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Abstract
Spectrum frequency allocation problems are fundamen-
tal problems in wireless spectrum auctions and wireless
LAN management. Due to their complexity, most ex-
isting proposals simplify the allocation problems by re-
ducing physical interference to a graph-based interfer-
ence model. In this paper, we propose LIGHTHOUSE, a
new line of efficient approximation algorithms that oper-
ate directly on physical interference models and perform
within a constant bound from the optimum under geo-
metric signal propagation. Our design is motivated by the
fact that conventional greedy methods become brittle un-
der physical interference models although they perform
well under graph interference models. We overcome
such brittleness by building a new globalized optimiza-
tion path, first reducing the optimization constraints into
linear constraints to produce a starting solution and then
applying iterative improvements to approach the global
optimum. To our best knowledge, our solution is the first
to achieve a constant approximation bound. It also has
low complexity and supports a wide-range of optimiza-
tion goals. Experiments show that our solution outper-
forms existing solutions by 50 + % in utilization, and is
within 10% gap from the optimal solution.

1 Introduction
Wireless network designers often shy away from us-

ing physical interference models to tune their networks
and allocate resources. Instead, the majority of existing
works take an indirect approach: first simplify physical
interference conditions into a set of pairwise constraints,
referred to as the graph interference model, then perform
network design over the graph model [18, 25]. While re-
ducing network design complexity, such simplification,
however, comes with an unpleasant cost. Because in-
terference is inherently accumulative, it cannot be accu-
rately represented by pair-wise constraints. As a result,
network decisions made on top of the graph model of-
ten lead to the waste of resource or harmful interference.
Recent works have identified this pitfall in the context of
wireless link scheduling [2, 6, 14].

There is a clear need for new solutions that remove
the graph-model veil and perform network design directly
over physical interference models. To do so, one must
overcome several challenges. These include 1) how to

reliably measure interference and 2) how to optimize net-
work design over the complex physical model in a com-
putationally efficient manner.

In this paper, we address the second challenge in the
context of centralized spectrum allocation. In this prob-
lem, we seek to allocate a set of (homogeneous) radio
spectrum among base stations to maximize a predefined
system utility. This model can be applied to wireless
spectrum auctions [23,25] as well as wireless LAN man-
agement [12, 18]. We propose LIGHTHOUSE, a new line
of centralized spectrum allocation algorithms that operate
directly over physical interference models. Compared to
existing works in this area, LIGHTHOUSE achieves the
following two key improvements:

- Constant bound from the optimum: Under geometric
radio propagation, LIGHTHOUSE performs within a con-
stant (min{2α + 1,10}) bound from the optimum, where
α ≥ 2 is the passloss exponent. Prior solutions [2, 23]
become unbounded as network size increases or as α
changes.

- Wide applicability: LIGHTHOUSE and its performance
bounds apply to general spectrum allocation problems
with different optimization goals, whereas prior solu-
tions [2, 23] are for specific goals.

The rationale behind our design comes from the fol-
lowing observation: conventional allocation methods be-
come brittle under physical models although they per-
form well under graph interference models. Take greedy
allocation as an example. It allocates channels to nodes
sequentially, making the locally optimum choice at each
stage with the hope of finding the global optimum. It
works well under graph models because in each stage
the impact of an allocation decision is local and can be
clearly identified. Under physical models, however, the
impact is accumulative and hard to predict, and the algo-
rithm can easily fall into “traps” too early which prevent
it from finding a good overall solution. The brittleness
renders the design of greedy algorithm a “black-art” with
highly unstable performance.

LIGHTHOUSE overcomes the brittleness by building
a globalized optimization path that is “trap-free.” From
the physical interference model, we first produce a set
of simpler but stricter interference constraints that reduce



the original NP-hard optimization problem into a vari-
ant of linear or convex programming (LP) problem. By
solving the LP problem we produce a starting solution
of the original problem, eliminating the most harmful
traps. The starting solution is already within a constant
bound (min{2α + 1,10}) from the optimal of the origi-
nal problem. On top of this performance guarantee, we
apply iterative improvements over the starting solution to
further improve the algorithm performance.

Using both theoretical analysis and simulation experi-
ments, we evaluate LIGHTHOUSE in its performance and
complexity under various network settings. Our results
produce the following key findings:
• We prove analytically that under geometric radio

propagation, our solution achieves a constant bound
(min{2α +1,10}) to the optimal spectrum allocation
over physical interference models. To the best of our
knowledge, this is the first solution to achieve a con-
stant bound.

• In simulations, our solution is within 10% gap to the
optimal solution derived via exhaustive search.

• Compared to conventional greedy algorithms, our
solution achieves an average gain of 50%. By avoid-
ing harmful “traps,” the gain of our algorithm can be
more than 300%.

• Compared to graph interference based solutions that
optimize conflict graph using expensive numerical
search, our solution has 10% improvement, provides
a provable approximation ratio, and is applicable
to a wide range of optimization objectives without
changing the strategy of its key components.

2 Preliminaries and Related Work
As shown in Fig. 1, we consider a network of K

WiMAX/cellular base stations (BS) who obtain spectrum
to transmit to their users. Each BS and its users are
equipped a cognitive radio that can communicate using
a flexible number of non-contiguously aligned channels
concurrently [1]. Using OFDM, they can select any com-
bination out of the M total subcarriers, and M is typically
very large, M = 512 ∼ 1028 [17]. The subcarriers are
of the same bandwidth and experience the same propaga-
tion conditions in average. In this paper, we will refer to
subcarrier as channel, and BS as node.

