
Vshmem: Shared-Memory OS-Support for
Multicore-based HPC systems

Lamia Youseffα,β Rich Wolskiβ

lyouseff@csail.mit.edu rich@cs.ucsb.edu
α MIT CSAIL β University of California, Santa Barbara,

Cambridge, MA 02139 Santa Barbara, CA 93106

Abstract—
As a result of the huge performance potential of multi-core

microprocessors, HPC infrastructures are rapidly integrating
them into their architectures in order to expedite the performance
growth of the next generation HPC systems. However, as the
number of cores per processor increase to 100 or 1000s of cores,
they are posing revolutionary challenges to the various aspects
of the software stack. In our research, we endeavor to investigate
novel solutions to the problem of extracting high-performance.

In this paper, we advocate for the use of virtualization as
an alternative approach to the traditional operating systems for
the next generation multicore-based HPC systems. In particular,
we investigate an efficient mechanism for shared-memory com-
munication between HPC applications executing within virtual
machine (VM) instances that areco-located on the same hardware
platform. This system, called Vshmem, implements low latency
IPC communication mechanism that allows the programmer to
selectively share memory regions between user-space processes
residing in collocated virtual machines. Our contributions ad-
dressed

I. I NTRODUCTION

Physical constraints like power and heat dissipation prevent
hardware vendors from increasing the speed of the processor
through increasing its frequency. Instead, the hardware indus-
try has recently revisited the micro-processor design withthe
goal of finding alternative techniques to increase its perfor-
mance growth. Multi-core microprocessor – i.e, configuring
more cores per chip with shared memory between them–
was the technique of their choice. As a result, multi-core be-
came the norm in contemporary microprocessor architectures.
Furthermore, the number of cores per chip is continuing to
increase, such that it is even expected that the number of cores
will double every year. Therefore, we expect to see chips with
100s or 1000s of cores in the next decade.

As a result of the huge performance potential of multi-
core microprocessors, HPC infrastructures are rapidly inte-
grating them into their architectures in order to expedite the
performance growth of the next generation HPC systems.
Starting in June 2007, the top500 supercomputers list became
dominated with dual-core and quad-core microprocessors [1].
For example, the number of systems in the list deploying
Quad-Core processors have grown between 19 systems in
June 2007 to 336 systems in June 2009. Furthermore, it
was expected that this trend is going to continue for the

0This work was done while the author was at the University of California
Santa Barbara and was funded in part by NSF Grants 0444412 and0331645.

next decade, with core numbers in the range of one-hundred
thousand to one million and more [1]. However, while multi-
cores are offering unprecedented power and performance for
HPC, they are posing revolutionary challenges to the various
aspects of the software stack, including operating systems,
compilers, tools, languages, runtime systems and applications.

The operating system is one of the most important compo-
nents in the software stack, as it impacts all the other software
components layered above it. Linux and Unix-like OS kernels
have emerged as the operating system-of-choice for many
HPC infrastructures as a result of its wide-range of readily
available programming support tools and specialized libraries.
Furthermore, it is becoming the preferred OS in academic and
production scientific computing settings as a result of being
an open-source freely-available and easy to use operating
system. As a result, many of the scientific programmers are
familiar with Linux as a development platform. However,
Linux and Unix-like operating systems are monolithic kernels
where all of the system tasks take place in the kernel space.
To clarify, Figure 1 shows a simplified representation of a
software stack based on monolithic OS-kernels. The operating
system in monolithic kernels is responsible for managing and
multiplexing the different processors /cores, hardware devices
and components. It is also responsible for process management
including process creation, scheduling, context-switching and
termination, memory management, employing the protection
mechanisms, and file-system management among other things.
As a result, the monolithic-kernel operating system is a
very complicated and huge software component. In addition,
Linux systems have become a performance hurdle for high-
performance computing applications because of their high OS-
noise [2], [3], [4]. In fact, some studies have reported thatthis
OS-noise is the primary bottleneck for application scalability
in HPC systems [2]. Other studies have also shown that the
huge memory-footprint and the decreasing cache efficiency of
the Linux kernel is among the limiting performance bottle-
necks for contemporary HPC applications [2], [3], [5], [?].

Given the increasing memory foot-print and system noise as
well as the decreasing cache efficiency of the Linux kernels
deployed in contemporary HPC systems, the HPC and OS
community expect that these limitations will be magnified
in the future [2], [3], [6], [7] as the number of cores in
microprocessors increases. This becomes clear as we consider
the diversity in the processes workloads deployed, served by

P
ro
c
e
s
s
 A

Multi-core System

Omni-kernel OS

P
ro
c
e
s
s
 B

Traditional Software Stack

core 1 core 2 core 3 core 4 core 5 core 6
core 7 core 8 core 9 coreN

P
ro
c
e
s
s
 A

P
ro
c
e
s
s
 Z

Fig. 1. This figure shows a simplified representation of the traditional
software stack, demonstrating the deployment of one operating system which
is managing all the cores and the processes.

P
ro
c
e
s
s
 A Each OS is

specialized

and pinned

to one or more

cores

Hypervisor (VMM)

Multi-core System

OS 1

P
ro
c
e
s
s
 B

Virtualized Software Stack

OS 2

P
ro
c
e
s
s
 Z

OS N

core 1 core 2 core 3 core 4 core 5 core 6
core 7 core 8 core 9 coreN

P
ro
c
e
s
s
 A

Fig. 2. This figure shows a simplified representation of the virtualized
software stack, demonstrating the deployment of a hypervisor and several
VMs, each of which is managing a subset of the cores and a subset of the
processes.

the OS as well as the potential diversity of the architecture
of the cores, frequency and memory hierarchy. Deploying one
monolithic kernel like Linux to manage10’s to 1000’s diverse
cores and diverse processes in future multi-core micropro-
cessor systems, will make the OS a significant performance
bottleneck and will cause the overall performance of the
system to deteriorate. That is to say that, alternative operating
system approaches and software stacksmust be explored to
solve this performance quandary for these future multi-core
microprocessors.

In the operating system community, several approaches
were explored to address this problem and provide mecha-
nisms to enhance the OS scalability, fault-tolerance, efficiency
and performance, such as research in micro-kernels, single
address-space operating systems, type-safe operating systems
and virtualization. In our research, we chose to explore thevir-
tualization approach because of the numerous benefits offered

by virtualization to HPC infrastructures, such as proactive fault
tolerance [8] and load-balancing through OS migration [9],
[10] and VM consolidation for power-saving in HPC data
centers [11], . Furthermore, virtualization ability to support
specialized and customized OS kernels can provide enhanced
scalability, reliability and low OS-noise [12], [13], [14], [15],
[14], [16], [17] to HPC applications. Additionally, recent
research in dynamic kernel adaptation [18] has uncovered
potential performance benefits for applications deployed in the
virtualized software stack.

Furthermore, the ability to continue to support UNIX pro-
gramming in HPC has made the virtualized software stack ap-
pealing, as UNIX and UNIX-like OS kernels can be deployed
within a virtual machine. Particularly, Linux has emerged as a
nearly ubiquitous, open-source operating system with a wide-
range of readily available programming support tools and
specialized libraries. It is currently the system-of-choice in
academic and production scientific computing settings and as
a result, many – if not the majority of – scientific programmers,
being trained today are familiar with Linux as a development
platform. Therefore, virtualization will enable us to continue to
support the familiar Linux API without possibly encountering
the limitations of monolithic OS kernels. Furthermore, recent
advances in OS research have addressed the performance
issues – historically associated with virtualization– with novel
techniques that reduce their performance overhead. One such
technique is paravirtualization [19], [20] which is the process
of strategically modifying a small segment of the interface
that the VMM exports along with the OS that executes using
it. Paravirtualization significantly simplifies the process of
virtualization (at the cost of perfect hardware compatibility)
by eliminating special hardware features and instructionsthat
are difficult to efficiently virtualize. Paravirtualization sys-
tems thus, have the potential for improved scalability and
performance over prior VMM implementations. Our own
research [21], [22], as well as other groups [23], [24], [25],
[26], [27] have advocated the benefits of virtualization for
HPC and rigorously investigated its performance overhead
for HPC micro-benchmarks, macro-benchmarks and common
HPC applications. They also showed that various scientific and
HPC workloads deployed on virtualized software stack demon-
strated a statistically insignificant performance degradation.
We have also carefully studied its impact on the different levels
of the memory hierarchy for memory-intensive and memory-
sensative application in [28], [29].

In sum, the virtualized software stack can offer many
benefits to HPC community and enhance the reliability of
the current infrastructures. However, in order for virtualization
to be successful in multi-core microprocessor in HPC envi-
ronments,all software components must be able to leverage
the shared memory offered by the architecture in order to be
able to extract the performance potential of the multi-core
microprocessors.

In a virtualized environment, there is no such direct support
of inter-VM shared memory although it is available at the
hardware level. This is a result of theperfectmemory isolation

dictated by the virtualization technology between the virtual
machines. Therefore, user-space processes, which are partof
the same HPC application and executing in collocated virtual
machine on the same hardware, endure unnecessary commu-
nication overhead and higher latency than processes running
within the same monolithic kernel. This aspect is currentlyone
limitation to the efficient utilization of the virtualized software
stack in HPC. In order to solve this performance quandary, we
need a user-controlled memory sharing mechanism through
which programmers can utilize the shared memory between
the cores. Such mechanism should provide a programming
interface to support user-level applications. It should also ver-
ifiably enhance the performance and programming efficiency
of the machine.

In this paper, we present an efficient mechanism for shared-
memory communication between HPC applications executing
within virtual machine (VM) instances that areco-locatedon
the same hardware platform. It also provides this mechanism
through a familiar programming interface that can be utilized
to can be utilized to control the degree of isolation between
virtual machine to enable low-latency shared-memory com-
munication This system, dubbedVshmem, implements low
latency Sys V [30] IPC-style shared-memory, synchronous
and asynchronous communication mechanisms allows the pro-
grammer to selectively share memory regions between user-
space processes residing in collocated virtual machines. We
also verified the performance of our system using various HPC
computational kernels and applications. Our results reveals
that HPC can leverage the power of virtualization as tech-
nology trends drive multi-core architectures and heterogeneity
forward.

The rest of this paper is organized as follows. Section II
presents the motivation and background for our work. Sec-
tion III describes the design and implementation of Vshmem,
as well as details the xen-port we implemented for the system.
Section V displays the performance evaluation of the Vshmem,
using various scientific dwarfs and applications. We discuss
the performance results and potential impact of our system
in section VI. We compare our work to other research in
section??. Finally, we conclude our paper and present our
future research directions in section VII .

