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ABSTRACT 1. INTRODUCTION

Many real-world data stream analysis applications sucteasork Data stream analysis forms an important class of applications
monitoring click stream analysisand others require combining ~ Where data is streaming in, and processing has to be done in real
multiple streams of data arriving from multiple sources. This is time. In traditional designs [25], data was considered to be arriv-
referred to agmulti-stream analysis To deal with high stream  ing from a single source, and a plethora of sequential designs for
arrival rates, it is desirable that such systems be capable of sup-thesingle-streanproblem have been proposed [21, 22, 25]. But a
porting very high processing throughput. The advent of multi- number of common data stream applications require streams from
core processors and powerful servers driven by these parsess Mmultiple sources to be combined to answer queries, and we refer to
calls for efficient parallel designs that can effectively utilize the this asmulti-streamanalysis. Multi stream analysis arises in many
parallelism of the multicores, since performance improvement is contexts, including large scale web advertising networks, the inter-
possible only through effective parallelism. In this paper, we ad- Nnet, sensor networks, and real time data analysis [8]. In large scale
dress the problem of parallelizimgulti-stream analysis the con- web-based advertising networks, clicks originating from different
text of multicore processors. Specifically, we concentrate on par- internet hosts result in multiple click streams that need to be merged
allelizing frequent elements, tap-and frequency counting over  at a single server for analysis and identification of suspicious pub-
multiple streams. We discuss the challenges in designing an effi- lishers or IP addresses [23]. In the Internet, network monitors at
cient parallel system for multi-stream processing. Our evaluation COre routers process streams of packets arriving from differént o
and analysis reveals that traditional “contention” based locking re- gins for accounting purposes, and detection of malicious activities
sults in excessive overhead and wait, which in turn leads to se- such as Distributed Denial of Service attacks [31]. In sensor net-
vere performance degradation in modern multicore architectures. works, data streams from multiple sensors are typically combined
Based on our analysis, we propose a “cooperation” based lockingat a single server for analysis, mining, and querying [2, 20]. Sim-
paradigm for efficient parallelization of frequency counting. The ilarly, analysis of web server logs, monitoring calls in cellular net-
proposed “cooperation” based paradigm removes waits associatedvorks, real time analysis of credit card and ATM transactions etc.
with synchronization, and allows replacing locks by much cheaper require real time multi-stream analysis [4].

atomic synchronization primitives. Our implementation of the pro- A number of high-throughput distributed stream processing sys-
posed paradigm to parallelize a well known frequency counting al- tems have been proposed, such as Borealis [1] and Medusa [3].
gorithm shows the benefits of the proposed “cooperation” based These systems distribute the load on multiple distributed servers
locking paradigm when compared to the traditional “contention” to ensure high throughput. But with the advent of multicore pro-
based locking paradigm. In our experiments, the proposed “cooper-cessors and extremely powerful servers driven by these proces-
ation” based design outperforms the traditional “contention” based SOrs, even centralized servers are now capable of delivering high

design by a factor of — 5.5X for synthetic zipfian data sets. throughput stream processing. For instance, the Sun SPARC En-
terprise T5220 server powered by a UltraSPARC T2 processor [27]

and supporting 1Gbps network connectivity has 64 hardware thread

Categories and Subject Descriptors contexts which can be used for efficient and high throughput stream
H.2.4 [Database Managemerjt Systems—€oncurrency H.4.m processing. Even standard workstations are now powered by pro-
[Information Systems Applications: Miscellaneous cessors witht — 8 cores [18], and provide great potential for par-

allel processing. Efficient parallel designs are therefore needed to
exploit such parallel hardware to support the processing of large
General Terms numbers of streams with high and varying arrival rates. Note that
Algorithms, Design, Experimentation, Performance. stream processing systems have considerable data dependencies
and shared data structures, and efficient parallel systems require
thoughtful and efficient design.
Keywords
Multicore processors, parallel algorithms, data streams, concurren
structures, multi-streams, frequency counting, frequent elements,
top-k.

{Multi-Stream Analysis and Multicores: Multi-stream analysis

has inherent parallel processing needs since stream elements are
arriving from multiple sources at possibly variable rates, and the
streams need to be combined for answering queries on the union.
In the past when processors consisted of only one execution unit,
the most efficient approach was to exploit some form of operating
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system support such @l | or sel ect to transform the prob- standard frequency counting algorithms such@ssy Count-
lem into asingle streanproblem. It is widely acknowledged that ing [21].

these system calls introduce a significant overhead into the system.

But in a sequential world, this was a preferred solution. But with e We provide correctness proof sketches of the proposed de-
the advent of multicore processors [18, 27], each processor now sign, and analyze the performance of the proposed “coop-
has multiple threads that can execute in parallel, and a system can eration based” design. Our experiments show a factor of
improve its performance by exploiting the inherent parallelism to 2 — 5.5X improvement over traditional “contention” based
process each incoming stream using one or more threads. In this locking paradigm.

paper we investigate the challenges of such a parallel design.

Parallelizing Frequency Counting. Efficient parallel designs are ~ Organization: Section 2 provides a survey of related work, and a
the only means of improving performance in a multicore architec- brief description of th&Space Savinf22] algorithm which we se-
ture. But, due to data dependencies arising from updates to a comdect to parallelize. Section 3 analyzes some common approaches
mon structure, the problem is not “embarrassingly parallel”. Thus, towards designing a parallel system, and our analysis motivates the
adding more threads witlotlead to linear speedup. As itturns out, need for a new design paradigm. Section 4 formalizes the “thread
similar to many parallel algorithms and structures, parallelizing fre- cooperation” paradigm and describes the implementation details of
guency counting is non-trivial, and actually it is very hard to eke the parallel system while providing arguments for correctness. Sec-
out parallelism. Our experiments with a parallel frequency count- tion 5 experimentally evaluates the proposed “cooperation” based
ing system designed using the traditional notion of “contention” design and compares it with traditional “contention” based design.
based locking reveal the high overhead of a parallel system. Fre-Section 6 concludes the paper.

guently, contending threads that share a resource negditdor

it if it is being exclusively held by some other thread. This results

in wasted CPU cycles when the (hardware) threads do not perform2' RELATED WORK
useful work. To minimize the waits and the wasted CPU cycles, we :
propose a “cooperation” based locking paradigm where the threadsz'l Data Stream Processmg

“cooperate” (and not “contend”) when sharing resources. When-  The algorithms for answering frequent elements queries are broadly

ever a resource sought by a threBdis not available, therT}'s divided into two categoriessketch basedndcounter basedThe
work is “delegated” to the threat}; currently holding the resource, ~ Sketch basetechniques such as [5, 7] represent the entire stream’s
and7; can move to its next joll’;'s request will eventually be pro-  information as a “sketch” which is updated as the elements are pro-

cessed bﬁ“] As a resun’ even though locks and shared resources cessed. Since the “sketch” does not store per element information,
are still presentyaits associated with the locks have been elimi- the error bounds of these techniques are not very stringent, and have
nated. This allows efficient usage of the inherent parallelism, and high processing costs. As pointed out in [6], these techniques are
results in higher processing throughput. Additionally, the proposed not very suitable for simple frequency counting problems.

design paradigm allows replacing locks by much cheaper atomic  On the other hand, theounter basedechniques such as [22, 21,
Synchronization primitivesl In a previous work [10]’ we demon- 11] monitor a subset of the stream elements and maintain an ap-
strate the effectiveness of the “thread cooperation” paradigm for Proximate frequency count of the elements. The goal is to guaran-
intra-operator parallelism of stream operations, and in this paper, tee high accuracy while having a small memory footprint. Different
we use this paradigm fonulti-stream analysisConcepts similar to approaches use different heuristics to determine the set of elements

