Verification of String Manipulating
Programs Using Multi-Track Automata

Fang Yu

University of California, Santa Barbara
yuf@cs.ucsb.edu

Abstract

Verification of string manipulation operations is a cru@abblem
in computer security. We present a hew symbolic string \eexifi
tion technique that can be used to prove that vulneralsilitiet
result from improper string manipulation do not exist in segi
program. We formally characterize the string verificatioalplem
as the reachability analysis efring systemsprograms that con-
tain only string variables and allow a limited set of opeyas

on them. We show that string analysis problem is undecidable

with even three variables if branch conditions that comiife
ferent variables are allowed. We develop a sound symbok¢-an
ysis technique for string verification that over-approxiesathe
reachable states of the string system. We represent thé steihg
values that string variables can take usinglti-track determinis-

tic finite automataand implement a forward fixpoint computation
using an automata based widening operation. In order toléand
branch conditions in string systems, we describe the prems-
struction of multi-track DFAs for linear word equations,chuas
c1X1c2 = ¢y Xach, as well as Boolean combinations of these equa-
tions. We show that non-linear word equations (even thelgimme

X7 = X2X3) cannot be characterized precisely as a multi-track
DFA. We propose a regular approximation for non-linear equa
tions, such as(; ... X; = X/ ... X, as well as Boolean combi-
nations of these equations. We present a summarizationitgezh

for inter-procedural analysis that generates a transdii@acter-
izing the relationship between the input parameters andetioen
values of each procedure. We implemented these algoritisimg u

the MONA automata package and analyzed several PHP programs

Unlike prior string analysis techniques, our approach s tbkeep
track of the relationships among the string variables, owving the
precision of the string analysis and enabling verificatibasser-
tions such as{; = X, whereX; and X, are string variables.

1. Introduction

Web applications provide critical services over the Iné¢and fre-
quently handle sensitive data. Unfortunately, Web appboade-
velopment is error prone and results in applications thetvait-
nerable to attacks by malicious users. The global accébgibf
critical Web applications make this an extremely seriousbpr
lem. In fact, in the Common Vulnerabilities and Exposure¥EE

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Tevfik Bultan

University of California, Santa Barbara
bultan@cs.ucsb.edu

Oscar H. Ibarra

University of California, Santa Barbara
ibarra@cs.ucsbh.edu

list [5] (which documents computer security vulneralegiétiand ex-
posures) Web application vulnerabilities have occupiesl fitst
three positions in recent years. The most important Webiagpl
tion vulnerabilities are due to inadequate manipulatiorstoing
variables. According to the Open Web Application Securityj&ct
(OWASP)'’s top ten list that identifies the most serious watliap-
tion vulnerabilities [10], the top three vulnerabilitieeal) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL injmtt
and 3) Malicious File Execution. All these vulnerabilitiesolve
string manipulation and they occur due to inadequate gatiiin
and use of input strings provided by users.

In this paper, we investigate thetring verification problem:
Given a program that manipulates strings, we want to venifgiii-
ants about string variables. For example, we may want tokcied
at a certain program point a string variable cannot contajreaific
set of characters. This type of checks can be used to ideantify
prevent SQL injection attacks where a malicious user iresugpe-
cial characters in the input string to inject unintended o@nds
to the queries that the Web application constructs (usiaegrthut
provided by the user) and sends to a backend database. Asganot
example, we may want to check that at a certain program point a
string variable should be prefix or suffix of another stringafale.
This type of checks can be used to identify and prevent noaitci
file execution attacks where Web application developersaien
nate potentially hostile user input with file functions thead to
inclusion or execution of untrusted files by the Web server.

We formalize the string verification problem as reachapilit
analysis ofstring systemsprograms that contain only string vari-
ables and consist of 1) operations for manipulation of gtxiari-
ables (such as concatenation) and 2) branch conditionsfioat
comparisons among string variables and constants. Afteiode
strating that the string analysis problem is undecidablgeineral,
we present and implement a symbolic string analysis tecierioat
computes an over-approximation of the reachable statestoing
system.

We use multi-track deterministic finite automata (DFA) as a
symbolic representation to encode the set of possible sate
string variables can take at a given program point. We implam
a forward symbolic fixpoint computation to compute the redoté
states. Since convergence is not guaranteed without appatan,
we use an automata based widening operation. Unlike primigst
analysis techniques, our approach is able to keep track ef th
relationships among the string variables, improving thecigion
of the string analysis and enabling verification of invatsasuch as
X7 = X5 whereX; and X, are string variables.

In order to handle branch conditions in string systems, we de
scribe the precise construction of multi-track DFAs foekn word
equations, such as X1c2 = ¢; Xach, as well as Boolean combina-
tions of these equations. We show that non-linear word @t
(even the simple on&; = X>X3) cannot be characterized pre-

2009/8/11

cisely as a multi-track DFA and there does not exist a mraiik
DFA that corresponds to the tightest possible approximatwe
propose a non-trivial regular approximation for non-linegua-
tions, such as\; ... X; = X;’... X,’, as well as Boolean com-
binations of these equations. We show how these constngotian
be used to compute the post-condition of branch conditiodsaa-
signment statements that involve concatenation.

We present a summarization technique for inter-procedural
analysis that generates a transducer characterizing ldteoreship
between the input parameters and the return values of each pr
cedure. We extend our symbolic analysis technique by ptiesen
algorithms for computing the post condition of complexrggrma-
nipulation operations such as replacement. We implemehtesk
algorithms using the MONA automata package and analyzed sev
eral PHP programs.

Related Work The use of automata as a symbolic representation
for verification has been investigated in other contextg. (¢3]).

In this paper, we focus on verification of string manipulataper-
ations. Due to its importance in security, string analysis heen
widely studied. One influential approach has been gramrased
string analysis that statically computes an over-appration of

the values of string expressions in Java programs [4]. 1 apk
proach, first the flow graph is converted into a context fremrgr
mar where each string variable corresponds to a nonterpanél
each string operation corresponds to a production rulen;Ttnés
grammar is converted to a regular language by computing anr ov
approximation. This type of grammar-based string analipsis
been used to check for various types of errors in Web applica-
tions [7,8,12]. There are also several recent string aisalysls that
use symbolic string analysis based on DFA encodings [64115].

Some of them are based on symbolic execution and use a DFA rep-7f

resentation to model and verify the string manipulationrapjens

in Java programs [6, 11]. In our earlier work, we have used A DF
based symbolic reachability analysis to verify the comess of
string sanitization operations in PHP programs [14, 15].

Unlike the approach we propose in this paper, all of the tesul
mentioned above use single track DFA and encode the reachabl
configurations of each string variable separately. This caumse
two problems: 1) Branch conditions that check relations ragno
different string variables can lead to imprecision in thalgsis,
resulting with false positives. 2) It is not possible to dh@wvari-
ants that refer to more than one string variable using thadeee
techniques. Our multi-track automata encoding both imgsahe
precision of the string analysis and it also enables vetifinaof
properties that cannot be verified with the previous appresc
Moreover, none of the above work investigate the boundary of
decidability for the string verification problem. In thisge we
show that string verification problem is undecidable evendie
terministic string systems with only three string variabded non-
deterministic string systems with only two string variable

2. String Systems

We first define the string systems. Figure 1 presents theswfta
the string systems. We only consider string variables anttée
variable declarations need not specify a type. All statémare
labeled. We only consider one string operation (concaimmaat
this point. (We will discuss how to extend our analysis toeoth
string operations, such as replace, in Section 7). Functdis use
call-by-value parameter passing. We allow goto statemientse
non-deterministic (if a goto statement has multiple talgéels,
then one of them is chosen non-deterministically). If angtgystem
contains a non-deterministic goto statement it is calledoa- n
deterministic string system, otherwise, it is called a detsistic
string system.

prog ::= dect func
decl::=decl id*;

func::=id (id*) begi n deck Istmtt end
Istmt::= l:stmt
stmt::= seqstmt
|i f expthen gotol;
|gotolL; wherelLis a set of labels
|i nput id;
| out put exp
|assert exp

segstmt=id := sexp
lid:=cal | id (sexp*);

exp::=bexp| expA exp| — exp

bexp::= atom= sexp

sexp::= sexpatom| atom

atom:=id | c, wherecis a string constant

Figure 1. The syntax of string manipulating programs

2.1 Two Simple Examples

Consider the following program segment:
1: input Xi;

2: input X2;

3 if (X1 = X2) goto 7;

4: output "not equal";

5: assert (!(X1=X2));

6: goto 9;

out put "equal ";

assert (X1 = X2);

This is a very simple string system which just tests equality
two input strings. However, existing automata-based gtenal-
ysis techniques are not able to prove these assertions. rbhe p
lem is, all the existing techniques use single-track autamaon-
sider a symbolic analysis technique that uses one autonfaton
each variable at each program point to represent the setl-of va
ues that the variables can take at that program point. Usiisg t
symbolic representation we can do a forward fixpoint conmparia
to compute the reachable state space of the program. For-exam
ple, the automaton for variabl&; at the beginning of statement
2, call it Mx, 2, will recognize the sef.(Mx,) = X" to indi-
cate that the input can be any string. Similarly, the automaor
variable X, at the beginning of statement 3, callifx,, 3, will
recognize the sek(Mx,,3) = X*. The question is how to handle
the branch condition in statement 3. If we are using singiektr
automata, all we can do at the beginning of statement 7 isalhe f
Iowing: L(Mxlj) = L(MX277) = L(Mxly:g) N L(MX2,3), i.e.,
the automata for both of the variables at the beginning desta
ment 7 accept the intersection of the languages accepteteby t
automata for these variables at the beginning of statemeddh3
fortunately, this is not strong enough to prove the asseitidine
8 (unless the intersection contains a single string). Theason
with the else branch is even worse. All we can do at line 4 is to
setL(Mx,,4) = L(Mx,,3) andL(Mx,,4) = L(Mx,,3). This
is clearly not strong enough to prove the assertion in stabers
(unless the intersection @f(Mx, ,3) and L(Mx,,3) is empty).
Using the techniques presented in this paper, we can véefy t
assertions in the above program. In our approach, we useyke sin
multi-track automaton for each program point, where eaabktr
of the automaton corresponds to one string variable. Foaloge
example, the multi-track automaton at the beginning ofestant
3 will accept any pairs of strings, y wherez,y € 3*. However,

2009/8/11

the multi-track automaton at the beginning of statementli7only
accept pairs of strings, y wherez,y € ¥* andxz = y. Similarly,
the multi-track automaton at the beginning of statementl¥only
accept pairs of strings, y wherex,y € ¥* andz # y. Hence,
we are able to prove the assertions in statements 5 and 8thsing
multi-track automata representation.