II. M OTIVATION AND BACKGROUND

The next generation HPC systems are adapting unprece-
dented hardware complexity in the form of increasing number
of cores per processor in order to sustain the performance
growth and to maintain the increase in theMFLOPS of-
fered to the computationally-intensive HPC applications.How-
ever, the quest for an efficient software stack for such sys-
tems is a challenge facing the HPC community. Specifically,
the “monolithic-kernel” traditional software stack approach
presents serious impediments for next generation HPC systems
as a result of its increasing memory foot-print and system
noise and decreasing cache efficiency [2], [3], [4]. On the
other hand, the virtualized software stack presents an attractive
approach in addressing this complexity in the next generation

HPC infrastructure. With virtualization, OS-specialization and
customization can address those impediments and significantly
reduce the OS-noise in the system.

To clarify, figure 2 demonstrates one example of the power
of virtualization in leveraging the potential of multi-core
systems through OS-specilization and customization. In this
figure, each OS kernel can specialized for a specific core
type or workload such that it extract all the computational
power of the core without adding unnecessarily OS-overhead
on other cores and applications. The software stack of this
model is composed of a slim hypervisor deployed to manage
the entire hardware and multiplex the resources between the
different virtual machines. Each VM deploy an OS kernel
which can be specialized, optimized and/or pinned to one
or more type of cores such as computational cores and IO
enabled cores. One recent virtualization technique that support
this software stack without introducing significant overhead is
paravirtualization. In paravirtualization, the interface exported
by the hardware through the hypervisor is simplified in a way
that eliminates hardware features that are difficult to virtualize.
Examples of such features aresensitiveinstructions that must
be intercepted and interpreted by the virtualization layer,
introducing significant overhead. There are a small number of
these instructions that the guest OS uses that must be replaced
to enable execution of the OS over the VMM. Although the
guest OS kernel has to be modified, no application code need
to be changed to execute using a paravirtualizing system such
as Xen. Although this software stack has a superb potential
for extracting the computational power per core, the exchange
of data between processes experience unnecessary communi-
cation latency as a result of perfect isolation between VMs.
Specifically, the communication between user-space processes
running in different OS kernels endure significantly higher
latency than the processes executing within the same OS
kernel.

Early on, the operating systems (OS) community recog-
nized shared-memory Inter-Process Communications (IPC)
capability as an essential OS service. UNIX, for example
originally supported a number of process communication
constructs including lock files, signals and pipes [30]. Today’s
Linux and UNIX-like systems support more communications
constructs between processes. Arguably, the System V shared
memory interface is one of the most popular IPC constructs
among UNIX-programmers The System V shared memory
interface provides abstractions that enable memory sharing of
well-defined regions of a process address space, as well as
synchronous and asynchronous communication between the
processes in the form of semaphores and message queues.
Therefore, user-space processes can establish communication
using shared memory if they are executing within the same
OS-kernel. Another IPC facility is sockets which allows user-
space processes to establish a communication channel between
themselves to facilitate data exchange, but which is usually
used in a networked setting, to allow processes belonging to
different hosts on the network to communicate.

Although IPC socket interface can be used for commu-

nication between user-space processes in collocated virtual
machines, data exchange over the network protocols adds
unnecessary communication latency. This is caused by IPC
socket interface, which lacks the capability of providing direct
(i.e. zero copy) shared memory between processes as well
as the overhead introduced by the IP stack. In addition, it
requires several cross address-spaces copies (i.e. user-space
to kernel-space copy and kernel-space to user-space copy)
that adds to the communication latency. In essence, this
unnecessary latency is a consequence of theperfectmemory
isolation between virtual machines, which necessitates the use
of communication protocols to transfer data between machines
using standard network protocols.

To exemplify, Xen is an example of a hypervisor that is
widely deployed. It enables user-space processes to commu-
nicate across VMs using TCP/IP sockets. Xen implements
a split device driver architecture for the network subsystem.
For that, anetbackis deployed in the privileged VM, com-
monly referred to as Dom0 and anetfront is deployed in the
unprivileged VMs, and they both interacts using high-level
network device abstractions. When a user process needs to
exchange data with another user process in a collocated VM,
it can use socket network interface. The data to be exchanged
is then copied to the kernel-space viacopy from user, and
uses the networking subsystem to encapsulate them in IP
packets. Once the IP packets are ready, the DomU kernel
a ring buffer that transfers the packets to Dom0. The latter
domain which acts as the software bridge in this scenario.
Upon the reception of the packets, Dom0 copies the packets to
its own address space in order to process them and determine
the receiver domain, and then adds them to the ring buffer of
that receiver domain. Once the packets are transfered to the
receiver domain, they gets copied to its own address-space
which then determine the receiver process. The packets are
then copied viacopy to user to the user address space of
the receiver process [20], [31], [32]. This communication
pattern endures significant performance penalty since all the
data exchange from the sender process to the receiver process
is redirected through Dom0, and involves several copies across
the address-spaces. The System V shared memory interface, on
the other hand presents an efficient, low latency communica-
tion between the processes executing in the same user space
through direct zero-copy memory sharing between them.
However, it lacks the capability of enabling processes across
VMs to communicate. Several projects, such as Xenloop [31],
XenSocket [33], Xway [34] and MMNet [35] have looked
at optimizing the socket communication path between user-
space processes in collocated VMs by supporting them with
shared memory. However, none of these systems can achieve
comparable performance to low SYS V IPC latency of two
communicating processes inside the same address space. This
is a result of the IP stack overhead in some of these projects
and the number of memory copies in the other projects.

Figure 3 illustrates this comparison between System V
IPC via shared memory in the “monolithic-kernel” traditional
software stack (on the left) versus the IPC socket interfacein

Hypervisor (VMM)

OS 1

P
ro
c
e
s
s
 A

P
ro
c
e
s
s
 B

Virtualized Software Stack

Hardware

OS 2

Hardware

OS kernel

P
ro
c
e
s
s
 A

P
ro
c
e
s
s
 B

(c) (d)

Traditional Software Stack

(a) (b)

Hardware

OS kernel

P
ro
c
e
s
s
 A

P
ro
c
e
s
s
 B

Hypervisor (VMM)

OS 1

P
ro
c
e
s
s
 A

P
ro
c
e
s
s
 B

Hardware

OS 2

Discovery

and

setup

Phases

Data

Exchange

Phase

Fig. 3. This figure portrays the difference in the communication mechanisms
between user-space processes collocated in the same OS, versus on different
OS and using SYS V IPC versus socket programming respectively where (a)
represents the discovery and setup phases in SYS V IPC in the traditional
stack, (b) shows the same phases in the virtualized stack using socket
programming, (c) represents the direct data-exchange using SYS V IPC in
traditional stack while (d) shows the data-exchange in the virtualized stack
using socket programming.

the virtualized software stack (on the right) through the three
phases of inter-process communication: the discovery phase,
the setup phase (both shown in the upper row) and the data
exchange phase (shown in the bottom row). Note that, for
simplicity, we consider Dom0 in this diagram as part of the
hypervisor layer. In the traditional software stack, the shared
memory discovery and setup for IPC is done via the operating
system which is the common layer between the two user-
space processes: the sender process and the receiver process.
During the discovery and setup phases (i.e. subfigure (a)), the
OS kernel registers the shared memory to its IPC facilities
and makes it available for other processes to connect to by
assigning it a key and shmem identifying number (akashmkey
and shmid). Once the receiver process identifies this shmem
region via the shmkey and request to have it attached via a
system call, the OS kernel maps it to the process’s address-
space. Once mapped, low-latency data exchange between the
two user-space processes is facilitated as demonstrated inthe
lower left cartoon in figure 3 through direct zero-copy shared
memory communication.

On the other hand, the virtualized software stack experi-
ences much higher latency in inter-process communication
between user-space processes in collocated virtual machines.
The cartoon at the upper right corner of figure 3 demonstrates
the discovery and the setup phases in the alternative software
stack. The discovery mechanism in this scenario is done
via Dom0 which acts as the software bridge between the
different domains. As described earlier and demonstrated in
the lower right cartoon (i.e. subfigure (d)), the actual exchange
of data between the two processes uses socket programming
which involves several copies from and to the user-space and

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

av
er

ag
e

la
te

nc
y

in
 m

ic
ro

-s
ec

on
ds

 (
lo

gs
ca

le
)

Size of the exchanged buffer in bytes

Comparison of communication latency of ping-pong experiment between two user-space processes,
 communicating via SYS V IPC in the traditional software stack versus

 Inter-VM TCP and UDP socket communication in the virtualized software stack

SYS V IPC

UDP/IP Socket

TCP/IP Socket

SYSV IPC Communications between 2 processes in traditional stack
TCP Communications between 2 processes in virtualized stack
UDP Communications between 2 processes in virtualized stack

Fig. 4. This figure portrays the difference in the communication latency of
user-space processes using SYS V IPC in the same operating system versus
socket programming across virtual machines respectively.

the kernel-space, entails packet processing and the IP stack
overhead. All these operations add a considerable overheadto
the communication latency between the processes.

To characterize this overhead, we designed a simple ping-
pong experiment of a buffer of data between two user-space
processes, which send the buffer back and forth between
them for 1000 times for each run. Figure 4 illustrates the
communication latency in microseconds (onY -axis) on log
scale as a function of the exchanged buffer of data in bytes
(on theX-axis). The figure compares between the latency of
SYS V shared memory IPC in the traditional software stack
versus Inter-VM communications using TCP/IP and UDP/IP
sockets in the virtualized software stack. The numbers reported
here are the averages of 10 runs. This experiment signifies the
overhead introduced by socket programming in the virtualized
software stack, and how it compares with SYS V IPC shared
memory communications. The communication between vir-
tual machines using socket programming introduces a much
higher latency in communication in the order of 56 times
more. For example, TCP and UDP average communication
latency between user-space processes in virtualized environ-
ments are 117.66 and 106.94 microseconds respectively, while
the average of the communication latency between user-space
processes using SYS V IPC is 1.923 microseconds. This is
a serious impediment for the new virtualized software stack
since it will hinder the user-space from achieving near-peak
performance of the machine. In turn, efficient low-latency
inter-VM communication leveraging the shared memory in
multi-core machines is indispensable for the virtualized soft-
ware stack, and is more compelling now than before. The
goal of this work is to address this limitation by providing an
efficient low-latency mechanism between user-space processes
in the virtualized software stack, which allows the programmer
to selectivelycontrol the degree of isolation between the user-
space processes in the virtualized software stack through a
familiar and standard programming interface.

III. V SHMEM DESIGN AND FUNCTIONAL REQUIREMENTS

Towards the goal of supporting an efficient low-latency
communication methodology in the virtualized software stack,
we implementedVshmem. Vshmemextends the System V IPC
to enable zero-copy communication between user-space pro-
cesses running in distinct VMs deployed on the same physical
host. Vshmem, furthermore harnesses the familiarity of the
UNIX programmers with System V IPC syntax and semantics
for shared-memory, synchronous and asynchronous communi-
cation without disabling the isolation boundary between virtual
machines. In this section, we describe the general design goals
of Vshmem, its principle operations, the necessary extensions
to the SYS V IPC.