Our goal is to allocate channels among nodes to set
up transmissions and minimize interference. Instead of
applying power control, interfering nodes will use differ-
ent channels to minimize conflict. The quality of spec-
trum allocation is measured by a system utility function,
such as spectrum utilization and fairness. Because chan-
nels are homogeneous, the utility function depends only
on the amount of “successful” spectrum usage each node
obtains, rather than exact frequency location.

Definition 1. Let A define a spectrum allocation,

A= {am,i}1≤m≤M,1≤i≤K ,

Allocated
channel

Unallocated
channel

Figure 1. (top) A set of WiMAX/cellular base sta-
tions sharing spectrum usage, each using a flexible set
of non-contiguously aligned spectrum channels. The
problem is to decide how many and which channels
to allocate to each node to maximize a system utility.
(bottom) A possible conflict graph for the scenario.

where am,i = 1 indicates that node i is allocated to channel
m, otherwise am,i = 0.

Definition 2. Under physical interference models [7], a
spectrum allocation A is successful if on each channel m
allocated to a node i, at any location point in node i’s cov-
erage area, the received signal to interference and noise
ratio is above a threshold β:

If am,i = 1, then SINRm,i ≥ β, ∀m∈[1,M],i∈[1,K].

In our scenario, SINRm,i is the minimum SINR on chan-
nel m for all the points in i’s coverage area. We define
SINRm,i as:

SINRm,i , Si

∑ j 6=i am, j · I j,i +N
(1)

where Si is the minimum received signal strength across
i’s coverage area, I j,i is the maximum interference
strength from node j to i’s area, and N is the noise level.
Let Pi denote i’s transmit power, Q j,i denote the worst-
case pathloss from j to i’s area. Then we have Si = Pi/Qi,i
and I j,i = Pj/Q j,i. Given the symmetry between base sta-
tions, we approximately assume Q j,i = Qi, j.

Definition 3. Let Vi represent the amount of spectrum
a node i obtains from a successful spectrum allocation:
Vi(A) = ∑m am,i if A is successful. We say a volume vec-
tor V = {V1,V2, ...,VK} is achievable if it can be achieved
by some successful spectrum allocation.

Definition 4. A spectrum allocation problem with a util-
ity function U(.) is to find a successful spectrum allo-
cation A and the corresponding V such that U(V) =
U(V1,V2, · · · ,VK) is maximized.

Example utility functions include spectrum utilization
U(V) = ∑K

i=1 Vi, max-min fairness U(V) = minK
i=1 Vi, and

proportional fairness U(V) = ∑K
i=1 logVi.



It is important to note that the spectrum allocation
problem differs significantly from link scheduling prob-
lems, because the amount of spectrum assigned to a node
Vi is unknown prior to the allocation and will only be de-
termined by the utility-maximizing allocation.

Graph interference models – This model simplifies the
impact of accumulative interference into a set of pair-
wise binary constraints among nodes, often represented
as conflict graphs [9]. In a conflict graph, vertices rep-
resent nodes and two vertices are connected if the cor-
responding nodes conflict with each other and cannot
use the same channel concurrently. To produce conflict
graphs, existing solutions compare signal and interfer-
ence power among any two nodes and use a threshold to
decide whether an edge exists between the two [15, 24].

Operating on the graph model, an allocation is suc-
cessful if no two connected vertices are allocated with the
same channel. Such reduction significantly reduces the
complexity of spectrum allocation algorithms. This sim-
plification, however, suffers from inaccurate interference
estimation. Network decisions made on top of this model
often lead to either waste of resource or harmful interfer-
ence. This pitfall has been identified in the area of link
scheduling [6, 14]. In Section 3 we show that the same
pitfall exists in spectrum allocation problems, which mo-
tivates the search for efficient solutions operating directly
over physical interference models.

2.1 Related Work
Next, we summarize related works that operate di-

rectly over physical interference models.
The majority of existing works are on link schedul-

ing. Under uniform node distribution, the work in [2]
proposes a greedy scheduling algorithm that is within a
provable bound from the optimum. The bound degrades
with the network size. The work in [13,14] proposes link
scheduling and power allocation protocols that improve
the worst case performance of existing heuristics. An
earlier work [9] proposes a reduced exponential search
to identify schedulable link sets.

In the context of spectrum allocation, a recent
work [23] proposes two efficient greedy allocation algo-
rithms. Assuming geometric signal propagation and uni-
form transmit power, these algorithms achieve a provable
approximation ratio which becomes unbounded when the
passloss exponent α approaches 2. Inspired by this ef-
fort, we use a different technique (i.e. global planning)
and show that LIGHTHOUSE provides a constant (≤ 10)
approximation ratio. In Section 6 we verify that our al-
gorithm improves the result in [23] for typical network
settings. The work in [24] proposes an indirect approach
by first identifying an optimal construction of the con-
flict graph based on the physical interference model, then
applying conventional allocation algorithms designed for
conflict graphs. The authors conclude that the optimiza-
tion of conflict graphs is also a fundamentally hard prob-
lem. In this paper, we propose an alterative solution that
directly operates over the physical interference model.

Physical interference models are also widely used in
channel allocation problems for multi-cell OFDMA sys-
tems [3,11]. Multi-carrier diversity and power control are
usually formalized and jointly considered with channel
allocation to optimize network performance. Due to the
complexity of this formalization, most existing solutions
focus on heuristic-based algorithms without considering
approximation guarantees. In this paper, we focus par-
ticularly on the channel allocation problem and explore
the design for constant ratio approximation algorithms.
It is interesting to see whether the key techniques used
in LIGHTHOUSE could be extended to consider channel
diversity and power controls.

3 Benefits of Physical Interference Models
In this section, we study the benefits of using physical

interference models over graph models. Prior work [6,
14] has identified the gain of using physical models on
link scheduling problems. Inspired by them, we use case
studies to identify the benefits in the context of spectrum
allocation. We also obtain important insights on realizing
the benefits using approximation algorithms.

