
Verification of String Manipulating
Programs Using Multi-Track Automata

Fang Yu
University of California, Santa Barbara

yuf@cs.ucsb.edu

Tevfik Bultan
University of California, Santa Barbara

bultan@cs.ucsb.edu

Oscar H. Ibarra
University of California, Santa Barbara

ibarra@cs.ucsb.edu

Abstract
Verification of string manipulation operations is a crucialproblem
in computer security. We present a new symbolic string verifica-
tion technique that can be used to prove that vulnerabilities that
result from improper string manipulation do not exist in a given
program. We formally characterize the string verification problem
as the reachability analysis ofstring systems, programs that con-
tain only string variables and allow a limited set of operations
on them. We show that string analysis problem is undecidable
with even three variables if branch conditions that comparedif-
ferent variables are allowed. We develop a sound symbolic anal-
ysis technique for string verification that over-approximates the
reachable states of the string system. We represent the set of string
values that string variables can take usingmulti-track determinis-
tic finite automataand implement a forward fixpoint computation
using an automata based widening operation. In order to handle
branch conditions in string systems, we describe the precise con-
struction of multi-track DFAs for linear word equations, such as
c1X1c2 = c′1X2c

′
2, as well as Boolean combinations of these equa-

tions. We show that non-linear word equations (even the simple one
X1 = X2X3) cannot be characterized precisely as a multi-track
DFA. We propose a regular approximation for non-linear equa-
tions, such asX1 . . . Xi = X1′ . . . Xi′ , as well as Boolean combi-
nations of these equations. We present a summarization technique
for inter-procedural analysis that generates a transducercharacter-
izing the relationship between the input parameters and thereturn
values of each procedure. We implemented these algorithms using
the MONA automata package and analyzed several PHP programs.
Unlike prior string analysis techniques, our approach is able to keep
track of the relationships among the string variables, improving the
precision of the string analysis and enabling verification of asser-
tions such asX1 = X2 whereX1 andX2 are string variables.

1. Introduction
Web applications provide critical services over the Internet and fre-
quently handle sensitive data. Unfortunately, Web application de-
velopment is error prone and results in applications that are vul-
nerable to attacks by malicious users. The global accessibility of
critical Web applications make this an extremely serious prob-
lem. In fact, in the Common Vulnerabilities and Exposures (CVE)

[Copyright notice will appear here once ’preprint’ option is removed.]

list [5] (which documents computer security vulnerabilities and ex-
posures) Web application vulnerabilities have occupied the first
three positions in recent years. The most important Web applica-
tion vulnerabilities are due to inadequate manipulation ofstring
variables. According to the Open Web Application Security Project
(OWASP)’s top ten list that identifies the most serious web applica-
tion vulnerabilities [10], the top three vulnerabilities are: 1) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL injection)
and 3) Malicious File Execution. All these vulnerabilitiesinvolve
string manipulation and they occur due to inadequate sanitization
and use of input strings provided by users.

In this paper, we investigate thestring verification problem:
Given a program that manipulates strings, we want to verify invari-
ants about string variables. For example, we may want to check that
at a certain program point a string variable cannot contain aspecific
set of characters. This type of checks can be used to identifyand
prevent SQL injection attacks where a malicious user includes spe-
cial characters in the input string to inject unintended commands
to the queries that the Web application constructs (using the input
provided by the user) and sends to a backend database. As another
example, we may want to check that at a certain program point a
string variable should be prefix or suffix of another string variable.
This type of checks can be used to identify and prevent malicious
file execution attacks where Web application developers concate-
nate potentially hostile user input with file functions thatlead to
inclusion or execution of untrusted files by the Web server.

We formalize the string verification problem as reachability
analysis ofstring systems: programs that contain only string vari-
ables and consist of 1) operations for manipulation of string vari-
ables (such as concatenation) and 2) branch conditions thatallow
comparisons among string variables and constants. After demon-
strating that the string analysis problem is undecidable ingeneral,
we present and implement a symbolic string analysis technique that
computes an over-approximation of the reachable states of astring
system.

We use multi-track deterministic finite automata (DFA) as a
symbolic representation to encode the set of possible values that
string variables can take at a given program point. We implement
a forward symbolic fixpoint computation to compute the reachable
states. Since convergence is not guaranteed without approximation,
we use an automata based widening operation. Unlike prior string
analysis techniques, our approach is able to keep track of the
relationships among the string variables, improving the precision
of the string analysis and enabling verification of invariants such as
X1 = X2 whereX1 andX2 are string variables.

In order to handle branch conditions in string systems, we de-
scribe the precise construction of multi-track DFAs for linear word
equations, such asc1X1c2 = c′1X2c

′
2, as well as Boolean combina-

tions of these equations. We show that non-linear word equations
(even the simple oneX1 = X2X3) cannot be characterized pre-

1 2009/8/11

cisely as a multi-track DFA and there does not exist a multi-track
DFA that corresponds to the tightest possible approximation. We
propose a non-trivial regular approximation for non-linear equa-
tions, such asX1 . . . Xi = X1

′ . . . Xi
′, as well as Boolean com-

binations of these equations. We show how these constructions can
be used to compute the post-condition of branch conditions and as-
signment statements that involve concatenation.

We present a summarization technique for inter-procedural
analysis that generates a transducer characterizing the relationship
between the input parameters and the return values of each pro-
cedure. We extend our symbolic analysis technique by presenting
algorithms for computing the post condition of complex string ma-
nipulation operations such as replacement. We implementedthese
algorithms using the MONA automata package and analyzed sev-
eral PHP programs.

Related Work The use of automata as a symbolic representation
for verification has been investigated in other contexts (e.g., [3]).
In this paper, we focus on verification of string manipulation oper-
ations. Due to its importance in security, string analysis has been
widely studied. One influential approach has been grammar-based
string analysis that statically computes an over-approximation of
the values of string expressions in Java programs [4]. In this ap-
proach, first the flow graph is converted into a context free gram-
mar where each string variable corresponds to a nonterminal, and
each string operation corresponds to a production rule. Then, this
grammar is converted to a regular language by computing an over-
approximation. This type of grammar-based string analysishas
been used to check for various types of errors in Web applica-
tions [7,8,12]. There are also several recent string analysis tools that
use symbolic string analysis based on DFA encodings [6,11,14,15].
Some of them are based on symbolic execution and use a DFA rep-
resentation to model and verify the string manipulation operations
in Java programs [6, 11]. In our earlier work, we have used a DFA
based symbolic reachability analysis to verify the correctness of
string sanitization operations in PHP programs [14,15].

Unlike the approach we propose in this paper, all of the results
mentioned above use single track DFA and encode the reachable
configurations of each string variable separately. This cancause
two problems: 1) Branch conditions that check relations among
different string variables can lead to imprecision in the analysis,
resulting with false positives. 2) It is not possible to check invari-
ants that refer to more than one string variable using these earlier
techniques. Our multi-track automata encoding both improves the
precision of the string analysis and it also enables verification of
properties that cannot be verified with the previous approaches.
Moreover, none of the above work investigate the boundary of
decidability for the string verification problem. In this paper we
show that string verification problem is undecidable even for de-
terministic string systems with only three string variables and non-
deterministic string systems with only two string variables.

2. String Systems
We first define the string systems. Figure 1 presents the syntax of
the string systems. We only consider string variables and hence
variable declarations need not specify a type. All statements are
labeled. We only consider one string operation (concatenation) at
this point. (We will discuss how to extend our analysis to other
string operations, such as replace, in Section 7). Functioncalls use
call-by-value parameter passing. We allow goto statementsto be
non-deterministic (if a goto statement has multiple targetlabels,
then one of them is chosen non-deterministically). If a string system
contains a non-deterministic goto statement it is called a non-
deterministic string system, otherwise, it is called a deterministic
string system.

prog ::= decl∗ func∗

decl ::= decl id+;

func ::= id (id∗) begin decl∗ lstmt+ end
lstmt ::= l:stmt
stmt::= seqstmt

| if expthen goto l;
| goto L; whereL is a set of labels
| input id;
| output exp;
| assert exp;

seqstmt::=id := sexp;
| id := call id (sexp∗);

exp::= bexp| exp∧ exp| ¬ exp
bexp::= atom= sexp
sexp::= sexp.atom| atom
atom::= id | c, wherec is a string constant

Figure 1. The syntax of string manipulating programs

2.1 Two Simple Examples

Consider the following program segment:

1: input X1;
2: input X2;
3: if (X1 = X2) goto 7;
4: output "not equal";
5: assert (!(X1=X2));
6: goto 9;
7: output "equal";
8: assert (X1 = X2);
9: ...

This is a very simple string system which just tests equalityof
two input strings. However, existing automata-based string anal-
ysis techniques are not able to prove these assertions. The prob-
lem is, all the existing techniques use single-track automata. Con-
sider a symbolic analysis technique that uses one automatonfor
each variable at each program point to represent the set of val-
ues that the variables can take at that program point. Using this
symbolic representation we can do a forward fixpoint computation
to compute the reachable state space of the program. For exam-
ple, the automaton for variableX1 at the beginning of statement
2, call it MX1,2, will recognize the setL(MX1,2) = Σ∗ to indi-
cate that the input can be any string. Similarly, the automaton for
variableX2 at the beginning of statement 3, call itMX2,3, will
recognize the setL(MX2,3) = Σ∗. The question is how to handle
the branch condition in statement 3. If we are using single track
automata, all we can do at the beginning of statement 7 is the fol-
lowing: L(MX1,7) = L(MX2,7) = L(MX1,3) ∩ L(MX2,3), i.e.,
the automata for both of the variables at the beginning of state-
ment 7 accept the intersection of the languages accepted by the
automata for these variables at the beginning of statement 3. Un-
fortunately, this is not strong enough to prove the assertion in line
8 (unless the intersection contains a single string). The situation
with the else branch is even worse. All we can do at line 4 is to
setL(MX1,4) = L(MX1,3) andL(MX2,4) = L(MX2,3). This
is clearly not strong enough to prove the assertion in statement 5
(unless the intersection ofL(MX1,3) andL(MX2,3) is empty).