Vshmemextends the existing SYS V IPC semantics [30] to
enable processes executing in separate VMs to discover SYS V
IPC constructs in other VMs collocated on the same physical
node.

In order to enable user-space inter-VM direct shared mem-
ory, synchronous and asynchronous communication, Vshmem
mustsupport three principle operations in order to allow seem-
ingly transparent SYS V IPC communication across virtual
machines. The three main required operations are:

1) Inter-VM IPC Constructs Discovery: This operation
refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled virtual
machine tofind other Vshmem IPC constructs through
the Vshmem system in collocated Vshmem-enabled vir-
tual machines.

2) Inter-VM IPC Constructs Setup: This operation
refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled virtual
machine toshare some or all of its IPC constructs
with some or all of the user-space processes executing
in collocated Vshmem-enabled virtual machines. This
abstraction also refers to the conceptual procedure
of equipping any user-space process executing in a
Vshmem-enabled virtual machine tomap some of the
existing Vshmem IPC constructs through the Vshmem
system in collocated Vshmem-enabled virtual machines
to its own address space.

3) Inter-VM IPC Constructs Tear-down: This operation
refers to the conceptual procedure that equip any user-
space process executing in a Vshmem-enabled vir-
tual machine tounmap previously-mapped Vshmem
IPC constructs from its own address space. Further-
more, it enables any user-space process executing in
a Vshmem-enabled virtual machine toun-share IPC-
constructs with other user-space processes in collocated
Vshmem-enabled virtual machines, which it previously
had shared.

These three operations demonstrate the necessary functional
requirements for the Vshmem system to support inter-VM IPC
constructs. In this respect, the implementation of these oper-
ations is the basic spine of theVshmemsystem. Furthermore,
their implementation constitutes the main mechanisms for

Vshmem port to any hypervisor or virtualization technology,
as we exemplify later in this section. By providing a different
implementation to each of these operations,Vshmemcan be
simply ported to various hypervisors and virtual machine
monitors. For that reason, we ensured in our currentVshmem
implementation to separate the functional requirements from
their implementations in order to facilitate future development
of Vshmemports to other virtualization technologies. Fur-
thermore, by separating theVshmemrequirements from their
implementations, SYS V IPC Shared memory applications can
be portably deployed across different traditional and Vshmem-
enabled virtualized systems with minimal code modifications,
since the API remains unchanged.

In addition to the required principle operations, a number of
extensions to the current SYS V IPC are necessary to support
inter-VM communications. We designed these extensions to
the semantics of SYS V IPC with the goal of allowing dis-
covery, setup and tear-down of shared-memory communication
channels between user-space processes executing in collocated
virtual machines1. The three different IPC extensions to
support our efficient low-latency communication goal are:

1) V-shmem: This first extension implements a partial
address-space sharing between user space processes in
order to facilitate zero-copy communication between
them. Having the communicating processes executing on
the same physical node,V-shmemallows one process to
extent its virtual memory and permit other processes in
the same or different VMs to map this range of memory
addresses to their own address space. The interfaces used
for these procedures are the familiar SYS Vshmget(),
andshmat()system calls. User-space processes identify
shared memory offered by other process through an IPC
key, which is passed to theshmget()to obtain ashmid.
Shmid is then used to map the memory region to the
address space of the communicating process through
the shmat() API. Thereafter, communication between
the processes is a zero-copy communication with no
latency. Theshmctl()andshmdt()system call is used to
perform control operations on theV-Shmem, including
the removal of the shared memory constructs between
processes.

2) V-sem: The second extensionVshmempresents isV-
sem, a virtual semaphore implementation which enables
synchronous communication between processes.V-sem
also extends the SYS V semaphore implementation to
work across virtual machines. It implements the same
APIs, and syntax as SYS V. Also, it uses an IPC
key to identify sets of semaphore and attach to them
through thesemget()system call. It further usessemop()
and semctl()to set, get and test-and-set the semaphore
between the processes.

3) V-msgq: The third extension isV-msgq, which im-
plements a virtual message queue between different

1We also commonly refer to these three Vshmem extensions: V-shmem,
V-sem and V-msgq as the Vshmem constructs.

processes residing in different virtual machines. We also
extend SYS V APIs to support theV-msgqabstraction.
As a result, aV-msgq can be created and used by
two processes using themsgget(), msgctl(), msgrcv()
and msgsnd()system calls. IPC keys are further used
to support identifying message queues across virtual
machines running on the same physical node.V-msgq
presents the asynchronous communication methodology
between process inVshmem. Reasonably,V-msgqwas
implemented usingV-shmemand V-sem, and support
the same syntax and semantics of the SYS V message
queues.

In sum, Vshmemis intended to transparently broaden the
SYS V IPC calls to extend the IPC capability across virtual
machines on the same physical host. As described above,
it extends the SYS V IPC shared memory APIshmget(),
shmat(), shmdt(), shmctl(), synchronous communication via
semaphore APIsemget(), semctl(), semop()and asynchronous
communication via message queues APImsgget(), msgctl(),
msgrcv(), msgsnd()to allow efficient inter-VM communication
between user-space processes. We also designed several new
kernel data structures to support Vshmem constructs. However,
due to space limitations, we refrain from discussing these data
structures. Interested readers in more detailed discussion of our
implementation and the data structures should consult [?].

Several design considerations had shaped also our imple-
mentation decisions. The first consideration deals with the
degree of the hypervisor modifications our implementation
should include. In a virtualized environment, like in virtual
clusters and cloud computing, modifications to the hypervisor
are strongly discouraged. This is because of their prospective
impact on the stability of the cluster system, the OS kernels
and applications executing on this system. Therefore, the first
design principle is to avoid any hypervisor modifications or
extensions. In addition, for fear that we introduce performance
or functional disturbance to the Linux kernel, we confined
our Vshmem extensions to a Linux device driver, which
is designed to be dynamically loadable and removable at
runtime. Furthermore, in the hope that we support a portable
implementation of Vshmem, we refrained from any hardware-
specific codes in our implementation. In designing Vshmem,
we gave special focus on the separation between the system
abstractions and their mechanisms. In turn, this will facilitate
the process of porting the system to other hypervisor and vir-
tualization technologies by reusing several parts of the current
Vshmem port. Specifically, we designed our implementation to
an upper half which contain the Vshmem-generic codes, and
a bottom-half which is hypervisor-technology dependent. This
way, our system can be simply extended to a wide-range of
IPC systems and to a wide-range of virtualization technologies.

IV. I MPLEMENTATION OF VSHMEM XEN PORT

We implemented the firstVshmemport for the Xen hyper-
visor [20]. Xen is a popular open-source hypervisor developed
originally for the X86 architectures and implements paravirtu-
alization to run virtual machines without requiring hardware

virtualization support. Recently, Xen has been ported to many
OS kernels, and hardware architectures. Accordingly, we chose
to first port theVshmemIPC system to Xen because if its wide-
adoption, its performance characteristics which we empirically
evaluated in [28], [21], [22], in addition to its recent merge
to the Linux kernel main-tree. In this section, we detail the
implementation specifies of our Vshmem system.

Given the implementation considerations and principles we
outlined in previous section, we implemented the Vshmem-
Xen system as a Linux device driver. We deployed the concept
of Xen split device driver in our implementation of Vshmem,
where the driver is divided into two ends: front-end and back-
end. Furthermore, each of the two ends is divided into two
further parts: an upper half and a bottom half. Figure 5
overview the architecture of our Vshmem-Xen split device
driver.

Vshmem

upper

half

Node A

H/W

Multi-core System

Hypervisor

OS (1) _____

 OS-2

V
s
h
m
e
m

B
a
c
k
e
n
d

V
s
h
m
e
m

fr
o
n
t-
e
n
d

P
ro
c
e
s
s
 2

P
ro
c
e
s
s
 1

Data

Exchange

Discovery

and setup

Vshmem

bottom

half

Vshmem

upper

half

Vshmem

bottom

half

Fig. 5. The figure demonstrates the architecture of the Vshmem-Xen split
device driver, with its two halves: the upper and bottom halves as well as its
front-end and its back-end.

The Vshmem-Xen split device driver, as shown, consists of
the front and back device ends. The back-end is the device-end
which is responsible for creating and offering the Vshmem
SYS V IPC constructs. On the other hand, the front-end is
the device connecting to an existing SYS V IPC constructs.
This distinction is necessarily since the procedure of creating
and registering the new SYS V IPC construct to Vshmem
system is different and requires more complicated procedures
than the process of discovering and connecting to an existing
construct. Normally –although not necessarily–, the device
back-end is loaded to the Dom0 kernel, since it usually has
more hypervisor-privileges which would facilitate efficient
creation, registration and destruction of Vshmem SYS V IPC
constructs. On the other hand, the front-end is loaded in the
less-privileged virtual machines: DomUs. This is one use-
scenario for the Vshmem device driver that supports efficiency
and performance effectiveness. However, the virtual machine
loading the front-end can also create and register SYS V IPC
constructs. This is supported by having the front-end forward

Vshmem constructs creations and registration calls to the back-
end, which creates them on its behalf. This way, we allow both
the front-end and the back-end of the Vshmem device driver to
create, register and destruct Vshmem SYS V IPC constructs.
It is important to mention that only the owner/creater of a
Vshmem SYS V IPC constructs can register, set the ownership,
set the access flags, and destructs its Vshmem constructs.

We also divided the implementation of each end of the
device driver to an upper-half and a bottom half. The upper
half of each device driver implements Vshmem extensions to
the syntax and semantics of the SYS V IPC, and is hypervisor-
technology independent. It implements the mechanisms of
the shared memory, semaphore and message queue constructs
through the Vshmem kernel data structure. It is this half of
the device driver that interacts with the user-space processes.
It also communicates with the bottom half through a set of
function calls and well defined API.

The bottom half is the hypervisor-dependent implementation
and uses the hypervisor-specific API in order to share memory
pages with other virtual machines, to register Vshmem con-
structs or to destruct existing ones. By isolating hypervisor-
specific implementation in the bottom-half of the device driver,
we simplify the procedure of extending Vshmem to other
virtualization technology since each hypervisor technology has
its own memory management mechanisms and API. Should
the open-source community decide to extend the Vshmem
implementation to other hypervisor, they only need to re-
implement the set of function calls of the bottom half.

In order to describe the bottom half device driver im-
plementation, we need to highlight some Xen specific tools
and subsystems. Xen originally provides a basic mechanism
for memory sharing and data transfers between kernel-space
processes in virtualized environments, which is called grant
table (a.k.a. gnttab). The grant table mechanism mainly allows
sharing of memory pages betweenkernel spacesof the dif-
ferent virtual machines. However, the granularity of memory
sharing is typically coarse (e.g. 4096 bytes in x86 architecture)
and is only allowed between kernel space processes. Despite
the recent introduction of gntdev [36] to the Xen tree, whichis
a device to allow user-space processes to gain access to grant
table pages, user-space processes continue to not be allowed to
create, manage and remove grant tables pages. In addition, the
discovery of the different grant table entries is not supported by
the basic functionality of grant table or gntdev. Furthermore,
gntdev does not provide a programming interface that the user-
space processes can utilize. In this respect, the gntdev and
gnttab are very limited subsystems for our purposes.