3.1 Case Studies
We compare the performance of spectrum allocation

using the two interference models by allocating one chan-
nel among a set of nodes. Our performance metric is the
spectrum utilization, defined as the number of nodes who
are allocated the channel and the received SINR≥ β (Eq.
(1)). Let Γ = Ωphy/Ωgrh represent the gain of using phys-
ical interference models, where Ωphy and Ωgrh are the uti-
lizations of the allocations derived from the physical and
graph models, respectively.

We consider two radio propagation cases: (1) the sig-
nal propagation is arbitrary with respect to the node dis-
tance (referred to as SINRA in [5]), and (2) the signal
propagation is geometric (referred to as SINRG in [5]).
We show that Γ could be large for both cases but can be
arbitrarily large under arbitrary signal propagation.

Arbitrary signal propagation. Consider a 3-node
topology in Fig. 2(a), and ∀i, j, Si = Ii, j = β = 1, and
N = 0. Using the physical interference model (Eq.( 1)),
Ωphy = 2 because two nodes can be assigned the channel.
Under the graph interference model, we can produce two
conflict graphs depending on the threshold, one with no
edges and one is a triangle. For the first conflict graph,
all three nodes are assigned yet all SINRs< β, and for the
second conflict graph, only one is assigned and Ωgrh = 1.
Thus we have Γ = 2.

As shown in Fig. 2(b), the above example can be gen-
eralized to K nodes where Si = K, Ii, j = β = 1, N = 1. It
is easy to show that Ωphy = K−1 by assigning the chan-
nel to only K − 1 nodes with their SINRs ≥ β. Under
the graph model, Ωgrh = 1. Therefore, Γ = K − 1 and
becomes unbounded as K grows.

Geometric signal propagation. Consider a 5×5 grid
in Fig. 2(c), We set N = −102.5dBm, β = 10dB, Si =
−49.03dBm. For j 6= i, I j,i = S j/(32πdi, j)2 where di, j is
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(a) 3-node topology, arbitrary signal propagation, gain = 2 (b) K-node topology, arbitrary signal propagation, gain = (c) Grid topology, geometric signal propagation, gain = 1.5
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Figure 2. The gain of using physical interference models. Each node in the graph represents a BS node. For
each topology, the left figure shows the optimal allocation using the physical model, and the right figure shows
the optimal conflict graph and the induced allocation.

the distance between nodes i and j. In this case, we have
Ωphy = 24 when the center node is off. Using the graph
model, the best conflict graph (shown in the figure) leads
to Ωgraph = 16. Thus Γ = 24/16 = 1.5.

The above examples show that the benefit of using
physical interference models can be significant (50%) in
typical network settings. The benefit comes from the
precise characterization of accumulative interference, us-
ing which the system can “pack” more nodes onto each
channel. Additionally, the examples show that the per-
formance of graph model-based solutions depends heav-
ily on the conflict graph. Optimizing the conflict graph,
however, is extremely hard and existing solutions do not
provide any provable performance guarantee [24].

3.2 Realizing the Benefits
Realizing the benefits of physical interference mod-

els requires careful planning, because the corresponding
spectrum allocation problem is NP-hard. To design ap-
proximation algorithms, existing works focus on greedy
algorithms [23]. Interestingly, the same problem under
graph models is also NP-hard [12, 16], and existing so-
lutions [2, 12, 16] show that greedy algorithms achieve
good approximation ratios when the graph model is used
to evaluate radio reception.

Our study shows, however, greedy algorithms become
brittle under physical interference models. They could
easily fall into “traps” too early and fail to find good over-
all solutions. In search for good solutions, we obtain two
insights that spark the LIGHTHOUSE design.

Consider the following greedy strategy that starts from
an empty allocation and allocates channels to nodes se-
quentially. For each node, the algorithm decides how
many and which channels to allocate, under the constraint
that each new allocation cannot create any conflict to ex-
isting allocations. That is, no new allocation will make
the SINRs of allocated nodes fall below their β. The al-
gorithm continues until no new allocation can be made
without violating the constraint.

Now we study two examples when this greedy strategy
performs poorly on the spectrum sharing problem.

Example 1. Consider applying the above algorithm
to the network in Fig. 1. Assume the algorithm allocates
a channel to nodes a and b, whose SINR values are now
quite close to β. The algorithm thus cannot allocate the

same channel to other distant nodes because otherwise
the SINRs at node a and b will fall below β. Another
example is Fig. 2(c) where if the algorithm ever allocates
a channel to the center node, the spectrum utilization is
cut by at least one-third.

The above example shows that the performance of
greedy algorithms depends heavily on the order of allo-
cation. This is true for both physical and graph interfer-
ence models. The graph-model based solutions [2,14,16]
optimize the order by estimating the impact of an allo-
cation to the entire network. These estimations are rea-
sonably good because the impact under pair-wise inter-
ference constraints is local. In contrast, under physical
interference models, the impact of interference is accu-
mulative and cannot be predicted easily. For the example
of Fig. 1, it is extremely hard to predict the total interfer-
ence that nodes a and b will receive from non-allocated
nodes. Without this information, the algorithm is likely
to make suboptimal decisions early in the process that
prevent it from reaching a good solution later. This ob-
servation leads to our 1st design requirement:

“When allocating channels to a node, one needs
to consider the potential accumulative interfer-
ence to and from the entire network.”

Example 2. Now suppose we want to optimize for
fairness. If the greedy process allocates too many chan-
nels to node a, then other nodes may get few channels
and hurt the fairness. On the other hand, if we allocate
insufficient channels to a, we also hurt the fairness.