Consider another simple example:

1. X1 := g;

2: X2 1= a;

3: X1 := X1.b;

4: X2 := X2.b;

5: assert (X1=X2);
6: goto 3;

There are several challenges in proving that the assertiouea
holds. First, this program contains an infinite loop and dustger-
minate. If we try to compute the reachable configurationshisf t
program by iteratively adding configurations that can behed
after a single step of execution, our analysis will nevemiaate.
However, there exists a fixpoint characterizing the reaehebn-
figurations at each program point. We incorporate a wideopeg-
ator to accelerate our symbolic reachability computatioth @om-
pute an over-approximation of the fixpoint that characesrithe
reachable configurations. Second, the assertion is andityplop-
erty, i.e., there is no assignment, such)s := X», or branch
condition, such a¥; = X», that implies that this assertion holds.
Finally, the assertion specifies the equality among twagtvari-
ables. Analysis techniques that encode reachable statesmsl-
tiple single-track DFAs will raise a false alarm, since,ividually,
X, can beabb and X, can beab at program point 5, but they can-
not take these values at the same time. It is not possiblepiess
this constraint using single-track automata.

For this example, our multi-track automata based stringyana
sis technique terminates in three iterations and compbhgrte-
cise result. The multi-track automaton that charactetizevalues
of string variablesX; and X, at program point 5, call if\/5, rec-
ognizes the language:(Ms) = (a,a)(b,b)". Since L(Ms) C
L(X: = X3), we conclude that the assertion holds. Although in
this case the result of our analysis is precise, it is not antaed
to be precise in general. However, it is guaranteed to be an ov
approximation of the reachable configurations. Hence, oalyais
is sound and if we conclude that an assertion holds, thetassey
guaranteed to hold for every program execution.

3. Decidability and Undecidability Results

Before discussing our symbolic string analysis techniqegvove
that string analysis is an undecidable problem and, thexefmy
sound string analysis technique has to use conservativexipya-
tions in order to guarantee convergence.

LetS(X1, Xa,..., X,) denote a string system with string vari-
ablesX;, X, ..., X,, and a finite set of labeled instructions. There
are several attributes we can use to classify string systeéonex-
ample, as mentioned above, a string system can be detetiminis
or non-deterministic. We can also classify a string systeset
on the alphabet used by the string variables, such as a stritgm
with a unary alphabet or a string system with a binary alphadte.
Additionally, we can restrict the number of variables in #teng
systems, such as a string system with only 2 varial#éx¢, X-))
or 3 variables §(X1, X2, X3)), etc. Finally, we can restrict the set
of string expressions that can be used in the assignmentoamatil- ¢
tional branch instructions.

In order to identify different classes of string systems wit w
use the following notation. We will use the lettefs and N to
denote deterministic and non-deterministic string systespec-
tively. We will use the letter$? andU to denote if the alphabet used

by the string variables is the binary alphaljetb} or the unary al-
phabet{a}, respectively. We will usé< to denote an alphabet of
arbitrary size. For exampld)US(X1, X2, X3) denotes a deter-
ministic string system with three variables and the unaphaiet
whereasN BS(X1, X2) denotes a nondeterministic string system
with two variables and the binary alphabet. We will denote gkt

of assignment instructions allowed in a string system asparsu
script and the set of expressions involved in conditionahbh in-
structions as subscript. HencdBl/ S(X1, X, X3) ¥ 3% _ .
denotes a deterministic string system with three varialllesXo,
and X3, and the unary alphabét} where the assignment instruc-
tions are of the fornX; := Xia, X2 := Xaa, or X3 := Xza(i.e.,
we only allow concatenation of one symbol to a string vagahl
each assignment instruction) and the conditional branstruo-
tions can only be of the formf X3 = X; goto L orif X5 = X»
goto L (i.e., we only allow equality checks and do not allow com-
parison ofX; and X>.)

Thehalting problemfor string systems is the problem of decid-
ing, given a string systerfi, where initially the string variables are
initialized to the null stringg, whetherS will halt on some exe-
cution. More generally, theeachability problem for string systems
(which need not halt) is the problem of deciding, given anstri
systemS and a configuratior® (i.e., the instruction label and the
values of the variables), whether at some point during a ecemp
tation, C' will be reached. Note that we define the halting and the
reachability conditions using existential quantificatarer the ex-
ecution paths, i.e., the halting and the reachability domk hold if
there exists an execution path that halts or reaches thet togfig-
uration, respectively. Hence, if the halting problem isecidable,
then the reachability problem is undecidable. The follgiasult
is rather unexpected:

THEOREML1. The halting problem for
DUS(X1, X2, X3)%'=3%,_x, is undecidable.

Proof: It is well-known that the halting problem for two-
counter machines, where initially both counters are 0, deait-
able [9]. During the execution of a counter machine, at eteh, &
counter can be incremented by 1, decremented by 1, and fested
zero. The counters can only assume nonnegative values.

We will show that a two-counter machind/ can be
simulated with a string system S(Xi,X2,X3) in
DUS(X1, X2, X3)5 23 %, _x, The states of\/ can be rep-
resented as labels in the string systémThe states where the
counter-machiné/ halts will be represented with the halt instruc-
tion in string systent. We will use the lengths of the strings;,
X> and X3 to simulate the values of the count&r's andCs. The
value ofC; will be simulated by X, | — | X3|, and the value of’;
will be simulated by| X2 | — | X3].

The counter machiné/ starts from the initial configuration
(0,0, 0) whereqo denotes the initial state and the two integer val-
ues represent the initial values of countéfisandC', respectively.
The initial configuration of the string systefwill be (qo, €, €, €)
whereqy is the label of the first instruction, and the strings, ¢
are the initial values of the string variabl&sg, X, and X3, respec-
tively. The instructions of the counter-machi@ewill be simulated
as follows (where each statement is followed by a goto statem
that transitions to the next state or instruction):

Counter machine String system

inc Ch X1 := X1a

inc Cy Xo = Xoa

de001 Xo := XQQ;X:; = X3a
dECCQ X, = X1CL;X3 = X;;a
if (C1 = 0) if (X1 = X3)

if (C = 0) if (X = X)

2009/8/11

Note that although this transformation will allow the simated
counter values to possibly take negative values, this cafixbe

by adding a conditional branch instruction before eachefeent
that checks that the simulated counter value is not zeroréefo
the instructions simulating the decrement instructionxisceted.
The string systen% constructed from\/ based on these rules will
simulateM . Hence, halting problem is undecidable for the string
systems mDUS(Xl,Xz,Xg)X =Xia

=X3,X2

In fact, Theorem 1 can be strengthened: Therefige string
systemS (X1, X2, X3) in DUS(Xl,X2,X3)§ jf “¢,—x, Such
that it is undecidable to determine, given an arbltrary mgauve
integerd, whetherS (X1, X2, X3) will halt when X is initially set
to stringa? and X, and X are initially set tce. This follows from
the fact that there exists a fixed universal 2-counter machirthat
can simulate a universal single-tape deterministic Tunvaghine.
Given a description of a Turing machiriéM as input,M halts
if and only if TM halts on blank tape. Since it is undecidable to
determine if a Turing machine halts on blank tape, it is uittdde
to determine ifM will halt on some input. Since, we can construct
a fixed string systeny (X1, X2, X3) simulating), as in Theorem
1, itis undecidable to determineSf{ X1, X2, X3) will halt starting
from some initial configuration.

Next, we show that the three variables in Theorem 1 are nec-
essary in the sense that when there are only two variablash+e
ability is decidable. This result does not hold when the esysis
nondetereministic, as we shall see in Theorem 3.

Consider the class of deterministic 2-variable string eyt
where the constants are over an alphabet with arbitraryreity,
and we are allowed to use conditional branch instructionthef
form: if X3 = X, goto L. (Note that because the alphabet is not
necessarily unary, thi§ statement is not equivalent tb | X1 |
|X2| goto L as in the case of the unary alphabet.) Assignment
statements are of the fornX; := X;a or X; := aX; , where
a is a single symbol. And, there is a halt instruction, whichmagy
assume occurs at the end of the program.

0

THEOREM?2. The halting problem for
DES(X1, Xo) i Zi®* =% is decidable.
Proof: Let S be a string system in

DES(X1, X2)! _X @Xi=aXi and k be its length (i.e., num-
ber oflnstructlons) |nclud|ng the assignments, and thmﬂu:m)nal
and unconditional branch statements.