In order to discover and setup the different Vshmem IPC
constructs between the domain, some form of basic configu-
rations communication is needed between the Xen domains.
Fortunately, Xen provides a key-value store – dubbedXenStore
– which is shared between the VMs, and used to negotiate
general device settings and configurations.

We use both Xen grant table andXenstoreto implement the
Vshmem-Xen port. Vshmem is deployed on Xen in order to
enable sharing and coordination between virtual machines.For

that, it deploys the Vshmem back-end in a privileged virtual
machine, i.e.Dom0. Other virtual machines run in unprivileged
mode, i.e.DomUs and deploys the Vshmem front-end. For
the bottom half in both the front-end and the back-end, an
implementation of the three Vshmem principle operations:
Inter-VM IPC constructs discovery, Inter-VM IPC constructs
setup and Inter-VM IPC constructs tear-down is provided.

The bottom-half usesXenstoreto announce its participation
and availability for theVshmemsystem, a state which we
dub VshmemReady. Thereafter, whenevershmget(), semget()
or msgget()are called with anIPC CREATflag set, the bottom
half is responsible to request a new page to be shared by the
requesting domain via the gnttab, a newVshmemconstruct
is created, and the new IPC key and itsVshmemconstruct
gnttab reference(s) is/are announced through theXenstoreto
the otherVshmemReadydomUs. When a new process executes
a shmget(), semget(), or msgget()with the IPC CREAT flag
unset, the bottom-half first looks for the requested IPC-key
in the XenStore, and connect to it if it exist. Otherwise, it
returns an error. If theVshmemIPC key is found, the bottom-
half maps the shared memory region to the calling user-space
process address space. In order not to break the isolation
between the VMs, Dom0 has the sole capability to create new
Vshmemconstructs. However,Vshmemdeploys a methodology
through which a DomU may request from Dom0 to create a
Vshmemconstruct on its behalf. This methodology allows user
space processes in DomUs to use theVshmemsystem without
breaking the isolation barrier between the virtual machines.

Once the key is configured/found in the XenStore, the
bottom-half configures the shared memory, semaphores and
message queues can to be mapped to the address-space of the
user-space process. However, a normal kernel-space to user-
space mapping throughmmap()does not work in this case,
since the memory is owned by another domain. Every time
the user-space process tries to access this memory region, a
page fault is caused on this address although it owns all the
permissions needed and the page is in memory. The solution
to this problem is by injecting the shared page to the domain
address space through apfn remap range. The final Vshmem
tear-down operation is done by removing the Vshmem keys
from the XenStore, and un-sharing the memory between the
domains through the grant table interface. All that procedures
is transparent to the user-space process, and are hidden in the
bottom-half.

In terms of performance overhead, the creation of any one
Vshmemconstructs costs theVshmem-backendone hypercall
to map the shared grant table page, and costs theVshmem-
frontendone hypercall to map the page into its address space.
To avoid this overhead on the execution time of the user-
space applications, a mechanism which anticipates the number
of pages to be shared is needed such that the pages can
be requested ahead of time and is part of our future work.
The same number of hypercalls is needed for shared memory
tear-down. Discovery does not require invocations to any
hypercalls, but interacts with the Xenstore through its API.
Once the shared memory is mapped to the address-space of

the user processes, no further interaction is needed between the
Vshmemdriver and the hypervisor or Xen tools. Thereafter, a
zero-copy methodology is in place which achieves the aimed-
for efficiency and low latency data exchange between the user-
space processes. In this regard, the overhead of interacting with
the hypervisor, as reflected by the number of hyper-calls is kept
to a minimum in our implementation. Furthermore, Vshmem
constructs discovery, setup and tear down functionalitiesare
not on the critical path of the data exchange and therefore,
should not impact the performance and latency of the direct
zero-memory copy between the user-space processes.

V. V SHMEM PERFORMANCEEVALUATION

In this section, we describe the performance profile of the
Vshmem system. In addition, we compare the performance of
SysV/Vshmem to two other popular parallel programming sys-
tems: message-passing programming using MPI and shared-
memory programming using OpenMP. For this comparison,
we have selected four widely-used scientific dwarfs.

A. Methodology and Hardware Platform

In this performance evaluation, we used a dual-core, 2.8-
GHz Intel Pentium D with an 800-MHz processor bus and
2 MB of L2 cache. The machine’s memory system uses a
533-MHz bus with 1 GB of dual interleaved DDR2 SDRAM.

As we outlined before, we compared the performance of two
software stacks: the traditional and the virtualized software
stacks. The traditional software stack consists of aLinux
OS-kernel version 2.6.18 with SMP support. We considered
this OS-kernel our base performance kernel. In addition, we
used GCC version 4.1.2 and GNU make version 3.81 in
compiling this OS-kernel and the different benchmarks and
codes. We furthermore deployed fedora core-8 tools for file-
system and software packages management. For the virtualized
software stack, we employed Xen 3.3.0 hypervisor andxenified
Linux OS-kernels version 2.6.18 for the virtual machines.
The kernels for the virtual machines were configured with a
single processor, i.e. non-SMP kernels. Both the hypervisor
and the OS-kernels were compiled from scratch with GCC
version 4.1.2 and GNU make version 3.8.

In order to compare the performance of the different parallel
programming models, we installed MPICH 1.2.7 runtime
system [37] with P4 channel interface and configured it to
utilize openSSH version 4.7 and openSSL version 0.9.8b for
establishing secure connections between the MPI threads. The
OMP benchmark executables were compiled and linked using
GCC version 4.1.2 with the-fomp flag which supports the
OpenMP v3.0 API and executable directives [38].

All the results of the experiments and benchmarks were
collected in run levelone. A run-level in Unix is a mode of
operation that employs a specific set of services. Run level
one is an intermediate state which starts single-user mode
and does not start the heavyLinux daemons. Offering only
minimal OS services, aLinux kernel operating in run-level
oneis usually more efficient than higher run-levels. In order to
be able run MPI benchmarks at this run-level, we configured

the OS kernel to start the networking and sshd daemon Run
level five, on the other hand is a full mode operational kernel
with multi-user support, a display manager and console logins.
In this evaluation, we employ run-levelone for all of our
experiments since we intend to compare the raw performance
of the individual programming models. Using this run-level,
we avoid both overhead and performance variation that OS
daemons might introduce into the performance results.

B. Benchmarks

For our empirical evaluation of Vshmem, we deployed the
benchmarks summarized in table I. This set of programs can
be categorized into three groups .

a) Communication-latency Micro-codes:The overarch-
ing objective of Vshmem is to provide a low-latency communi-
cation mechanism between user-space processes in collocated
VMs in virtualized HPC environments. Therefore, the first
set of evaluation codes we used was focused on assessing
this communication latency in the virtual software stack.
Specifically, the objective of this set of micro-benchmarksis
to contrast the communication-latency characterization of the
current Vshmem implementation to other IPC communication
methodologies between user-processes in different collocated
virtual machines. Two micro-benchmarks were crafted in
this subcategory to measure the latency of process-to-process
communication across different mechanisms.

Our intent is to measure the overhead of socket connection
management in comparison to the shared-memory mechanisms
for communicating short chunks of data. The first benchmark,
denotedSync, passes control back and forth between two
threads of execution for 100,000 turns by modifying data
in a memory region shared by the threads. The benchmark
was written in C relying neither on existing synchronization
libraries nor on hardware support for synchronization. Instead,
Sync uses classic P/V semaphores to impose the pattern of
alternating accesses to the shared region, which is modified
at each turn, as shown in figure 6. The benchmark uses busy
waiting to minimize context switches.

The second micro-benchmark, denotedSocket, uses a net-
work socket to pass back and forth a chunk of data between
two processes for100,000iterations. Socket is configurable to
use UDP or TCP network protocols for the connection.

sem[0] = sem_init(0);
sem[1] = sem_init(1);
for (i = 0; i < iter; i++) {

sem_P(sem[my_id]);
memset (region, my_id, size);
sem_V(sem[!my_id]);

}

Fig. 6. Simplified pseudo-code forSyncmicro-benchmark. The same code
runs in two threads, with the value ofmy_id being the only difference (it
is 0 in one thread and 1 in the other). Variableturn and the semaphore
structures are in shared memory.

b) Scientific Dwarfs:This group of benchmarks repre-
sents algorithmic methods and communication-computation
patterns that are commonly exhibited in high performance

computing applications as well as other areas such as embed-
ded systems, database systems, machine learning and graphics.
To contrast the performance of Vshmem to the performance of
popular parallel programming models, we have implemented
several computational codes and methods in MPI and OpenMP
in addition to SYSV/ Vshmem.

We chose four different dwarfs to use in the evaluation
of Vshmem and we selected a simple representative problem
for each dwarf and studied its communication/computational
pattern and data memory-layout as well as its parallel imple-
mentation considerations.

1) Dense Linear Algebra: This dwarf represents the
classical dense matrix and vector operations which is com-
monly occurring in many applications in high performance
computing. Vector-vector multiplication is normally referred
to as BLAS level 1 while matrix-vector and matrix-matrix
multiplications are refereed to as BLAS level 2 and BLAS
level 3 respectively. Linpack benchmark [39], for example is
one application of this dwarf which is customarily used to
rank the different HPC infrastructures for the semi-annualtop
500 list [1].

We have adapted a simple MPI implementation of the
matrix-matrix multiplication problem which is available pub-
licly [40]. We modified this basic code to implement BLAS
level 1 and 2. In this code, the work is distributed among
the different MPI threads by rows.As a result, the memory
of the applications in this dwarf is normally accessed in
strides of rows. In addition, we substantially modified this
code to convert it to the other two programming models:
OMP and SysV/ Vshmem. Although we kept the same work
distribution among the threads, we replaced the MPI calls
and data structures with OMP‘for-loop’ directives to obtain
the OMP version. We further placed matrix A, B and C in
OMP shared memory. The same work distribution and data
layout was also adapted for the SysV/ Vshmem version of the
code. All the BLAS codes repeat the multiplication for 1000
iterations and output the average execution time for different
matrices’ sizes.

2) Structured Grids : The structured girds dwarf repre-
sents a group of scientific problems which consist of data
points laid on n-dimensions grids. A sequence of time-
steps, during which each data point is updated using values
of neighboring points is needed to solve these problems.
Parallel implementations of this dwarf are normally realized
by dividing the problem into subgrids. Each thread keeps a
local copy of one subgrid and updates the original grid at
the end of every step. Therefore, there is a significant data-
exchange phase between the boundary points of the neigh-
boring subgrids, which occurs at the end of every time step.
This pattern of communication is a common pattern in fluid
dynamics applications, finite elements methods, adaptive Mesh
Refinement (AMR) applications, Partial differential equations
(PDE) solvers and weather modeling.