Different from the link scheduling problem where
each link is allocated a given number of time slots, in the
spectrum allocation problem each node can utilize a flex-
ible number of channels. The number of channels is an
optimization parameter and heavily depends on the util-
ity function. Deciding how many channels to allocate is
a non-trivial task. Thus, our 2nd design requirement is:

“The numbers of channels {Vi} allocated need
to be optimized to maximize the utility. All
{Vi}1≤i≤K should be jointly considered.”

The above two requirements make good greedy algo-
rithms hard to find. While existing works have proposed
advanced greedy designs [2, 12, 23], they are for a spe-
cific utility function, or have large approximation ratios
that degrade with network size and are highly sensitive to
the choice of α and β. These motivate us to search for an



alterative solution with a different design methodology.

4 LIGHTHOUSE
The rationale behind our design comes from the above

two design requirements, which indicate that a form
of global planning technique may be helpful to guar-
antee a good spectrum allocation. With this in mind,
our algorithm first tries to optimize the vector V =
(V1,V2, · · · ,VK), then use a fast allocation algorithm to
allocate Vi channels to each node i.

Example: To illustrate our main idea, we use the
small example in Fig. 1. Suppose a and b are the only
two nodes in the network, whose mutual interference is
strong enough so that they must use different channels.
Suppose we want max-min fairness. From the second de-
sign requirement in Sec. 3.2, we should jointly consider
Va and Vb. In this case, the impact of interference can be
represented by: Va +Vb ≤M, that is, any Va,Vb satisfying
this constraint can be achieved by a successful (cf. Def-
inition 2) spectrum allocation. By solving the max-min
problem subject to this constraint, we get Va =Vb = M/2.

The above example illustrates the main design of
LIGHTHOUSE, which consists of three steps:

1) Translate the original physical interference model into
a set of constraints among {Vi}.

2) Solve the utility-maximization allocation problem
based on the new constraints in 1).

3) On top of the initial solution in 2), apply iterative
improvements based on the physical interference
model for additional performance improvement.

In the following three subsections, we explain the
three steps in detail.

4.1 Define Initial Interference Constraints
LIGHTHOUSE first translates the physical interference

model into a set of constraints on {Vi}. While finding the
constraint in the above small example is straightforward,
it is a big challenge to construct a set of proper constraints
for the spectrum allocation problem with complex phys-
ical interference (Eq. (1)) among large number of nodes
over different places. We should judiciously define a set
of constraints on the volume vector V = (V1,V2, · · · ,VK)
with the following properties. First, these constraints
must be stricter than the original physical interference
constraints such that {Vi} is achievable by a successful
allocation once {Vi} satisfies them. Second, they should
ideally be linear constraints, such that efficient algorithms
such as linear programming can be applied to solve for V.
Moreover, from the first design requirement in Sec. 3.2,
these constraints must account for the accumulative inter-
ference from the whole network. Finally, the constraints
should introduce minimum performance degradation.

We construct a set of constraints (Eq. (2)) which sat-
isfy all the above desired properties, based on the follow-
ing theorem:

Theorem 1. If a volume vector V = (V1,V2, · · · ,VK) sat-
isfies

∀1≤i≤K , Vi + ∑
j 6=i

Vj ·
I+

j,i

Imax
i

≤M (2)

where Imax
i =

Si

β
−N,

I+
j,i = min(Imax

i , I j,i), (3)

then V can be achieved by a successful allocation.

PROOF. Before proving Theorem 1, we first describe the
allocation algorithm that finds a successful allocation for
each V described in Theorem 1. As shown in Algorithm
1, each node i iteratively adjusts to Vi channels with the
smallest aggregated interference, and repeats the process
until no adjustments can reduce the interference at any
node.

Algorithm 1 Min-Interference Channel Adjustment
1: Start from an allocation where each node i is allo-

cated Vi random channels;
2: Let ωm,i = ∑ j 6=i am, j ·I j,i be the aggregate interference

at i. Choose for each i, Vi channels with the lowest
ωm,i, and adjust to these channels;

3: Repeat 2 until no more adjustments can be per-
formed.

We prove that Algorithm 1 achieves the following two
properties, which directly imply Theorem 1.

Lemma 1. Algorithm 1 will converge.

Lemma 2. Each V satisfying condition (2) can be
achieved by a successful allocation using Algorithm 1.

The proofs of Lemma 1 and 2 are in the Appendix.

From Theorem 1, we can translate the original phys-
ical interference model into a set of linear constraints
among {Vi}. In Section 5 we prove that solutions derived
from the new constraints has a constant approximation
ratio under geometric signal propagation.

4.2 Compute Initial Allocation
With the new linear constraints, the original utility-

maximization problem in Definition 1 reduces to

max
V

U(V) = U(V1,V2, · · · ,VK) (4)

subject to Vi + ∑
j 6=i

Vj ·
I+

j,i

Imax
i

≤M, ∀1≤i≤K .

It is important to note that because M >> 1, Vi is in gen-
eral very large, and we can treat Vi as a real number in
(4). In this case, if U(·) is a linear or convex function of
Vi, then (4) is a linear or convex programming problem
with efficient solutions.

Next we show that the three mostly used utility func-
tions: utilization, max-min and proportional fairness, can
be solved using linear/convex programming.
• Spectrum utilization: U(V) = ∑K

i=1 Vi is a linear
function of Vi.



• Proportional fairness: U(V) = ∑K
i=1 logVi. Optimiz-

ing U(V) is equal to optimizing (∏Vi)1/N , a convex
function of Vi.

• Max-min fairness: U(V) = minK
i=1 Vi becomes a lin-

ear programming problem by introducing an auxil-
iary variable u:

max
V

u

subject to ∀1≤i≤K , u≤Vi

∀1≤i≤K , Vi + ∑
j 6=i

Vj ·
I+

j,i

Imax
i

≤M.