Label the instructions of by 1, ..., k. We can think of each
assignment; : A as equivalent to the instructioh; A; gotoi +
1. Hence, every instruction except the halt instruction arelift
statements hasgoto.

By an “execution of a positivé statement”, we mean that when
theif statement is executed,; = Xo.

During the computation of, if it is not in an infinite loop,
then the interval (i.e., number of steps) between the ei@wit
of any two consecutive positivé statements is at mogt. The
reason for this is that during the interval,executes onlygoto's
and assignment statements wigbto's (note that a non-positivi
statement leads directly to the instruction following the Hence,
the number of steps would be at méstsince there are at mokt
goto's and assignments witfoto's.

Now, an execution of a positivé statement leads to goto
label, and there are at mostifferent labels. It follows that if5 is
not in an infinite loop, it cannot run more thark = k2 stepsll

The above theorem can be generalized to show the decigabilit
of reachability for multi-variable string systems as lorgia a
conditional branch statement we allow equality check betwanly
two specific variables, i.e., no other variables can be coetpfor
equality.

In contrast to Theorem 2, we can show that the halting problem
is undecidable for nondeterministic 2-variable stringtegs with
constants over the alphabgt, b}, by a reduction from the Post
Correspondence Problem (PCP) which is undecidable.

=X,c

THEOREM3. The halting problem fodVBS(X17X2)X{ X, s
undecidable.

Proof: Given aninstancéC, D) of PCP, wher€' = (ci, ..., ¢n)
andD = (di, ..., d,), define constant strinde:, ..., ¢, d1, ..., dn },

wherec;, d; are non-null strings over alphabgt, b}, we construct
a string systens' in NBS(X17X2)§§::§;C as follows:
O:gotolor2or..orn

1: Xy := Xjc¢1 and Xz := Xads; goto 0 or n+1

2: X1 := Xico and Xs := Xadz; goto O or n+1

n: X1 := Xi1¢, andXs := Xod,; goto 0 or n+1

n+1:if X1 = X, goton+2 elsegoto 1

n+2: halt

Clearly, there is a computation that will reach the haltrinstion

if and only if the PCP instancg”, D) has a solution. The theorem
follows.ll

Theorem 2 demonstrates that there are non-trivial strirad- an
ysis problems that are decidable. Theorems 1 and 3, on tlee oth
hand, show that the string analysis problem can be unddeidab
even when we restrict a deterministic string system to these
ables or a non-deterministic string system to two varialfiésce
the general string analysis problem is undecidable, itiessary to
develop conservative approximation techniques for vetifin of
string systems. In the following sections we present a syiciser-
ification technique that conservatively approximates trechable
states of a string system.

4. Regular Approximation of Word Equations

To analyze string systems, we approximate configuratiorss ov
string variables as a regular language accepted by a mad#-t
deterministic finite automaton (DFA). Our analysis is basedhe
facts that: (1) The transitions and the configurations ofrangst
system can be symbolically represented using word equgation
with existential quantification, (2) Word equations can bpre-
sented/approximated using multi-track DFAs, which aresetb
under intersection, complement, projection, and (3) theraions
required during reachability analysis (such as equivaesteeck-
ing) can be computed on DFAs.

Before we discuss how to perform symbolic reachability gnal
sis on string systems, we introduce the multi-track DFAsaocH
equations in this section. We characterize word equatiosisdan
be expressed using multi-track DFAs, as well as detail thsttoc-
tion of these multi-track DFAs. Using these constructidnsthe
next section, we show how to perform symbolic reachabilitsla
ysis on string systems.

4.1 Aligned Multi-track DFAs

A multi-track DFA is a DFA but over the alphabet that consists
of many tracks. Anmn-track alphabet is defined 8" = (X U
{A}) x (ZU{A}) x x (X U {A}) (n times), where\ ¢ %

is a special symbol for padding. We usdi] (1 < ¢ < n) to
denote thei’" track of w € £". An aligned multi-track DFA is

a multi-track DFA where all tracks are left justified (i.e's are
right justified). l.e., ifw is accepted by an alignea-track DFA
M, then forl < i < n,w[i] € ¥*A\". We sayL(M) is ann-
track language. We also ugéi] € ¥* to denote the longest-free
prefix of w[i]. For the following descriptions, a multi-track DFA is
an aligned multi-track DFA unless we explicitly state othise.

2009/8/11

Multi-track DFAs are closed under intersection, disjuoiti
complementation, and homomorphism. Precisely: Given two
track DFAs M., M, there exists am-track DFA M that accepts
L(M:) U L(M2), or acceptdl(M;) N L(Mz). Given ann-track
DFA M, there exists an-track DFA M that accepts the comple-
ment set of. (M), and also there exists an ¢ 1)-track DFA M’
that acceptd.(M; |;), whereM; |; denotes the result of erasing
thes'" track (by homomorphism) af/;.

4.2 Word Equations

A word equation is an equality relation of two words that catee
nate a finite set of variable¥ and a finite set of constanés The
general form of word equations is definedias. . v, = v ... v,,
wherevi, v;, v € X UC.

Let f be a word equation ove¥= { X1, Xa,..., Xn}, fl¢/X]
denotes a new equation whekeis replaced withe for all X that
appears inf. We say that am-track DFA M under-approximates
fifforal w € L(M), flw[l]/X1,...,w[n]/Xx] holds. We
say that ann-track DFA M over-approximatesf if for any
S1,...,8n € X* where f[s1/X1,...,s,/Xy] holds, there ex-
istsw € L(M) such that for alll < i < n,w[i] = s;. We call
M precise with respect tg if M both under-approximates and
over-approximateg.

DEFINITION 4. A word equationf is regular expressible if and
only if there exists a multi-track DFA/ such thatM is precise
with respect tof .

4.2.1 Linear Word Equations

A linear word equation is a word equation where either sidihef
equation contains at most one variable. A general form @alin
word equation ig1 X1c2 = di1 Xa2d2. Any linear word equation is
equivalent to one of the following:

o ¢ Xich = Xo
o ¢\ X1 = Xod,
o Xich =diXs
o X1 =dj Xadh
o falseotherwise.

if c1 =dic) andecs = chds,
if c1 = dicy anddhes = da,
if cid) = dy andca = chds,
if cid) = dy anddbes = da,

It follows that all linear equations can be reduced into tenfs:
(1) X1 = c¢Xaod or (2) cX1 = Xad, which are equivalent to
AX.. X1 = cXp AN X = Xodand3X,.c X1 = X A Xk = Xod.

THEOREMS. Linear word equations and Boolean combinations
of these equations can be expressed using equations ofrthe fo
X7 = Xsc and X1 = cXso, Boolean combinations of such
equations and existential quantification.

4.2.2 Non-linear Word Equations

A non-linear word equation is a word equation where at least o
side of the equation has at least two variables. There arbdasic
forms of non-linear equations:= X; X, andX; = X5 X3.

THEOREMG6. Non-linear word equations and Boolean combina-
tions of these equations can be expressed using equatiahe of
forme = X1 X, and X; = X2 X3, Boolean combinations of such
equations and existential quantification.

For example X: = X2dX3 X4 is equivalent tad Xy, , Xp, . X1
= XQXkl A Xk] = kaz A sz = X3Xa.

In the following, we show how to construct the corresponding
multi-track DFAs for the basic forms of linear and non-lin@ard
equations: (1)X1 = Xa¢, (2) X1 = ¢X3, (3)c = X1 X2, and (4)
X1 = X>X3. Note that, based on the fact that multi-track DFAs

are closed under intersection, disjunction, complemimaand
homomorphism, we can construct the corresponding mualtiktr
DFAs for all word equations both linear and non-linear, adl we
as their Boolean combinations based on the constructioribdse
basic forms. Note that the boolean operations conjunctiisjync-
tion and negation can be handled with intersection, disjancand
complementation of the multi-track automata, respegtiviekis-
tential quantification on the other hand, can be handledgusm
momorphism, where given a word equatignand a multi-track
automaton)M such thatM is precise with respect t@, then the
multi-track automator/ |; is precise with respect ©X;. f.

Before delving into these constructions, we summarize eur r
sults in the following theorem:

THEOREM?7. (1) Linear word equations are regular expressible,
as well as their Boolean combinations. (X = c¢X5 is regular
expressible but the corresponding has exponential number of
states in the length @f (3) X; = X> X3 is not regular expressible.

4.3 Construction of Multi-track DFAs for Word Equations

Given a DFAM = (Q,X, 0,1, F), Q is the set of stateg; is the
alphabety : Q x ¥ — Q@ is the transition function] € Q is the
initial state, and?” C @ is the set of final (accepting) states. We say
astategy € Q is asink state ifg ¢ F' andVa € X,(q,a) = g.
The sink states are also extended to multi-track DFAs. In the
following constructions, we ignore transitions that goitikstates,
and assume that all unspecified transitions go to sink states
Before we give the constructions, we generalize the proldem
constructing multi-track DFAs for word equations as foltowVe
assume that each variabledn= { X1, X», ..., X, } is associated
with an automatoV/; = (Q;, X, 0;, I;, F;), whereL(M;) denotes
the set of values that the variabl€; can take. Then, given a
word equationf over X= {X;, Xo,..., X, }, we say thaan n-
track DFA M under-approximateg within My, ... M,, if for all
w € L(M), flw[1]/X1,...,w[n]/Xx] holds and for alll <
i < n, w[i] € L(M;). We say thatan n-track DFA M over-
approximatesf within M, ... M,, if for any s1,...,s, € X*
where f[s1/X1,...,sn,/X,] holds and foralll < i < mn,s; €
L(M;), there existsv € L(M) such thatforall <i < n,w[i] =
s;. Note that, for either case, for any wotd € L(M), for all
1<i<n,w[i] € L(M;).