“thread cooperation”, such as the escrow transactional model [28], to be monitored, and thus limit the space overhead. For example,
have earlier been used in the field of databases. in Lossy Counting21], the stream is divided into rounds, and at
In this paper, we parallelize a standard frequency counting al- the end of every round, potentially infrequent elements are deleted.
gorithm which forms the basis for frequent elements anditop- Thise-approximate algorithm has a space boun@6f log(eN)),
queries. Frequent elements [6, 21, 22] andidp; 22, 26] queries whereN is the length of the stream ards the error bound. The
are an important class of queries for stream analysis applications,Space Savinglgorithm [22], on the other hand, uses a different
and the research Community has proposed several a|gorithms forheuristic to limit Space, details of which are pI’OVided in Section 2.3.
answering such queries efficiently. A frequent elements query re-  Different solutions have also been suggested for answering top-
turns all the elements whose frequency of occurrence is above adueries [9, 26]. Mouratidis et al. [26] suggest the use of geometri-
certain threshold. For example, a query of the form “advertise- Cal properties to determine theskyband, and use this abstraction
ments that are clicked more than 0.1% of the total clicks” is a fre- 0 answer topk queries, whereas Das et al. [9] propose a technique
guent elements query. On the other hand, aitapiery returns the ~ Which is capable of answering ad-hoc topueries, i.e., the algo-
k elements with the highest frequency. Again, a query of the form fithm does not need prior knowledge of the attribute on which the

“top-25 most clicked advertisements” is a tégguery. top-k queries have to be answered. o
o There has also been considerable research in distributed frequent
Contributions: elements [20], distributed top-monitoring [2], and distributed str-

eam processing systems [1, 3]. At first glance, it might seem that

the multiple streams problem can be formulated as distributed stre-

ams, and the entire body of relevant literature can be used. But

there is a subtle difference between distributed streams and the mul-

tiple streams problem we are considering. In distributed stream

e We propose a parallel design of tBpace Savinglgorithm [22], processing, since the streams are processed on distributed nodes,
which Cormode et al. [6] have shown to have best perfor- memory and processing is independent, and the onus is on reduc-
mance amongst a numbercegfunter basealgorithms. Even ing the communication overhead. On the other hand, in the multi-
though our design is based @&pace Savingthe proposed stream case, the streams are processed on the same machine shar-
paradigm can easily be augmented to accommodate othering processing and memory, and the onus is on efficient processing

e \We propose and formalize the notion of “thread cooperation”
for parallel analysis of multiple data streams. This concept
of “thread cooperation” removegaitsassociated with locks,
and will find use in various other “lock-based” designs.
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while effectively sharing the processor and memory among the dif- Algorithm 2.1 Space Savinglgorithm

ferent streams. Additionally, distributed stream processing systems 1: maxCounters— 1/e, numMonitored— 0

have to deal with fault-tolerance, load balancing and many related 2: for each elemente) in the streanto

issues of distributed systems [1], while these issues are not relevant 3:  /* Checkiif (e) is already being monitored */
in multi-stream analysis on a single powerful server. 40 if (LOOKUP((e))) then

The advent of modern multicore architectures [18, 27] have open- g els'gcrememcoume(@)
ed new frontiers, and their ubiquitous presence calls for algorithms 7. if (numMonitored< maxCountersthen
that can efficiently exploit the parallelism inherent to these architec- 8: AddElemer(e, 1); numMonitored++
tures. Although much research has been done in the stored databased: else
arena for exploiting parallelism [14, 15], very little research has fo- 10: OverwritgMinimum frequency elemenf)
cussed on stream operators. Gedik et al. [12] propose the use of
Cell processors for parallel windowed stream joins. The proposed .

Min frequency Max frequency

technique is targeted to the Cell architecture, and leverages specific
features of Cell processors to improve performance. The growing
demand for high throughput stream processing calls for designing
other efficient parallel algorithms for stream processing, and this is
the focus of this paper.

2.2 Query Model

In this section, we define the queries to be supported by the sys-
tem. The queries can vary based on the type of answers sought
(Queries 1, 2) or the frequency at which the queries need to be an-
swered (Queries 3, 4).

List of Elements with same frequency

QUERY 1. PoOINT QUERY: This type of query is interested in Figure 1: The Stream Summangtructure.
a single element and is a boolean query of the ftsElementFre-

quent(e)or IsElementinTopk(e) 23 Space Saving Algorithm

QUERY 2. SET QUERY: These queries report all the elements We select to parallelize th8pace Savinglgorithm [22] which

that are frequent, or all elements that are in the topA frequent has been demonstrated to have the best throughput amongst its class
elements set query can be expressed formally in a language similarof frequency counting algorithms [6]. An interesting property of
to SQL as: the algorithm is that it is deterministic and provides tight space

bounds corresponding to the user specified error beuvidch de-
termines the number of elements and counters that need to be mon-
itored. Space Savingnonitors onIyO(%) counters for providing
e-approximate answers. Algorithm 2.1 gives an overvie\@péce

Even though a set query can be visualized as a combination of Saving The main operations performed by the algorithm have been

cient techniques can be employed provided the elements are sorte@ments which we refer to as tiMonitored Set. If the element
by their frequency. being processed is already being monitored, then its count is in-
crementedlfcrementCountgr Otherwise, if the number of moni-

QUERY 3. INTERVAL/DISCRETE QUERY: These queries are  tored elements is less than the maximum boun(i(¢)), then the
posed as independent queries and consecutive queries are spacedlement is added to the monitored s&tldElemen) else the cur-
out either with respect to time or the number of updates. A frequent rent elemenOverwritesthe element with minimum frequency and
elements interval set query can be expressed formally in a languageincrements its count by one. Overwriting the minimum frequency
similar to SQL as: element is a heuristic used by the algorithm to limit space. The
intuition being that the minimum frequency element is least likely
to be of interest to a frequent elements or topguery. Thus, the
space bound of the algorithmiisin(O(2, |A|)), where|A| is the
size of the alphabet of the stream.

For Overwriting, this algorithm needs to track the minimum fre-

QUERY 4. CONTINUOUSQUERY: These queries are posed with duency element. Th8tream Summargtructure [11, 22] is used

“every update”, i.e., as soon as a stream element is processed, thefor this purpose. This structure consists af@ubly-linked listof
answer should be updated. frequency buckets which are sorted by frequency. Each bucket co

tains a list of elements which has the same frequency as that of the
When the stream elements are processed in parallel, the notion ofbucket. A nice property of this structure is that it maintains the

“every update” is not as clear as in sequential processing of streamelements sorted by frequency @(1) time per element. This al-
elements. If the sequential continuous query is mapped into the par-lows answering both frequent elements and Aag4eries using the
allel processing scenario, there will be multiple concurrent queries same structure. For every element being processed, the algorithm
at a particular instant, and the result from one query will be imme- looks up an element in th8earch StructuréL OOKUP), and then
diately updated by the next result. Most of the applications require updates the element in ti&ream Summarstructure. For lookup,
the answer sets to be updated periodically and therefore, we onlythe algorithm needs to have an efficiesgtarch structurghat can
consider “Interval/Discrete” queries which can either be “point” or be integrated with th&tream Summarstructure, and a hash table
“set” queries. is most suited for this purpose. Théonitored Set is thus repre-

Sel ect S. el ement
From Stream S
Wher e | sEl enent Frequent (S. el enent)

Sel ect S. el enent

From Stream S

Wher e | sEl erent Frequent ( S. el enent)
Every 0.001s
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< & structures, and these structures need to be merged periodically into
a global structure so that queries can be answered from the global
structure. Even though each thread processes only a fraction of the
entire stream, since the minimum element in the local structure is
not guaranteed to be the global minimum element, if the local struc-
ture is not large enough, it might lead to higher error. Lemma 3.1

Figure 2: This figure illustrates the Stream Summarydata
structure for an example stream of elementg ey, es, e3, e2, €2 ).
The elements can be kept sorted in constant time per element.