By solving (4) we determine {Vi} and use {bVic} in
Algorithm 1 to derive the initial successful allocation.

4.3 Apply Iterative Improvements
The linear constraints (2) are sufficient conditions for

achievable volume vectors, and could be overly con-
strained. LIGHTHOUSE uses them to produce a starting
solution, and applies heuristics based iterative improve-
ments to further improve its performance.

The iterative improvements work as follows: starting
from an initial allocation derived from the previous step,
iteratively allocates unused channels to nodes. In each
iteration, choose a node i probabilistically, and assign one
more channel to i without making any allocated node’s
SINR fall below β. The probability of choosing a node i
is proportional to Vi. Repeat until no more channels can
be allocated.

5 Theoretical Analysis
In this section, we evaluate LIGHTHOUSE in its ana-

lytical performance bound and complexity. We focus on
examining the performance bound achieved by the use of
the linear constraints in (2) and the complexity in finding
the successful allocation using Algorithm 1. The con-
clusion depends heavily on the signal propagation model.
We start from the most typical geometric signal propaga-
tion, and then consider arbitrary signal propagation.

5.1 Geometric Signal Propagation
In this case, the pathloss from node j to node i can

be modeled as Q j,i = dα
j,i, where d j,i is the geographic

distance from node j to node i’s point π (see Definition
2, Section 2), and α ≥ 2 is the pathloss exponent. We
assume that each node employs a simple power control
and adjusts its Pi such that Si , S is uniform.

Under this model and assume M is large, LIGHT-
HOUSE’s solution is within a constant bound (min{2α +
1,10}) to the optimum:

Theorem 2. Any allocation V achieved with M chan-
nels using the optimal solution, can also be achieved us-
ing LIGHTHOUSE with (min{2α +1,10})M channels.

PROOF. The proof uses the following lemma on the nec-
essary condition for achievable volume vectors.

Lemma 3. Any volume vector V = (V1,V2, · · · ,VK)
achievable by a successful allocation, must satisfy (note
that Imax , Imax

i is uniform since Si is uniform now)

∀i, Vi + ∑
j 6=i

Vj ·
I+

j,i

Imax ≤ (min{2α +1,10}) ·M. (5)

The proof of Lemma 3 is in the Appendix.
Now it is easy to prove Theorem 2 using Lemma 3

and Theorem 1. Note that the necessary condition (5)
and the sufficient condition (2) only differ in the coeffi-
cient of M. Therefore, for any allocation vector V achiev-
able under M channels, from Lemma 3, V must satisfy
(5), which exactly meets the sufficient condition (2) un-
der (min{2α +1,10}) ·M channels. So V is achievable by
our algorithm under (min{2α +1,10}) ·M channels.

From Theorem 2, we see that LIGHTHOUSE achieves
a constant bound to the optimum. The bound is 5 for
α = 2, 9 for α = 3, and is no larger than 10 for any α.
Compared to existing solutions [2, 23], our performance
bound is constant and significantly smaller.

5.2 Arbitrary Signal Propagation
Under this general model, the optimization becomes

much more difficult.

Theorem 3. Suppose U(V) = ∑K
i=1 Vi, for any number

of channels M, no polynomial time algorithm can approx-
imate the optimal solution within a constant factor, unless
P = NP.
PROOF. Due to space limit, we only provide a sketch of
the proof. It follows a standard technique that reduces
the Maximum Independent Set (MIS) problem into the
spectrum allocation problem. Since MIS is hard to ap-
proximate [8], so is this problem.

5.3 Complexity of LIGHTHOUSE
The main concern of the complexity of LIGHTHOUSE

lies in Algorithm 1 to find a successful allocation given
{Vi}. Although it is guaranteed to converge, we seek to
understand its convergence speed. Note that Algorithm 1
belongs to the classical local search algorithms. Unfor-
tunately, analyzing the convergence speed of these algo-
rithms is still an open research topic [10]. Many empiri-
cal evidences [19,21,22], however, have shown that such
local search algorithms in general converge very fast. In
Figure 3, we use simulations to examine the convergence
speed of Algorithm 1. We see that the number of itera-
tions scales linearly with the network size, and is insensi-
tive to the distribution of {Vi}.

6 Simulation Results
We perform network simulations to examine the effec-

tiveness of LIGHTHOUSE. We compare the following six
algorithms in the context of spectrum allocation.

• OPT, is the optimal allocation via exhaustive search.
It takes 70 hours to compute a solution for a 40-node
instance, and might not terminate for a 50-node in-
stance within acceptable time.



 0

 100

 200

 300

 400

 500

 600

 700

 20  40  60  80  100  120  140  160  180  200

N
um

be
r 

of
 It

er
at

io
ns

Network Size

10-60 channels
10-40 channels
20-80 channels

Figure 3. Algorithm 1’s convergence rate. We ran-
domly select {Vi} in the range of [10,60], [10,40], and
[20,80] that satisfies the constraint in Eq. (2).

• GraphOPT, is the optimal allocation under the graph
interference model, obtained via expensive numeri-
cal search for the optimal conflict graph.

• BasicGreedy, chooses random nodes and random
available channels to allocate, until no more chan-
nels can be further allocated.

• SmartGreedy, is the greedy-based algorithm
GAHT [23] that achieves a performance bound for
spectrum allocation problems∗. It uses a plane-
division pattern to control the process of greedy
allocation, partially mitigating the pitfalls of greedy
algorithms.

• LIGHTHOUSE-Lite, is our main algorithm without
the iterative improvement, but achieves the same an-
alytical performance bound. We use it to compare
with SmartGreedy, another solution with a provable
analytical bound but does not perform additional it-
erative improvements to saturate the allocation.