We used one simplified example of the structured grids

Category Type Code Code Description

Micro-codes Communication Sync ping-pong of a buffer via Vshmem memory.
latency Socket ping-pong of a buffer via TCP & UDP sockets.

Scientific

Dense BLAS 1 Vector-Vector multiplication operations.
Linear BLAS 2 Matrix-Vector multiplication operations.
Algebra BLAS 3 Matrix-Matrix multiplication operations.
Structured Grids Laplace Solver A Laplace solver using Jacobi method.

Dwarfs MapReduce Parallelπ Calculation Calculatesπ usingSimpson’s Integration Rule.
N-Body Methods Molecular Dynamics MD simulations usingVerlet scheme.

TABLE I
AN OVERVIEW OF THE CODES AND BENCHMARKS USED IN EVALUATING THEVSHMEM SYSTEM

dwarf, which is theJacobi method for solving theLaplace
Equation. The Laplace equation is a PDE system whose solu-
tion is important in many scientific computations such as heat
conduction and fluid dynamics as well as areas like astronomy
and electromagnetism.Jacobi methodis a relaxation method
generally used to find an approximation of the solution of a
linear system which we deploy here to find the solution of
the Laplace PDE. During each time-step, each point in the
Laplace mesh data-structure is updated by the average value
of the 4 neighboring points.

we adapted a publicly-available MPI implementation of this
problem in 2 dimensions [41], and modified the original code
to simulate an increasing number of mesh points on any
given number of processors. Furthermore, we substantially
altered the code to convert it to the two other programming
models, i.e. OMP and SysV/Vshmem. The work distribution
for the three programming models is the same; each thread
is processing a subgrid and is communicating its own bound-
ary points with the neighboring threads. The data layout is,
however different between the three implementations. In MPI,
the points are distributed equally among the MPI threads,
and the boundary points are exchanged at each time step
using MPI Send()and MPI Recv(). MPI Reduce()is used
to check for the convergence of the Jacobi method. In the
OMP implementation, the original grid is placed in the OMP
shared memory. Each OMP thread keeps a local copy of the
grid and updates the original grid at the end of each time
step. SysV/Vshmem deploys the same data layout as the OMP
implementation.

3) MapReduce: The MapReduce dwarf presents an embar-
rassingly parallel algorithmic model that involves a minimal
amount of communication between the parallel threads. Basi-
cally, it represents a pattern where repeated independent tasks
compute a certain function on a large data-set, and the final
result of the parallel method is an aggregation of the local
computations.

In addition to its wide-deployment in large-scale search
applications, this dwarf has several applications in HPC [42].
In scientific computing, Grid computing applications can
arguably be considered one variation of this dwarf [42].
Monte Carlo methods, perhaps one of the most widely-

deployed computational methods in scientific applications, are
considered by some HPC scientists [42] a special case of the
MapReduce dwarf. Furthermore, a recent research project [43]
has stressed the potential of MapReduce methods for e-science
and identified several scientific applications of this important
algorithmic model such as High Energy Physics (HEP) data
analysis and K-means Clustering.

We chose a simple problem to mimic the computation-
communication pattern of the MapReduce dwarf. For that,
we utilized a MPI implementation ofπ-calculation using
Simpson’s Discrete Integration Rule. In this application,π
is evaluated as the value of the integral of4/(1 + x ∗ x)
between 0 and 1. Since the value of an integral is the area
under the curve of the function,π is approximated by the
summation ofn rectangles occupying the area under the
curve. This approximation scheme is known as Simpson’s
discrete integration rule. The local computation in this problem
comprises of an evaluation of the function at pointx for
the different x-values along the intervals assigned to each
thread and a summation of the partial area under the curve
for the local intervals. Undoubtedly, the bigger the number
of intervals, the more accurate the approximation is but the
larger the computation will be. Once the local computation
is completed, the approximated value ofπ is acquired by
aggregating the different local summations from the different
threads. To summarize, the map operation for this problem is
achieved by dividing the area into smaller intervals among the
different threads and the reduce operation is done through the
summation of the local calculations.

We have adapted a publicly-available MPI code that im-
plements this problem [44]. In this MPI version, the work
distribution is achieved by allocating equal numbers of in-
tervals to each MPI thread. The communication between the
threads occurs during the map phase, when the master thread
broadcast the total number of intervals to all the MPI thread
via MPI Bcast(), and during the reduce phase when the local
calculated values are all summed throughMPI Reduce(). We
ported this MPI implementation to OMP and SysV/Vshmem
and the same work distribution scheme is followed in the two
new ports. In OMP and SysV/Vshmem implementations, the
local values of theπ calculation are placed in shared memory.
The OMP implementation utilizesOMP reduce(+:localpi)
directive to perform the summation of theπ value. In the

SysV/Vshmem implementations, we developed a reduction
function that allows the master thread to aggregate the local
summations of partialπ values to realize the approximated
overall π value.

4) N-Body Methods: The N-Body dwarf represents the
classical algorithmic methods that rely on the interaction
of many points, where every point depends on all other
points to update its status. These methods normally take an
O(N2) computational complexity and appear in a wide-range
of scientific applications in astrophysics, molecular dynamics
and computer graphics. Traditionally, the workloads and the
communication scheme of the applications in these areas
change dramatically with time as a result of the dynamic nature
of the problems [45].

As an application of the N-Body dwarf, we used a publicly
available [46] simple molecular dynamics simulation that
was developed in OMP.In this simulation, the commencing
positions and velocities ofN interacting particles are ini-
tialized to random values. The simulation, then calculates
the interaction between the particles and computes their new
positions, velocities and accelerations using theverlet time
integration scheme. The Verlet Time Integration Scheme is a
numerical method used to calculate the integral of Newton’s
laws of motion at a reduced error level. It employs two Taylor
expansions – one forward and one backward in time– of the
position vector.

We adapted this code in our evaluation and modified the
OMP version to simulate a varying number of particles (np),
a varying number of dimensions (nd) for any number of
time steps (num steps). Furthermore, we exported the code
to SysV/Vshmem. The data layout for both versions of the
code is similar where the arrays accessed by all the threads are
allocated in the shared memory. The work distribution between
the threads in OMP and SysV/Vshmem is also similar, where
the points are divided equally between the threads.

C. Communication Latency Evaluation

Achieving a low communication latency between the user-
space processes in collocated VMs is one of our primary
goals. Therefore, we crafted two benchmarks,SyncandSocket,
to evaluate this latency. These benchmarks measure the time
for data exchange between the user-space process and does
not include the setup or overhead associated with establishing
connections.

Figure 7 depicts the results of running the two benchmarks
using traditional and virtualized software stacks. In thisfigure,
the x-axis represents the size of the buffer communicated
in bytes while the y-axis represents the average latency of
100,000 iterations in micro-seconds. In this experiment,Sync
uses SysV shared memory to send the data buffer back and
forth using zero-copy between the two user-space processes
running in the same OS kernel for the SysV case.

The latency for sync using SysV is in the range of 1-2
microseconds, with a small number of outliers. In case of

 1

 10

 100

 0 200 400 600 800 1000

av
er

ag
e

la
te

nc
y

in
 m

ic
ro

-s
ec

on
ds

Size of the exchanged buffer in bytes

Comparison of latency between two user-space processes
 running in the traditional and virtualized software stacks

Socket using TCP connection

Socket using UDP connection

Sync using SYSV shared memory

Sync using Vshmem shared memory

Socket using TCP Communications
Socket using UDP Communications

Sync using SYSV IPC Communications
Sync using Vshmem Communications

Fig. 7. This figure depicts the communication latency in the traditional and
the virtualized software stacks. In this figure, theSyncbenchmark is using
the SYSV shared memory in the traditional stack and the Vshmem is using
Vshmem shared memory in the virtualized stack. TheSocketbenchmark is
using TCP and UDP connections, both in the virtualized stack.

Vshmem, Syncexchanges a buffer of data between two user-
space processes running in different virtual machines. The
VMs are collocated on the same physical node, but each
VM is pinned to a different core to minimize the impact of
VM context switching. As Figure 7 illustrates,Vshmemhas a
comparable performance to SysV IPC as both methodologies
use zero-memory copy. In addition, the Vshmem curve does
not exhibit the same variability as SYS V. Specifically, the
variance for SysV results is2.7 with standard deviation of
1.66 while the variance for Vshmem measurements is0.007
with standard deviation of0.086. We believe that this is due to
less OS noise in the virtualized software stack caused by the
lack of SMP support and unnecessary context switches. Other
research projects [3], [4] have also encountered the impactof
SMP support on OS-noise and presented its characterization
in their work.

Additionally, figure 7 demonstrates the outcome of the
Socketbenchmark, which was run in the virtualized software
stack between two user-space processes residing in two distinct
collocated VMs. The results show that the latency of TCP
and UDP communication is higher than shared memory. Our
analysis of the collected data also shows that the latency of
TCP and UDP is more variable than that of the shared memory
communication methods, although it does not show in this
figure. Specifically, the variance of the TCP measurements
is 6.28 with standard deviation of2.5 while the variance
for UDP measurements is11.2 with standard deviation of
3.3. Furthermore, there was no network noise throughout the
experiment that would cause the high variability evident inthe
TCP and UDP data points. We believe that this difference is
due to context switching and the network stack overhead. From
these results, we conclude that Vshmem across VMs is an
order of magnitude faster than socket-based communication.
Furthermore, it achieves more reliable and less variable latency

in communication. As a result, Vshmem achieves a low-
latency communication between user-space processes in the
virtualized software stack.

D. Performance Evaluation using the Scientific Dwarfs

1) Dense Linear Algebra:BLAS routines were the first
codes we used in comparing the performance across the
different programming models. Figure 8 shows the average
execution times of the different matrix-vector multiplication
operations for varying matrices’ sizes. Due to space limita-
tions, we present in this paper the performance results for one
level of BLAS operations. However, the interested readers
should consult [?] for the complete set of results. For the two
of the subfigures, theX-axis represents the matrix dimension
while the y-axis represents the average execution time in
µseconds. In order to be able to capture the variability in the
execution times, we ran each experiment for ten times and
plotted the average execution times of all the runs, as shown
by the scattered graph. We also plotted the execution time of
the ten runs, as portrayed by the solid line in the subfigures.

Given the above results, we observed that the
SysV/Vshmem achieves the shortest execution timing
for all the differentBLAS levels and for the different data-
types (i.e, the single and double precisions). Furthermore,
we observed that OMP achieves the second fastest execution
time for almost all the differentBLAS levels and for the
different data-types. MPI implementation exhibits the slowest
execution times among the three programming models. We
also observed that the gap in execution times between the
three programming models diminishes as the BLAS level
and/or the matrix size increases.