Table 1: Main Operations in Space Saving provides a lower bound for the size of the local structures in order
Operation Description that the global error bound is preserved.
LOOKUP(e) Check whether elementis being moni- ] ]
tored LEmMA 3.1. For e-approximate answers, the size of every lo-
IncrementCountde) | Increment the frequency ef cal structure must be at leagt(1/e).
AddElemert, freq) | Add element with frequencyfreg PROOF. For a stream ofV elements, by maintainin@(1/¢)
Overwritg(min, e) Overwr!te the minimum frequency elg- countersSpace Savingnsures that every element with frequency
ment withe greater thareN is reported [22]. Now in the multi-stream case,

let N be the total length of the different streams combined. The

sented by a combination &earch StructurandStream Summary claim is that every thread must maintain a_t le@l /¢) counters.
Therefore LOOKUP has to be supported by the hash table and the Let us assume w.l.o.g that each stream is of lerigthin] ele-

H A ’
rest of the operation in Table 1 must be supporte®trgam Sum- ments and let egch thread_malntau’t counters where < ¢,
mary. while guaranteeing-approximate answers. Thus, an element

with frequencyf; < ¢ [N/n] will not be monitored in the local
structure. In an adversarial distribution, the elemgrappears in

3. INTUITIVE PARALLEL DESIGNS all the streams;; such thatf/ < ¢ [N/n]. Thus, this element

In this section, we start by examining several possible intuitive will not be monitored in any of the local structures and hence not

designs for parallelizing frequency counting foulti-stream anal- in the global structure as well. But sinee< €', it is possible
ysis In these designs, each stream is assigned a thread which prothate N < Svieq. 1 f7 < €N, inwhich caseSpace Saving
cesses the elements. Recall that 8pace Savinglgorithm up- should have monltor ;, thereby leading to a contradiction[J

dates a structureMonitored Set) while processing the elements.

So the manner in which the threads share the structure determines CoRrRoLLARY 3.2. Using independent structures farstreams,

the design of the system. We explore two straightforward designs, the total space complexity ferapproximate answers 9(n/e).

provide a brief experimental evaluation of these techniques, and ex-

plore some extensions to the two basic techniques. Our experimen- Therefore, it follows from Corollary 3.2 that the independent de-
tal setup uses an Intel quad core processor [18], and syntheticallysign has high space overhead. In addition, the local structures need
generated data following Zipfian distribution [32] where the zipfian to be merged periodically to obtain the global structure from where
factor« is varied from 1.5 to 3.0 in steps of 0.5. The parameter  the queries can be answered. SinceSkream Summarstructure
controls the distribution, smaller corresponds to a uniform distri-  can be used to efficiently answer both frequent elements as well
bution while highera corresponds to a more skewed distribution. as topk queries, in order for the merged global structure to retain

More details of the experimental setup appear in Section 5. those properties while remainimgapproximate, all elements of ev-
ery local structure need to be merged. Different heuristics can be
3.1 Independent Structures used to reduce the merge overhead. For example, if we are looking

This straightforward design corresponds to #ired nothing up whether a specific element is frequegpaifit queryor Query 1),
paradigm, where threads do not share any data or state informa-then the query can be posed on each of the individual structures,
tion, and each thread has its own independent local structure. Theand the results can be combined for the final query, but this only
idea is to simulate sequential execution, and run multiple copies applies for a specific element and the process has to be repeated
of the same algorithm executing on different streams. Each streamfor any other frequent elements query or toguery. On the other
has a local structure, and therefore there is no need for synchroniza hand, if we are looking for whether an element is in the tog-
tion. If there aren different streams, then there atalifferent local ements, then some filtering of the results can be done to limit the
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Figure 4: Profiling of the independent design using hierarchi- ments and is processed by a single thread.
cal merge. Alongz-axis is the number of streams (and hence
threads) and alongy-axis is the time spent for an operation as BlElement Level [EBucket Level [ JRest
percentage of total time. The query rate was set to 1 query ev- 100 hool Lool Lool
ery 50,000 elements.
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E
number of entries that need to be merged (similar to technique: '
. . = 60 601 1 601 1 60r
in [2]), but again, the merged results cannot be used for answer g
ing the frequent elements query. Another heuristic for answering 3 20 20 | a0 1 a0l
the frequent elements quergef queryor Query 2) is to pose the &
same query on the individual structures, and then merge the resul 20 20! 1 20l 1 20l
from these individual queries. But since each structure only reflect:
a part of the entire stream, an element which is frequent globally 0 o0 0 0
might be infrequent locally, and hence the error is not bounded by P

e. Therefore, we can see that different heuristics can lead to low-
ering of the merge overhead, but then either the error increases, ofFigure 6: Profiling of the shared design using “contention”
the properties oStream Summargre not preserved. Compared to  pased locking. Alongz-axis is the number of streams (and

these techniques, if the complete merge of the local structures ishence threads) and alongy-axis is the time spent for an op-
done, then the same merged structure can be used to answer botBration as percentage of total time.
point queriesandset queriedor frequent elements and tdpwith-
83;?]2;(;0?; (jC);p?ecnc duer(rfj]l::):)r?ft:]k(]eeqrssxllt?r.eqlzuuer:]r::?/rrfot;]% ;hr:artne?r?rf algorithm. Inhierarchical mergeif there aren strL_Jctures, then a

X : NShread merges two local structures, and in the first level, there are
query frequency, the higher the number of merges and higher is n/2 threads merging, in the second4 and so on. Therefore, there
the overhead. The merge overhead also increases with any increasgrelog n levels in thé merge phase. In most ru'ns hlimrarcr{ical
in the number of parallel streams and threads, and for smaller val- merge?)utperformed the serial excépt for the cas’e of small num-
ues of the error bound Thus, it is intuitive that even though the ber of streams. But the times’sérial mergds also comparable
frequency counting part of the independent design would scale, theIn these experihents, we report the times usiiegarchical merge '

space ove_rhe_ad and _the high merge overhead makes this design Erom Figure 3, it is evident that this approach of independent struc-
efficient with increasing number of streams and query frequency, tures is efficient for smaller number of streams

and our experimental evaluation confirms this.
Figure 3 provides experimental evaluation of the independent 3.2 Shared Structures
design. Alongz-axis we plot the number of streams and along

y-axis we plot the execution time in seconds, and different lines head and merge overhead. To reduce the overhead, the threads can

g?g:ﬁ:ﬁfsn%é?eifgeiﬂt Vﬁ)luifugazt'gfﬁ; nsl:r;fgetrhsfqﬁggzrso(;achshare theMonitored Set, and this forms the basis for ttfg&hared
prop designwhich we discuss in this subsection. Since multiple threads

stream IS assigned a processing th_read), a_nd ideal system with IIn'are accessing the same structure, the threads must synchronize, and
ear scaling would be a horizontal line in Figure 3. But since the

. N . " ; . this synchronization needs to be done at two levels:
problem is not “embarrassingly parallel”, any practical system will

have a positive slope, and the smaller the slope, the better is the  § Ejlement Level Synchronization Multiple threads operat-
performance and scalability of the parallel system. The high slope ing on the same element must be serialized so that there is
of the graphs as seen in Figure 3 demonstrate the overhead in the only one thread operating on the element inStieam Sum-
independent design. A profile of the time spent (Figure 4) reveals mary. This is achieved by acquiring a lock in tlsearch

that with increase in the number of threads, the merge overhead structureon the element being process&lement level syn-
increases as well, and in spite of the frequency counting part ex- chronization therefore serializes all threads processing the
hibiting good scalability, the merge overhead dominates the total same element in the stream

cost. We compared two different types of merge algorithsesial

merge where a single dedicated thread merges all the local struc- e Bucket Level Synchronization Since an increment or over-
tures into a global structure; amderarchical mergewhich uses a write operation needs to move an element from one frequency
merge tree structure similar to the merge phase of the merge sort bucket to another bucket in tf®&ream Summarstructure, a

The limitations of the independent design are high space over-
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thread performing this operation needs to obtain locks onthe 4. THREAD COOPERATION PARADIGM

source and the destination buckets. Since there can be several |, this section, we formalize and explain in detail the “coopera-

elements within a frequency bucket, a lock on a bucket pre- tion” based threading paradigm to optimistically exploit the inher-
vents other threads from operating on any element belonging ent parallelism in modern processor architectures, explain the par-
to that bucketBucket-level synchronization therefore serial-  gjie| design of theSpace Savinglgorithm using the proposed de-
izes accesses to a frequency bucket. sign paradigm, propose parallel designs for the two different struc-

. . . tures and argue their correctness.
The queries (which are only readers) also need to obtain locks so 9

that the writers are blocked while a reader is processing a bucket.4.1 Formalization
In this design, since a single global structure is used, the space
complexity remainsO(%) and there is no merge overhead. Thus,
the shareddesign saves on space and merge cost. But since mul-
tiple locks need to be acquired for every element being processed
and due to multiple levels of synchronization, using the traditional
“contention” based locking paradigm results in high contention over-
head.