Using the techniques presented in this paper, we can verify the
assertions in the above program. In our approach, we use a single
multi-track automaton for each program point, where each track
of the automaton corresponds to one string variable. For theabove
example, the multi-track automaton at the beginning of statement
3 will accept any pairs of stringsx, y wherex, y ∈ Σ∗. However,

2 2009/8/11

the multi-track automaton at the beginning of statement 7 will only
accept pairs of stringsx, y wherex, y ∈ Σ∗ andx = y. Similarly,
the multi-track automaton at the beginning of statement 4 will only
accept pairs of stringsx, y wherex, y ∈ Σ∗ andx 6= y. Hence,
we are able to prove the assertions in statements 5 and 8 usingthe
multi-track automata representation.

Consider another simple example:

1: X1 := a;
2: X2 := a;
3: X1 := X1.b;
4: X2 := X2.b;
5: assert (X1=X2);
6: goto 3;

There are several challenges in proving that the assertion above
holds. First, this program contains an infinite loop and doesnot ter-
minate. If we try to compute the reachable configurations of this
program by iteratively adding configurations that can be reached
after a single step of execution, our analysis will never terminate.
However, there exists a fixpoint characterizing the reachable con-
figurations at each program point. We incorporate a wideningoper-
ator to accelerate our symbolic reachability computation and com-
pute an over-approximation of the fixpoint that characterizes the
reachable configurations. Second, the assertion is an implicit prop-
erty, i.e., there is no assignment, such asX1 := X2, or branch
condition, such asX1 = X2, that implies that this assertion holds.
Finally, the assertion specifies the equality among two string vari-
ables. Analysis techniques that encode reachable states using mul-
tiple single-track DFAs will raise a false alarm, since, individually,
X1 can beabb andX2 can beab at program point 5, but they can-
not take these values at the same time. It is not possible to express
this constraint using single-track automata.

For this example, our multi-track automata based string analy-
sis technique terminates in three iterations and computes the pre-
cise result. The multi-track automaton that characterizesthe values
of string variablesX1 andX2 at program point 5, call itM5, rec-
ognizes the language:L(M5) = (a, a)(b, b)+. SinceL(M5) ⊆
L(X1 = X2), we conclude that the assertion holds. Although in
this case the result of our analysis is precise, it is not guaranteed
to be precise in general. However, it is guaranteed to be an over-
approximation of the reachable configurations. Hence, our analysis
is sound and if we conclude that an assertion holds, the assertion is
guaranteed to hold for every program execution.

3. Decidability and Undecidability Results
Before discussing our symbolic string analysis technique we prove
that string analysis is an undecidable problem and, therefore, any
sound string analysis technique has to use conservative approxima-
tions in order to guarantee convergence.

LetS(X1, X2, . . . , Xn) denote a string system with string vari-
ablesX1, X2, . . ., Xn and a finite set of labeled instructions. There
are several attributes we can use to classify string systems. For ex-
ample, as mentioned above, a string system can be deterministic
or non-deterministic. We can also classify a string system based
on the alphabet used by the string variables, such as a stringsystem
with a unary alphabet or a string system with a binary alphabet, etc.
Additionally, we can restrict the number of variables in thestring
systems, such as a string system with only 2 variables (S(X1, X2))
or 3 variables (S(X1, X2, X3)), etc. Finally, we can restrict the set
of string expressions that can be used in the assignment and condi-
tional branch instructions.

In order to identify different classes of string systems we will
use the following notation. We will use the lettersD and N to
denote deterministic and non-deterministic string systems, respec-
tively. We will use the lettersB andU to denote if the alphabet used

by the string variables is the binary alphabet{a, b} or the unary al-
phabet{a}, respectively. We will useK to denote an alphabet of
arbitrary size. For example,DUS(X1, X2, X3) denotes a deter-
ministic string system with three variables and the unary alphabet
whereasNBS(X1, X2) denotes a nondeterministic string system
with two variables and the binary alphabet. We will denote the set
of assignment instructions allowed in a string system as a super-
script and the set of expressions involved in conditional branch in-
structions as subscript. Hence,DUS(X1, X2, X3)

Xi:=Xia

X1=X3,X2=X3

denotes a deterministic string system with three variablesX1, X2,
andX3, and the unary alphabet{a} where the assignment instruc-
tions are of the formX1 := X1a, X2 := X2a, orX3 := X3a (i.e.,
we only allow concatenation of one symbol to a string variable in
each assignment instruction) and the conditional branch instruc-
tions can only be of the form:if X3 = X1 goto L or if X3 = X2

goto L (i.e., we only allow equality checks and do not allow com-
parison ofX1 andX2.)

Thehalting problemfor string systems is the problem of decid-
ing, given a string systemS, where initially the string variables are
initialized to the null string,ǫ, whetherS will halt on some exe-
cution. More generally, thereachability problem for string systems
(which need not halt) is the problem of deciding, given a string
systemS and a configurationC (i.e., the instruction label and the
values of the variables), whether at some point during a compu-
tation,C will be reached. Note that we define the halting and the
reachability conditions using existential quantificationover the ex-
ecution paths, i.e., the halting and the reachability conditions hold if
there exists an execution path that halts or reaches the target config-
uration, respectively. Hence, if the halting problem is undecidable,
then the reachability problem is undecidable. The following result
is rather unexpected:

THEOREM1. The halting problem for
DUS(X1, X2, X3)

Xi:=Xia

X1=X3,X2=X3
is undecidable.

Proof: It is well-known that the halting problem for two-
counter machines, where initially both counters are 0, is undecid-
able [9]. During the execution of a counter machine, at each step, a
counter can be incremented by 1, decremented by 1, and testedfor
zero. The counters can only assume nonnegative values.

We will show that a two-counter machineM can be
simulated with a string system S(X1, X2, X3) in
DUS(X1, X2, X3)

Xi:=Xia

X1=X3,X2=X3
. The states ofM can be rep-

resented as labels in the string systemS. The states where the
counter-machineM halts will be represented with the halt instruc-
tion in string systemS. We will use the lengths of the stringsX1,
X2 andX3 to simulate the values of the countersC1 andC2. The
value ofC1 will be simulated by|X1| − |X3|, and the value ofC2

will be simulated by|X2| − |X3|.
The counter machineM starts from the initial configuration

(q0, 0, 0) whereq0 denotes the initial state and the two integer val-
ues represent the initial values of countersC1 andC2, respectively.
The initial configuration of the string systemS will be (q0, ǫ, ǫ, ǫ)
whereq0 is the label of the first instruction, and the stringsǫ, ǫ, ǫ
are the initial values of the string variablesX1, X2 andX3, respec-
tively. The instructions of the counter-machineC will be simulated
as follows (where each statement is followed by a goto statement
that transitions to the next state or instruction):

Counter machine String system
inc C1 X1 := X1a
inc C2 X2 := X2a
decC1 X2 := X2a; X3 := X3a
decC2 X1 := X1a; X3 := X3a
if (C1 = 0) if (X1 = X3)
if (C2 = 0) if (X2 = X3)

3 2009/8/11

Note that although this transformation will allow the simulated
counter values to possibly take negative values, this can befixed
by adding a conditional branch instruction before each decrement
that checks that the simulated counter value is not zero before
the instructions simulating the decrement instruction is executed.
The string systemS constructed fromM based on these rules will
simulateM . Hence, halting problem is undecidable for the string
systems inDUS(X1, X2, X3)

Xi:=Xia

X1=X3,X2=X3
.

In fact, Theorem 1 can be strengthened: There is afixedstring
systemS(X1, X2, X3) in DUS(X1, X2, X3)

Xi:=Xia

X1=X3,X2=X3
such

that it is undecidable to determine, given an arbitrary nonnegative
integerd, whetherS(X1, X2, X3) will halt whenX1 is initially set
to stringad andX2 andX3 are initially set toǫ. This follows from
the fact that there exists a fixed universal 2-counter machineM that
can simulate a universal single-tape deterministic Turingmachine.
Given a description of a Turing machineTM as input,M halts
if and only if TM halts on blank tape. Since it is undecidable to
determine if a Turing machine halts on blank tape, it is undecidable
to determine ifM will halt on some input. Since, we can construct
a fixed string systemS(X1, X2, X3) simulatingM , as in Theorem
1, it is undecidable to determine ifS(X1, X2, X3) will halt starting
from some initial configuration.

Next, we show that the three variables in Theorem 1 are nec-
essary in the sense that when there are only two variables, reach-
ability is decidable. This result does not hold when the system is
nondetereministic, as we shall see in Theorem 3.

Consider the class of deterministic 2-variable string systems
where the constants are over an alphabet with arbitrary cardinality,
and we are allowed to use conditional branch instructions ofthe
form: if X1 = X2 goto L. (Note that because the alphabet is not
necessarily unary, thisif statement is not equivalent toif |X1| =
|X2| goto L as in the case of the unary alphabet.) Assignment
statements are of the form:Xi := Xia or Xi := aXi , where
a is a single symbol. And, there is a halt instruction, which wemay
assume occurs at the end of the program.

THEOREM 2. The halting problem for
DKS(X1, X2)

Xi:=Xia,Xi:=aXi

X1=X2
is decidable.

Proof: Let S be a string system in
DKS(X1, X2)

Xi:=Xia,Xi:=aXi

X1=X2
and k be its length (i.e., num-

ber of instructions), including the assignments, and the conditional
and unconditional branch statements.

Label the instructions ofS by 1, ..., k. We can think of each
assignment,i : A as equivalent to the instruction,i : A; goto i +
1. Hence, every instruction except the halt instruction and the if
statements has agoto.

By an “execution of a positiveif statement”, we mean that when
the if statement is executed,X1 = X2.

During the computation ofS, if it is not in an infinite loop,
then the interval (i.e., number of steps) between the executions
of any two consecutive positiveif statements is at mostk. The
reason for this is that during the interval,S executes onlygoto’s
and assignment statements withgoto’s (note that a non-positiveif
statement leads directly to the instruction following theif). Hence,
the number of steps would be at mostk, since there are at mostk
goto’s and assignments withgoto’s.