• LIGHTHOUSE, is our main algorithm.
Table 1 summarizes the default simulation parameters.
We assume geometric signal propagation.

Table 1. Default Simulation Parameters
Parameter Value

Number of nodes 100
Number of channels 100
Range of node (di,i) 50 meters

Simulation area 2000m×2000m
Pathloss exponent (α) 2

TX power (Pi) 5 dBm
Noise power (N) -102.5 dBm

SINR threshold (β) 10 dB

To measure the allocation performance, we set the de-
fault optimization and evaluation metric as the Spectrum
Utilization = ∑K

i=1 Vi. We use ULIGHTHOUSE to denote the
utility generated by LIGHTHOUSE, etc.

∗The paper also presents another greedy algorithm, the
GACP, which is shown [23] to be inferior than the GAHT.

6.1 Comparison to OPT
We first compare LIGHTHOUSE and BasicGreedy to

OPT. Since OPT has an exponential complexity, we use
small-scale networks with 40 nodes and 100 randomly
generated topologies. We plot the performance gap to
OPT, defined by:

σLIGHTHOUSE = ULIGHTHOUSE/UOPT

σBasicGreedy = UBasicGreedy/UOPT.

Fig. 4 shows the results for α = 2 and 3 across 100
topologies. We observe that LIGHTHOUSE consistently
achieves more than 90% utilization of OPT, and is signif-
icantly better than BasicGreedy. More importantly, there
are 15% topologies where BasicGreedy falls into “traps”,
i.e., it utilizes less than half of spectrum compared to
LIGHTHOUSE. In these traps, BasicGreedy makes some
poor decisions during the sequential greedy allocation
process, and is not able to recover.

By comparing the two figures in Fig. 4 we see that
when α is smaller, the greedy approach tends to have
higher degradation. This is because a smaller α means
the interference has a stronger global effect, which in turn
means the greedy algorithms are more likely to make bad
decisions as we have discussed in Section 3.2.

6.2 Comparison to BasicGreedy
To study the performance of LIGHTHOUSE in large-

scale networks, we calculate its gain over BasicGreedy
as

ρ = ULIGHTHOUSE/UBasicGreedy.

We first simulate a network of 100 nodes over 100 ran-
dom topologies and examine the distribution of ρ in
the the following table. We can see that LIGHTHOUSE
achieves an average gain of 1.5. In 17% of the cases,
BasicGreedy is “trapped” and the gain is more than 2.

Gain ρ [1,1.2) [1.2,1.5) [1.5,2) > 2
Occurance 11% 38% 34% 17%

To examine the impact of network size, Fig. 5 (a)(b)
shows the gain of LIGHTHOUSE to BasicGreedy from a
network size of 100 to 400. It is clear that LIGHTHOUSE
almost always outperforms BasicGreedy with an aver-
age gain of 1.4 to 2, and is more than 4 for 5% of the
cases outside the confidence interval. Also, the average
gain slightly increases with the network size. This is be-
cause as the network size increases, a “bad” decision in
the greedy approach is more likely to prevent the alloca-
tion of more nodes due to the accumulative interference,
as discussed in Section 3.2. In contrast, the utilization of
LIGHTHOUSE is hardly hurt by increasing network size
since it explicitly considers the accumulative interference
over the whole network.

To see the impact of network topology, Fig. 5(c) shows
the gain in clustered topologies. We define the propor-
tion of cluster size as λ. The topology is generated by
randomly distributing λ · 100 nodes in the center area
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(b) Small Scale Networks, α = 3

Figure 4. Comparing the utilization of LIGHTHOUSE and BasicGreedy to that of OPT, with α = 2,3.
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(c) Clustered Networks, α = 2

Figure 5. Comparing LIGHTHOUSE and BasicGreedy in large scale and clustered networks. y-axis denotes ρ,
the gain of LIGHTHOUSE over BasicGreedy.
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Figure 6. Comparing LIGHTHOUSE-Lite with Smart-
Greedy.

(700m× 700m), and (1− λ) · 100 nodes in the whole
area (2000m× 2000m). When λ = 1 or 0, it is actually
a random topology. It is clear from the figure that un-
der clustered topologies, LIGHTHOUSE has a higher gain
because it can choose {Vi} to better match the highly het-
erogeneous interference conditions.

6.3 Comparison to SmartGreedy
To avoid running into “traps”, the authors in [23] pro-

pose the Greedy Algorithm based on Hexagonal Tiling
(GAHT), referred to as SmartGreedy. It uses a hexagonal
spectrum usage pattern to regulate the process of greedy
allocation. SmartGreedy achieves a performance bound
in terms of the pathloss exponent α and SINR threshold
β. The bound is larger than 80 under our default set-

tings with α = 2.5 (Note that SmartGreedy cannot be ap-
plied to α = 2 due to its limitations). In contrast, LIGHT-
HOUSE achieves a bound of 6.7 under the same settings
(see Theorem 2).

To further understand the average performance bound,
we compare the spectrum utilization of LIGHTHOUSE-
Lite and SmartGreedy in Fig. 6. We choose to use
LIGHTOUSE-lite rather than LIGHTHOUSE because both
LIGHTOUSE-lite and SmartGreedy do not apply any ad-
ditional improvement on top of their theoretical guaran-
tee. We observe that LIGHTOUSE-Lite has an average
gain factor of 11 under both α = 2.5 and 3.5, and dif-
ferent network sizes. This result coincides with our theo-
retical results that our performance bound is a significant
improvement over existing results.