Figure 5 provides experimental evaluation of the shared design.
Along z-axis we plot the number of streams and alangxis we
plot the execution time in seconds, and different lines correspond
to different values of zipfiav. The high slope of the graphs in
Figure 5 demonstrate the overhead in the “shared” design. Even
though the number of threads in the system is increased, the pro-
cessing time increases considerably as the number of threads in-  pr|nciPLE 4.1. Request Delegationlf thread T is trying to
crease. Figure 6 provides a profile of the time spent by the sharedacquire a shared resourdg and it succeeds in acquiring, it will
design. Alongz-axis is the number of streams (and hence threads) complete its request usirig. If it fails to acquireR, it will “dele-
and alongy-axis is the time spent for an operation as percentage gate” its request to the threa; that currently has exclusive access
of total time. Figure 6 reveals that a majority of the time is spent to R, and “proceeds” to its next request. All other threads trying to
contending either for synchronization at tlement-levedr at the acquireR will “delegate” their requests tdl;. OnceT; finishes its
bucket-level Thus, even though thehareddesign has low space  own request, and before it relinquishes control oRteit will check
and merge overhead, the overhead due to contention and wait forfor any pending requests dh and will relinquishR only when all
shared resources makes this deSign inefficient. Multicore architec- pending delegated requests have been processed_
tures have a large number of CPU cores, and threads waiting for
shared resources waste cycles of idle CPU cores, which could have PRINCIPLE 4.2. Minimal Existence Once a thread has ac-
otherwise done useful work. quired a shared resource, it will abstain from acquiring other shared
resources.

As observed in Section 3.3, instead of threads contending for
shared resources, they can ratbeoperatethereby boosting each
other and in turn improving the overall system performance. In this
'‘paradigm, even though locks are not eliminated completely, “waits”
associated with locks have been eliminated. The delegated request
is “queued”, and the type of queueing depends on the semantics of
the request being delegated.

Let us consider a system comprised of threads (hardware or soft-
ware} and the task to be completed is a setefueststhat are
associativeandcommutative The system is said tmake progress
if the input set ofrequestss being consumed. The following prin-
ciples formally express thiiread cooperatiomodel:

3.3 Discussion

Extensions of the straightforward techniques:There are several Note thatequestsaredelegatedn two different scenariossirst,

other simple schemes that extend the techniques proposed abovehen a shared resource is rviilable andsecongdwhen a thread

One possible approach can be to maintain a combination of lo- has already acquired a shared resource, and needs anothet share
cal and global counters (i.e.,Hybrid Structure) to limit the con-  resource. In either case, the threads relycooperationto make
tention (by maintaining local counters for frequent elements and a Progress To guarantee correctness, an implementation must satisfy
global structure for infrequent elements) as well as space overheadhe following invariant:

(no need to replicate relatively infrequent elements). Analysis re-
veals that this approach is also not very efficient. For a relatively
uniform input, most of the items will hit the global structure (since
most items are infrequent), thereby degenerating intostiaed
design For a relatively skewed input, very few elements will hit
the global structure (since most elements are infrequent and hence ¢ Removal of Waits: Whenever there is contention for a shared
stored locally to reduce contention), thus reducing toitidepen- resource, the threads follow Principle 4.1 and do watt.

dent designAnother extension is hash based schemwhere ele- This prevents wastage of useful computational resources and
ments are hashed to threads, i.e., same elements go to same threads.  allows threads to make progress.

Even though this design will need less synchronization, load bal-

ancing among threads will be an issue when the input distribution e Arbitration Overhead Removal: Since the threads do not

INVARIANT 4.1. Fulfillment Guarantee Once a thread has
delegated request, the request is neithest nor left unfulfilled.

There are multiple benefits of tlreoperationbased approach:

is skewed, as some threads are overloaded, while others are lightly contend for shared resources, this paradigm reduces the over-
loaded. head of arbitration of locks among the contending threads.
Characteristics of a Good Designideally, we would like a design The “thread cooperation” model logically separates the requests
with the following properties: (tasks to be performed by a thread) from the execution threads.
e Small memory footprint and no merge overhesahilar to the This allows the system to be viewed as a set of threads process-
shared design. ing a set of requests, and it does not matter which thread processes

* Low contention pverheasimﬂar to t‘he |ndepen:j_ent de§|gn. 1A hardware threaccorresponds to an execution unit with its own

In the next section, we show how “contention” in locking can be - et of registers and local resources and is different fraofavare
reduced by “thread cooperation” so that shared structures can alsahread Multiple software threadsan be mapped to hardware
be used efficiently. threadto time-share the resources.
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Boundary satisfying an

Invariant Table 2: Basic atomic primitives.

[ Operation | Description |
Input CAS(addr, Atomically compare thexpected value to the stored
Stream expected, new) | value ataddr, and swap withew if successful
| AF(addr) Atomically increment the locationddr and read the
Stream Summary incremented value
search SWP(addr, Atomically swap the present value aldr with the
Structure new) passechew value and return the old value

Figure 7: Overview of the parallel design ofSpace Savingising

A Corollary 4.2 follows directly from Lemma 4.1. In general, most
thread cooperation

stream processing algorithms are invariant to the order of process-
ing, and thehread cooperatioparadigm can be applied to them.
which request. This is analogous to how the operating system (OS) . .

schedules jobs on the hardware execution threBedegationen- 4.3 Implementation Details

sures that only the request is “blocked” and the associated thread As depicted in Figure 7, the system can be viewed as two dif-
can detach itself from the request and move forward to process theferent components which interact with each other through an in-
next request. This is analogous to the OS blocking 1/O requests andterface that ensures that Invariant 4.2 holds. Recall that when pro-
not the actual CPU that was processing the job. Note that threadscessing the elements, a thread first accesseS¢hech Structure
sharing resources do need synchronization, butnaits associ- and this structure directs the thread to the appropriate location in
ated with synchronization primitives have been eliminated. In ad- the Stream SummaryIn the implementation, an element in the
dition, as described later, cooperation based synchronization allowshash table gearch structurkpoints to the corresponding element
replacing locks with atomic operations which are much cheaper in the Stream Summarstructure, and this element in ti8ream

synchronization primitives. Summaryin turn points to the bucket to which it belongs. Our
.. . implementation uses a number of atomic instructions. Refer to Ta-
4.2 Parallelizing Space Saving ble 2 for a brief description of the atomic operations used in the
Once we have formalized thteread cooperatiorparadigm, we implementation. Only th€AS operation need to supported by the
now show how we can use this paradigm for parallelizZBgace underlying hardware, and the rest of the operations can be imple-

Saving Figure 7 provides a high level overview of the system de- mented using th€AS primitive. Note that the atomic operations

sign for parallelizingSpace Savingsing thethread cooperation supported by the hardware are much cheaper than acquiring locks.

paradigm. The boundary conceptually separatesStream Sum- We now discuss the two different components in Figure 7 in detail,

mary and theSearch Structureand these structures interact with  and provide sketches of correctness proof of the methods. Our ap-

each other through a well-defined interface, and need not be awareproach for proving correctness is as folloWw$e design igorrect

of the implementation details. The parallel stream processing sys-if all the invariants are satisfied. Therefore, for each individual op-

tem should guarantee that the following invariant holds: erations, if all the invariants are satisfied as a precondition for the
operation, the operation is said to be correct if it ensures that all