Now, an execution of a positiveif statement leads to agoto
label, and there are at mostk different labels. It follows that ifS is
not in an infinite loop, it cannot run more thank.k = k2 steps.

The above theorem can be generalized to show the decidability
of reachability for multi-variable string systems as long as in a
conditional branch statement we allow equality check between only
two specific variables, i.e., no other variables can be compared for
equality.

In contrast to Theorem 2, we can show that the halting problem
is undecidable for nondeterministic 2-variable string systems with
constants over the alphabet{a, b}, by a reduction from the Post
Correspondence Problem (PCP) which is undecidable.

THEOREM3. The halting problem forNBS(X1, X2)
Xi:=Xic

X1=X2
is

undecidable.

Proof: Given an instance(C, D) of PCP, whereC = (c1, ..., cn)
andD = (d1, ..., dn), define constant strings{c1, ..., cn, d1, ..., dn},
whereci, di are non-null strings over alphabet{a, b}, we construct
a string systemS in NBS(X1, X2)

Xi:=Xic

X1=X2
as follows:

0: goto 1 or 2 or ... or n
1: X1 := X1c1 andX2 := X2d1; goto 0 or n+1
2: X1 := X1c2 andX2 := X2d2; goto 0 or n+1
. . .
n: X1 := X1cn andX2 := X2dn; goto 0 or n+1
n+1: if X1 = X2 goto n+2 else go to 1
n+2: halt
Clearly, there is a computation that will reach the halt instruction
if and only if the PCP instance(C, D) has a solution. The theorem
follows.

Theorem 2 demonstrates that there are non-trivial string anal-
ysis problems that are decidable. Theorems 1 and 3, on the other
hand, show that the string analysis problem can be undecidable
even when we restrict a deterministic string system to threevari-
ables or a non-deterministic string system to two variables. Since
the general string analysis problem is undecidable, it is necessary to
develop conservative approximation techniques for verification of
string systems. In the following sections we present a symbolic ver-
ification technique that conservatively approximates the reachable
states of a string system.

4. Regular Approximation of Word Equations
To analyze string systems, we approximate configurations over
string variables as a regular language accepted by a multi-track
deterministic finite automaton (DFA). Our analysis is basedon the
facts that: (1) The transitions and the configurations of a string
system can be symbolically represented using word equations
with existential quantification, (2) Word equations can be repre-
sented/approximated using multi-track DFAs, which are closed
under intersection, complement, projection, and (3) the operations
required during reachability analysis (such as equivalence check-
ing) can be computed on DFAs.

Before we discuss how to perform symbolic reachability analy-
sis on string systems, we introduce the multi-track DFAs andword
equations in this section. We characterize word equations that can
be expressed using multi-track DFAs, as well as detail the construc-
tion of these multi-track DFAs. Using these constructions,in the
next section, we show how to perform symbolic reachability anal-
ysis on string systems.

4.1 Aligned Multi-track DFAs

A multi-track DFA is a DFA but over the alphabet that consists
of many tracks. Ann-track alphabet is defined asΣn = (Σ ∪
{λ}) × (Σ ∪ {λ}) × . . . × (Σ ∪ {λ}) (n times), whereλ 6∈ Σ
is a special symbol for padding. We usew[i] (1 ≤ i ≤ n) to
denote theith track of w ∈ Σn. An alignedmulti-track DFA is
a multi-track DFA where all tracks are left justified (i.e.,λ’s are
right justified). I.e., ifw is accepted by an alignedn-track DFA
M , then for1 ≤ i ≤ n, w[i] ∈ Σ∗λ∗. We sayL(M) is ann-
track language. We also usêw[i] ∈ Σ∗ to denote the longestλ-free
prefix ofw[i]. For the following descriptions, a multi-track DFA is
an aligned multi-track DFA unless we explicitly state otherwise.

4 2009/8/11

Multi-track DFAs are closed under intersection, disjunction,
complementation, and homomorphism. Precisely: Given twon-
track DFAsM1, M2, there exists ann-track DFAM that accepts
L(M1) ∪ L(M2), or acceptsL(M1) ∩ L(M2). Given ann-track
DFA M1, there exists ann-track DFAM that accepts the comple-
ment set ofL(M1), and also there exists an (n− 1)-track DFAM ′

that acceptsL(M1 ⇂i), whereM1 ⇂i denotes the result of erasing
theith track (by homomorphism) ofM1.

4.2 Word Equations

A word equation is an equality relation of two words that concate-
nate a finite set of variablesX and a finite set of constantsC. The
general form of word equations is defined asv1 . . . vn = v′

1 . . . v′
m,

where∀i, vi, v
′
i ∈ X ∪ C.

Letf be a word equation overX= {X1, X2, . . . , Xn}, f [c/X]
denotes a new equation whereX is replaced withc for all X that
appears inf . We say that ann-track DFAM under-approximates
f if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn] holds. We
say that ann-track DFA M over-approximatesf if for any
s1, . . . , sn ∈ Σ∗ wheref [s1/X1, . . . , sn/Xn] holds, there ex-
ists w ∈ L(M) such that for all1 ≤ i ≤ n, ŵ[i] = si. We call
M precise with respect tof if M both under-approximates and
over-approximatesf .

DEFINITION 4. A word equationf is regular expressible if and
only if there exists a multi-track DFAM such thatM is precise
with respect tof .

4.2.1 Linear Word Equations

A linear word equation is a word equation where either side ofthe
equation contains at most one variable. A general form of linear
word equation isc1X1c2 = d1X2d2. Any linear word equation is
equivalent to one of the following:

• c′1X1c
′
2 = X2 if c1 = d1c

′
1 andc2 = c′2d2,

• c′1X1 = X2d
′
2 if c1 = d1c

′
1 andd′

2c2 = d2,

• X1c
′
2 = d′

1X2 if c1d
′
1 = d1 andc2 = c′2d2,

• X1 = d′
1X2d

′
2 if c1d

′
1 = d1 andd′

2c2 = d2,

• falseotherwise.

It follows that all linear equations can be reduced into two forms:
(1) X1 = cX2d or (2) cX1 = X2d, which are equivalent to
∃Xk.X1 = cXk ∧Xk = X2d and∃Xk.cX1 = Xk ∧Xk = X2d.

THEOREM 5. Linear word equations and Boolean combinations
of these equations can be expressed using equations of the form
X1 = X2c and X1 = cX2, Boolean combinations of such
equations and existential quantification.

4.2.2 Non-linear Word Equations

A non-linear word equation is a word equation where at least one
side of the equation has at least two variables. There are twobasic
forms of non-linear equations:c = X1X2 andX1 = X2X3.

THEOREM 6. Non-linear word equations and Boolean combina-
tions of these equations can be expressed using equations ofthe
form c = X1X2 andX1 = X2X3, Boolean combinations of such
equations and existential quantification.

For example,X1 = X2dX3X4 is equivalent to∃Xk1
, Xk2

.X1

= X2Xk1
∧ Xk1

= dXk2
∧ Xk2

= X3X4.
In the following, we show how to construct the corresponding

multi-track DFAs for the basic forms of linear and non-linear word
equations: (1)X1 = X2c, (2) X1 = cX2, (3) c = X1X2, and (4)
X1 = X2X3. Note that, based on the fact that multi-track DFAs

are closed under intersection, disjunction, complementation, and
homomorphism, we can construct the corresponding multi-track
DFAs for all word equations both linear and non-linear, as well
as their Boolean combinations based on the constructions for these
basic forms. Note that the boolean operations conjunction,disjunc-
tion and negation can be handled with intersection, disjunction, and
complementation of the multi-track automata, respectively. Exis-
tential quantification on the other hand, can be handled using ho-
momorphism, where given a word equationf and a multi-track
automatonM such thatM is precise with respect tof , then the
multi-track automatonM ⇂i is precise with respect to∃Xi.f .

Before delving into these constructions, we summarize our re-
sults in the following theorem:

THEOREM7. (1) Linear word equations are regular expressible,
as well as their Boolean combinations. (2)X1 = cX2 is regular
expressible but the correspondingM has exponential number of
states in the length ofc. (3)X1 = X2X3 is not regular expressible.

4.3 Construction of Multi-track DFAs for Word Equations

Given a DFAM = 〈Q,Σ, δ, I, F 〉, Q is the set of states,Σ is the
alphabet,δ : Q × Σ → Q is the transition function,I ∈ Q is the
initial state, andF ⊆ Q is the set of final (accepting) states. We say
a stateq ∈ Q is asink state ifq 6∈ F and∀a ∈ Σ, δ(q, a) = q.
The sink states are also extended to multi-track DFAs. In the
following constructions, we ignore transitions that go to sink states,
and assume that all unspecified transitions go to sink states.

Before we give the constructions, we generalize the problemof
constructing multi-track DFAs for word equations as follows. We
assume that each variable inX= {X1, X2, . . . , Xn} is associated
with an automatonMi = 〈Qi, Σ, δi, Ii, Fi〉, whereL(Mi) denotes
the set of values that the variableXi can take. Then, given a
word equationf overX= {X1, X2, . . . , Xn}, we say thatan n-
track DFAM under-approximatesf within M1, . . . Mn, if for all
w ∈ L(M), f [ŵ[1]/X1 , . . . , ŵ[n]/Xn] holds and for all1 ≤
i ≤ n, ŵ[i] ∈ L(Mi). We say thatan n-track DFA M over-
approximatesf within M1, . . . Mn, if for any s1, . . . , sn ∈ Σ∗

wheref [s1/X1, . . . , sn/Xn] holds and for all1 ≤ i ≤ n, si ∈
L(Mi), there existsw ∈ L(M) such that for all1 ≤ i ≤ n, ŵ[i] =
si. Note that, for either case, for any wordw ∈ L(M), for all
1 ≤ i ≤ n, ŵ[i] ∈ L(Mi).