4.3.1 The Construction of X; = Xsc

Let M; = <Q1, 3, 51711, F1>, My = <Q2, 3, 52, 12, F2> be two
DFAs that accept possible values of variabl€s and X-, re-
spectively. We present the construction of a 2-track DHA =
(Q,%,0,1,F), such thatM is precise with respect t&; = Xsc
within My, Mo.

Let sink1 be the sink state af/,, andsinks be the sink state
of Ms. Letc = aiaz...an, WherevVl < ¢ < n,a; € ¥ and
n is the length of the constant string M = (Q, X2, 6, qo, F) is
constructed as:

o Qng XQ2 X {07...,71},
o I = (I1,12,0),
e Va ¢ 2,5((7’,1}, 0)7(0‘7 CL)) = (51(7”, CL),(SQ(]), CL),O), if
01(r,a) # sinki anddz(p, a) # sink:
° Vai,p € F27 6((7‘,]), 7’)7 (ai7)‘)) = (61(7”, ai)vpv 1+ 1)'
*F= {(T,p,i) |7,,€ F17p6F27i:n}'
Note thatM/ simulates)M; and M2 making sure that both tracks
are the same until a final state bf> is reached. Then, the second
track reads the symbal while the first track reads the constamnt

and the automaton goes to a final state whés consumed|Q|
is O(|Q1| x |Q2| + n) since in the worst cas@ will contain all

2009/8/11

possible combinations of statesdh and@- followed with a tail
of n states for recognizing the constantFor the automatod/
resulting from the above construction we havec L(M) if and
only if w[1] = w[2]¢, w[1] € L(M1) andw[2] € L(Ma), i.e.,
M is precise with respect t&; = Xsc¢ (within My, M>), hence,
X1 = Xsceisregular expressible.

4.3.2 The Construction ofX; = ¢X>

Let M, <C?17 Z, (517 .[17 F1>, My = <Q2, 27 (527 12, F2> be two
DFAs that accept possible values of variahlésand X, respec-
tively. Below we present the construction of a 2-track DA such
that M is precise with respect t&; = c¢X2 within M7, Ms. Let
c=aiaz...an, WhereVl < i < n,a; € X andn is the length of
the constant string.

The intuition behind the construction &1 is as follows. In the
initial stage (denoted asit below), M makes sure that the first
track matches the constantwhile recording the string that is read
in the second track in a buffer (a vector of symbols) storeidsin
state. Afterc is consumed) goes to the next stage (denoted as
matchbelow) and matches the symbols read in the first track with
the next symbol stored in the buffer while continuing to sttire
symbols read in the second track in the buffer. Note thatkithe
symbol read in track 2 has to be matched with(the-n)th symbol
read in track 1. So, the buffer stores the symbols read ik 2amtil
the corresponding symbol in track 1 is observed.

Let ¥ be a sizen vector. Forl < i < n,4[i] € XU{ L}. The
vectord’ = o[:= a] is defined as follows?' [i] = a andVj # i,
7'[j] = olj]. M = (Q, £2,6,1, F) is constructed as:

¢ QC Q1 xQ2x{l,....,n}x (BU{L})" x {init, match},

o [= (I1,12,1,9,,init), whereVi, v, [i] = L,

evVa € 3,1 < i < n,6((r,p,i,0,init), (a;,a))
(61(ryai),02(p,a), i+ 1,0[i := a],init),

eVa € Xi = n,0((rp,i,J,init), (ai,a))
(61(r,as), 62(p, a), 1,0[i := a], match),

e Va,b e X1 <i<n,di| = a,d((r,p,i,7,match),(a,b))
= (61(rya),d(p,b), ¢ + 1, i := b], match),

eVab € Si = ndli]l = a,8((rp i, match), (a,b))
= (61(r,a),d(p,b), 1, i := b], match),

eVa € X,p e Fl <i<ndi]=a,d((r,p,i, 0, match),
(@ N) = (52 (1), pi + 15 == L], match).

“Va € %,p € Foyi = n,7li] = a,8((r,p,i, 5, match), (a, \))
= (01(r,a),p,1,40[i := L], match),

o F'={(r,p,i,U,match) |r € Fi,p € F»}.
Since M accepts the setw | w[l] = cw([2],w[1] € L(M),

w[2] € L(Ms)}, X1 = X is regular expressible. However, the

number of states af/ is exponential irc. Below, we show that the
exponential number of states is inevitable.

4.3.3 Intractability of X; = ¢X>
Consider the equatioX; = ¢X3, wherec is a constant string of

lengthn. Let L(M:) and L(M>) be regular languages. Define the
2-track language:

L = {(z122,y192\") | 2122 € L(M1),y1y2 € L(Ma), k >
n, |zixe| =k, |z1| = |y1| = n, 21 = ¢, 22 = y1y2}

Note that any automatan that accepts the languadedefined
above will be precise with respect to the the equafion= cX,
(within M; and M>).

THEOREMS8. Any nondeterministic finite automaton (NFAY
needs at leas2” states to accept.

Proof: Let ¢ 1" and consider the regular languages
L(My) = (0+ 1)" and L(M2) = (0 + 1)*. SupposeM is
an NFA accepting.. Consider any pair of distinct strings and
1 of lengthn. ThenM will accept the following 2-track strings:

(lnccg,ylyg)\"), where z2,y1,y2 € (0 + 1)+, k > n,

[1"z2| = K, |y1] = n, 22 = y1y2, and

(lsfc/’z,yiyéA”/). where :c’z7y/’17lyé e 0+ 1" k >
|1 $2| =k, |y1| =N,Ty = Y1Y2

n,

Suppose in processin@l™z2, y1y2A"), M enters state; after
processing the initial 2-track segme(it®, y1), and in processing
(1"z5, yiys\™), M enters statg’ after processing the initial 2-
track segmentl™, y1). Theng # ¢'; otherwise M will also accept
(1"z2, y1y2A"). This is a contradiction, since; # yys.

Since there ar@” distinct stringsy of lengthn, it follows that
M must have at leag” statesll

4.3.4 The Construction ofc = X; X»

Below we briefly describe the construction of a 2-track DFA
such thatM is precise with respect to= X X5 within the given
regular sets characterizing possible valueXefand X,. Assume
thatc = ai...an. We can splitc to two stringsas . ..ax and
ak+1--.0n SOthate = ay ... agagy1 ... an. There arev+ 1 such
splits. For each of them, if; ...ar € L(M:1) andagt1...an €
L(Ms), thenifk > n —k, (a1...ak, ar+1 - .- an)\%f") should
be accepted by/ and itk < n—k, (a1 ...arA" 2% apq1 ... an)
should be accepted by/. We can construct an automatdn with
O(n?) states that accepts this language by explicitly checkiob ea
of thesen + 1 cases. Since we can construct this 2-track DFA, it
follows thatc = X X5 is regular expressible.

4.3.5 Non-Regularity of X; = X2 X3

We first show thatX; = X, X3 is not regular expressible, and
later we give constructions of 3-track DFAs that over-apprate
or under-approximat&; = X2 Xs.

Given M1, M, M3, let L = {w | w[1] = w[2]w[3], @[1] €
L(My),w[2] € L(Ms),w[3] € L(Ms)}.

THEOREM9. L is not necessarily a regular language.

Proof: Let L(M;) = atb", L(M2) = a™, andL(Ms) = b*.
Supposel is regular and is accepted by a 3-track DFA Then
M when given a 3-track string consisting of:

a*b*

ai)\s+t7i

pINSTE—3d
accepts if and only i = ¢ andt = j. Clearly, we can construct a
3-track DFA M’ which accepts 3-track strings of the form:

sbt

Zi)\&%t*i

bi)\5+t7i
We can then construct another 3-track DBA” which accepts
L(M)NL(M'"). But L(M") consists of 3-track strings of the form:

a'b’

ai)\s+t7i

biA5+t7i
It follows that we can construct a 1-track NFA frod” which
accepts the languagl:'d’ | ¢ > 1} (by erasing the second and
third tracks by homomorphism), which is not regular and $stach
contradictionll

2009/8/11

4.3.6 The Approximation of X1 = X X3

Below we propose an over approximation constructionXor =
X2X3. Let M1 <Q1, 2, 51, Il, F1>, My = <Q2, 2, 52, IQ, Fz),
and M3 (Qs, %, 93, I3, F3) accept values o1, X2, and X3
respectivelyM = (Q,¥*, 6, I, F') is constructed as follows.

e QQC Q1 XQ2xQ3xQs,
o [= (I, 15,15, I3),

eVa,b € %, §((r,p,s,8),(a,a,b)) = (61(r,a), d2(p,a),
d5(s,b),5),

eVa,b € X, p € Fo,s & F3,5((r,p,s,5),(a,\,b))
(61(r,a),p,d5(s,b),5(s", a)),

eVa € %, p € Fys € F3,6((r,p,s,8),(a,\,\))
(61(r,a),p,s,d05(s', a)),

eVa€ X, p¢g Fas € Fs5,5((r,p,s,5),(a,a,\) = (§1(r,a),
52(p,a),s,s’),

o ' ={(r,p,s,s")|r € Fi,p € Fa,s € F5,s" € F3}.