INVARIANT 4.2. Boundary Invariant: If ThreadT; processing the invariants are satisfied as a postcondition.
element(e) has crossed the boundary into t&ream Summary
structure, then it is thenly thread active in théStream Summary

that is processing the elemefab. 4.3.1 Search Structure or Hash table

The hash table lookup is equivalent to th@OKUP operation in

The Search Structurshould guarantee that Invariant 4.2 holds Table 1. Even though there have been proposals for different lock-
and this provides thelement level synchronizationas discussed  free hash table implementations (such as Shalev et al. [30]), the
in Section 3.2. As long as the desired properties and the invariantshash table used by the frequency counting algorithms has certain
hold, this framework is independent of the choice of the different special requirements and characteristics. We design a simple con-
structures involved and the actual algorithm used to process thecurrent hash table where separate chaining is used to resolve hash
stream elements. The “cooperation” based model does not guar-collisions, and bucket-level locks are used to synchronize insertions
antee any ordering of the requests, but this does not impact theto the same chain. We modify the conventional design of a chained

correctness of th8pace Savinglgorithm. hash table [19] to suit the requirements specific to the application.
LEMMA 4.1. Order Invariance: The final outcome of tH@pace Lookup and insertion: The hash table is designed with minimal

Savingalgorithm is invariant to the order in which the stream ele- locking: the “readers” in the hash table do not need locks. Locks

ments are processed. are needed only to serialize insertions to the same hash bucket. In

this design, threads are blocked only when they are trying to insert
This follows directly from the definition of the frequency count- into the same hash bucket. If a moderately robust hash function

ing problem. Given a stream of elements, th&pace Savinglgo- (such asmultiplicative hashind19]) is used, then the likelihood
rithm reports all the elements whose frequency is aledewhere of two “writers” mapping to the same hash bucket is very rare and
e is the user specified error bound [22]. Therefore, as long as anhence the associated wait is also small. In order for the “readers” to
element appears more thaiV times in the input streanfpace traverse the list “lock-free”, the following structural invariant must

Savingguarantees that the element will be reported, irrespective of be satisfied at all times:

where the element appeared in the stream. . . . .
PP INVARIANT 4.3. Atall times during execution, a pointer should

COROLLARY 4.2. Correctness of the Cooperation based par-  €ither be pointing to a valid node or be setrtoll.
allel design: Reordering of requests duetequest delegatiotioes
not affect the correctness &pace Saving Deletion: Deletion of a hash table entry is done lazily — the entry
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to be deleted is atomically marked as deleted, and this implies log-
ical removal. Once an entry is removed logically, it can either be

Table 3: Application specific hash table operations.

In this de-_Operation

| Description |

physically removed by some other thread or be reused.

sign, the location of the entry is reused for future insertions into the | Increment- | If e is not present in the hash table, insert
chain, and the following invariant guarantees correctness. In the| Counte) “Log” request fore and acquire it is available.
implementation, deletions are marked by settinguhi:e field of TryRelinquislf| Relinquishe if there are no pending requests pn
the (key, value) pair in the hash table toull. e) e.
TryRemové) | Remover if it is available and there are no peng-
INVARIANT 4.4. Once a location has been marked as deleted, ing requests oa.

the key in the location has been removed from the hash table and

any subsequent lookup for that key should reflaiture.

Algorithm 4.1 IncrementCount

INVARIANT 4.5. Unique key: At no point should two valid lo- L

cations in the hash table contain the same key.

The invariants listed above correspond to basic properties of the
hash table and any concurrent design must satisfy them. In addi-
tion, there are certain application specific requirements. To guar-
anteeelement level synchronizationthe most common approach
would be to have the hash table ensure this level of synchronization,
because every thread processing a stream element first accesses t
hash table. Therefore, if thredd hasexclusive acces® element
e, then any thread;(j # ¢) processing: must wait. Since the 13-
elements (which form keys in the hash table) are a point of con- 14:
tention in the hash table, Principle 4.1 can be used to delegate thel5:
request and alloW; to proceed with other requests while guar- 16:
antees to process tlielegatedequests as per Invariant 4.1. Since 17f
the requests in a frequency counting algorithm are increments to 18:
the count, “queueing” a delegation in the hash table is simple, and 5.
can be achieved through a field that stores a pendhingt corre- 21:
sponding to the element. If the pendiagunt is 0, this implies that 22:
no thread owns the element and there are no pending requests. Th&3:
first thread that increments tleeunt acquiresexclusive accessn 4:
the element, and all other threads delegate the request by atomi 22’

RPOQANOORWN

N

cally incrementing the count. The following invariant guarantees 57:

element level synchronizatiorand hence satisfies Invariant 4.2: 28:
29:

INVARIANT 4.6. A thread obtains exclusive access téay in 30:
the hash table if thé AF operation oncount corresponding to the 315
key returns1. gg

Relinquishing an element Once a thread has processed a stream

element, it has to relinquiséxclusive acces® the element. But 35:

Procedure IncrementCourtkey, new, acquired, value)

. index:= hash(key), ptr:= buckets[index].head
: while (ptr # null) do

if (ptr.value# null && ptr.key = key) then
count:= ( | AF(ptr.value.count)
(count = 1) ? acquired= true : acquired:= false
new:= false
return ptr.value
ptr := ptr.next

. buckets[index].lock()
. ptr:= buckets[index].head, emptyLoe- null
12: while (ptr # null) do

if (ptr.value# null && ptr.key = key) then
buckets[index].unlock()
count:= ( | AF(ptr.value.count)
(count = 1) ? acquired= true : acquired:= false
new:= false
return ptr.value

else if(ptr.value= null) then
emptyLoc:= ptr

prev:= ptr, ptr:= ptr.next

if (emptyLoc# null) then

emptyLoc.count= 1

emptyLoc.key:= key

emptyLoc.value= value

26: else

emptyLoc:= getNewNod@
emptyLoc.count=1
emptyLoc.key:= key
emptyLoc.next= null
emptyLoc.value= value
prev.next = emptyLoc
buckets[index].unlock(), acquiree- true, new:= true

34: return value

end ProcedurelncrementCount

before relinquishing access, it has to ensure that there are no dele-

gated rt_equests so that Invariant 4.1 is satisfied_. To relinquish, thej, addition to the operations of a traditional hash table. Some op-
thread first performs @AS of 1 (expected value) with (new value) erations are prefixed witfiry to signify that the success of these
on thecount field corresponding to the entry in the hast table. If erations are contingent on certain conditions being met (analo-
this succeeds, there are no delegated requests, and the element h@%us to arylock operation on a mutex lock).

been relinquished. Any other thread performing a subsequ&ht We now provide details of implementation of the important hash

for acquiring the element will reacbunt as 1, and hence will be  (apje operations, and provide sketches that prove the correctness of
able to acquire the element (Invariant 4.6). Failure implies pending tpege operations.

delegated requests and the thread will d&/#® with 1 which will
return the number of delegated requests, and®ett to 1. This Implementation of IncrementCountand its Correctness
ensures that the owning thread still has exclusive access to the el- ThelncrementCountperation is critical as it combines theokup
ement and prevents other threads from crossing the boundary. TheandInsertoperations while ensuring that Principle 4.1 and Invari-
thread then subtracts 1 from this value (which corresponds to the ant 4.6 are satisfied, which in turn satisfied Invariant 4.2. Algo-
request for this thread in the earlier round) and crosses the bound-rithm 4.1 provides an overview of this operation. This operation
ary with the subtracted value as increment to the frequency of the first performs the equivalent of tHeookup operation, and if the
element. This ensures that both Invariants 4.1 and 4.2 are satisfiedkey is already present, its count is atomically incremented (line 5)
Note that as a result of delegated requests accumulating inside thewhich is equivalent to “logging” the request. The conditional in
hash table, increments to counts of elements are processed in bulkline 6 ensures that Invariant 4.6 is satisfied and only one thread
and we refer to this asulk increment. has exclusive access. This is because, if the valusoft was
Based on the application requirements, the list of operations sup-initially 0, of all concurrent increments, only one thread will atom-
ported by the hash table is listed in Table 3. These operations areically read 1, and that thread will acquire the element, while all
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Algorithm 4.2 TryRelinquish

