraunder the widely-used MPI interface. PGAS languages are
lelism model, communication between processes deployedamother category of parallel programming models that can
collocated VMs can occur over Vshmem shared memomiso leverage the Vshmem programming support. By adding
which provides a lower-latency medium for data exchang€shmem supportto PGAS languages, PGAS programming can
On the other hand, the inter-node communication can ocalso leverage the virtualized software stack while cortigu

via message passing, which can provide a better scalabilitysupport the distributed memory programming model. ib als
for the system. Mixed parallelism can have a very efficientill extend the capability of the PGAS languages by allowing
programming model to extract the harness the performartbem to affiliate the PGAS processes with particular cores
power of the multi-core clusters, i.e. clusters of nodesr@heand affiliate shared-memory regions with particular phaisic
each node has one or more multi-core microprocessor. Byemory addresses, which are currently not supported in PGAS
using two types of parallelism, the programmers are given tlanguages.

flexibility to optimize their code to the specific archite@u Another prospective direction for Vshmem is to add new
However, it might also come at the cost of extra programminprts for other hypervisor and virtualization technolagiguch
effort. as hardware-assisted virtualization technologies byl kel

Vshmem can also support heterogeneity in mode&MD. Many recent advances have improved the performance
multicore-based HPC systems. Hardware vendors have alamifications of this model, bringing it close to the nativerp
adopted heterogeneous processor-design architecturethevy formance. Several hypervisors and VMMs harness the power
by incorporating varying processor architectures witHie t of the hardware-assisted virtualization, such as KVM [53] a
same chip, by diversifying the capabilities of the diffarervMware [54]. Therefore, one prospective extension to the cu
cores, or their memory hierarchy, or merely their clockent Vshmem implementation is to support these hypervisors
frequency. FPGAs, GPGPUs and hardware accelerators ¥slhmem was designed to simplify its porting to other hypervi
becoming classic examples of the additional heterogenesyr, by confining the hypervisor-specific implementatiothi
and complexity in the hardware in HPC infrastructures. Ormttom half of the driver. By implementing the discoveryuge
quintessential example of modern heterogeneous mukiscoand tear-down functions in the bottom-half of the Vshmem
is the cell processor, with its one general purpose procebiver for the new hypervisor, Vshmem port will simply work
sor (i.e. PPE) and eight special-purpose co-process@s (for other virtualization techniques.

SPP) [50]. Additionally, the High Performance Computing The last prospective direction for this work is in the OS
(HPC) community is harnessing the potential performancestomization and specialization area. The OS is a com-
power of heterogeneous multi-core design in building itstneplex software layer that is designed to provide a wide-range
generation computing infrastructure. Some examples aee Laf services for diverse set of applications. However, OS-
Alomos National Lab (LANL) Road-Runner machines [51]customization can be deployed to slim down the operating
and Japan’s TSUBAME that is composed of 655 Opteron Dusystem and specialize it for a particular application ad ash
cores and 648 ClearSpeed accelerators [52]. Consequéigly, particular core-type. This model has the potential of eelivg
HPC hardware complexity is being propagated up to the soffve performance power of the HPC systems deploying multi-
ware stack and is posing several challenges to programmauge microprocessor and minimizing the OS-noise that might
these HPC infrastructures and extracting their perforraanc interfere with the application execution.

For that, the virtualized software stack can have a sigmifica
impact in simplifying the management and programmability
of these heterogeneous multi-core processors. As each OS /e investigated an novel approach to simplify the man-
encapsulated in its own VM, customizing the OS for eachgement and programmability of the multi-core processors
core-type become an attractive method to optimize the perfand to extract their performance power in HPC. In particular
mance of the entire system. Furthermore, this model can alge have advocated virtualization as an alternative approac
facilitate the affiliating memory regions to particular gigal to the traditional over-featured OS kernel approach; ther la
memory, and affiliating particular processes to specifie$ypcharacterized by its huge memory foot-print, low cache effi-
of cores, which in turn can present performance benefits faency and high OS-noise. In our alternative approach,m sli
the applications. hypervisor and several light-weight OS kernels are degloye

There are several future potential directions for Vshmem. A0 manage exclusive subsets of cores and hardware devices.
Vshmem enables zero-copy memory communication betweBaspite the attractiveness of this software stack model as a
user-space processes, it has the potential of optimizegéin result of its enhanced scalability, reliability and low @8ise,
formance of several other systems to extract the performaiitcposes a significant limitation associated with the In{éf-
from the complex multi-core HPC systems. One prospectigemmunication which endures high-latency as a result of the
future direction to Vshmem is to add its support to modenperfect memory isolation between the VMs. We addressed
parallel programming models. For example, by adding a ndtese two limitations as follows.