1Qlis O(Q:| x |Qa| x Qs + Q1] x |Qs] x |Qs]). For all
w € L(M), the following properties hold:

o W[l] € L(M;),w[2] € L(My),w[3] € L(Ms),
e ¥[1] = w[2w" andw’ € L(Ms),

Note thatw’ may not be equal te[3], i.e., there exista €
L(M), w[1] # w[2]w[3], and hencelM is not precise with re-
spect toX; = X»Xj3. On the other hand, for any such that
w[l] = w[2]w[3], we havew € L(M), henceM is a regulaover
approximation ofX; = X, X5.

Below, we show a regulamderapproximation construction of
X1 = X, X3. Note that if L(M2) is a finite set language, one
can construct the DFA/ that satisfiesX; = X, X3 by explicitly
taking the union of the construction df; cXs forall ¢ €
L(M>). If L(M>) is an infinite set language, we can still use this
idea to construct a regulanderapproximation ofX; = X5 X3 by
considering a (finite) subset & M-) where the length is bounded.
Formally speaking, for each > 0 we can construci/;, so that
w € L(My),w[1] = @[2w[3], w[1] € L(M), @[3] € L(Ms),
w[2] € L(Mz) and|w[2]| < k. It follows that M, is a regular
underapproximation ofX; = X, X3. The following lemma holds
by construction.

LEMMA 10. L(Mkl) - L(MIQ) if k1 < ko.

To sum up, ifL(M2) is a finite set language, there exigts
(the length of the longest accepted word) so th@t/}) is precise
with respect taX1 = X2 X3. If L(Mz) is an infinite set language,
there does not exist suéhso thatL(M},) is precise with respect to
X7 = X1 X3, as we have proven non-regularity i = X» X3.

We say a regular under-approximatidf. is tightestif L (M)
is an under-approximation of; = X, X3 and for allM’ where
M’ is an under-approximation of; = X> X5 we haveL(M') C
L(M,). Since the precision of a regular under-approximation can
be always improved by adding new words to the language, the
tightest regular under-approximation does not exigt(i#/2) is not
finite.

5. Symbolic Reachability Analysis

In this section, we present our symbolic reachability asialyor
string systems. Our approach consists of two phases. Inrte fi
phase, we use one multi-track DFA for each program pointte-sy
bolically represent possible values of string variablethat pro-
gram point, where each track corresponds to one stringblaria
Our approach is based on a forward fixpoint computation orimul
track DFAs. We iteratively compute post-images of reachatdtes

and join the results until we reach a fixpoint. We use sumradade
handle functions calls. During the forward fixpoint compiata if

we encounter a call to a function that has not been summarized
we go to the second phase of the analysis, which is summiarizat
Each function is summarized when needed, and once a furistion
summarized, the summary DFA is used to compute the retufn val
ues at the call sites without going through the body of thetion.
During the summarization phase, (recursive) functions sama-
marized as unaligned multi-track DFAs that specify thetretes
among their inputs and return values. We first build (cydiepen-
dency graphs to specify how the inputs flow to the return \alue
Each node in the dependency graph is associated with agoedli
multi-track DFA that traces the relation among inputs areMidue

of that node. We iteratively compute post images of reachedl
lations and join the results until we reach a fixpoint. Upammie
nation, the summary is the union of the unaligned DFAs aasedi
with the return nodes. To compose these summaries at thsiteall
we also propose an alignment algorithm to align (so tkiatare
right justified) an unaligned multi-track DFA.

5.1 Forward Fixpoint Computation

The first phase of our analysis is a standard forward fixpamni-c
putation on multi-tack DFAs. Each program point is asseciatith
a single multi-track DFA, where each track is associatetl aiin-
gle string variableX € X'. We useM [I] to denote the multi-track
automaton at the program lakelThe forward fixpoint computa-
tion algorithm is a standard work-queue algorithm as shaowhl4
gorithm 3. Initially, for all labelsl, L(M][l]) = 0. We iteratively
compute the post-images of the statements and join thetsdsul
the corresponding automata. The process terminates whesagie
a fixpoint.

5.1.1 Widening Operation

Since string systems are infinite state systems, an iteragizch-
ability computation may not terminate. We incorporate an au
tomata widening operator, denoted &5 proposed in [1] to
accelerate the fixpoint computation. Given two finite auttama
M = (Q,%,5,I,F) and M’ = (Q',%,8,I' F'), we define
an equivalence relatiogy on Q U Q' as follows: Giveng € Q
andq’ € ', we say that; =v ¢’ andq’ =v ¢ ifand only if 1) the
language recognized by starting from the state M and the lan-
guage recognized by starting from the stgten M’ are the same,
or 2) there exists a word such that\/ reacheg; after consuming
w from its initial statel and M/’ reaches’ after consumingu from
its initial statel’. Forg: € Q andgz € Q we say thaty =v ¢ if
andonlyifdgc QUQ'. 1 =v ¢ A @2 =v q.

Let C' be the set of equivalence classes=of. We define
MVM' ={(Q",%,§",I"F") as follows:

° Q”:C
e [=c suchthatl e cAl' €c

o §"(ci,o) =c¢; if Vg€ anQ.d(go) € c;Vilgo)
sink) AN(V¢' € ;N Q" .8 (¢',0) € c; V&' (¢, 0) = sink)

ecc " if gec FUF'.qcec.

In other words, the set of states df VM’ is the setC of equiv-
alence classes Gty . Transitions are defined based on the tran-
sitions of M and M. The initial state is the class containing the
initial states/ andI’. The set of final states is the set of classes that
contain some of the final states fnand F’. It can be shown that,
given two automatd/ and M’, L(M) U L(M') C L(MVM").

In Figure 2, we give an example for the application of this
widening operation to two 2-track DFA&(M) = {(a,a)(b,b)}
and L(M') = {(a,a)(b,b), (a,a)(b,b)(b,b)}. The set of equiv-
alence classes faM VM’ is C = {q¢,q",q5}, whereq{

2009/8/11

(b,b)

(a,a) (b,b)

MVM'

}I (ava)l (bb)I \il (él,a)l (b,b)l (b,b)l

M M’
Figure 2. Widening automata

{w,0}, ¢ = {a,a}, @@ = {e, ¢ ¢} and we have
L(MVM) = (a,a)(b,b)". Note that, these are the automata our
symbolic analysis computes for the program point 5 of theseéc
example program segment in Section 2.

5.1.2 Automata Construction

ConsTRucT(exp, b) returns the DFA that accepts a regular approx-
imation ofexp. The signb € {+, —} indicates the direction of ap-
proximation if needed. The operatiorflips the sign. Algorithm 1
recursively pushes the negationg (nside to the basic expressions
(bexp). For each basic expressibacp, we have shown the corre-
sponding construction of multi-track DFAs in the previoestion.
ConsTRucT(bexp, +) returns a DFA that over-approximateseyp,
while ConsTrRucT(bexp, —) returns a DFA that under-approximates
bexp, for those cases whetexp is not regular expressible. Both
ConsTRucT(bexp, +) andCoNsTRuCT(bexp, —) return a DFA that
is precise with respect thexp if bexp is regular expressible. We
also incorporate the standard DFA operations, e.g., iet&m at
line 2, union at line 4, and complement at line 10.

Algorithm 1 CONSTRUCT(exp, b)
1

if expisexp1 A exps then

2 return CONSTRUCT(exp1, b)) N CONSTRUCT(exp2, b);
3: else ifexpis —~(exp1 A exps) then

4 return CONSTRUCT(—exp1, b) U CONSTRUCT(—expa2, b);
5: else ifexp is =(—exp1) then

6: return CONSTRUCT(exp1, b);

7: else ifexp is bexp then

8 return CONSTRUCT(bexp, b);

9: else ifexp is —bexp then B

0 return COMPLEMENT(CONSTRUCT(bexp, b));

1: endif

For astmt in the form: X:= sexp, the post-image is computed
as follows:

posT(M, stmt) = (3X.MNConsTRUCT X' = sexp, +))[X/X'].

We use function summaries to handle function calls. Eacbtfom
f is summarized as a finite state transducer, denotéd asvhich
captures the relations among input variables (parametizapted
as X,, and return values. The return values are tracked in the
output track, denoted a¥,. We will detail how to generaté/;
in Section 6. For astmt in the form X:=cal | f(e1,...,en),
posT(M, stmt) returns the result of8.X, X, , ... X, .M NMN
My)[X/X,], whereM; = ConsTRUCT(A\; Xp, = €4, +).

During the fixpoint computation, we report assertion fakuif
M]l] accepts some string that violates the assertion latieldte
that at line 21 we compute an under approximation of the aerer
expression to ensure the soundness of our analysis. Fiaghp-
gram labell is not reachable if.(M][l]) is empty. Our analysis is
sound but incomplete due to the following approximatiod$rég-
ular approximation for non-linear word equations, (2) thdeming
operation and (3) summarization.