4.3.1 The Construction ofX1 = X2c

Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉 be two
DFAs that accept possible values of variablesX1 and X2, re-
spectively. We present the construction of a 2-track DFAM =
〈Q,Σ, δ, I, F 〉, such thatM is precise with respect toX1 = X2c
within M1, M2.

Let sink1 be the sink state ofM1, andsink2 be the sink state
of M2. Let c = a1a2 . . . an, where∀1 ≤ i ≤ n, ai ∈ Σ and
n is the length of the constant stringc. M = 〈Q, Σ2, δ, q0, F 〉 is
constructed as:

• Q ⊆ Q1 × Q2 × {0, . . . , n},

• I = (I1, I2, 0),

• ∀a ∈ Σ, δ((r, p, 0), (a, a)) = (δ1(r, a), δ2(p, a), 0), if
δ1(r, a) 6= sink1 andδ2(p, a) 6= sink2

• ∀ai, p ∈ F2, δ((r, p, i), (ai, λ)) = (δ1(r, ai), p, i + 1),

• F = {(r, p, i) | r ∈ F1, p ∈ F2, i = n}.

Note thatM simulatesM1 andM2 making sure that both tracks
are the same until a final state ofM2 is reached. Then, the second
track reads the symbolλ while the first track reads the constantc,
and the automaton goes to a final state whenc is consumed.|Q|
is O(|Q1| × |Q2| + n) since in the worst caseQ will contain all

5 2009/8/11

possible combinations of states inQ1 andQ2 followed with a tail
of n states for recognizing the constantc. For the automatonM
resulting from the above construction we have,w ∈ L(M) if and
only if ŵ[1] = ŵ[2]c, ŵ[1] ∈ L(M1) and ŵ[2] ∈ L(M2), i.e.,
M is precise with respect toX1 = X2c (within M1, M2), hence,
X1 = X2c is regular expressible.

4.3.2 The Construction ofX1 = cX2

Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉 be two
DFAs that accept possible values of variablesX1 andX2, respec-
tively. Below we present the construction of a 2-track DFAM , such
thatM is precise with respect toX1 = cX2 within M1, M2. Let
c = a1a2 . . . an, where∀1 ≤ i ≤ n, ai ∈ Σ andn is the length of
the constant stringc.

The intuition behind the construction ofM is as follows. In the
initial stage (denoted asinit below), M makes sure that the first
track matches the constantc, while recording the string that is read
in the second track in a buffer (a vector of symbols) stored inits
state. Afterc is consumed,M goes to the next stage (denoted as
matchbelow) and matches the symbols read in the first track with
the next symbol stored in the buffer while continuing to store the
symbols read in the second track in the buffer. Note that, thekth
symbol read in track 2 has to be matched with the(k+n)th symbol
read in track 1. So, the buffer stores the symbols read in track 2 until
the corresponding symbol in track 1 is observed.

Let ~v be a sizen vector. For1 ≤ i ≤ n,~v[i] ∈ Σ ∪ { ⊥}. The
vector~v′ = ~v[i := a] is defined as follows:~v′[i] = a and∀j 6= i,
~v′[j] = ~v[j]. M = 〈Q, Σ2, δ, I, F 〉 is constructed as:

• Q ⊆ Q1 ×Q2 × {1, . . . , n}× (Σ∪ {⊥})n ×{init, match},

• I = (I1, I2, 1, ~v⊥, init), where∀i, ~v⊥[i] = ⊥,

• ∀a ∈ Σ, 1 ≤ i < n, δ((r, p, i, ~v, init), (ai, a)) =
(δ1(r, ai), δ2(p, a), i + 1, ~v[i := a], init),

• ∀a ∈ Σ, i = n, δ((r, p, i, ~v, init), (ai, a)) =
(δ1(r, ai), δ2(p, a), 1, ~v[i := a], match),

• ∀a, b ∈ Σ, 1 ≤ i < n,~v[i] = a, δ((r, p, i, ~v, match), (a, b))
= (δ1(r, a), δ(p, b), i + 1, ~v[i := b], match),

• ∀a, b ∈ Σ, i = n,~v[i] = a, δ((r, p, i, ~v, match), (a, b))
= (δ1(r, a), δ(p, b), 1, ~v[i := b], match),

• ∀a ∈ Σ, p ∈ F2, 1 ≤ i < n,~v[i] = a, δ((r, p, i, ~v, match),
(a, λ)) = (δ1(r, a), p, i + 1, ~v[i := ⊥], match),

• ∀a ∈ Σ, p ∈ F2, i = n,~v[i] = a, δ((r, p, i, ~v, match), (a, λ))
= (δ1(r, a), p, 1, ~v[i := ⊥], match),

• F = {(r, p, i, ~v⊥, match) | r ∈ F1, p ∈ F2}.

SinceM accepts the set{w | ŵ[1] = cŵ[2], ŵ[1] ∈ L(M1),
ŵ[2] ∈ L(M2)}, X1 = cX2 is regular expressible. However, the
number of states ofM is exponential inc. Below, we show that the
exponential number of states is inevitable.

4.3.3 Intractability of X1 = cX2

Consider the equationX1 = cX2, wherec is a constant string of
lengthn. Let L(M1) andL(M2) be regular languages. Define the
2-track language:

L = {(x1x2, y1y2λ
n) | x1x2 ∈ L(M1), y1y2 ∈ L(M2), k ≥

n, |x1x2| = k, |x1| = |y1| = n, x1 = c, x2 = y1y2}

Note that any automatonm that accepts the languageL defined
above will be precise with respect to the the equationX1 = cX2

(within M1 andM2).

THEOREM 8. Any nondeterministic finite automaton (NFA)M
needs at least2n states to acceptL.

Proof: Let c = 1n and consider the regular languages
L(M1) = (0 + 1)+ and L(M2) = (0 + 1)+. SupposeM is
an NFA acceptingL. Consider any pair of distinct stringsy1 and
y′
1 of lengthn. ThenM will accept the following 2-track strings:

(1nx2, y1y2λ
n), where x2, y1, y2 ∈ (0 + 1)+, k ≥ n,

|1nx2| = k, |y1| = n, x2 = y1y2, and

(1nx′
2, y

′
1y

′
2λ

n), where x′
2, y

′
1, y

′
2 ∈ (0 + 1)+, k ≥ n,

|1nx′
2| = k, |y′

1| = n, x′
2 = y′

1y
′
2

Suppose in processing(1nx2, y1y2λ
n), M enters stateq after

processing the initial 2-track segment(1n, y1), and in processing
(1nx′

2, y
′
1y

′
2λ

n), M enters stateq′ after processing the initial 2-
track segment(1n, y′

1). Thenq 6= q′; otherwise,M will also accept
(1nx2, y

′
1y2λ

n). This is a contradiction, sincex2 6= y′
1y2.

Since there are2n distinct stringsy of lengthn, it follows that
M must have at least2n states.

4.3.4 The Construction ofc = X1X2

Below we briefly describe the construction of a 2-track DFAM ,
such thatM is precise with respect toc = X1X2 within the given
regular sets characterizing possible values ofX1 andX2. Assume
that c = a1 . . . an. We can splitc to two stringsa1 . . . ak and
ak+1 . . . an so thatc = a1 . . . akak+1 . . . an. There aren+1 such
splits. For each of them, ifa1 . . . ak ∈ L(M1) andak+1 . . . an ∈
L(M2), then ifk ≥ n − k, (a1 . . . ak, ak+1 . . . anλ2k−n) should
be accepted byM and ifk < n−k, (a1 . . . akλn−2k, ak+1 . . . an)
should be accepted byM . We can construct an automatonM with
O(n2) states that accepts this language by explicitly checking each
of thesen + 1 cases. Since we can construct this 2-track DFA, it
follows thatc = X1X2 is regular expressible.

4.3.5 Non-Regularity ofX1 = X2X3

We first show thatX1 = X2X3 is not regular expressible, and
later we give constructions of 3-track DFAs that over-approximate
or under-approximateX1 = X2X3.

Given M1, M2, M3, let L = {w | ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈
L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3)}.

THEOREM9. L is not necessarily a regular language.

Proof: Let L(M1) = a+b+, L(M2) = a+, andL(M3) = b+.
SupposeL is regular and is accepted by a 3-track DFAM . Then
M when given a 3-track string consisting of:

asbt

aiλs+t−i

bjλs+t−j

accepts if and only ifs = i andt = j. Clearly, we can construct a
3-track DFAM ′ which accepts 3-track strings of the form:

asbt

aiλs+t−i

biλs+t−i

We can then construct another 3-track DFAM ′′ which accepts
L(M)∩L(M ′). ButL(M ′′) consists of 3-track strings of the form:

aibi

aiλs+t−i

biλs+t−i

It follows that we can construct a 1-track NFA fromM ′′ which
accepts the language{aibi | i ≥ 1} (by erasing the second and
third tracks by homomorphism), which is not regular and leads to a
contradiction.

6 2009/8/11

4.3.6 The Approximation ofX1 = X2X3

Below we propose an over approximation construction forX1 =
X2X3. Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉,
andM3 = 〈Q3, Σ, δ3, I3, F3〉 accept values ofX1, X2, andX3

respectively.M = 〈Q, Σ3, δ, I, F 〉 is constructed as follows.

• Q ⊆ Q1 × Q2 × Q3 × Q3,

• I = (I1, I2, I3, I3),

• ∀a, b ∈ Σ, δ((r, p, s, s′), (a, a, b)) = (δ1(r, a), δ2(p, a),
δ3(s, b), s

′),

• ∀a, b ∈ Σ, p ∈ F2, s 6∈ F3, δ((r, p, s, s′), (a, λ, b)) =
(δ1(r, a), p, δ3(s, b), δ3(s

′, a)),

• ∀a ∈ Σ, p ∈ F2, s ∈ F3, δ((r, p, s, s′), (a, λ, λ)) =
(δ1(r, a), p, s, δ3(s

′, a)),

• ∀a ∈ Σ, p 6∈ F2, s ∈ F3, δ((r, p, s, s′), (a, a, λ)) = (δ1(r, a),
δ2(p, a), s, s′),

• F = {(r, p, s, s′) | r ∈ F1, p ∈ F2, s ∈ F3, s
′ ∈ F3}.

|Q| is O(|Q1| × |Q2| × |Q3| + |Q1| × |Q3| × |Q3|). For all
w ∈ L(M), the following properties hold:

• ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3),

• ŵ[1] = ŵ[2]w′ andw′ ∈ L(M3),

Note thatw′ may not be equal tôw[3], i.e., there existsw ∈
L(M), ŵ[1] 6= ŵ[2]ŵ[3], and henceM is not precise with re-
spect toX1 = X2X3. On the other hand, for anyw such that
ŵ[1] = ŵ[2]ŵ[3], we havew ∈ L(M), henceM is a regularover-
approximation ofX1 = X2X3.