Algorithm 4.3 TryRemove

1. ProcedureTryRelinquisltkey, status, incr)
2: index:= hasl{key), ptr:= buckets[index].head
3: while (ptr # null) do

4: if (ptr.value# null && ptr.key = key)then
5: if ((CAS(ptr.value.count, 1, Ofhen
6: status= success
7 return ptr.value
8 else
9: status:= pending_increment
10: incr = (SWP(value.count, 1) — 1
11: return ptr.value
12:  ptr:=ptr.next

13: status:= failure
14: return null

15: end ProcedureTryRelinquish

other threads “delegate” their request (Principle 4.1). Again, the 19

same logic of mutual exclusion and delegation applies for the op-
erations in lines 15 and 16. If thHeey is not present, the operation
atomically inserts thékey, value) pair, and the inserting thread is
given exclusive access to the newly inserted value (lines 23 and 28)
The insert analogue here is equivalent tdrasertoperation. In or-

der to ensure that duplicates are not inserted, the operation first perg

forms aLookup(line 12). A failure implies thekey is not present.
Any otherInsertoperation on this hash bucket is serialized as the

thread has already acquired a lock on the bucket (line 10) and the29:
lock also prevents insertion of duplicates and guarantees satisfac30§

tion of Invariant 4.5. If any location has thelue field set tonull

then that location is available (Invariant 4.4) and can be reused, and
the thread keeps track of available locations. The order of assign-
ments in lines 24 and 25, and lines 29 and 31 are important to make35-

sure that a paralldlookup(which traverses “lock-free”) sees the
insertion only when thealue field is pointing to a valid location.

Again, the assignments in lines 30 and 32 ensure that Invariant 4.3

is satisfied. It is thus evident that tthecrementCounbperation
does not violate any invariants, and hence is correct.

Implementation of TryRelinquishand its Correctness

The TryRelinquishoperation is used to relinquish exclusive ac-
cess on &ey after the request on theey has been completed. Al-
gorithm 4.2 provides an overview of the implementation. If there
are no pending requests on they, then theCAS in line 5 would
succeed, and theunt is set to 0 thereby reflecting thiaty is now
available If there is a concurrerincrementCountequest on the
samekey, if the increment succeeds before &S, then theCAS
will fail. If the CAS operation succeeds (the present thread has re-
linquished), thdncrementCountequest will read the incremented

count as 1 and thus the invoking thread is given exclusive access

to key. This guarantees that Invariant 4.6 is satisfied and only a
single thread has exclusive access to an element. IC&®op-

1. Procedure TryRemovgkey, status, incr)
2: index:= hasl{key), ptr:= buckets[index].head
3: if ((ptr := Lookugtkey)) =null) then

4:  status=failure

5. return null

6: value:= ptr.value

7: if ((CAS(value.count, 0, 3) then

8:  ptrvalue:=null

9: if ((CAS(value.count, 1, Q) then
10: status= success
11: return value
12:  else
13: incr = (SWP(value.count, 1) — 1
14. buckets[index].lock()
15: ptr := buckets[index].head, emptyLoe- null
16: while (ptr # null) do
17: if (ptr.value#£ null && ptr.key = key) then
18: buckets[index].unlock()

: count:= (AAF(ptr.value.count, incj)

20: if (count = incr)then
21: (SWAP(ptr.value.count, 1)
22: status:= success_and_increment
23: return ptr.value

else
status :=success
return value
else if(ptr.value= null) then
emptyLoc:= ptr
prev:= ptr, ptr:= ptr.next
status:= pending_increment
Insert into List
buckets[index].unlock()
return emptyLoc.value

27:
28:

32:
34:

else
status:= busy
36: return null

37: end ProcedureTryRemove

field) is different from the field to mark th&ey as deleted (the
value field). Thus a single atomic operation cannot achieve the
remove operation. In addition, thecrementCounbperation does

not synchronize with other operations unless there imsart and
hence acquiring a lock to guarantee atomicity of this operation also
does not work. Algorithm 4.3 provides the pseudocode of an im-
plementation of the operation. The operation is implemented “opti-
mistically”, and if at any point before completion it is detected that
interaction with other threads have changed the state of the entry,
then the operation is undone or compensated accordingly (lines 13

The operation first performsleookupto ascertain the presence
of key (line 3) and this ensures that Invariant 4.5 is satisfied. If the
lookup succeeds, then it is checked for availability (line 7). If this

eration fails, this implies that there are pending requests and thenCheck fails, then the operation fails and retupusy (line 35). If

the element is still marked d&misyand theSWP operation in line 10

the CAS in line 7 succeeds, this implies that they is available,

reads the accumulated counts and writes 1 preventing other thread@nd the operation now marks it Besy by placing 1 in thecount

to acquire thécey. Thus, a thread that has exclusive acceds:tp

can only relinquish theey if there are no pending requests and
this satisfies Invariant 4.1. All other invariants of the hash table are
satisfied through the precondition.

Implementation of TryRemoveand its Correctness
TheTryRemoveperation is the most complicated of all the oper-
ations. This operation will removefey from the hash table only
if (¢) it is present in the hash tabléii) is not acquired by some
other thread, and:i:) there are no pending requests f¢y. In
addition, the field for checking availability of theey (the count

field as a result of the success@AS and this satisfies Invariant 4.6.
The element is logically removed by the assignment in line 8, and
now if there are still no pending requests key, then theCAS

in line 9 would succeed and thii@gyRemoveperation succeeds as
well. But if there are any pending requests fary (“delegated”
while the present thread was holding it), then @&S fails, and

so the logical deletion has to be undone in order to satisfy Invari-
ant 4.1. The pending count is read through$WP in line 13, and

the element is marked dmisy by writing 1 in the corresponding
count. Since the entry was logically removed, the location is now
free to be reused (as per Invariant 4.4) and may or may not be avail-
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Min frequency Max frequency ~ inuUse wrong. To ensure correctness and safety, the following invariant
> — > S — N, should always be satisfied:

? L INVARIANT 4.7. At no point of execution should a “reader”
* R'e\ Lest queue read invalid locations (garbage), i.e., all pointers in the list of fre-
e (lojkfref) marked quency bucket should point to valid buckets or be sattb

elements

List of Elements with same frequency Maintenance of sort order: The sort order of the buckets should
be maintained at all times according to the following invariant:

Figure 8: Concurrent Stream Summarstructure based on

“thread cooperation’”. INVARIANT 4.8. If m andn are two buckets such that.next =

n, andm.marked = false A n.marked = false, then:

m. frequency < n.frequency.
able. Since there can be a concuriesertequivalent operation on . .
the samekey, the reinsert must synchronize, and this synchroniza-  Since the readers traverse “lock-free”, if empty buckets are reused
tion is achieved through the lock at the bucket. To ensure that while for dlfferen_t frgquep(:les, it could Ie_ad to violation of the sort order.
thekey was logically removed, theey was not reinserted by some  1he following invariant prevents this:
other thread, a lookup is performed (line 16) and this ensures that
Invariant 4.5 is satisfied. If théey has not been inserted, then
this thread will atomically reinsert theey, mark it asbusy, signal
failure and return the pending requests (line 31). If on the other
hand, thekey was inserted by some other thread, then this implies Lazy Removal: If a bucket does not contain any elements and there
that the remove was successful (because assuming success of thisre no pending requests, fisarked field is atomically set tarue
remove, some other thread has already inserteédpeand there- and islogically removedfrom the structure. Physical removal is
fore this remove cannot be aborted). Based on whether the newlydone lazily. Although marked buckets are still present in the struc-
reinserted element svailableor busy the pending requests (read ture, any operation on these buckets is not-defined, so any “reader”
in line 13) are delegated (line 19) or processed by the current threadaccessing a marked bucket should abort the read and restart the pro
(line 21). In either case, the pending requests are preserved (satiseess. To ensure correctness, the following invariant should hold:
fying Invariant 4.1) and only a single thread has exclusive access to
a key (satisfying Invariant 4.6). Thu§ryRemovensures that all INVARIANT 4.10. A bucket withnarked set totrue cannot be
invariants remain satisfied. reused. It can only eventually be removed from the structure. Any

operation on a marked bucket is undefined and should fail.