These results are due to the communication mechanisms
deployed by each programming model as well as the compu-
tational workload of each BLAS problem size. MPI uses the
P4 channel, which establishes the communication between the
different MPI threads using regular UNIX sockets. This adds
an unnecessarily overhead to the execution of the application,
especially that there is no data exchanged over the network.
However, the IP stack adds this performance overhead, which
we characterized in section V-C. OMP model, however uses
shared memory to exchange data between the OMP threads
which improves the overall execution times of the OMP
application in comparison with the MPI application. At the
same time, the OMP model places an unnecessarily overhead
on the execution due to its advanced mechanisms for thread
creation, synchronization and destruction. As a result, the
SysV/Vshmem model achieve faster execution than OMP since
it does not suffer from this overhead. We also observed
that the performance gap – evident by the spacing between
the different curves representing the different programming
models – diminishes as theBLAS level increases or the
matrix size grows. In fact, as the computational workload
of the problem increases, the ratio of the communication
to computation changes. As theBLAS level or matrix size
increases, the overall execution times become dominated by
the computations. As a result of the tremendous increase in the

 100

 1000

 10000

 100000

 1e+06

19296482412

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
0

N
ite

r
in

 m
ic

ro
-s

ec
on

ds

Mesh dimension for the Laplace System

Laplace Solver using Jacobi iterations in MPI, OpenMP, SYS V, Vshmem

MPI Run Level 1
MPI Run Level 5

Openmp
SYS V

Vshmem

Fig. 9. This figure portrays the execution time of the Laplacesolver using
Jacobi iterations. The number of mesh points in the system are shown on the
x axis while they axis present the average execution time of 10 runs, where
each run has 1000 iterations.

computational load, the communication to computations ratio
will decrease. In turn, the communication overhead becomes
insignificant on the overall processing time as the BLAS level
and the matrix size increases. As a result, the performance gap
between the different programming models diminishes.

2) Structured Grids:In this category, we chose an imple-
mentation of a structured-grids problem for a Laplace solver
using Jacobi methods in order to simulate the communication
and computation patterns of this scientific dwarf. We config-
ured the codes for an increasing number of mesh points and
measured their execution times while calculating the average
of 50 runs for each mesh size.

Figure 9 shows the average execution time of the Laplace
solver for 50 runs using the different programming models.
The number of mesh points in the system is shown on thex-
axis while they-axis presents the execution time inµseconds.

We first observed that the Laplace SysV and Vshmem
execution times are not significantly different. We further
noticed that the execution time gap between the different
programming models diminishes as the mesh size increases,
which is the same effect we detected in the BLAS results.
This is again results from the increase in the number of mesh
points which caused computation to dominate communication.

Surprisingly, the OMP Laplace code execution was the
fastest of the three programming models, although it has the
highest variability. We believe the reason for this difference
is our implementation of the reduction operator. Early on,
many studies have looked at optimizing the OMP reduction
directive [47] as it was a main source of performance bot-
tleneck in parallel programs for shared memory architectures.
Some studies have shown this bottleneck may cost large-scale
OMP parallel applications as much as half of their execution
time [47]. These efforts have resulted in a highly-optimized
reduction primitive that minimized the wait time of the other
threads.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
0

N
ite

r
in

 m
ic

ro
-s

ec
on

ds

Matrices’ Dimension

Execution time of DSGEMV Dense Matrix Multiplication

MPI RL 1
MPI RL 5
OpenMP

SYS V
Vshmem

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
0

N
ite

r
in

 m
ic

ro
-s

ec
on

ds

Matrices’ Dimension

Execution time of DDGEMV Dense Matrix Multiplication

MPI RL 1
MPI RL 5
OpenMP

SYS V
Vshmem

Fig. 8. The two figures depict the execution time for different programming models of thematrix− vector multiplication codes for single (left subfigure)
and double (right subfigure) dense matrix multiplication, respectively.

 1

 10

 100

 1000

 10000

 1000000100000100001000100

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
0

N
ite

r
in

 m
ic

ro
-s

ec
on

ds

Number of intervals

Calculating Pi with Simpson’s Integral Method using MPI, OpenMP, SYS V, Vshmem

MPI Run Level 1
MPI Run Level 5

Openmp
SYS V

Vshmem

Fig. 10. This figure depicts the execution times for the calculation of π
using the different programming models. Thex-axis represents the number
of intervals that was used for theSimpson’s discrete integration rulewhile
the y-axis represents the average execution time inµseconds.

3) MapReduce:The next scientific dwarf we used in our
evaluation is the MapReduce dwarf. We deployed a very sim-
ple problem that reflects this dwarf’s embarrassingly parallel
algorithmic method, which is aπ-calculation implementation
using Simpson’s Discrete Integration Rule. The MPI com-
munication pattern for this problem consist ofa broadcast
operation at the beginning of execution to transmit the number
of intervals to the different threads anda reduction operation
at the end of execution to aggregate the local summation of the
π values in order to calculate the totalπ. Each experiment in
this code consists of 1000 iterations and the average execution
time is reported.

Figure 10 presents the average execution times of 50 runs of
the MapReduce experiment using the different programming
models. Thex-axis represents the number of intervals that
was used in theπ calculation while they axis represents the
average execution time inµseconds.

The results in this figure are similar to the performance

profile of the previous dwarfs. Therefore, the SysV/Vshmem
model exhibits the fastest execution times, followed by OMP,
followed by MPI in run-levelone followed by MPI in run
level five. Despite the similarity between the performance
ranking of the different models, the reasoning behind this
ranking is different. For the MapReduce dwarf, there is
minimal communication between the threads since this is an
embarrassingly parallel method. However, we notice that the
overhead of the runtime system of the different programming
models is dominating the performance, especially at lower in-
tervals count. In case of the MPI implementation, the MPICH
runtime system is a middleware layer that slowed down the
overall execution of this code. OMP runtime overhead was
smaller, but it still imposed an unnecessary overhead on the
threads execution. SysV/Vshmem, on the other hand, is a
light-weight implementation thatselectivelyshares memory
regions between the processes without imposing a continuous
overhead on their execution.

Furthermore, we noticed that Vshmem performance is
slower than the SysV execution times for the100 intervals,
which is caused by the Vshmem operations’ overhead de-
scribed in section??. In addition, we also observed the same
diminishing performance gap in the execution times between
the programming models as the problem size increases. This is
due to the fact that, as the problem size increases, it becomes
more dominated by the computations, and the overhead of
the runtime system becomes negligible relative to the overall
execution time.

4) N-Body Methods:The last scientific dwarf we used in
our evaluation is the N-body methods. In our own previous
work [48], [49], we have studied an actual computational
biology N-body problem and implemented its simulation in
MPI. In this evaluation, we deploy an implementation of a
molecular dynamics simulation. This simulation was written
in OMP by John Burkardt in Florida State University [46]
and we ported it to SysV/Vshmem. We modified the OpenMP
and SysV/Vshmem codes to simulate a varying number of
particles in a varying number of dimensions and time-steps.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
0

ite
rs

 fo
r

10
0

tim
e

st
ep

s
in

 m
ic

ro
-s

ec
on

ds

Number of Particles in Simulation System

Molecular Dynamics Simulation code for N particles in 2 dimensions
 in OpenMP, SYS V, Vshmem

Openmp in 2d
SYS V in 2d

Vshmem in 2d

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

 o
f 1

00
 ti

m
e

st
ep

s
in

 m
ic

ro
-s

ec
on

ds

Number of Particles in Simulation System

Molecular Dynamics Simulation code for N particles in 3 dimensions
 in OpenMP, SYS V, Vshmem

Openmp in 3d
SYS V in 3d

Vshmem in 3d

Fig. 11. These figures represent the execution times of the molecular dynamics code for an increasing number of particlesin 2d (left subfigure) and 3d
(right subfigure) for 100 time-steps simulations.

Our experiments simulated between 1 and 50 particles in two
and three dimensions for 100 time-steps.

Figure 11 portray the execution times for the OMP and
SysV/Vshmem programming models in two and three dimen-
sions. The figures run in two dimensions. All the subfigures in
the first row represent the simulations in two dimensions, while
the second row represents the simulations in three dimensions.
The second vertical dimension represent the number of time-
steps in the simulation; the first column of subfigures repre-
sents simulations for 10 time-steps while the second column
represents simulations for 100 time-steps. Thex-axis in all
subfigures represents the number of particles in the system
while they axis presents the execution times inµseconds. In
order to detect the potential variability in the execution times,
we plot the different times with the points in a scatter graph
mode while the lines represent the average of the 50 execution
times for each simulation.

The results show that OpenMP always exhibits the slowest
execution time for the different dimensions, number of steps
and number of particles in the simulation. This is a result
that the OMP model places an unnecessarily overhead on the
execution due to its advanced mechanisms for thread creation,
synchronization and destruction. The results also show that for
small computational loads, such that in subfigure (a) and (c)
for simulating 35 or less number of particles and subfigures
(b) and (d) for simulating 10 or less number of particles,
Vshmem is slower than SysV implementation. This is a result
of the high overhead of the Vshmem setup operations that we
measured in section??. However, as the computations domi-
nate the total execution time of the simulation, this Vshmem
setup operations overhead is amortized and the performance
difference between Vshmem and SysV becomes insignificant.
We also observe the same effect of decreasing performance
gap between the models. This performance gap evident by
the spacing between the different curves representing the
different programming models diminishes as the computations
dominates the overall execution time.

VI. D ISCUSSION

Next-generation HPC infrastructures will deploy a mas-
sive number of cores per microprocessor in order to sustain
their performance growth. Although this model has a huge
performance potential, managing those systems and building
their software stack can be very complex. The alternative
approach we advocate in this paper is to utilize the isolation
offered by the OS-virtualization technology to encapsulate and
manage the complexity in those systems. In virtualization,
a slim hypervisor is deployed to provide the multiplexing
between the basic resources in the system. Several slim VMs
would run on the hypervisor, each to manage a small count
of cores as well as to manage their user-space processes. By
isolating the management of the cores, the OS-noise can also
be contained within each VM and the extraction of the perfor-
mance potential of those system can be simplified. Arguably,
this alternative model is promising to deliver the near-peak
potential performance of those machines by customizing the
VM kernels, and decreasing the OS noise, i.e. by avoiding
posing the OS as the performance bottleneck.