6. Summarization

In this section, we discuss how to compute function sumreaviée
assume parameter-passing with call-by-value semantite/arare

Algorithm 2 PROPAGATE(m, 1)
1 m/ = M[]V(mU M][l));

2: if m’ € M[l] then

3 Ml :=m;

4

5

=m/;
W Q.enqueud(;
:endif

Algorithm 3 FORWARDRECAHABILITY ANALYSIS(lo)
1: Init(M);
2: queueWW Q;
3: WQ.enqueud(: stmtp);
4: while WQ # NULL do

5. e:=WQ.dequeue(); Let bel : stmt;
6: if stmt is seqstmt then
7: m = POST(M][l], stmt);
8: PROPAGATHm, | + 1);
9: endif
10: if stmtisif expgot ol then
11: m := M[l]Nn CONSTRUCT(exp, +);
12: if L(m) # 0 then
13: PROPAGATHm, I');
14: end if
15: m := M[l]N CONSTRUCT(—exp, +);
16: if L(m) # 0 then
17: PROPAGATHm, I + 1);
18: end if
19: end if
20: if stmtisassert expthen
21: m := CONSTRUCT(exp, —);
22: if L(M][l]) € L(m) then
23: ASSERTFAILED (1);
24: else
25: PROPAGATE(M [I],l + 1);
26: end if
27: end if
28: if stmtisgot o L then
29: for I’ € L do
30: PrROPAGATEM [I],1');
31 end for
32: end if
33: end while

able to handle recursion. Each functifris summarized as an un-
aligned multi-track DFA, denoted dd, that captures the relation
among its input variables and return values. An unalignettimu
track DFA is a multi-track DFA wheres are not right justified.
Return values of a function are represented with an auyibatput
track. Given a functiory with n parameters)/y is an unaligned
(n+1)-track DFA, wheren tracks represent theinput parameters
and one trackX, is the output track representing the return values.
Once M has been computed, it is not necessary to reanalyze the
body of f. Instead, one can intersect the values of input parame-
ters with My to obtain the return values. Our approach consists of
three steps: (1) Building the dependency graph, (2) genegrdte
summary, and (3) alignment.

6.1 Dependency Graph

Given a functionf, the dependency grapf; specifies how the
inputs flow to the return values ii. Formally speaking, a depen-
dency graplG = (N, E) is a directed graph, whe®¥ is a finite
set of nodes and&d C N x N is a finite set of directed edges. An
edge(ni,n;) € E identifies that the value of; depends on the
value ofn;. Each node: € N can be

e anor mal node including et ur n,i nput ,const ant ,vari abl e,

e anoper at i on node includingconcat andcal | .

2009/8/11

Areturnnode is a sink node (no successors) that correspondstoa We only consider one string operation: concatenate. Note

return statement. Annput node corresponds to a parameter of the
function f, labeled asf.p;, wherei indicates the'” parameter. A
const ant node is associated with a constant value. Bathut

and const ant nodes have no predecessorscéncat noden
has two predecessors labeled as the prefix nedg) @nd the
suffix node .s), and stores the concatenation of any value of the
prefix node and any value of the suffix noderinA cal | node

is associated with a functiotullee. If callee hasm parameters,
there aren predecessors of@l | node as its arguments (labeled
asn.ai,...,n.am).

Assume that we want to compute the summary of a given func-
tion main. Let F' denote the set of related functions that include
main and itscallees (including nested function calls). Our first
step is generating the dependency graph for ¢aehF’, which is
done by a bottom-up dependency analysis starting from toere
statements.

Let the dependency graph ¢fbe Gy = (N, E). To sim-
plify the description, we usénput(Gy) to denote the set of its
i nput nodes,Call(Gy) to denote the set of itsal | nodes, and
Return(Gy) to denote the set of itset ur n nodes. For each func-
tion f (callee), we us&€'aller(f) to denote the set afal | nodes
that are associated with

that summaries may have tracks that are associated witbr-diff
ent variables. Assume that we wish to comp@eNcATSUM-
MARY (S1, S2) where S represents the summary at the prefix
node andS: represents the summary at the suffix node. Let
S1 (Q1,%1,01, 11, F1) be a multi-track DFA whose tracks
are associated with the set of input variabjgesand X, where
Y = (ZUuNMl xS Let Sy = (Q2, B2, 02, I2, F») be a multi-
track DFA whose tracks are associated with the set of inprit va
ablesx» and X, where¥> = (X U A)x2l x ¥, We first extend
S1 and .S, to the DFAs that have common tracks, so that both are
associated withy1 U x2 and X,.

The extension ofS;, denoted asSy, is (Q1, X7, 67, In, 1),
where

° E% _ (EU/\)‘X” x Axe=xil ¥, and

*00(¢,0) = ¢’ if 81(¢,8) = ¢ anda[X] = BIX]if X €
X1 U X,, anda[X] = A, otherwise.

The extension of-, denoted a$?, is (Qz, £33, 63, I, F2), where
o ¥y = Al (zu el x5 and
e 53 (q,) = ¢ if 82(q,) = ¢’ anda[X] = A if X € x1, and

Our second step is generating a composed dependency graph ~ [X] = 8[X], otherwise.

Gr from {Gy | f € F}. Gr = (Np,Ep) is constructed as
follows:

e Np = UyserNy.
e Fr = E,UE; UE,, where
*E,={(n,n')| fe€F (nn')e€ Ern &Call(Gy)}.

» B = {(n.ai,callee.p;) | f € F,n € Call(Gy)}.
callee.p; is thei nput node that identifies thg;, parameter
of the functioncallee associated with.

. B, {(n,n') | f € F,n € Return(Gs),n’ €
Caller(f)}.

Briefly, Gr connects the set @¥; by (1) redirecting the prede-
cessors otal | nodes to theé nput nodes of their callees, and (2)
adding edges that direcet ur n nodes of callees to theal | nodes
of their callers. Fom € Np, Succ(n) = {n’ | (n,n') € Er}is
the set of successors efand Pred(n) = {n’ | (n',n) € Er}
is the set of predecessors of We also definelnput(Gr)
{n | Pred(n) = (}. Note that after composition, reet ur n node
may have successors andiarput node may have predecessors.

6.2 Generating Function Summaries

In this section, we describe how to compute a summary=en
given two sets of node$n and Out. If we aim to summarize
function f (f € F), In C Ny is the set of its nput nodes and
Out C Ny is the set of itg et urn nodes inGy. Eachn € In
recognizes one input variable, denoted¥as and the summary of
(Gr, In,Out)is an unaligned|In|+1)-track DFA. The firstIn|
tracks are labeled a%,, for eachn € In. The extra track, labeled
as X,, is used to record the output values.

The algorithm to generate the summary is shown in Algo-
rithm 4. We use a DFA vecto$ to record the reachable summary
at each node. We initializ8 at line 1. Initially, for eachn € In,
S[n] is a 2-track (associated with,, and X,) DFA that accepts
the identity relation oX,, andX,. For eachn € Input(Gr)\In,
S[n] is a 1-track (associated witR,) DFA that accept* if n
is avari abl e node, or a constant valuesifis aconst ant node.
For the rest, i.e.qn ¢ In, S[n| accepts an empty set. Similar to
Algorithm 3, the algorithm is a standard work queue algoniih-
corporating the automata widening operator. We iterativpidate
the summary at each node until reaching a fixpoint.

Intuitively, we extendS; (prefix) by allowing only in the added
tracks, while we extend; (suffix) by allowing only\ in both the
added tracks and the common tracks that are also associdted w
S1. CONCATSUMMARY (S1, S2) returns the(|x:1 U x2| + 1)-track
DFA that accepts the concatenationgf and S5 .

To deal with the union or widening operator ¢ and S>
that are associated with different variables, we extentl braicks
to x1 U x2 and X, by allowing arbitrary symbols in the added
tracks. l.e., the value of an unspecified track is not rastlicWe
then perform union or widening on these extension DFAs.IFina
the summary of G, In, Out) is the union of the DFAs that are
associated with nodes Dut.

In sum, to summarize a specific functigh we first find the
set of related functiong”. The summary off, denoted as\/y,
is the result of GENERATESUMMARY (G g, In, Out), whereIn =
{n | n € Input(Gy), wheren is not aconstant node, and
Out = {n | n € Return(Gy)}. The alphabet of\/; is (¥ U
Ml s Let w[X] be a word projected to the track associated
with X. For anyw € L(My), we have the following:

o VX € In,w[X] € *¥*\", and
o WX, € X,

6.3 Another Simple Example

Consider another simple example given below. Funcfidras one
parameterX, which non-deterministically returns its input (goto
2) or makes a self call (goto 3) by concatenation its input ted
constant. Let /' = {f}. G; andGr are shown in Figure 3.

f(X)

begi n

1: goto 2, 3;
o Xo = call
3: return X
end

f(X a);

The generated summary is shown in FigureM; is an aligned
2-track DFA, where the first track is associated with its patmn
X,,, and the second track is associated with representing the
return values. The edge, X) represents a set of identity edges.
le., if §(q, (%, %)) q thenVa € X,6(q,(a,a)) = ¢'. The
summary DFAM precisely captures the relatiofi, = X,,.a"
between the input variable and the return values. We canhise t

2009/8/11

return

return

Figure 3. Gy andGr: The dependency graphs

(Z, Z) (A, a) ()\, a)
H ©

Figure 4. My: The summary DFA

summary DFA to compute the post-image of a callftevithout
analyzingf further. For example, led/ be a one-track DFA asso-
ciated withX whereL(M) = {b}. posi(M, X :=cal | f(X))
returnsM’ where L(M’) = ba*. As another example, let/ be
a2-track DFA associated witlX, Y that is precise with respect to
X =Y. Thenrost(M, X :=cal |l f(X))returnsM’ which is
precise with respect t& = Y.a* precisely capturing the relation
betweenX andY after the execution of the function call. Recall
that M’ is computed by3X, X,,, .M N M; N M¢)[X/X,], where
L(My) = ConsTRUCT(X,,, = X, +).