Below, we show a regularunder-approximation construction of
X1 = X2X3. Note that ifL(M2) is a finite set language, one
can construct the DFAM that satisfiesX1 = X2X3 by explicitly
taking the union of the construction ofX1 = cX3 for all c ∈
L(M2). If L(M2) is an infinite set language, we can still use this
idea to construct a regularunder-approximation ofX1 = X2X3 by
considering a (finite) subset ofL(M2) where the length is bounded.
Formally speaking, for eachk ≥ 0 we can constructMk, so that
w ∈ L(Mk), ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[3] ∈ L(M3),
ŵ[2] ∈ L(M2) and |ŵ[2]| ≤ k. It follows that Mk is a regular
under-approximation ofX1 = X2X3. The following lemma holds
by construction.

LEMMA 10. L(Mk1
) ⊆ L(Mk2

) if k1 ≤ k2.

To sum up, ifL(M2) is a finite set language, there existsk
(the length of the longest accepted word) so thatL(Mk) is precise
with respect toX1 = X2X3. If L(M2) is an infinite set language,
there does not exist suchk so thatL(Mk) is precise with respect to
X1 = X2X3, as we have proven non-regularity ofX1 = X2X3.

We say a regular under-approximationMκ is tightestif L(Mκ)
is an under-approximation ofX1 = X2X3 and for allM ′ where
M ′ is an under-approximation ofX1 = X2X3 we haveL(M ′) ⊆
L(Mκ). Since the precision of a regular under-approximation can
be always improved by adding new words to the language, the
tightest regular under-approximation does not exist ifL(M2) is not
finite.

5. Symbolic Reachability Analysis
In this section, we present our symbolic reachability analysis for
string systems. Our approach consists of two phases. In the first
phase, we use one multi-track DFA for each program point to sym-
bolically represent possible values of string variables atthat pro-
gram point, where each track corresponds to one string variable.
Our approach is based on a forward fixpoint computation on multi-
track DFAs. We iteratively compute post-images of reachable states

and join the results until we reach a fixpoint. We use summaries to
handle functions calls. During the forward fixpoint computation if
we encounter a call to a function that has not been summarized,
we go to the second phase of the analysis, which is summarization.
Each function is summarized when needed, and once a functionis
summarized, the summary DFA is used to compute the return val-
ues at the call sites without going through the body of the function.
During the summarization phase, (recursive) functions aresum-
marized as unaligned multi-track DFAs that specify the relations
among their inputs and return values. We first build (cyclic)depen-
dency graphs to specify how the inputs flow to the return values.
Each node in the dependency graph is associated with an unaligned
multi-track DFA that traces the relation among inputs and the value
of that node. We iteratively compute post images of reachable re-
lations and join the results until we reach a fixpoint. Upon termi-
nation, the summary is the union of the unaligned DFAs associated
with the return nodes. To compose these summaries at the callsite,
we also propose an alignment algorithm to align (so thatλ’s are
right justified) an unaligned multi-track DFA.

5.1 Forward Fixpoint Computation

The first phase of our analysis is a standard forward fixpoint com-
putation on multi-tack DFAs. Each program point is associated with
a single multi-track DFA, where each track is associated with a sin-
gle string variableX ∈ X . We useM [l] to denote the multi-track
automaton at the program labell. The forward fixpoint computa-
tion algorithm is a standard work-queue algorithm as shown in Al-
gorithm 3. Initially, for all labelsl, L(M [l]) = ∅. We iteratively
compute the post-images of the statements and join the results to
the corresponding automata. The process terminates when wereach
a fixpoint.

5.1.1 Widening Operation

Since string systems are infinite state systems, an iterative reach-
ability computation may not terminate. We incorporate an au-
tomata widening operator, denoted as∇, proposed in [1] to
accelerate the fixpoint computation. Given two finite automata
M = 〈Q, Σ, δ, I, F 〉 and M ′ = 〈Q′, Σ, δ′, I ′, F ′〉, we define
an equivalence relation≡∇ on Q ∪ Q′ as follows: Givenq ∈ Q
andq′ ∈ Q′, we say thatq ≡∇ q′ andq′ ≡∇ q if and only if 1) the
language recognized by starting from the stateq in M and the lan-
guage recognized by starting from the stateq′ in M ′ are the same,
or 2) there exists a wordw such thatM reachesq after consuming
w from its initial stateI andM ′ reachesq′ after consumingw from
its initial stateI ′. Forq1 ∈ Q andq2 ∈ Q we say thatq1 ≡∇ q2 if
and only if∃q ∈ Q ∪ Q′. q1 ≡∇ q ∧ q2 ≡∇ q.

Let C be the set of equivalence classes of≡∇. We define
M∇M ′ = 〈Q′′, Σ, δ′′, I ′′F ′′〉 as follows:

• Q′′ = C

• I ′′ = c such thatI ∈ c ∧ I ′ ∈ c

• δ′′(ci, σ) = cj if (∀q ∈ ci ∩ Q . δ(q, σ) ∈ cj ∨ δ(q, σ) =
sink) ∧ (∀q′ ∈ ci ∩ Q′ . δ′(q′, σ) ∈ cj ∨δ′(q′, σ) = sink)

• c ∈ F ′′ if ∃q ∈ F ∪ F ′. q ∈ c.

In other words, the set of states ofM∇M ′ is the setC of equiv-
alence classes of≡∇. Transitions are defined based on the tran-
sitions ofM andM ′. The initial state is the class containing the
initial statesI andI ′. The set of final states is the set of classes that
contain some of the final states inF andF ′. It can be shown that,
given two automataM andM ′, L(M) ∪ L(M ′) ⊆ L(M∇M ′).

In Figure 2, we give an example for the application of this
widening operation to two 2-track DFAs.L(M) = {(a, a)(b, b)}
andL(M ′) = {(a, a)(b, b), (a, a)(b, b)(b, b)}. The set of equiv-
alence classes forM∇M ′ is C = {q′′0 , q′′1 , q′′2 }, whereq′′0 =

7 2009/8/11

10 2
(a,a) (b,b)

10 2
(a,a) (b,b)

3
(b,b)

10 2
(a,a) (b,b)

(b,b)

M M ′ M∇M ′

Figure 2. Widening automata

{q0, q
′
0}, q′′1 = {q1, q

′
1}, q′′2 = {q2, q

′
2, q

′
3}, and we have

L(M∇M
′

) = (a, a)(b, b)+. Note that, these are the automata our
symbolic analysis computes for the program point 5 of the second
example program segment in Section 2.

5.1.2 Automata Construction

CONSTRUCT(exp, b) returns the DFA that accepts a regular approx-
imation ofexp. The signb ∈ {+,−} indicates the direction of ap-
proximation if needed. The operationb̄ flips the sign. Algorithm 1
recursively pushes the negations (¬) inside to the basic expressions
(bexp). For each basic expressionbexp, we have shown the corre-
sponding construction of multi-track DFAs in the previous section.
CONSTRUCT(bexp, +) returns a DFA that over-approximatesbexp,
while CONSTRUCT(bexp,−) returns a DFA that under-approximates
bexp, for those cases wherebexp is not regular expressible. Both
CONSTRUCT(bexp, +) andCONSTRUCT(bexp,−) return a DFA that
is precise with respect tobexp if bexp is regular expressible. We
also incorporate the standard DFA operations, e.g., intersection at
line 2, union at line 4, and complement at line 10.

Algorithm 1 CONSTRUCT(exp, b)
1: if exp is exp1 ∧ exp2 then
2: return CONSTRUCT(exp1, b) ∩ CONSTRUCT(exp2, b);
3: else ifexp is ¬(exp1 ∧ exp2) then
4: return CONSTRUCT(¬exp1, b) ∪ CONSTRUCT(¬exp2, b);
5: else ifexp is ¬(¬exp1) then
6: return CONSTRUCT(exp1, b);
7: else ifexp is bexp then
8: return CONSTRUCT(bexp, b);
9: else ifexp is ¬bexp then

10: return COMPLEMENT(CONSTRUCT(bexp, b̄));
11: end if

For astmt in the form:X:= sexp, the post-image is computed
as follows:

POST(M, stmt) ≡ (∃X.M∩CONSTRUCT(X ′ = sexp,+))[X/X ′].

We use function summaries to handle function calls. Each function
f is summarized as a finite state transducer, denoted asMf , which
captures the relations among input variables (parameters), denoted
as Xp, and return values. The return values are tracked in the
output track, denoted asXo. We will detail how to generateMf

in Section 6. For astmt in the form X:= call f(e1, . . . , en),
POST(M , stmt) returns the result of(∃X,Xp1

, . . . Xpn
.M ∩MI ∩

Mf)[X/Xo], whereMI = CONSTRUCT(
V

i
Xpi

= ei, +).
During the fixpoint computation, we report assertion failures if

M [l] accepts some string that violates the assertion labeledl. Note
that at line 21 we compute an under approximation of the assertion
expression to ensure the soundness of our analysis. Finally, a pro-
gram labell is not reachable ifL(M [l]) is empty. Our analysis is
sound but incomplete due to the following approximations: (1) reg-
ular approximation for non-linear word equations, (2) the widening
operation and (3) summarization.