Despite the attractive benefits of virtualization in the form
of complexity isolation, it comes at the cost of complicating
the programmability of those powerful HPC systems. Due to
the lack of a simple and efficient communication mechanism
between virtual machines (VMs) to allow user-space pro-
cess to communicate and co-ordinate their progress, the pro-
grammability of this alternative software stack is a difficulty.
Previous studies had utilized network-based communications
between the virtual machines for process coordination and
data exchange. UDP-socket and TCP-socket communications
have been popular for communication between processes run-
ning on different physical machines. However, using socket-
passed communications between virtual machines deployed
on the same physical machine can be inefficient, since it
will experience high latency and lower bandwidth. That is
because, for every packet send, it will endure the unnecessary
overhead of the IP stack and several memory copies across
privilege levels. Therefore, a more efficient communication
methodology between VMs collocated on the same physical

machine is needed.
In our experimentation, we used the Xen hypervisor as the

building block for the alternative software stack approach.
In order to provide an efficient communication mechanism
between user-space processes in collocated VMs, we im-
plemented Vshmem. Vshmem provides zero-copy communi-
cation (i.e, shared-memory, asynchronous and synchronous
channels) between user-space processes running in different
Xen domains (VMs), using the SYS V IPC-interface. SYS
V IPC interface is a familiar and efficient communication
and memory sharing mechanism between user-space processes
running inside the same OS. Vshmem leverage the simplicity
of SYS-V IPC interface to provide communication between
user-space processes running in different collocated VMs by
enabling SYSV IPC constructs like shared memory, message
queues and semaphores to be deployed across distinct VMs.

Our results have exhibited that Vshmem can be very effi-
cient and much lower in latency in communication overhead
between the domains, in comparison with other inter-VM
communication mechanisms. For a variety of scientific dwarfs,
we have shown that Vshmem in the virtualized software stack
can achieve comparable performance to Sys V IPC in the
traditional software stack. We also compared Vshmem with
other network-based communication mechanisms. The basic
latency-inducing factor in network communication is the IP
stack overhead and memory copies. In Vshmem, the memory
is directly shared between the user-space processes, which can
use the memory region at zero-copy communication. Xen-
socket [33], Xway [34] and Xenloop [31] are other Xen inter-
VM methodologies that leverage grant-tables to support net-
work communications between Xen VMs on the same physical
machines. Vshmem is more efficient than those systems, since
Vshmem does not involve any kernel-to-user space crossing
neither copy data between the buffers in the data-path. Those
methods mentioned above have two to 4 copies overhead,
which in turns increase the data exchange latency between the
communicating user-space processes. Furthermore, Vshmem
gives the programmers a familiar programming interface that
they can utilize to flexibly co-ordinate and program several
processes to work together and accomplish the general pro-
gram goal.

We also compared the Vshmem programming support to
two familiar programming models: MPI and OpenMP based
on their relative total execution time in solving specific
common scientific dwarfs. However, the three models: MPI,
OpenMP and SysV/Vshmem differ in other aspects as well. It
is important before discussing these aspects to draw the dis-
tinction between a programming model, like MPI and OpenMP
and programming OS-support, like Vshmem. A programming
model is a complete set of API, library functions and/or
runtime system that allow the programmer to implement a
particular algorithmic method to solve a particular problem.
On the other hand, a programming OS-support is a set of
OS-extensions that allows the programmers and the various
programming models to efficiently utilize the underlying in-
frastructures.

Vshmem provide an OS-support for multi-core micropro-
cessor that enables shared-memory zero-copy communication
as well as synchronous and asynchronous communication
mechanisms between user-space processes in collocated VMs.
However, it does not implemented higher-level programming
constructs that are needed in expressing parallel algorithmic
methods. For example, barrier and reduction operations, which
are common parallel operations provided in most parallel
programming models, are not provided by the Vshmem pro-
gramming support. However, in order to implemented the
different scientific dwarfs for our Vshmem performance eval-
uation, we used a simple implementation of those operations
based on shared memory, which we include its implementa-
tion details in the appendices. The need to implement these
operations portrays the lower-level abstraction that Vshmem
presents to the programmers, in comparison with other higher
level programming models. Although this might add a extra
programming effort on the programmers, it gives them the
flexibility to implement the most efficient form of the barrier
and reduction to their problem. Higher-level programming
languages can also have the flexibility to add their own
implementation of these operations using the Vshmem shared
memory, should they decided to add support of the Vshmem
to their runtime systems.

Another distinction between the MPI and the OpenMP
programming models and the SysV/Vshmem programming
support is the style of parallelism. Vshmem parallel model
deploys several independent processes, running in isolated
virtual machines. In this model, the address space of each
process is separate from the other processes. However, the
programmer canselectivelyshare memory regions between the
different processes using the Vshmem facility. The OpenMP
model has, however a different style of parallelism. In the
OpenMP model, the main thread starts the other threads when
it enters a parallel region and exits them when it exit this
region. This model is commonly referred to as fork-and-join.
The MPI model is similar to the OpenMP model, in that the
main thread forks the other threads. However, the parallel
region in MPI model cover the entire application execution
time and MPI threads only exits at the end of the application
execution.

The Vshmem parallelism model in implementing indepen-
dent processes can offer a number of performance optimiza-
tion and simplifies the development of certain categories of
scientific codes. Specifically, Vshmem processes’ affinity to
cores can be specified through setting the affinity of the VM-
to-core, which can be simply supported through virtualization
capabilities. For example, in Xen, the programmer can use a
simple API like “xm pin Vcpu” to set the affiliation of VMs
to certain cores. Furthermore, the Vshmem shared memory
can also be affiliated to physical memory through system
calls like “madvise()”. In addition, this flexibility in providing
parallelism through independent processes can also facilitate
the implementation of irregular scientific applications.

We believe our Vshmem system will have an impact
on promoting mixed parallelism for next-generation high

performance computing infrastructures. In this mixed paral-
lelism model, communication between processes deployed on
collocated VMs can occur over Vshmem shared memory,
which provides a lower-latency medium for data exchange.
On the other hand, the inter-node communication can occur
via message passing, which can provide a better scalability
for the system. Mixed parallelism can have a very efficient
programming model to extract the harness the performance
power of the multi-core clusters, i.e. clusters of nodes where
each node has one or more multi-core microprocessor. By
using two types of parallelism, the programmers are given the
flexibility to optimize their code to the specific architecture.
However, it might also come at the cost of extra programming
effort.

Vshmem can also support heterogeneity in modern
multicore-based HPC systems. Hardware vendors have also
adopted heterogeneous processor-design architectures, whether
by incorporating varying processor architectures within the
same chip, by diversifying the capabilities of the different
cores, or their memory hierarchy, or merely their clock
frequency. FPGAs, GPGPUs and hardware accelerators are
becoming classic examples of the additional heterogeneity
and complexity in the hardware in HPC infrastructures. One
quintessential example of modern heterogeneous multi-cores
is the cell processor, with its one general purpose proces-
sor (i.e. PPE) and eight special-purpose co-processors (i.e.
SPP) [50]. Additionally, the High Performance Computing
(HPC) community is harnessing the potential performance
power of heterogeneous multi-core design in building its next
generation computing infrastructure. Some examples are Los
Alomos National Lab (LANL) Road-Runner machines [51],
and Japan’s TSUBAME that is composed of 655 Opteron Dual
cores and 648 ClearSpeed accelerators [52]. Consequently,this
HPC hardware complexity is being propagated up to the soft-
ware stack and is posing several challenges to programming
these HPC infrastructures and extracting their performance.

For that, the virtualized software stack can have a significant
impact in simplifying the management and programmability
of these heterogeneous multi-core processors. As each OS is
encapsulated in its own VM, customizing the OS for each
core-type become an attractive method to optimize the perfor-
mance of the entire system. Furthermore, this model can also
facilitate the affiliating memory regions to particular physical
memory, and affiliating particular processes to specific types
of cores, which in turn can present performance benefits for
the applications.

There are several future potential directions for Vshmem. As
Vshmem enables zero-copy memory communication between
user-space processes, it has the potential of optimizing the per-
formance of several other systems to extract the performance
from the complex multi-core HPC systems. One prospective
future direction to Vshmem is to add its support to modern
parallel programming models. For example, by adding a new
Vshmem channel to the MPI parallel programming model,
MPI can leverage the power of the virtualized software stack
while hiding the programming complexity of shared memory

under the widely-used MPI interface. PGAS languages are
another category of parallel programming models that can
also leverage the Vshmem programming support. By adding
Vshmem support to PGAS languages, PGAS programming can
also leverage the virtualized software stack while continuing
to support the distributed memory programming model. It also
will extend the capability of the PGAS languages by allowing
them to affiliate the PGAS processes with particular cores
and affiliate shared-memory regions with particular physical
memory addresses, which are currently not supported in PGAS
languages.

Another prospective direction for Vshmem is to add new
ports for other hypervisor and virtualization technologies, such
as hardware-assisted virtualization technologies by Intel and
AMD. Many recent advances have improved the performance
ramifications of this model, bringing it close to the native per-
formance. Several hypervisors and VMMs harness the power
of the hardware-assisted virtualization, such as KVM [53] and
VMware [54]. Therefore, one prospective extension to the cur-
rent Vshmem implementation is to support these hypervisors.
Vshmem was designed to simplify its porting to other hypervi-
sor, by confining the hypervisor-specific implementation tothe
bottom half of the driver. By implementing the discovery, setup
and tear-down functions in the bottom-half of the Vshmem
driver for the new hypervisor, Vshmem port will simply work
for other virtualization techniques.

The last prospective direction for this work is in the OS
customization and specialization area. The OS is a com-
plex software layer that is designed to provide a wide-range
of services for diverse set of applications. However, OS-
customization can be deployed to slim down the operating
system and specialize it for a particular application as well as a
particular core-type. This model has the potential of delivering
the performance power of the HPC systems deploying multi-
core microprocessor and minimizing the OS-noise that might
interfere with the application execution.

VII. C ONCLUSIONS

We investigated an novel approach to simplify the man-
agement and programmability of the multi-core processors
and to extract their performance power in HPC. In particular,
we have advocated virtualization as an alternative approach
to the traditional over-featured OS kernel approach; the later
characterized by its huge memory foot-print, low cache effi-
ciency and high OS-noise. In our alternative approach, a slim
hypervisor and several light-weight OS kernels are deployed
to manage exclusive subsets of cores and hardware devices.
Despite the attractiveness of this software stack model as a
result of its enhanced scalability, reliability and low OS-noise,
it poses a significant limitation associated with the Inter-VM
communication which endures high-latency as a result of the
perfect memory isolation between the VMs. We addressed
these two limitations as follows.

To address this communication limitation, we implemented
a OS-level support that allows a programmer toselectively
relax memory isolation between the virtual machines. In

addition, our system’s programming interface was provided
as an extension to the widely-used SysV [30] IPC interface,
whose familiarity significantly simplifies the programmability
of our model. Through this system, we offer a shared mem-
ory, synchronous and asynchronous zero-copy communication
channel between user-space processes running in distinct vir-
tual machines running on the same chip. We also evaluated the
efficiency of our system using micro-codes as well as common
applications of widely-used scientific dwarfs.

In conclusion, our research outcomes have displayed that
HPC can leverage the power of virtualization as technology
trends drive heterogeneity and multicore forward. Our work
potentially has outreaching and impactful benefits for the
bigger HPC community, with the numerous advantages that
virtualization offers to the HPC infrastutres.

Acknowledgements: The authors would like to acknowl-
edge Chandra Krintz and Dmitrii Zagorodnov for the useful
discussions on this topic and their inputs and feedback.