In general,M; can be an unaligned multi-track DFAg are
not right justified). The final step of our construction is liga M ¢
before composition. Unfortunately, an unaligned mukietc DFA
may not be definable by an aligned multi-track DFA. We discuss
how to align an unaligned multi-track DFA in the next section

Algorithm 4 GENERATESUMMARY (G, In, Out)
1 INIT(S, Input(GFR), In);
2. queueW @ := NULL;

3: for n € InU Input(Gr) do

4: WQ.enqueuefucc(n));

5: end for

6: while WQ # NULL do

7

8

9

n ;= WQ.dequeue();
if nisconcat then
tmp : = CONCATSUMMARY (S[n.p], S[n.s]);

else
11 tmp :=Upreprean) SIVL
12 endif
13: tmp = (tmp U S[n])VS[n];
14: if tmp Z S[n] then
15: S[n] := tmp;
16: WQ.enqueuefucc(n));
17: endif
18: end while

19: retun U, cou: S0

6.4 Alignment

In this section, we discuss how to align an unaligned mtdttk
DFA M so that)\’s of M are right justified. First, we show that
there are languages recognized by unaligned multi-tradksDFat
cannot be recognized by any aligned multi-track DFA.

THEOREM11. For anyn > 2, there exists a language accepted
by ann-track DFA M that cannot be converted to any aligned DFA
M.

10

Proof: Let L = {(a\)(cc)* | i,k > 1}. Clearly, L can
be accepted by an unaligned 2-track DBA. Suppose we can
convertM to an aligned 2-track DFAV’. Let M’ haves states.
Consider the stringy = (ac)®(c\)®. Thenw is accepted byM’.
Then there exist,k > 0 andj > 1 such thatw decomposes
into w = (ac)'(ac)’ (ac)®(c)\)®, wherei + j + k = s, and
(ac)’(ac)™ (ac)*(c))* is accepted by’ for everym > 0. Let
m = 2. Thenw' = (ac)*(ac)® (ac)®(c\)* is accepted by’. But
now, the first track ofv’ contains the string**7¢*, and the second
track containg=""7. Sincej > 1, this is a contradiction since the
number ofc’s in the first track is less than the numberdsf in the
second trackll

Since the above result shows that precise alignment is ret po
sible in general, we propose an approximignmentconstruc-
tion. Given an unaligned multi-track DFA/ and a bound:, we
constructM’ that accepts aoveror underapproximation of..(M)
based ork. We associate a bounded FIFO queugip to sizek)
with the states of\/’ to record the symbols seen on the track that is
being aligned when a transition that contains the symbfolr that
track is taken. Later, when a nonsymbol is seen on that track, it
has to match the symbol that is at the head of the queue if thesqu
is not empty. Amactivequeue {) can enqueue and dequeue once.
After dequeuing, it becomes anactive queue) that can only
dequeue. Initially, all queues aaetive

M’ simulatesM . The idea is to output possible characters while
encountering\ during the construction. The output word is kept in
a queue in each state. Upon seeing a charactér\ € X, we set
the queue tanactive and start to outpuk and match the contents
of the queue against the seen characters until the queuetyg.efn
word is accepted if the queue is empty aWd is in a final state of
M.

During the construction, if no queue exceeds &izéhen we say
M is k-alignable and the construction returns the precise aligned
M’ such thatl.(M') = L(M). If M is notk-alignable theunder
approximation construction rejects all words that causaeuq to
exceedk and returns ai/’ such thatl.(M’) C L(M), while the
overapproximation construction accepts those words thaigblgrt
match the contents of the queue (up to sixend returns ad/’
such thatZL(M) C L(M'). The precision improves when we
increasek.

Let M =(Q,X", 4,1, F)yandX” C (B U{A\}) x...x (2 U
{\}). Fora € %™, afi] € © U {\} denotes the"" character
of o and afi a] denotesa’ € X" such thata'[i] = a and
Vi # j§,a'[j] = «a[j]. We align one track of/ at a time. To align
M completely, we iteratively align each track. Given a bokrathd
a tracki, we constructd/’ such that the track is aligned inM’.

We assume that there is a sink state and all unspecified ticarssi
go to the sink state. Let; be an empty queue anddenote+ or
—. We constructV’ = (Q', ", 8, I, F') as follows:

* Q' C QX Qqueue, WhereQqueue € {+,—} x £
o I'=(I,(+,01))
o F'={(q;(x,01)) | g € F)}
For eachi(q,) = ¢/,
o if ai] € %,
*'((g; (x,01)),) = (¢, (=, 01)),

* '((q, (x,0),ali == A]) = (¢, (=,), if afi] = o.head
ando’ = p.dequeue.

o if afi] = A,
" 6l((q7 (_7 QL))7 Oé) = (q/7 (_7 Ql))'
*0'((q,(+,0),0) = (¢, (=, 0).

2009/8/11

*Va € ¥y, o' = o.enqueue() and|o'| < k, 6'((q, (+, 0)),
O‘[i = a]) = (q/7 (+7 Ql))'

3, C X is the set of characters that can be reached in tiack
after seeing the sequence of symbols storeg.ifPrecisely, let
M; = (Q:, 2,9, 1, F;) accept{w[i] | w € L(M)}, thenX, =
{a | ¢ # sink,8;(I,0a) = q'}. Using %, (instead ofX) pre-
vents the construction from adding useless states thaewdlup
transitioning to the sink state.

The above construction returns anderapproximation if M/
is notk-alignable To return anoverapproximation, we make the
following modifications. We first add two extra states to theuwg,

of the replacement statement is constructed/ag, NM'. Note
that the result is amverapproximation sincev € L(M") does
not imply thatw[i] = REPLACHW[1], W (2], w[3]).

8. Experiments

We evaluate our approach against three kinds of benchm@rks:
Basic benchmarks, (2) SQLCI/XSS benchmarks and (3) MFE
benchmarks. Table 1 summarizes the results of using strayt&-
DFAs and multi-track DFAs to analyze these benchmarks.

Basic benchmarks: These examples demonstrate that our ap-

{e, €'}, to denote that the queue capacity has been exceeded. AfteProach can prove implicit equality properties of stringteyss. We

the queue capacity is exceeded, we will stop enqueuing sgmio
the queue when we seeWe continue to match and dequeue when
we seer € X until the queue is empty. In both cases, we can output
arbitrary charactet, € % or A (e), but once we outpuk, we can
only output) thereafter ¢').
For each¥(q,a) = ¢/,
o if afi] € 3,
" 6/((q7 ({67 6,}7 QL))7 O‘[Z =)‘]) = (q,7 (el7 QL))'
= Va € 275,((% (67 Ql))7a[i = a’]) = (q,7 (67 Ql))'
= if afi] = o.head and’ = p.dequeue.
= '((a,({e,€'}, 0)), ali == A)) = (¢, (¢, &),
— Va €%, ((q, (e, 0)), ali :== a]) = (¢, (e, 2')),
o if afi] = A,

vif [ol = &,
— Va € X,d((q, (+,0)),ali == a]) = (¢, (¢, 0)),
- 6/((q7 (+7 Q))?a) = (q, (6,7 Q))’

= 5'((¢; ({e, €'}, 01)),) = (', (¢, 01)),
*Va €%, ((q, (e, 0), ali := a]) = (¢, (e, 0)).

a
7. Implementation

We have implemented the multi-track automaton constrociiod
symbolic reachability algorithms described above in ouingt
analysis tool [13—15].

Since a multi-track DFA contains all information that siegl
track DFAs have, we can extend our analysis to support com-
plex string operations implemented for single-track DFA4][

For example, the single-trackepl ace (M1, M2, M3) opera-
tion (proposed in [14]) returns a DFA/, so that L(M)
{w101w202 o WECKE W1 | k > 07 W1T1W2T2 . .. WeTrWk+1 S
L(My),Vs, z; € L(Mz), w; does not contain any substring ac-
cepted byMa, ¢; € L(M3)}.

To use single-track automata operations, we implemented tw
mapping functions between a single-track automaton andla-mu
track automatonExtraction(M, :), takes an n-track DFA/ and
an index:, and returns a single-track DFA that accepigi] | w €
L(M)}. Extension(M,i,n), takes a single-track DFAZ, an in-
dexi and the number of tracks, and returns am-track DFA that
accepts{w | wi] € L(M),V1 < k < n,wlk] € X*A\"}. The
post-images of the complex string functions onnattack DFA M
can be implemented by: (1) extracting single-track DFAsfi/,

(2) computing post-images on single-track DFAs, (3) exiregthe
resulting DFAs ton-track DFAs and (4) using intersection to get
the final post-image.

Consider the following statemef; := REPLACH X1, X2, X3).

Let M’ be the result oExtension(r epl ace(M;, M2, M3),i,n),
where M1, M2, M3 is the result ofExtraction(M, 1), Extrac-
tion(M,2), and Extraction(M, 3), respectively. The post-image

11

wrote two small programs. CheckBranch is similar to the frst
ample from Section 2 but in the else brandh (# X-), we assign

a constant to X; and then assign the same constanXto We
check at the merge point wheth&n; = X». CheckLoop is simi-

lar to the second simple example from Section 2, where wgmssi
X, and X» the same constant at the beginning, and iteratively ap-
pend another constant to both in an infinite loop. We checket t
end point of the loop whethek; = X,. Let M accept the val-
ues of X; and X upon termination. The equality assertion holds
whenL(M) C L(M,), whereM, is CONSTRUCT X1 = X2, —).
While using single-track DFAS), = N;—1,2 Extension(M;, i, 2)

is acomposed DFAUsing multi-track DFAs, we prove the equal-
ity property that we fail to prove using single-track DFAs fthese
benchmarks as shown in Table 1. Although these benchmaeks ar
simple, to the best of our best knowledge, there are no othegs
analysis tools that can prove the assertions in these beartkem

SQLCI/XSS benchmarks: In the second set, we model branch
conditions while checking SQL Command Injection (SQLClYlan
Cross-Site Scripting (XSS) attacks against known vulriersifeb
applications. We check whether at a specific program point, a
sensitive function may take an attack string as its inpusolfwe
say that the program is vulnerable against the given attattknm.