6. Summarization
In this section, we discuss how to compute function summaries. We
assume parameter-passing with call-by-value semantics and we are

Algorithm 2 PROPAGATE(m, l)
1: m′ := M [l]∇(m ∪ M [l]);
2: if m′ 6⊆ M [l] then
3: M [l] := m′;
4: WQ.enqueue(l);
5: end if

Algorithm 3 FORWARDRECAHABILITYANALYSIS(l0)
1: Init(M);
2: queueWQ;
3: WQ.enqueue(l0 : stmt0);
4: while WQ 6= NULL do
5: e := WQ.dequeue(); Lete be l : stmt;
6: if stmt is seqstmt then
7: m := POST(M [l], stmt);
8: PROPAGATE(m, l + 1);
9: end if

10: if stmt is if exp goto l′ then
11: m := M [l]∩ CONSTRUCT(exp,+);
12: if L(m) 6= ∅ then
13: PROPAGATE(m, l′);
14: end if
15: m := M [l]∩ CONSTRUCT(¬exp,+);
16: if L(m) 6= ∅ then
17: PROPAGATE(m, l + 1);
18: end if
19: end if
20: if stmt is assert exp then
21: m := CONSTRUCT(exp,−);
22: if L(M [l]) 6⊆ L(m) then
23: ASSERTFAILED (l);
24: else
25: PROPAGATE(M [l],l+ 1);
26: end if
27: end if
28: if stmt is goto L then
29: for l′ ∈ L do
30: PROPAGATE(M [l],l′);
31: end for
32: end if
33: end while

able to handle recursion. Each functionf is summarized as an un-
aligned multi-track DFA, denoted asMf , that captures the relation
among its input variables and return values. An unaligned multi-
track DFA is a multi-track DFA whereλs are not right justified.
Return values of a function are represented with an auxiliary output
track. Given a functionf with n parameters,Mf is an unaligned
(n+1)-track DFA, wheren tracks represent then input parameters
and one trackXo is the output track representing the return values.
OnceMf has been computed, it is not necessary to reanalyze the
body of f . Instead, one can intersect the values of input parame-
ters withMf to obtain the return values. Our approach consists of
three steps: (1) Building the dependency graph, (2) generating the
summary, and (3) alignment.

6.1 Dependency Graph

Given a functionf , the dependency graphGf specifies how the
inputs flow to the return values inf . Formally speaking, a depen-
dency graphG = 〈N, E〉 is a directed graph, whereN is a finite
set of nodes andE ⊆ N × N is a finite set of directed edges. An
edge(ni, nj) ∈ E identifies that the value ofnj depends on the
value ofni. Each noden ∈ N can be

• anormal node includingreturn,input,constant,variable,

• anoperation node includingconcat andcall.

8 2009/8/11

A return node is a sink node (no successors) that corresponds to a
return statement. Aninput node corresponds to a parameter of the
functionf , labeled asf.pi, wherei indicates theith parameter. A
constant node is associated with a constant value. Bothinput
and constant nodes have no predecessors. Aconcat node n
has two predecessors labeled as the prefix node (n.p) and the
suffix node (n.s), and stores the concatenation of any value of the
prefix node and any value of the suffix node inn. A call node
is associated with a functioncallee. If callee hasm parameters,
there arem predecessors of acall node as its arguments (labeled
asn.a1, . . . , n.am).

Assume that we want to compute the summary of a given func-
tion main. Let F denote the set of related functions that include
main and itscallees (including nested function calls). Our first
step is generating the dependency graph for eachf ∈ F , which is
done by a bottom-up dependency analysis starting from the return
statements.

Let the dependency graph off be Gf = 〈Nf , Ef 〉. To sim-
plify the description, we useInput(Gf) to denote the set of its
input nodes,Call(Gf) to denote the set of itscall nodes, and
Return(Gf) to denote the set of itsreturn nodes. For each func-
tion f (callee), we useCaller(f) to denote the set ofcall nodes
that are associated withf .

Our second step is generating a composed dependency graph
GF from {Gf | f ∈ F}. GF = 〈NF , EF 〉 is constructed as
follows:

• NF = ∪f∈F Nf .

• EF = En ∪ Ei ∪ Er, where

En = {(n, n′) | f ∈ F, (n, n′) ∈ Ef , n′ 6∈ Call(Gf)}.

Ei = {(n.ai, callee.pi) | f ∈ F, n ∈ Call(Gf)}.
callee.pi is theinput node that identifies theith parameter
of the functioncallee associated withn.

Er = {(n, n′) | f ∈ F, n ∈ Return(Gf), n′ ∈
Caller(f)}.

Briefly, GF connects the set ofGf by (1) redirecting the prede-
cessors ofcall nodes to theinput nodes of their callees, and (2)
adding edges that directreturn nodes of callees to thecall nodes
of their callers. Forn ∈ NF , Succ(n) = {n′ | (n, n′) ∈ EF } is
the set of successors ofn andPred(n) = {n′ | (n′, n) ∈ EF}
is the set of predecessors ofn. We also defineInput(GF) =
{n | Pred(n) = ∅}. Note that after composition, areturn node
may have successors and aninput node may have predecessors.

6.2 Generating Function Summaries

In this section, we describe how to compute a summary onGF ,
given two sets of nodesIn and Out. If we aim to summarize
function f (f ∈ F), In ⊆ Nf is the set of itsinput nodes and
Out ⊆ Nf is the set of itsreturn nodes inGf . Eachn ∈ In
recognizes one input variable, denoted asXn, and the summary of
〈GF , In, Out〉 is an unaligned(|In|+1)-track DFA. The first|In|
tracks are labeled asXn for eachn ∈ In. The extra track, labeled
asXo, is used to record the output values.

The algorithm to generate the summary is shown in Algo-
rithm 4. We use a DFA vectorS to record the reachable summary
at each node. We initializeS at line 1. Initially, for eachn ∈ In,
S[n] is a 2-track (associated withXn andXo) DFA that accepts
the identity relation onXn andXo. For eachn ∈ Input(GF)\In,
S[n] is a 1-track (associated withXo) DFA that acceptsΣ∗ if n
is avariable node, or a constant value ifn is aconstant node.
For the rest, i.e.,n 6∈ In, S[n] accepts an empty set. Similar to
Algorithm 3, the algorithm is a standard work queue algorithm in-
corporating the automata widening operator. We iteratively update
the summary at each node until reaching a fixpoint.

We only consider one string operation: concatenate. Note
that summaries may have tracks that are associated with differ-
ent variables. Assume that we wish to computeCONCATSUM -
MARY (S1, S2) where S1 represents the summary at the prefix
node andS2 represents the summary at the suffix node. Let
S1 = 〈Q1, Σ1, δ1, I1, F1〉 be a multi-track DFA whose tracks
are associated with the set of input variablesχ1 and Xo where
Σ1 = (Σ ∪ λ)|χ1| × Σ. Let S2 = 〈Q2, Σ2, δ2, I2, F2〉 be a multi-
track DFA whose tracks are associated with the set of input vari-
ablesχ2 andXo whereΣ2 = (Σ ∪ λ)|χ2| × Σ. We first extend
S1 andS2 to the DFAs that have common tracks, so that both are
associated withχ1 ∪ χ2 andXo.

The extension ofS1, denoted asSλ
1 , is 〈Q1, Σ

λ
1 , δλ

1 , I1, F1〉,
where

• Σλ
1 = (Σ ∪ λ)|χ1| × λ|χ2−χ1| × Σ, and

• δλ
1 (q, α) = q′ if δ1(q, β) = q′ and α[X] = β[X] if X ∈

χ1 ∪ Xo, andα[X] = λ, otherwise.

The extension ofS2, denoted asSλ
2 , is 〈Q2, Σ

λ
2 , δλ

2 , I2, F2〉, where

• Σλ
2 = λ|χ1| × (Σ ∪ λ)|χ2−χ1| × Σ, and

• δλ
2 (q, α) = q′ if δ2(q, β) = q′ andα[X] = λ if X ∈ χ1, and

α[X] = β[X], otherwise.

Intuitively, we extendS1 (prefix) by allowing onlyλ in the added
tracks, while we extendS2 (suffix) by allowing onlyλ in both the
added tracks and the common tracks that are also associated with
S1. CONCATSUMMARY (S1, S2) returns the(|χ1 ∪ χ2| + 1)-track
DFA that accepts the concatenation ofSλ

1 andSλ
2 .

To deal with the union or widening operator onS1 and S2

that are associated with different variables, we extend both tracks
to χ1 ∪ χ2 and Xo by allowing arbitrary symbols in the added
tracks. I.e., the value of an unspecified track is not restricted. We
then perform union or widening on these extension DFAs. Finally,
the summary of〈GF , In, Out〉 is the union of the DFAs that are
associated with nodes inOut.

In sum, to summarize a specific functionf , we first find the
set of related functionsF . The summary off , denoted asMf ,
is the result ofGENERATESUMMARY (GF , In, Out), whereIn =
{n | n ∈ Input(Gf), wheren is not aconstant node}, and
Out = {n | n ∈ Return(Gf)}. The alphabet ofMf is (Σ ∪
λ)|In| × Σ. Let w[X] be a word projected to the track associated
with X. For anyw ∈ L(Mf), we have the following:

• ∀X ∈ In,w[X] ∈ λ∗Σ∗λ∗, and

• w[Xo] ∈ Σ∗.