6.4 Comparison to GraphOPT
Recall in Section 3 we analyzed the fundamental dif-

ference between spectrum allocation under the physical
model and the graph model. To further understand the
difference experimentally, we plot the gain of LIGHT-
HOUSE over GraphOPT in Fig. 7. It is important to note
that GraphOPT uses expensive numerical search to find
the best threshold used to generate the conflict graph, and
then allocates spectrum channels using good heuristics
based on the graph model [16]. The results show that
LIGHTHOUSE achieves a gain of 110% in average. Al-
though the gain is relatively smaller than that over Sim-
pleGreedy and SmartGreedy, LIGHTHOUSE has addi-
tional advantages beyond the computationally complex
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Figure 7. Comparing LIGHTHOUSE with GraphOPT.

GraphOPT including achieving provable approximation
ratio, of low complexity and being applicable to a wide-
range of optimization objectives.

7 Discussions and Future Work
As an efficient centralized algorithm widely applicable

to different optimization goals, LIGHTHOUSE is suitable
for the following applications:
• Wireless spectrum auctions [4, 23, 25]. In this case,

revenue maximization is periodically computed by
a central spectrum broker (auctioneer). Depending
on the bidding functions, the second step of LIGHT-
HOUSE (Sec. 4.2) might need to be revised to ap-
ply techniques such as linear programming, convex
programming or separable programming, which are
shown to be efficient in graph-based spectrum auc-
tions [4].

• Wireless LAN channel management. Centralized al-
gorithms [12, 18] have been shown to be effective
for WLAN management using graph interference
models. Operating directly on physical interference
models, LIGHTHOUSE provides an option to further
optimize the management goals.

Inspired by the analysis in Sec. 3.2, we design LIGHT-
HOUSE using a centralized approach and achieve a con-
stant approximation ratio. However, it does not mean that
distributed algorithms are not able to achieve good ap-
proximations based on physical models. A recent result
show that distributed algorithms can achieve a constant
approximation for dominating set problems [20]. It is still
open whether distributed algorithms can achieve constant
approximations for spectrum allocation based on physi-
cal models.

It should be noted that LIGHTHOUSE is designed un-
der several assumptions including M >> 1 and Qi, j =
Q j,i. Its constant performance bound is also derived for
geometric signal propagation. While these assumptions
are reasonable for the scenario considered in this paper, it
is interesting to see whether the proposed technique can
be applied to other network scenarios.

We also note that LIGHTHOUSE operates on instan-
taneous SINR measurements or assume that SINR mea-
surements are static over time. In practice the signal prop-

agation experiences shadowing and fading, so SINRs are
time-varying. Therefore, how to measure the signal and
interference levels reliably and how to compensate for
their time dynamics are interesting open research prob-
lems.

8 Conclusion
In this paper we consider the problem of spectrum al-

location using physical interference models. We propose
a new line of computational-efficient algorithms that per-
form within a constant bound from the optimal solution
and support a wide-range of optimization goals. Experi-
ments show that in average our solution outperforms ex-
isting solutions by 50 + % in utilization, and is within
10% gap from the optimal solution.
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APPENDIX
Proof of Lemma 1

For every allocation A, define a metric F(A) (Recall
that Qi, j = Q j,i is the pathloss between i and j):

F(A) =
M

∑
m=1

∑
1≤i< j≤N

am,i ·am, j · Pi ·Pj

Qi, j
.

When node i adjusts from a channel m to a channel m′,
changing A to A′ only if ωm′,i < ωm,i. That is,

∑
j 6=i

am′, j · I j,i < ∑
j 6=i

am, j · I j,i.

Multiply both sides by Pi, and recall I j,i = Pj/Qi, j,

∑
j 6=i

am′, j
Pi ·Pj

Qi, j
< ∑

j 6=i
am, j

Pi ·Pj

Qi, j
. (6)

Because A′ differs from A only by adding m′ to i and
removing m from i, we have

F(A)−F(A′) = ∑
j 6=i

am, j
Pi ·Pj

Qi, j
−∑

j 6=i
am′, j

Pi ·Pj

Qi, j
.

From (6), we have F(A)−F(A′) > 0, which shows that
F(A) decreases strictly after an adjustment. Because the
number of distinct allocations is finite, the proposed ad-
justments will lead to convergence.

Proof of Lemma 2
Given input {Vi}1≤i≤K satisfying (2), let A represent

the spectrum allocation when Algorithm 1 converges. We
need to show the allocation is successful, i.e., ∀m,i,

If am,i = 1, then SINRm,i , Si

∑ j 6=i am, j · I j,i +N
≥ β.

Let ωm,i = ∑ j 6=i am, j · I j,i represent the aggregate interfer-
ence at node i on channel m, and recall the definition of
Imax
i in (3). It is easy to see that SINRm,i ≥ β is equivalent

to ωm,i ≤ Imax
i . So we are left to prove:

If am,i = 1, then ωm,i ≤ Imax
i . (7)

Let us call a channel m blocked for node i if ωm,i > Imax
i .

To show that A satisfies (7), we only need to show:

Claim 4. For any node i, there are at least Vi channels
that are not blocked.

Claim 4 is suffice to imply (7) since Algorithm 1 im-
plies that a node always prefers unblocked channels to
blocked ones. With at least Vi unblocked channels, i ob-
tains enough unblocked channels when Algorithm 1 con-
verges.

In the rest of the proof we prove Claim 4. We bound
the maximum number of channels that could be blocked
by interference. We divide the blocked channel set Φ into
two sets Φ1 and Φ2.

Φ = {m|ωm,i > Imax
i }

= {m|∃ j,am, j = 1∧ I j,i > Imax
i }∪

{m|(∀ j,am, j = 0∨ I j,i ≤ Imax
i )∧ (ωm,i > Imax

i )}
, Φ1∪Φ2

Intuitively, Φ1 contains the channels blocked by a
“heavy” interferer while Φ2 includes the channels
blocked by accumulative interference from “light” inter-
ferers.