Vshmem channel to the MPI parallel programming model, To address this communication limitation, we implemented
MPI can leverage the power of the virtualized software staek OS-level support that allows a programmersglectively
while hiding the programming complexity of shared memorgelax memory isolation between the virtual machines. In

VII. CONCLUSIONS

addition, our system’s programming interface was providgts] M. A. Butrico, D. D. Silva, O. Krieger, M. Ostrowski, B..Rosenburg,
as an extension to the widely-used SysV [30] IPC interface,
whose familiarity significantly simplifies the programmiéti
of our model. Through this system, we offer a shared mem4]
ory, synchronous and asynchronous zero-copy communicatio
channel between user-space processes running in distinct v

tual machines running on the same chip. We also evaluated g

efficiency of our system using micro-codes as well as common
applications of widely-used scientific dwarfs.

In conclusion, our research outcomes have displayed thgj
HPC can leverage the power of virtualization as technology

trends drive heterogeneity and multicore forward. Our work
potentially has outreaching and impactful benefits for the

17]

bigger HPC community, with the numerous advantages that
virtualization offers to the HPC infrastutres.
Acknowledgements The authors would like to acknowl-
edge Chandra Krintz and Dmitrii Zagorodnov for the useful
discussions on this topic and their inputs and feedback.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

REFERENCES

Top500, “Top500 supercomputing sites,http://www.top500.0rg/
[Online]. Available: http://www.top500.org/

K. B. Ferreira, P. Bridges, and R. Brightwell, “Charaiag application
sensitivity to os interference using kernel-level noisgdtion,” in SC
'08: Proceedings of the 2008 ACM/IEEE conference on Supepting
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1-12.

P. Beckman, K.
“Benchmarking the effects of operating system interfeeenon
extreme-scale parallel machineluster Computingvol. 11, no. 1,
pp. 3-16, March 2008. [Online]. Available: http://dx.dwniy/10.1007/
s$10586-007-0047-2

D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpakfjc“System
noise, os clock ticks, and fine-grained parallel applicetjbin ICS '05:
Proceedings of the 19th annual international conferenceSapercom-
puting New York, NY, USA: ACM, 2005, pp. 303-312.

R. Brightwell, R. Riesen, K. D. Underwood, T. Hudson, P. Bidges,
and A. B. Maccabe, “A performance comparison of linux and
lightweight kernel,” inCLUSTER |EEE Computer Society, 2003, pp
251-258.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isa8csPeter,
T. Roscoe, A. Schupbach, and A. Singhania, “The multikerrel
new OS architecture for scalable multicore system,'Symposium on
Operating systems principles (SOSP)ctober 2009.

D. Wentzlaff and A. Agarwal, “Factored operating sysgeiffios): the
case for a scalable operating system for multicor8830PS Oper. Syst.
Rey, vol. 43, no. 2, pp. 76-85, 2009.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Sc®toactive
Fault Tolerance for HPC with Xen Virtualization,” €S '07: Proceed-
ings of the 21st Annual International Conference on Supepuding
New York, NY, USA: ACM, 2007, pp. 23-32.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lichp& Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” inlJSENIX
Symposium on Networked Systems Design and Implementat®Dl (
'05), Boston, MA, USA, May 2005.

H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration fo
virtual machine based on full system trace and replay,”"HRDC
'09: Proceedings of the 18th ACM international symposiumHigh
performance distributed computingNew York, NY, USA: ACM, 2009,
pp. 101-110.

R. Nathuji and K. Schwan, “Virtualpower: coordinatedwer manage-
ment in virtualized enterprise systems,” 8OSP '07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systemsiples
New York, NY, USA: ACM, 2007, pp. 265-278.

E. V. Hensbergen, “P.r.o.s.e.: partitioned reliabfer@ting system envi-
ronment,” Operating Systems Reviewol. 40, no. 2, pp. 12-15, 2006.

(18]

[19]

[20]

[21]

[22]

Iskra, K. Yoshii, S. Coghlan, and A. Natara

(23]

[24]

a
"[25]

[26]

[27]

(28]

[29]

[30]

(31]

D. Tsafrir, E. V. Hensbergen, R. W. Wisniewski, and J. XesidSpe-
cialized execution environmentsQperating Systems Revigwol. 42,
no. 1, pp. 106—107, 2008.

S. Thibault and T. Deegan, “Improving performance bybending hpc
applications in lightweight xen domains,” IHPCVirt '08: Proceedings
of the 2nd workshop on System-level virtualization for lpgiformance
computing New York, NY, USA: ACM, 2008, pp. 9-15.