6.3 Another Simple Example
Consider another simple example given below. Functionf has one
parameterX, which non-deterministically returns its input (goto
2) or makes a self call (goto 3) by concatenation its input andthe
constanta. Let F = {f}. Gf andGF are shown in Figure 3.

f(X)
begin
1: goto 2, 3;
2: X: = call f(X.a);
3: return X;
end

The generated summary is shown in Figure 4.Mf is an aligned
2-track DFA, where the first track is associated with its parameter
Xp1

, and the second track is associated withXo representing the
return values. The edge(Σ, Σ) represents a set of identity edges.
I.e., if δ(q, (Σ, Σ)) = q′ then ∀a ∈ Σ, δ(q, (a, a)) = q′. The
summary DFAMf precisely captures the relationXo = Xp1

.a∗

between the input variable and the return values. We can use this

9 2009/8/11

Figure 3. Gf andGF : The dependency graphs

Figure 4. Mf : The summary DFA

summary DFA to compute the post-image of a call tof without
analyzingf further. For example, letM be a one-track DFA asso-
ciated withX whereL(M) = {b}. POST(M , X := call f(X))
returnsM ′ whereL(M ′) = ba∗. As another example, letM be
a 2-track DFA associated withX, Y that is precise with respect to
X = Y . ThenPOST(M , X := call f(X)) returnsM ′ which is
precise with respect toX = Y.a∗ precisely capturing the relation
betweenX andY after the execution of the function call. Recall
thatM ′ is computed by(∃X, Xp1

.M ∩MI ∩Mf)[X/Xo], where
L(MI) = CONSTRUCT(Xp1

= X, +).
In general,Mf can be an unaligned multi-track DFA (λs are

not right justified). The final step of our construction is to align Mf

before composition. Unfortunately, an unaligned multi-track DFA
may not be definable by an aligned multi-track DFA. We discuss
how to align an unaligned multi-track DFA in the next section.

Algorithm 4 GENERATESUMMARY (GF , In, Out)
1: INIT(S, Input(GF), In);
2: queueWQ := NULL;
3: for n ∈ In ∪ Input(GF) do
4: WQ.enqueue(Succ(n));
5: end for
6: while WQ 6= NULL do
7: n := WQ.dequeue();
8: if n is concat then
9: tmp : = CONCATSUMMARY (S[n.p],S[n.s]);

10: else
11: tmp : =

S

n′∈Pred(n) S[n′];
12: end if
13: tmp := (tmp ∪ S[n])∇S[n];
14: if tmp 6⊆ S[n] then
15: S[n] := tmp;
16: WQ.enqueue(Succ(n));
17: end if
18: end while
19: return

S

n∈Out S[n];

6.4 Alignment

In this section, we discuss how to align an unaligned multi-track
DFA M so thatλ′s of M are right justified. First, we show that
there are languages recognized by unaligned multi-track DFAs that
cannot be recognized by any aligned multi-track DFA.

THEOREM 11. For anyn ≥ 2, there exists a languageL accepted
by ann-track DFAM that cannot be converted to any aligned DFA
M ′.

Proof: Let L = {(aλ)i(cc)k | i, k ≥ 1}. Clearly, L can
be accepted by an unaligned 2-track DFAM . Suppose we can
convertM to an aligned 2-track DFAM ′. Let M ′ haves states.
Consider the stringw = (ac)s(cλ)s. Thenw is accepted byM ′.
Then there existi, k ≥ 0 and j ≥ 1 such thatw decomposes
into w = (ac)i(ac)j(ac)k(cλ)s, where i + j + k = s, and
(ac)i(ac)mj(ac)k(cλ)s is accepted byM ′ for everym ≥ 0. Let
m = 2. Thenw′ = (ac)i(ac)2j(ac)k(cλ)s is accepted byM ′. But
now, the first track ofw′ contains the stringas+jcs, and the second
track containscs+j . Sincej ≥ 1, this is a contradiction since the
number ofc’s in the first track is less than the number ofc’s in the
second track.

Since the above result shows that precise alignment is not pos-
sible in general, we propose an approximatek-alignmentconstruc-
tion. Given an unaligned multi-track DFAM and a boundk, we
constructM ′ that accepts anoveror underapproximation ofL(M)
based onk. We associate a bounded FIFO queue̺ (up to sizek)
with the states ofM ′ to record the symbols seen on the track that is
being aligned when a transition that contains the symbolλ for that
track is taken. Later, when a non-λ symbol is seen on that track, it
has to match the symbol that is at the head of the queue if the queue
is not empty. Anactivequeue (+) can enqueue and dequeue once.
After dequeuing, it becomes aninactivequeue (−) that can only
dequeue. Initially, all queues areactive.

M ′ simulatesM . The idea is to output possible characters while
encounteringλ during the construction. The output word is kept in
a queue in each state. Upon seeing a charactera 6= λ ∈ Σ, we set
the queue toinactive, and start to outputλ and match the contents
of the queue against the seen characters until the queue is empty. A
word is accepted if the queue is empty andM ′ is in a final state of
M .

During the construction, if no queue exceeds sizek, then we say
M is k-alignable, and the construction returns the precise aligned
M ′ such thatL(M ′) = L(M). If M is notk-alignable, theunder-
approximation construction rejects all words that cause a queue to
exceedk and returns anM ′ such thatL(M ′) ⊆ L(M), while the
over-approximation construction accepts those words that partially
match the contents of the queue (up to sizek) and returns anM ′

such thatL(M) ⊆ L(M ′). The precision improves when we
increasek.

Let M = 〈Q,Σn, δ, I, F 〉 andΣn ⊆ (Σ ∪ {λ}) × . . . × (Σ ∪
{λ}). For α ∈ Σn, α[i] ∈ Σ ∪ {λ} denotes theith character
of α and α[i := a] denotesα′ ∈ Σn such thatα′[i] = a and
∀i 6= j, α′[j] = α[j]. We align one track ofM at a time. To align
M completely, we iteratively align each track. Given a boundk and
a tracki, we constructM ′ such that the tracki is aligned inM ′.
We assume that there is a sink state and all unspecified transitions
go to the sink state. Let̺⊥ be an empty queue and∗ denote+ or
−. We constructM ′ = 〈Q′, Σn, δ′, I ′, F ′〉 as follows:

• Q′ ⊆ Q × Qqueue, whereQqueue ⊆ {+,−} × Σk.

• I ′ = (I, (+, ̺⊥)).

• F ′ = {(q, (∗, ̺⊥)) | q ∈ F)}

For eachδ(q, α) = q′,

• if α[i] ∈ Σ,

δ′((q, (∗, ̺⊥)), α) = (q′, (−, ̺⊥)),

δ′((q, (∗, ̺)), α[i := λ]) = (q′, (−, ̺′), if α[i] = ̺.head
and̺′ = ̺.dequeue.

• if α[i] = λ,

δ′((q, (−, ̺⊥)), α) = (q′, (−, ̺⊥)),

δ′((q, (+, ̺)), α) = (q′, (−, ̺)),

10 2009/8/11

∀a ∈ Σ̺, ̺′ = ̺.enqueue(a) and|̺′| ≤ k, δ′((q, (+, ̺)),
α[i := a]) = (q′, (+, ̺′)).

Σ̺ ⊆ Σ is the set of characters that can be reached in tracki
after seeing the sequence of symbols stored in̺. Precisely, let
Mi = 〈Qi, Σ, δ, Ii, Fi〉 accept{ŵ[i] | w ∈ L(M)}, thenΣ̺ =
{a | q′ 6= sink, δi(I, ̺a) = q′}. Using Σ̺ (instead ofΣ) pre-
vents the construction from adding useless states that willend up
transitioning to the sink state.

The above construction returns anunder-approximation ifM
is not k-alignable. To return anover-approximation, we make the
following modifications. We first add two extra states to the queue,
{e, e′}, to denote that the queue capacity has been exceeded. After
the queue capacity is exceeded, we will stop enqueuing symbols to
the queue when we seeλ. We continue to match and dequeue when
we seea ∈ Σ until the queue is empty. In both cases, we can output
arbitrary charactera ∈ Σ or λ (e), but once we outputλ, we can
only outputλ thereafter (e′).

For eachδ(q, α) = q′,

• if α[i] ∈ Σ,

δ′((q, ({e, e′}, ̺⊥)), α[i := λ]) = (q′, (e′, ̺⊥)),

∀a ∈ Σ, δ′((q, (e, ̺⊥)), α[i := a]) = (q′, (e, ̺⊥)),

if α[i] = ̺.head and̺ ′ = ̺.dequeue.

− δ′((q, ({e, e′}, ̺)), α[i := λ]) = (q′, (e′, ̺′),

− ∀a ∈ Σ, δ′((q, (e, ̺)), α[i := a]) = (q′, (e, ̺′)),

• if α[i] = λ,

if |̺| = k,

− ∀a ∈ Σ, δ′((q, (+, ̺)), α[i := a]) = (q′, (e, ̺)),

− δ′((q, (+, ̺)), α) = (q′, (e′, ̺)),

δ′((q, ({e, e′}, ̺⊥)), α) = (q′, (e′, ̺⊥)),

∀a ∈ Σ, δ′((q, (e, ̺)), α[i := a]) = (q′, (e, ̺)).

7. Implementation
We have implemented the multi-track automaton construction and
symbolic reachability algorithms described above in our string
analysis tool [13–15].

Since a multi-track DFA contains all information that single-
track DFAs have, we can extend our analysis to support com-
plex string operations implemented for single-track DFAs [14].
For example, the single-trackreplace(M1, M2, M3) opera-
tion (proposed in [14]) returns a DFAM , so that L(M) =
{w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈
L(M1),∀i, xi ∈ L(M2), wi does not contain any substring ac-
cepted byM2, ci ∈ L(M3)}.

To use single-track automata operations, we implemented two
mapping functions between a single-track automaton and a multi-
track automaton.Extraction(M, i), takes an n-track DFAM and
an indexi, and returns a single-track DFA that accepts{ŵ[i] | w ∈
L(M)}. Extension(M,i, n), takes a single-track DFAM , an in-
dex i and the number of tracksn, and returns ann-track DFA that
accepts{w | ŵ[i] ∈ L(M), ∀1 ≤ k ≤ n, w[k] ∈ Σ∗λ∗}. The
post-images of the complex string functions on ann-track DFAM
can be implemented by: (1) extracting single-track DFAs from M ,
(2) computing post-images on single-track DFAs, (3) extending the
resulting DFAs ton-track DFAs and (4) using intersection to get
the final post-image.