INVARIANT 4.9. Once a bucket is assigned a frequency, its fre-
guency can never be changed.

4.3.2 Concurrent Stream Summary Once a bucket is logically removed, physical removal from the

In this section, we discuss the implementation of@ecurrent structure is done by a thread which acquires the bucket immediately
Stream Summargtructure based on the proposidead cooper-  preceding thenarkedbucket. If a sequence of buckets are marked,
ation paradigm. The concurrent analogueStfeam Summaris the entire sequence can be removed by the thread owning the bucket
very similar to the originabtream Summarstructure in [22]. This  jmmediately preceding the sequence. This comprises the garbage
modified structure is shown in Figure 8. The structure consists of a o q|ection process. During physical removal, only the next pointer
singly linked list offrequency bucket€ach bucket maintains alist ¢ the pucket immediately preceding the sequence of marked buck-
of elements which have the same frequency as that represented by i changed. The thread owning the preceding bucket can there-
the bucket. The buckets are in ascending order of frequency (from ¢o6 garbage collect the buckets without acquiring additional locks.
left to right), and the elements traverse through this structure of
buckets as their frequency changes while the stream is being pro-  |nvaRIANT 4.11. A marked bucket or a sequence of marked
cessed. Each bucket hagjaeueof requests for holding requests  buckets can only be physically removed from the structure by a
delegated to the bucket, and we use a standard “lock-free” queuethread that is the owner of the bucket immediately preceding the
implementation [29]. As shown in Figure 8, each bucket in the sequence of buckets. If there are no preceding buckets, then the
linked list consist of different fields. Theext field points to the owner of the bucket can itself physically remove the bucket.
next node in the list. ThewUsefield is used to guarantdmicket
level synchronizationand if set to 1, indicates that the bucket is al- As “readers” traverse lock free, once a sequence of buckets is
ready owned by a thread. When a thread wants to access a bucketiemoved, there might still be readers traversing these buckets. The
it performs aCAS of 0 (expected value) with 1 (new value) on the structure of the sequence is therefore preserved so that the readers
inUsefield. Success implies that the bucket was available and now can eventually rejoin the main structure. A mechanism similar to
inUseis set to 1, and the thread performing the operation gets ex- reference counting in Java, or hazard pointers [24] can be used to
clusive access to it. On failure, the thread appends the request toreclaim a physically removed bucket without resulting in dangling
the bucket’s queue, and moves on to the next stream element. Theointers in threads that might still have a pointer to the reclaimed
marked field is used to represent logical presence, and if it is set memory. We now explain the individual operationsStfeam Sum-
to true, then the node is considered to have blegrically removed marywhich implements the operations in Table 1.

from the list and marked fagarbage collection . .
Implementation of AddElement and its Correctness

Optimistic Traversal: Multiple “reader” threads might traverse An AddElementequest arrives at a bucket either when a new
the list of frequency buckets, and the list has been designed to allowelement is being added to tMonitored set (corresponding té\d-
optimistic traversal In other words, the readers traverse the list dElemenin Table 1), or an existing element’s count is being incre-
without acquiring locks, and abort the traversal if something goes mented (during increment and overwrite). Owing to dedegation
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Algorithm 4.4 Processing thAddElemenRequest
1. Procedure AddElemer(element, bucket)

Algorithm 4.5 Finding the Destination bucket for an element
Require: Invoking thread has exclusive access to startBkt.

2: if (element.frequency: bucket.frequencythen
bucketAddToListelement)

w

4: else if(element.frequency: bucket.frequencythen
5 if (bucket =minFreg then
6: newBucket = getNewBuckéelement.frequency) 2
7 newBucketAddToListelement) 3
8: newBucket.next= bucket 4
9: minFreq:= newBucket 5:
10: else 6:
11: DelegateRequestToBuckeinFreq 7
12: else 8:
13:  FindDestBuckébucket, element) 9
14: end ProcedureAddElement 12
12:
of the requests, thAdd request to a bucket can be of three types: %i
(7) an element with the same frequency as that of the bugk¢gn 15
element with frequency greater than that of the buclletegation 16:

of the add request for a not existent bucket immediately following 17:
the current bucket), an@ii) an element with frequency less than 18:
the present bucket (add request of new element with frequency 19
being added to thMonitored set anddelegatedo a minimum fre- 51
qguency bucket whose frequency is greater than 1). Algorithm 4.4 29
provides a high level overview of how the add request is processed,

and this operation subsumes thddElemenbperation in Table 1. 23:
If the addition is to the same bucket, it can be processed right away, 24:
while addition to a higher frequency bucket is handled byFine- 25:
DestBucket For inserting elements with frequency less than the 26:

Ensure: The element has either been added, or addition has been dele-

gated.

Ensure: Garbage Collecte@ny candidate bucket next to startBkt.
1. ProcedureFindDestBuckestartBkt,e)

. GarbageCollectCandidateBucké&ttartBkt)

. nextBkt:= startBkt.next

. if (nextBkt =null || nextBkt.frequency> e.frequencyyhen

newBkt:= getNewBuckét.frequency)
nextBktAddToListe)

nextBkt.next= nextBkt
startBkt.next= nextBkt

. else if(nextBkt.frequency= e.frequency)hen

DelegateRequestToBuclmtxtBkt)

. else if(nextBkt.frequency e.frequencythen

/*Process a Bulk Increment.*/
repeat
prevBkt:= startBkt
nextBkt:= prevBkt.next
repeat
if (!(nextBkt.marked)then
prevBkt:= nextBkt
nextBkt:= nextBkt.next
until (nextBkt+# null && nextBkt.freq < e.freq)
returnStatus= DelegateRequestToBuclmevBkt)
[*If returnStatus is false, then the read has to rolled bautk a
restarted.*/
until (returnStatus# true)
else
startBktAddToListe)
end ProcedureFindDestBucket

current minimum frequency, the requestislegatedo the mini-

mum frequency bucket.
To argue the correctness of Algorithm 4.4, we must show that

Algorithm 4.6 Processing thincrementCounteRequest

it does not violate any of the structural invariants. In line 6, when 1:
the new node is created, the creator is the only thread with access
to the bucket and hence is free to perform any operation on the
buckef. The new bucket is first made to point to the old minimum
frequency (line 8) and then it is mageblic® by the assignment in

line 9. Thus Invariant 4.7 is satisfied at all times. Again, the condi-
tional at line 5 ensures that Invariant 4.8 is maintained. Therefore,
if FindDestBucketloes not violate any invariants, then all other
invariants are satisfied because this function does not affect thosel%:

Procedure IncrementCountéelement, increment)
bucketRemoveFromLigelement)
element.frequency += increment

: FindDestBuckébucket, element)
:if (bucketisEmpty) && bucket.noPendingRequeg)$ then

gcStatus= bucketatomicMarkGarbageCollectgyl
if (gcStatus true && bucket = minFreg then
newMinFreq:= findNewMinFregBuckéminFreq
minFreq:= newMinFreq
end ProcedurelncrementCounter

properties. Therefore, this operation is correct.

Implementation of FindDestBucket and its Correctness

Finding the next bucket when incrementing the count of an el-
ement is an important operation for botddElementand Incre-
mentCounterThis function finds the appropriate bucket for insert-

ture, the next node will be the destination in most cases.