G. Back and D. S. Nikolopoulos, “Application-Specificu§omization
on Many-Core Platforms: The VT-ASOS Framework,” Btoceedings
of the Second Workshop on Software and Tools for Multi-Cystefns
March 2007.

L. Youseff, R. Wolski, and C. Krintz, “Linux Kernel Spiatization for
Scientific Application Performance,” Univ. of Californi8anta Barbara,
Tech. Rep. UCSB Technical Report 2005-29, Nov 2005.

T. Anderson, “The case for application-specific opegatsystems,” in
Workstation Operating Systems, 1992. Proceedings., Woxkshop on
Apr 1992, pp. 92-94.

T. Naughton, G. Vallee, and S. Scott, “Autonomic Live gjdation of
Virtual Computational Environments in a Multi-Domain lafitructure,”
in First Workshop on System-level Virtualization for High feemance
Computing (HPCVirt 2007)Mar 2007.

A. Whitaker, M. Shaw, and S. Gribble, “Scale and perfante in the
Denali isolation kernel,” inSymposium on Operating Systems Design
and Implementation (OSDIR002, "http://denali.cs.washington.edu/”.
P. Barham and B. Dragovic and K. Fraser and S. Hand andafritH
and A. Ho and R. Neugebauer, “Virtual Machine Monitors: Xel ¢he
Art of Virtualization,” in Symposium on Operating Systems Principles
(SOSP) 2003.

L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paratialization for
HPC Systems,” inlISPA Workshopsser. Lecture Notes in Computer
Science, G. Min, B. D. Martino, L. T. Yang, M. Guo, and G. Réng
Eds., vol. 4331. Springer, 2006, pp. 474-486.

——, “Evaluating the Performance Impact of Xen on MPI dacess
Execution For HPC Systems,” ifTDC '06: Proceedings of the 2nd
International Workshop on Virtualization Technology in sBibuted
Computing 2006.

W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for Hig
performance computing with virtual machines,”IBS '06: Proceedings
of the 20th annual international conference on Supercomgut New
York, NY, USA: ACM, 2006, pp. 125-134.

A. Gavrilovska, S. Kumar, K. Schwan, H. Raj, V. Gupta, Rathuiji,
A. Ranadive, R. Niranjan, and P. Saraiya., “High-perforogahypervisor
architectures: Virtualization in hpc systems,”Rmoceedings of 1st Work-
shop on System-level Virtualization for High Performanaemputing
(HPCVirt 2007 2007.

A. Tikotekar, H. Ong, S. Alam, G. Vallée, T. Naughton, Engelmann,
and S. L. Scott, “Performance comparison of two virtual nigetsce-
narios using an hpc application: a case study using moledylzamics
simulations,” inHPCVirt '09: Proceedings of the 3rd ACM Workshop
on System-level Virtualization for High Performance Cotimgu New
York, NY, USA: ACM, 2009, pp. 33-40.

A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelm, and S. L.
Scott, “An analysis of hpc benchmarks in virtual machineiemments,”
pp. 63-71, 2009.

A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engainn, S. L. Scott,
and A. M. Filippi, “Effects of virtualization on a scientifiapplication
running a hyperspectral radiative transfer code on virtmalchines,”
in HPCVirt '08: Proceedings of the 2nd workshop on Systemkleve
virtualization for high performance computing New York, NY, USA:
ACM, 2008, pp. 16-23.

L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Walsihe
impact of paravirtualized memory hierarchy on linear atlgetomputa-
tional kernels and software,” iIHPDC, M. Parashar, K. Schwan, J. B.
Weissman, and D. Laforenza, Eds. ACM, 2008, pp. 141-152.

L. Youseff, K. Seymour, H. You, D. Zagorodnov, J. Dongarand
R. Wolski, “Paravirtualization effect on single- and mulireaded
memory-intensive linear algebra softwar€uster Computing[Online].
Available: http://dx.doi.org/10.1007/s10586-009-0080

M. J. Bach,The design of the UNIX operating systenUpper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1986.

J. Wang, K.-L. Wright, and K. Gopalan, “Xenloop: a traasent high
performance inter-vm network loopback,” HPDC '08: Proceedings

(32

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

of the 17th international symposium on High performancdrilisted [54] M. Rosenblum and T. Garfinkel, “Virtual machine mongoiCurrent
computing New York, NY, USA: ACM, 2008, pp. 109-118. technology and future trendsComputer vol. 38, no. 5, pp. 39-47,

A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing netlk 2005.
virtualization in xen,” inUSENIX Annual Technical Conferencelay
2006, pp. 15-28.