Consider the following statementXi := REPLACE(X1, X2, X3).
LetM ′ be the result ofExtension(replace(M1, M2, M3), i, n),
where M1, M2, M3 is the result ofExtraction(M,1), Extrac-
tion(M,2), and Extraction(M, 3), respectively. The post-image

of the replacement statement is constructed asM ⇂i ∩M ′. Note
that the result is anover-approximation sincew ∈ L(M ′′) does
not imply thatŵ[i] = REPLACE(ŵ[1], ŵ[2], ŵ[3]).

8. Experiments
We evaluate our approach against three kinds of benchmarks:(1)
Basic benchmarks, (2) SQLCI/XSS benchmarks and (3) MFE
benchmarks. Table 1 summarizes the results of using single-track
DFAs and multi-track DFAs to analyze these benchmarks.

Basic benchmarks: These examples demonstrate that our ap-
proach can prove implicit equality properties of string systems. We
wrote two small programs. CheckBranch is similar to the firstex-
ample from Section 2 but in the else branch (X1 6= X2), we assign
a constantc to X1 and then assign the same constant toX2. We
check at the merge point whetherX1 = X2. CheckLoop is simi-
lar to the second simple example from Section 2, where we assign
X1 andX2 the same constant at the beginning, and iteratively ap-
pend another constant to both in an infinite loop. We check at the
end point of the loop whetherX1 = X2. Let M accept the val-
ues ofX1 andX2 upon termination. The equality assertion holds
whenL(M) ⊆ L(Ma), whereMa is CONSTRUCT(X1 = X2, −).
While using single-track DFAs,M = ∩i=1,2 Extension(Mi, i, 2)
is acomposed DFA. Using multi-track DFAs, we prove the equal-
ity property that we fail to prove using single-track DFAs for these
benchmarks as shown in Table 1. Although these benchmarks are
simple, to the best of our best knowledge, there are no other string
analysis tools that can prove the assertions in these benchmarks.

SQLCI/XSS benchmarks: In the second set, we model branch
conditions while checking SQL Command Injection (SQLCI) and
Cross-Site Scripting (XSS) attacks against known vulnerable Web
applications. We check whether at a specific program point, a
sensitive function may take an attack string as its input. Ifso, we
say that the program is vulnerable against the given attack pattern.
To identify SQLCI/XSS attacks, we check intersection emptiness
against all possible values of the input of the sensitive function at
a given program point and the attack strings specified as a regular
language. Though one can check such vulnerabilities using single-
track DFAs [14], using multi-track DFAs, we can interpret branch
conditions, e.g.,$www=$url, that cannot be precisely expressed
using single-track DFAs. Hence, the result obtained using multi-
track DFAs is a more precise representation of reachable values of
the input of the sensitive function. However, for these benchmarks
added precision did not change the results since the single-track
analysis does not generate any false positives. These results are
still valuable in demonstrating the increase in analysis cost when
multi-track DFAs are used instead of single-track DFAs.

MFE benchmarks: In the last set, we show that the precision that
is obtained using multi-track DFAs can help us in removing false
positives generated by single-track automata based stringanaly-
sis. These benchmarks representmalicious file execution(MFE)
attacks. Such vulnerabilities are caused because developers di-
rectly use or concatenate potentially hostile input with file or
stream functions, or improperly trust input files. We systemati-
cally searched web applications for program points that execute
file functions (include, fopen, etc) whose arguments may be in-
fluenced by external inputs. At these program points, we check
whether the retrieved files and the external inputs are consis-
tent with what the developers intend. For instance, in pblguest-
book.php distributed with Pblguestbook-1.32, one possible vi-
olation is that$_GET[’type’] is A but the retrieved file is
pblguestbook back up B.txt. We manually generate a
multi-track DFA Mvul that accepts a set of possible violations
for each benchmark, and apply our analysis on the sliced program

11 2009/8/11

Single-track Multi-track
Result DFAs/ Composed DFA Time Mem Result DFA Time Mem

Benchmark, file (line) state(bdd) user+sys(sec) (kb) state(bdd) user+sys(sec) (kb)

CheckBranch false 15(107), 15(107) / 33(477) 0.027 + 0.006 410 true 14(193) 0.070 + 0.009 918
CheckLoop false 6(40), 6(40) / 9(120) 0.022+0.008 484 true 5(60) 0.025+0.006 293

MyEasyMarket-4.1, trans.php (218) vul 2(20), 9(64), 17(148) 0.010+0.002 444 vul 65(1629) 0.195+0.150 1231
PBLguestbook-1.32, pblguestbook.php(1210) vul 9(65), 42(376) 0.017+0.003 626 vul 49(1205) 0.059+0.006 4232

Aphpkb-0.71, saa.php(87) vul 11(106), 27(226) 0.032+0.003 838 vul 47(2714) 0.153+0.008 2684
BloggIT 1.0, admin.php (23) vul 53(423), 79(633) 0.062+0.005 1696 vul 79(1900) 0.226+0.003 2826

PBLguestbook-1.32, pblguestbook.php(536) vul 2(8), 28(208) / 56(801) 0.027+0.003 621 no 50(3551) 0.059+0.002 1294
MyEasyMarket-4.1, prod.php (94) vul 2(20), 11(89) / 22(495) 0.013+0.004 555 no 21(604) 0.040+0.004 996
MyEasyMarket-4.1, prod.php (189) vul 2(20), 2(20) / 5(113) 0.008+0.002 417 no 3(276) 0.018+0.001 465

php-fusion-6.01, dbbackup.php (111) vul 24(181), 2(8), 25(188) / 1201(25949) 0.226+0.025 9495 no 181(9893) 0.784+0.07 19322
php-fusion-6.01, forumsprune.php (28) vul 2(8), 14(101), 15(108) / 211(3195) 0.049+0.008 1676 no 62(2423) 0.097+0.005 1756

Table 1. Experimental results. DFA(s): the minimized DFA(s) associated with the checked program point. state: number of states. bdd:
number of bdd nodes. line: the line number of the checked point.

segments. Upon termination, we report that the file functionis
vulnerable ifL(M) ∩ L(Mvul) 6= ∅. M is the composed DFA
of the listed single-track DFAs in the single-track analysis. Us-
ing multi-track DFA analysis we are able to show that this type
of vulnerability does not exist in these programs. However,when
we use single-track automata based string analysis every instance
generates a false positive since single-track DFA are not capable of
representing relationships among variables which is necessary to
verify these properties.

Discussion: We have shown that multi-track DFAs can handle
problems that cannot be handled by multiple single-track DFAs. At
the same, we also observed that string analysis based on multi-track
DFAs uses more time and memory than the single-track DFA anal-
ysis. For these benchmarks, the cost seems affordable. As shown in
Table 1, in all tests, the multi-track DFAs that we computed (even
for the composed ones) are smaller than the product of the corre-
sponding single-track DFAs. One advantage of our implementation
is the use of symbolic DFA representation (provided by the MONA
DFA library [2]), in which transition relations of the DFAs are rep-
resented as Multi-terminal Binary Decision Diagrams (MBDDs).
Using this symbolic DFA representation we avoid the potential ex-
ponential blow-up that can be caused by the product alphabet. How-
ever, in the worst case the size of the MBDD can still be exponential
in the number of tracks.

9. Conclusion
Many security vulnerabilities are caused by inadequate manipula-
tion of string variables. In this paper, we presented a formal char-
acterization of the string verification problem and showed that it
is undecidable. We proposed a conservative symbolic verification
approach that computes an over-approximation of the reachable
states. Our string analysis uses a single multi-track DFA torepre-
sent all possible values of string variables at a given program point.
This enables us to check equality properties among string variables
and improves the precision of the string analysis. We demonstrated
the effectiveness of our approach on several examples.

References
[1] Constantinos Bartzis and Tevfik Bultan. Widening arithmetic

automata. InProceedings of the 16th International Conference
on Computer Aided Verification, pages 321–333, 2004.

[2] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algorithms for guided
tree automata. InFirst International Workshop on Implementing
Automata, LNCS 1260. Springer Verlag, 1997.

[3] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir
Touili. Regular model checking. In12th International Conference on
Computer Aided Verification, pages 403–418, 2000.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Precise analysis of string expressions. InProc. 10th International
Static Analysis Symposium, SAS ’03, volume 2694 ofLNCS, pages
1–18. Springer-Verlag, June 2003.

[5] CVE. Common Vulnerabilities and Exposures.http://www.
cve.mitre.org.

[6] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and
Lixin Tao. A static analysis framework for detecting sql injection
vulnerabilities. InCOMPSAC ’07: Proceedings of the 31st Annual
International Computer Software and Applications Conference - Vol.
1, pages 87–96, Washington, DC, USA, 2007.

[7] Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking
of dynamically generated queries in database applications. In
Proceedings of the 26th International Conference on Software
Engineering, pages 645–654, 2004.

[8] Yasuhiko Minamide. Static approximation of dynamically generated
web pages. InProceedings of the 14th International World Wide Web
Conference, pages 432–441, 2005.

[9] M. Minsky. Recursive unsolvability of Post’s problem ofTag and
other topics in the theory of Turing machines. InAnn. of Math (74),
pages 437–455, 1961.

[10] Open Web Application Security Project (OWASP). Top tenproject.
http://www.owasp.org/, May 2007.

[11] Daryl Shannon, Sukant Hajra, Alison Lee, Daiqian Zhan,and Sarfraz
Khurshid. Abstracting symbolic execution with string analysis. In
TAICPART-MUTATION ’07: Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques -
MUTATION, pages 13–22, Washington, DC, USA, 2007.

[12] Gary Wassermann and Zhendong Su. Sound and precise analysis of
web applications for injection vulnerabilities. InProceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation, pages 32–41, 2007.

[13] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generating vulnerabil-
ity signatures for string manipulating programs using automata-based
forward and backward symbolic analyses. Technical Report 2009-
11, Computer Science Department, University of California, Santa
Barbara, June 2009.

[14] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic
string verification: An automata-based approach. In15th Interna-
tional SPIN Workshop on Model Checking Software (SPIN 2008),
pages 306–324, 2008.

[15] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic string
verification: Combining string analysis and size analysis.In
15th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2009), pages 322–
336, 2009.

12 2009/8/11