REFERENCES

[1] Top500, “Top500 supercomputing sites,”http://www.top500.org/.
[Online]. Available: http://www.top500.org/

[2] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[3] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj,
“Benchmarking the effects of operating system interference on
extreme-scale parallel machines,”Cluster Computing, vol. 11, no. 1,
pp. 3–16, March 2008. [Online]. Available: http://dx.doi.org/10.1007/
s10586-007-0047-2

[4] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System
noise, os clock ticks, and fine-grained parallel applications,” in ICS ’05:
Proceedings of the 19th annual international conference onSupercom-
puting. New York, NY, USA: ACM, 2005, pp. 303–312.

[5] R. Brightwell, R. Riesen, K. D. Underwood, T. Hudson, P. G. Bridges,
and A. B. Maccabe, “A performance comparison of linux and a
lightweight kernel,” inCLUSTER. IEEE Computer Society, 2003, pp.
251–258.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schupbach, and A. Singhania, “The multikernel: A
new OS architecture for scalable multicore system,” inSymposium on
Operating systems principles (SOSP), October 2009.

[7] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,”SIGOPS Oper. Syst.
Rev., vol. 43, no. 2, pp. 76–85, 2009.

[8] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
Fault Tolerance for HPC with Xen Virtualization,” inICS ’07: Proceed-
ings of the 21st Annual International Conference on Supercomputing.
New York, NY, USA: ACM, 2007, pp. 23–32.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” inUSENIX
Symposium on Networked Systems Design and Implementation (NSDI
’05), Boston, MA, USA, May 2005.

[10] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of
virtual machine based on full system trace and replay,” inHPDC
’09: Proceedings of the 18th ACM international symposium onHigh
performance distributed computing. New York, NY, USA: ACM, 2009,
pp. 101–110.

[11] R. Nathuji and K. Schwan, “Virtualpower: coordinated power manage-
ment in virtualized enterprise systems,” inSOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles.
New York, NY, USA: ACM, 2007, pp. 265–278.

[12] E. V. Hensbergen, “P.r.o.s.e.: partitioned reliable operating system envi-
ronment,”Operating Systems Review, vol. 40, no. 2, pp. 12–15, 2006.

[13] M. A. Butrico, D. D. Silva, O. Krieger, M. Ostrowski, B. S. Rosenburg,
D. Tsafrir, E. V. Hensbergen, R. W. Wisniewski, and J. Xenidis, “Spe-
cialized execution environments,”Operating Systems Review, vol. 42,
no. 1, pp. 106–107, 2008.

[14] S. Thibault and T. Deegan, “Improving performance by embedding hpc
applications in lightweight xen domains,” inHPCVirt ’08: Proceedings
of the 2nd workshop on System-level virtualization for highperformance
computing. New York, NY, USA: ACM, 2008, pp. 9–15.

[15] G. Back and D. S. Nikolopoulos, “Application-Specific Customization
on Many-Core Platforms: The VT-ASOS Framework,” inProceedings
of the Second Workshop on Software and Tools for Multi-Core Systems,
March 2007.

[16] L. Youseff, R. Wolski, and C. Krintz, “Linux Kernel Specialization for
Scientific Application Performance,” Univ. of California,Santa Barbara,
Tech. Rep. UCSB Technical Report 2005-29, Nov 2005.

[17] T. Anderson, “The case for application-specific operating systems,” in
Workstation Operating Systems, 1992. Proceedings., ThirdWorkshop on,
Apr 1992, pp. 92–94.

[18] T. Naughton, G. Vallee, and S. Scott, “Autonomic Live Adaptation of
Virtual Computational Environments in a Multi-Domain Infrastructure,”
in First Workshop on System-level Virtualization for High Performance
Computing (HPCVirt 2007), Mar 2007.

[19] A. Whitaker, M. Shaw, and S. Gribble, “Scale and performance in the
Denali isolation kernel,” inSymposium on Operating Systems Design
and Implementation (OSDI), 2002, ”http://denali.cs.washington.edu/”.

[20] P. Barham and B. Dragovic and K. Fraser and S. Hand and T. Harris
and A. Ho and R. Neugebauer, “Virtual Machine Monitors: Xen and the
Art of Virtualization,” in Symposium on Operating Systems Principles
(SOSP), 2003.

[21] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization for
HPC Systems,” inISPA Workshops, ser. Lecture Notes in Computer
Science, G. Min, B. D. Martino, L. T. Yang, M. Guo, and G. Rünger,
Eds., vol. 4331. Springer, 2006, pp. 474–486.

[22] ——, “Evaluating the Performance Impact of Xen on MPI andProcess
Execution For HPC Systems,” inVTDC ’06: Proceedings of the 2nd
International Workshop on Virtualization Technology in Distributed
Computing, 2006.

[23] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,” inICS ’06: Proceedings
of the 20th annual international conference on Supercomputing. New
York, NY, USA: ACM, 2006, pp. 125–134.

[24] A. Gavrilovska, S. Kumar, K. Schwan, H. Raj, V. Gupta, R.Nathuji,
A. Ranadive, R. Niranjan, and P. Saraiya., “High-performance hypervisor
architectures: Virtualization in hpc systems,” inProceedings of 1st Work-
shop on System-level Virtualization for High Performance Computing
(HPCVirt 2007, 2007.

[25] A. Tikotekar, H. Ong, S. Alam, G. Vallée, T. Naughton, C. Engelmann,
and S. L. Scott, “Performance comparison of two virtual machine sce-
narios using an hpc application: a case study using molecular dynamics
simulations,” inHPCVirt ’09: Proceedings of the 3rd ACM Workshop
on System-level Virtualization for High Performance Computing. New
York, NY, USA: ACM, 2009, pp. 33–40.

[26] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, and S. L.
Scott, “An analysis of hpc benchmarks in virtual machine environments,”
pp. 63–71, 2009.

[27] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, S. L. Scott,
and A. M. Filippi, “Effects of virtualization on a scientificapplication
running a hyperspectral radiative transfer code on virtualmachines,”
in HPCVirt ’08: Proceedings of the 2nd workshop on System-level
virtualization for high performance computing. New York, NY, USA:
ACM, 2008, pp. 16–23.

[28] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski, “The
impact of paravirtualized memory hierarchy on linear algebra computa-
tional kernels and software,” inHPDC, M. Parashar, K. Schwan, J. B.
Weissman, and D. Laforenza, Eds. ACM, 2008, pp. 141–152.

[29] L. Youseff, K. Seymour, H. You, D. Zagorodnov, J. Dongarra, and
R. Wolski, “Paravirtualization effect on single- and multi-threaded
memory-intensive linear algebra software,”Cluster Computing. [Online].
Available: http://dx.doi.org/10.1007/s10586-009-0080-4

[30] M. J. Bach,The design of the UNIX operating system. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1986.

[31] J. Wang, K.-L. Wright, and K. Gopalan, “Xenloop: a transparent high
performance inter-vm network loopback,” inHPDC ’08: Proceedings

of the 17th international symposium on High performance distributed
computing. New York, NY, USA: ACM, 2008, pp. 109–118.

[32] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” inUSENIX Annual Technical Conference, May
2006, pp. 15–28.

[33] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin, “Xensocket: A high-
throughput interdomain transport for vms,” IBM Research Technical
Report RC24247, Tech. Rep., 2007.

[34] T. X. Team, “Xway: Lightweight communication between domains in a
single machine,” 2007, http://sourceforge.net/project/platformdownload.
php?group\ id=191553.

[35] P. Radhakrishnan and K. Srinivasan, “Mmnet: An efficient inter-vm
communication mechanism,” june 2008.

[36] D. G. Murray, G. Milos, and S. Hand, “Improving xen security through
disaggregation,” inVEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments. New York, NY, USA: ACM, 2008, pp. 151–160.

[37] W. D. Gropp and E. Lusk,Installation Guide formpich, a Portable
Implementation of MPI, Mathematics and Computer Science Division,
Argonne National Laboratory, 1996, aNL-96/5.

[38] Openmp, “Openmp,” http://openmp.org/wp/. [Online].Available: http:
//openmp.org/wp/

[39] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
Past, present, and future,”Concurrency and Computation: Practice and
Experience, vol. 15, pp. 1–18, 2003.

[40] R. Leibensperger, B. Barney, and G. L. Gusciora, “MPI Matrix Multiply
- C Version,” http://www.hku.hk/cc/sp2/workshop/samples/mpi/C/mpi\
mm.c.

[41] “Laplace Solver using Jacobi iterations,” http://www.mcs.anl.gov/
research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html.

[42] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The Landscape of Parallel Computing Research: A View
from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[43] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce fordata intensive
scientific analyses,” inESCIENCE ’08: Proceedings of the 2008 Fourth
IEEE International Conference on eScience. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 277–284.

[44] “Calculating π using Simpson Integration Rule,” http://www.mcs.anl.
gov/research/projects/mpi/tutorial/mpiexmpl/src/pi/C/main.html.

[45] D. C. Rapaport,The Art of Molecular Dynamics Simulation. New York,
NY, USA: Cambridge University Press, 1996.

[46] J. Burkardt, “An OpenMP Molecular Dynamics Simulationusing verlet
time integration scheme,” http://people.sc.fsu.edu/∼burkardt/c\ src/md\
open\ mp/md\ open\ mp.html.

[47] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh, “Evaluating syn-
chronization on shared address space multiprocessors: methodology and
performance,” inSIGMETRICS ’99: Proceedings of the 1999 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems. New York, NY, USA: ACM, 1999, pp. 23–34.

[48] L. Youseff, A. Barbaro, P. Trethewey, B. Birnir, and J. R. Gilbert,
“Parallel modeling of fish interaction,” inCSE ’08: Proceedings of the
2008 11th IEEE International Conference on Computational Science
and Engineering. Washington, DC, USA: IEEE Computer Society,
2008, pp. 234–241.

[49] A. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, , andB. Birnir,
“Discrete and continuous models of the dynamics of pelagic fish:
application to the capelin,”the journal of Mathematics and Computers
in Simulation (MATCOM-D-08-00022 journal), 2009.

[50] M. W. Riley, J. D. Warnock, and D. F. Wendel, “Cell broadband engine
processor: Design and implementation,”IBM Journal of Research and
Development, vol. 51, no. 5, pp. 545–558, 2007.

[51] K. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho, “Entering the Petaflop Era: The Architecture and
Performance of Roadrunner”,” inIEEE/ACM Supercomputing (SC08),
November 2008.

[52] S. Matsuoka, “The tsubame cluster experience a year later, and onto
petascale tsubame 2.0,” inPVM/MPI, ser. Lecture Notes in Computer
Science, F. Cappello, T. Hérault, and J. Dongarra, Eds., vol. 4757.
Springer, 2007, pp. 8–9.

[53] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, no. 166, p. 8,
2008.

[54] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current
technology and future trends,”Computer, vol. 38, no. 5, pp. 39–47,
2005.