X. Zhang, S. Mclintosh, P. Rohatgi, and J. L. Griffin, “>6éarcket: A high-
throughput interdomain transport for vms,” IBM Researclchrécal
Report RC24247, Tech. Rep., 2007.

T. X. Team, “Xway: Lightweight communication betweenrdains in a
single machine,” 2007, http://sourceforge.net/propatformdownload.
php?groupy_id=191553.

P. Radhakrishnan and K. Srinivasan, “Mmnet: An effitiémer-vm
communication mechanism,” june 2008.

D. G. Murray, G. Milos, and S. Hand, “Improving xen setuthrough
disaggregation,” inVEE ’'08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execut@mviron-
ments New York, NY, USA: ACM, 2008, pp. 151-160.

W. D. Gropp and E. Luskinstallation Guide fornpi ch, a Portable
Implementation of MRIMathematics and Computer Science Division,
Argonne National Laboratory, 1996, aNL-96/5.

Openmp, “Openmp,” http://openmp.org/wp/. [Onlindjvailable: http:
/lopenmp.org/wp/

J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINRAEnchmark:
Past, present, and futureConcurrency and Computation: Practice and
Experience vol. 15, pp. 1-18, 2003.

R. Leibensperger, B. Barney, and G. L. Gusciora, “MPItfiaMultiply

- C Version,” http:/iwww.hku.hk/cc/sp2/workshop/sangstapi/C/mph _
mm.c.

“Laplace Solver using Jacobi iterations,” http://mwvmes.anl.gov/
research/projects/mpi/tutorial/mpiexmpl/src/jac@main.html.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, Pslénds,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. WilMfns, and
K. A. Yelick, “The Landscape of Parallel Computing Researksh/iew
from Berkeley,” EECS Department, University of CalifornBerkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Avadalhttp:
Ilwww.eecs.berkeley.edu/Pubs/TechRpts/2006/EEC$-2@3. html

J. Ekanayake, S. Pallickara, and G. Fox, “Mapreducedéda intensive
scientific analyses,” fESCIENCE ’'08: Proceedings of the 2008 Fourth
IEEE International Conference on eSciencéWashington, DC, USA:
IEEE Computer Society, 2008, pp. 277-284.

“Calculating = using Simpson Integration Rule,” http://www.mcs.anl.
gov/research/projects/mpi/tutorial/mpiexmpl/srafgihain.html.

D. C. RapaportThe Art of Molecular Dynamics SimulatiorNew York,
NY, USA: Cambridge University Press, 1996.

J. Burkardt, “An OpenMP Molecular Dynamics Simulatiasing verlet
time integration scheme,” http://people.sc.fsu.edwrkardt/¢,_src/md,
_open_mp/md_open_mp.html.

S. Kumar, D. Jiang, R. Chandra, and J. P. Singh, “Evalgasyn-
chronization on shared address space multiprocessoreoduidgy and
performance,” inSIGMETRICS '99: Proceedings of the 1999 ACM
SIGMETRICS international conference on Measurement andelimgy
of computer systems New York, NY, USA: ACM, 1999, pp. 23-34.
L. Youseff, A. Barbaro, P. Trethewey, B. Birnir, and J. Rilbert,
“Parallel modeling of fish interaction,” iI€SE '08: Proceedings of the
2008 11th IEEE International Conference on Computationaieice
and Engineering Washington, DC, USA: IEEE Computer Society,
2008, pp. 234-241.

A. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, , aid Birnir,
“Discrete and continuous models of the dynamics of pelagib: fi
application to the capelinthe journal of Mathematics and Computers
in Simulation (MATCOM-D-08-00022 journal2009.

M. W. Riley, J. D. Warnock, and D. F. Wendel, “Cell broadid engine
processor: Design and implementatiofBM Journal of Research and
Developmentvol. 51, no. 5, pp. 545-558, 2007.

K. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, Bakin,
and J. C. Sancho, “Entering the Petaflop Era: The Architecamd
Performance of Roadrunner”,” ifEEE/ACM Supercomputing (SC08)
November 2008.

S. Matsuoka, “The tsubame cluster experience a year, lanhd onto
petascale tsubame 2.0,” RVM/MPI, ser. Lecture Notes in Computer
Science, F. Cappello, T. Hérault, and J. Dongarra, Edd., 4i¢67.
Springer, 2007, pp. 8-9.

I. Habib, “Virtualization with kvm,”LLinux J, vol. 2008, no. 166, p. 8,
2008.