We now show that the sizes of Φ1 and Φ2 are bounded.
First, it is obvious that |Φ1| ≤ ∑ j 6=i,I j,i>Imax

i
Vj. Next, to

bound |Φ2|, we have:

∑
m∈Φ2

ωm,i = ∑
m∈Φ2

∑
j 6=i

am, jI j,i = ∑
j 6=i

∑
m∈Φ2

am, jI j,i

= ∑
j 6=i,I j,i≤Imax

i

I j,i ∑
m∈Φ2

am, j ≤ ∑
j 6=i,I j,i≤Imax

i

I j,iVj.

From the above equation and the fact that any channel
m ∈Φ2 must satisfy ωm,i > Imax

i , the number of channels



in Φ2 is bounded: |Φ2| ≤ 1
Imax
i

∑ j 6=i,I j,i≤Imax
i

I j,iVj. Thus,
the number of blocked channels is at most

|Φ|= |Φ1|+ |Φ2| ≤ ∑
j 6=i,I j,i>Imax

i

Vj + ∑
j 6=i,I j,i≤Imax

i

I j,i

Imax
i

·Vj

= ∑
j 6=i
· I+

j,i

Imax
i

·Vj (by (3)) ≤M−Vi (by (2)).

This shows that there are at least Vi unblocked chan-
nels, which implies Claim 4 and completes our proof.

Proof of Lemma 3
Suppose the volume vector V = (V1,V2, · · · ,VK) is

achieved by a successful allocation A. We prove that (5)
is true. Define ω+

m,i , ∑ j 6=i am, j · I+
j,i. We have

∑
j 6=i

Vj · I+
j,i = ∑

j 6=i

M

∑
m=1

am, j · I+
j,i

=
M

∑
m=1

∑
j 6=i

am, j · I+
j,i =

M

∑
m=1

ω+
m,i = ∑

am,i=1
ω+

m,i +∑
am,i=0

ω+
m,i

≤ Vi · Imax +(M−Vi) · (min{2α +1,10})Imax

≤ (min{2α +1,10})M · Imax−Vi · Imax.

The first inequality in the above follows from two facts.
First, by the following Lemma 4, ω+

m,i ≤ Imax ·min{2α +
1,10}. Next, it is clear that ω+

m,i ≤ Imax if am,i = 1 since
the allocation A is successful. With the following proof
of Lemma 4, we conclude the proof of Lemma 3.
Lemma 4. Under geometric radio propagation, for any
successful allocation A, any channel m and node i,

ω+
m,i , ∑

j 6=i
am, j · I+

j,i ≤ Imax ·min{2α +1,10}. (8)

PROOF. We prove (8) in two steps.

Step 1: First, we prove ω+
m,i ≤ (2α + 1)Imax. We in-

vestigate the allocation on channel m. If i is allocated
(am,i = 1), it is straightforward that ω+

m,i ≤ Imax since A is
successful.

Now suppose i is not allocated (am,i = 0). Let k be the
allocated node closest to i (Fig. 8). Since A is successful,
we know that ω+

m,k ≤ Imax, i.e.

∑
j 6=k

am, j · I+
j,k ≤ Imax. (9)

We claim that for any allocated node j 6= i,k, I+
j,i ≤

2α · I+
j,k. To show this, note that node j must be outside

the circle in Fig. 8 since k is the closest allocated node
to i. By geometry, any node j outside the circle must
have d j,i ≥ d j,k/2 (the equality is reached when k is at
position X). Therefore, I j,i ≤ 2αI j,k, which implies that

node i node k
X 1

2
3

5
4

Figure 8. Analyzing the upper bound of ω+
m,i.

I+
j,i ≤ 2αI+

j,k. Using this inequality and (9), we get

ω+
m,i = ∑

j 6=i
am, j · I+

j,i = I+
k,i + ∑

j 6=i,k
am, j · I+

j,i

≤ Imax + ∑
j 6=i,k

am, j ·2αI+
j,k

≤ Imax +2α ·∑
j 6=k

am, jI+
j,k (notice am,i = 0)

≤ (2α +1)Imax. (by (9))

Step 2: Next, we prove ω+
m,i ≤ 10Imax. Similar to Step

1, if i is allocated (am,i = 1), the claim is straightforward.
Now suppose i is not allocated (am,i = 0). Let node k be
the allocated node closest to i. We divide the whole plane
into 5 fan-like areas as shown in Fig. 8, where ∠1 = 120◦
with node k in its middle, and ∠2 = ∠3 = ∠4 = ∠5 = 60◦.

For each area, we find the allocated node closest to i
(Fig. 8). An important property of the selected nodes is
that in each area, any allocated node will generate more
interference to the selected node than to i. Define set Ψ
to be the collection of these nodes. Clearly |Ψ| ≤ 5.

Let T = { j| j /∈ Ψ∧ am, j = 1} be the set of allocated
nodes not in Ψ. By geometry, any node in T generates
more interference to some node in Ψ than to i. Formally,

∀ j ∈ T , ∃q ∈Ψ s.t. I j,q ≥ I j,i.

The above I j,q ≥ I j,i also implies I+
j,q ≥ I+

j,i from defini-
tion. Consequently,

∑
j∈T

I+
j,i ≤ ∑

q∈Ψ
∑
j∈T

I+
j,q ≤ ∑

q∈Ψ
ω+

m,q ≤ 5Imax.

The last inequality holds from ω+
m,q ≤ Imax and |Ψ| ≤ 5.

Therefore, we have reached the conclusion in Step 2:
ω+

m,i = ∑ j∈Ψ I+
j,i +∑ j∈T I+

j,i ≤ 5Imax +5Imax = 10Imax.