To identify SQLCI/XSS attacks, we check intersection emgas
against all possible values of the input of the sensitivetion at

a given program point and the attack strings specified asidareg
language. Though one can check such vulnerabilities usngies
track DFAs [14], using multi-track DFAs, we can interpreaich
conditions, e.g.pww=$ur | , that cannot be precisely expressed
using single-track DFAs. Hence, the result obtained usimdfim
track DFAs is a more precise representation of reachablesaif
the input of the sensitive function. However, for these hemarks
added precision did not change the results since the sirag&-
analysis does not generate any false positives. Thesasesel
still valuable in demonstrating the increase in analysit @hen
multi-track DFAs are used instead of single-track DFAs.

MFE benchmarks. Inthe last set, we show that the precision that
is obtained using multi-track DFAs can help us in removirigda
positives generated by single-track automata based sriady-
sis. These benchmarks represemdlicious file executiofMFE)
attacks. Such vulnerabilities are caused because devslale
rectly use or concatenate potentially hostile input witle fdr
stream functions, or improperly trust input files. We sysi&m
cally searched web applications for program points thatebee
file functions (include, fopen, etc) whose arguments mayrbe i
fluenced by external inputs. At these program points, we lchec
whether the retrieved files and the external inputs are sensi
tent with what the developers intend. For instance, in pidgu
book.php distributed with Pblguestbook-1.32, one possiit
olation is that$_GET[' type’'] is A but the retrieved file is
pbl guest book_back_up_B. t xt. We manually generate a
multi-track DFA M,,.,; that accepts a set of possible violations
for each benchmark, and apply our analysis on the sliced-anog

2009/8/11

Single-track Multi-track
Result DFAs/ Composed DFA Time Mem | Result DFA Time Mem
Benchmark, file (line) state(bdd) user+sys(sec)| (kb) ‘ state(bdd) | user+sys(sec)| (kb)
| CheckBranch [false | 15(107), 15(107) /33(477) | 0.027 +0.006] 410 | wtue | 14(193) | 0.070+0.009] 918 |
| CheckLoop [false | 6(40), 6(40) / 9(120) | 0.022+0.008 | 484 | tue | 5(60) | 0.025+0.006 | 293 |
MyEasyMarket-4.1, trans.php (218) vul 2(20), 9(64), 17(148) 0.010+0.002 | 444 vul 65(1629) | 0.195+0.150 | 1231
PBLguestbook-1.32, pbiguestbook.php(1210) vul 9(65), 42(376) 0.017+0.003 | 626 vul 49(1205) | 0.059+0.006 | 4232
Aphpkb-0.71, saa.php(87) vul 11(106), 27(226) 0.032+0.003 | 838 vul 47(2714) | 0.153+0.008 | 2684
BloggIT 1.0, admin.php (23) vul 53(423), 79(633) 0.062+0.005 | 1696 | vul 79(1900) | 0.226+0.003 | 2826
PBLguestbook-1.32, pbiguestbook.php(536) vul 2(8), 28(208) / 56(801) 0.027+0.003 | 621 no 50(3551) | 0.059+0.002 | 1294
MyEasyMarket-4.1, prod.php (94) vul 2(20), 11(89) / 22(495) 0.013+0.004 | 555 no 21(604) 0.040+0.004 | 996
MyEasyMarket-4.1, prod.php (189) vul 2(20), 2(20) /5(113) 0.008+0.002 | 417 no 3(276) 0.018+0.001 465
php-fusion-6.01, dibackup.php (111) vul 24(181), 2(8), 25(188) / 1201(25949) 0.226+0.025 | 9495 no 181(9893) | 0.784+0.07 | 19322
php-fusion-6.01, forumprune.php (28) vul 2(8), 14(101), 15(108) / 211(3195)| 0.049+0.008 | 1676 no 62(2423) 0.097+0.005 | 1756

Table 1. Experimental results. DFA(S): the minimized DFA(s) asatei with the checked program point. state: number of statkk

number of bdd nodes. line: the line number of the checkedtpoin

segments. Upon termination, we report that the file funcison
vulnerable if L(M) N L(Myw) # 0. M is the composed DFA
of the listed single-track DFAs in the single-track anadydis-
ing multi-track DFA analysis we are able to show that thisetyp
of vulnerability does not exist in these programs. Howewdren
we use single-track automata based string analysis evstanice
generates a false positive since single-track DFA are rpzlde of
representing relationships among variables which is sacgso
verify these properties.

Discussion: We have shown that multi-track DFAs can handle
problems that cannot be handled by multiple single-track®RAt
the same, we also observed that string analysis based oirtragk
DFAs uses more time and memory than the single-track DFA anal
ysis. For these benchmarks, the cost seems affordable oisish
Table 1, in all tests, the multi-track DFAs that we computexet
for the composed ones) are smaller than the product of thee-cor
sponding single-track DFAs. One advantage of our impleatamt

is the use of symbolic DFA representation (provided by theNVMO
DFA library [2]), in which transition relations of the DFAsearep-
resented as Multi-terminal Binary Decision Diagrams (MB£)D
Using this symbolic DFA representation we avoid the pote rex-
ponential blow-up that can be caused by the product alphidbet-
ever, in the worst case the size of the MBDD can still be exptiak

in the number of tracks.

9. Conclusion

Many security vulnerabilities are caused by inadequateipoéa
tion of string variables. In this paper, we presented a foichar-
acterization of the string verification problem and showleat ft

is undecidable. We proposed a conservative symbolic vetiiic
approach that computes an over-approximation of the rééeha
states. Our string analysis uses a single multi-track DFfepoe-
sent all possible values of string variables at a given nogpoint.
This enables us to check equality properties among stringhias
and improves the precision of the string analysis. We de trates
the effectiveness of our approach on several examples.

References
[1] Constantinos Bartzis and Tevfik Bultan. Widening ari#étio
automata. InProceedings of the 16th International Conference

on Computer Aided Verificatioppages 321-333, 2004.

[2] Morten Biehl, Nils Klarlund, and Theis Rauhe. Algoritisrfor guided
tree automata. Ifrirst International Workshop on Implementing
Automata, LNCS 126@Gpringer Verlag, 1997.

[3] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, ands3ay
Touili. Regular model checking. 1b2th International Conference on
Computer Aided Verificatiqrpages 403-418, 2000.

12

[4] Aske Simon Christensen, Anders Mgller, and Michael hwartzbach.
Precise analysis of string expressions.Pioc. 10th International
Static Analysis Symposium, SAS,’08lume 2694 olLNCS pages
1-18. Springer-Verlag, June 2003.

[5] CVE. Common Vulnerabilities and Exposureft t p: / / www.
cve.mtre.org.

[6] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai @jand
Lixin Tao. A static analysis framework for detecting sqleicfion
vulnerabilities. INCOMPSAC '07: Proceedings of the 31st Annual
International Computer Software and Applications Confiers- Vol.
1, pages 87-96, Washington, DC, USA, 2007.

[7] Carl Gould, Zhendong Su, and Premkumar Devanbu. Sth&cking
of dynamically generated queries in database applicatiolms
Proceedings of the 26th International Conference on Soéwa
Engineering pages 645-654, 2004.

[8] Yasuhiko Minamide. Static approximation of dynamigafienerated
web pages. IfProceedings of the 14th International World Wide Web
Conferencepages 432-441, 2005.

[9] M. Minsky. Recursive unsolvability of Post’s problem &g and
other topics in the theory of Turing machines.Ann. of Math (74)
pages 437-455, 1961.

[10] Open Web Application Security Project (OWASP). Top fenject.
http://ww. owasp. or g/ , May 2007.

[11] Daryl Shannon, Sukant Hajra, Alison Lee, Daigian Zhemj Sarfraz
Khurshid. Abstracting symbolic execution with string aysis. In
TAICPART-MUTATION '07: Proceedings of the Testing: Acaidem
and Industrial Conference Practice and Research Techsigue
MUTATION pages 13-22, Washington, DC, USA, 2007.

Gary Wassermann and Zhendong Su. Sound and precisesianaf

web applications for injection vulnerabilities. Rroceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementationpages 32—-41, 2007.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Generatingnerabil-
ity signatures for string manipulating programs using egta-based
forward and backward symbolic analyses. Technical Repa®©2
11, Computer Science Department, University of Califori@ianta
Barbara, June 2009.

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. IbarramBolic
string verification: An automata-based approach.15%th Interna-
tional SPIN Workshop on Model Checking Software (SPIN 2008)
pages 306—324, 2008.

Fang Yu, Tevfik Bultan, and Oscar H. lbarra. Symboliansjr
verification: Combining string analysis and size analysis
15th International Conference on Tools and Algorithms foe t
Construction and Analysis of Systems (TACAS 2088yes 322—
336, 2009.

[12]

[13]

[14]

[15]

2009/8/11