Again, to prove correctness, we show that this operation does not
violate any of the structural invariants. According to the precondi-
tion of the operation, the invoking thread must have exclusive ac-

ing an element into the structure. If the current next node is not cess tostart Bkt and hence garbage collecting any marked nodes
the destination for the element, then either a new bucket needs tostarting fromstart Bkt.next (line 2) satisfies Invariant 4.11. Simi-
be inserted after the present bucket, or the list of buckets needs tolar to AddElementthe bucket created at line 5psivateand before

be traversed. List traversal is necessary to habhdlle increments

it is madepublicin line 8, the next pointer is set to a valid location

resulting from delegations in the hash table (Section 4.3.1). In ei- (line 7). Thus Invariant 4.7 is satisfied, and the conditional check in
ther case, the design of the structure allows optimistic traversal. If line 4 ensures that Invariant 4.8 is satisfied. If the element is to be
at any point during traversal through the list, the “reader” finds that added to the next bucket, then that bucket being a shared resource
it is accessing a node that has been marked for garbage collection(and since the thread is already holdistgrt Bkt), the request is

then it aborts the present run, and starts the traversal again. Frondelegated (line 10) in accordance to Principle 4.2. When process-
an efficiency perspective, this failure and abort will be rare, as this ing a bulk increment (lines 16-23), the thread might encounter a
case would arise when dealing witlulk increments, and this is marked bucket when trying to delegate the request (line 21). In
common only for the high frequency elements, which are generally case of failure, the thread can rollback and restart the process. This
towards the extreme right of th@oncurrent Stream Summary ensures that Invariant 4.10 is satisfied. Al other invariants are satis-
structure. For the less frequent elements in the middle of the struc-fied as precondition as hence, this operation is also correct.

Implementation of IncrementCounter and its Correctness
ThelncrementCounterequest (Table 1) increments the count of
an element while maintaining the sort order of the elements, and is

2Such a node is callegrivateand only the creator can access it.

3Making public implies that other threads can access the bucket
and is now treated as a shared resource.
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Algorithm 4.7 Processing th®verwriteRequest for overwriting, the thread will follow the principle dflinimal Ex-
1. /* minFreqis the pointer to minimum frequency bucket. */ istence(Principle 4.2) and will not block on any shared resource. It
2: Procedure Overwritglelement, increment) will start from the first element in the minimum frequency bucket,
3: bucket:= minFreq and to overwrite the element, the corresponding entry irStearch
‘51; if (ﬂ?fﬁgg'géemrggsg?deeﬂes to be ovenwritten, so defer thaasig,* Structureshould be deleted. This deletion is non-blocking, and
6 DelegateRequestToBuckmicket) ' ’ failure implies th_at some other thread is trymg_ to increment that el-
7: curElement= bucketfirstElement ement, and the increment request should be in the request queue of
8: while (curElement£ NULL) do the minimum frequency bucket. The thread then moves on to the
9:  hashtabléryRemovéurElement.element, status, incr) next element in the bucket, and the process is repeated. If all ele-
10:  if (status =success) then ments are busy and none of them could be overwritten, this implies
11: /* The current element was successfully removed from the hash

that all these elements have pending increment requests. The over-

12: fl?éiétsrce’:]gsgé‘:zrg\éig’:v;ﬁ[‘ﬁzrElemem) write request is thusleferredtill all the increment requests have
13: element.error= bucket.frequency been processed. Since a single thread will process all these re-
14: element.frequency= element.error + increment quests, the processing can be highly optimized as the thread now
15: FindDestBuckebucket, element) has more knowledge about the requests.

16: break The correctness of this operation is also very straightforward.

17:  else ifstatus pending_increment then
18: IncrementCountdcurElement, incr)
19:  /*The current element is busy, so move to the next element. */

Since the thread executing this operation has exclusive access to the
minimum frequency bucket, and changes made inside the bucket

20:  curElement= curElement.next (lines 10-18) does not violate any invariant. When the bucket falls
21: if (bucket.isEmpty()}hen empty (line 21), then a logic similar to that of Algorithm 4.6 is used,
22:  /*Move all pending requests to the next available bucket. */ and the correctness argument follows from there. If the remove re-
23:  Select new Minimum Frequency Bucket as showrlriorement- quest in the hash table returns pending increments (line 17), then
. Counter(Algorithm 4.6) the correspondingncrementCountecall (line 18) ensures that In-
24:  deferAllOverwrites= false - - e : -
25: if (curElement = NULL)then variant 4.1 is satisfied. Slnce_ all o_ther_opgratlons do not make any
26:  /* The OVERWRITE request was not processed because there are changes to the structure, no invariant is violated by this operation,
no candidates to be overwritten. So append the request emthef and hence is correct.
the queue and defer all further overwrites till we have sormelica
o7 datle that can be Overwritten-k*/ 4.3.3 Auto Tuning and Throttling
28: (Ij)eef;gﬁgsggxﬁts;‘sriB#S(émc ) The crux of the proposed “thread cooperation” model is the use
29: end ProcedureOverwrite of requestdelegationto remove “waits”. When a request is dele-

gated inside the hash tabl8darch Structure the counts accumu-

late, and all delegated requests are processed in bulk. But when
a request is delegated in thencurrent stream summasgructure,

each delegated request adds to the queue of requests, and the thread
currently owning the bucket has to process all the requests to sat-

tr'é);c')s ég'?lrimetr;t:%r.p‘.fg:l %n celli?)qe'rf]ttﬁgsbbisgtIrt])gcecmweensteednfl.te” isfy Invariant 4.1. Thus, if many requests are delegated to the same
v 9! u ! u Pty bucket, this will lead to an excessive increase in the length of the re-

and has no pending reque§ts, then the bucket should be latom'Ca”yquest gueue, and in turn may lead to performance degradation. This
marked for garbage collection.

As above. correctness of the operation is proved by showing it happens predominantly for uniform streams where most of the ele-
> pera ISP y 9 ments are infrequent, and therefore a large number of elements are
does not violate any of the structural invariants. Each of the con-

stituent operations satisfy the invariants (as argued in the previo Sdeleted from théMonitored Set. Since all deletions happen at the
Itue perat ! invari gued | PreVIOUS inimum frequency bucket, this bucket becomes a “hot-spot”. In
sections). If after the increment, the bucket becomes empty, and

there are no pending requests, then the thread will atomically mark such a scenario, parallelism is limited by the structure, and addi-
for garbage collection (line 6) thus satisfying Invariant 4.9. If the tional threads are simply adding to the overhead of the system.

.3 ) . . To avoid performance degradation in such a scenario, we propose
minimum frequency bucket is marked for garbage collection, since

there are no other buckets preceding this bucket th rrent thr mechanism afuto tuning and throttlingf threads. Whenever a
e e e ) e s e delegates 3 reqestn am summat monors n
NewMinFreqBuckeis similar to theFindDestBuckebperation and gueue size of the bucket to which the request is delegated. If the

! . . . . queue size is above a threshgidthen this bucket is a potential
[)?Jt(lzjligts t;'ﬁ(;'?ztt\r/]ae“gg%cek;t Lr;nT(s\?elthHyagzrth% Cnuor:;ee';";r%?esem“hot-spot" and continuous additions to its request queue might lead

Since this find minimum operation is similar to thimdDestBucket to performance degradation. Therefore, this thread will “throttle

L o X itself and sleep for a small time slice. This can be treated as an-
operation, its correctness is similar to the correctness prdeahadf P

DestBucket Other invariants are satisfied because this operation other form of “thread cooperation” where a thread abstains from
u invarnants ISt u IS operati overloading an already overloaded bucket. This feedback loop dra-
does not alter these properties.

matically improves the performance when dealing with uniform

one of the most frequent operations for the application under con-
sideration. Algorithm 4.6 provides an overview of how the opera-

Implementation of Overwrite and its Correctness streams, but also introduces some overhead due to the necessity of
Overwriteis specific to theSpace Savinglgorithm which uses monitoring the queue sizes. In Section 5 we evaluate the benefits
this operation to limit the number of counters monitoregerwrite as well as overhead resulting frcamto tuning and throttling

implementsSpace Savinglgorithm'’s heuristic of replacing a min- .

imum frequency element with a new un-monitored incoming ele- 4-3.4  Space Analysis

ment. It selects a candidate element from the minimum frequency The parallel implementation &pace Savings described earlier
bucket, overwrites it with the current element being processed, anduses a single sharembncurrent stream summanBut additional

then increments the count of the new element. To select a candidatespace is required to “queue” requests that have been delegated. If
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an element has been queued, at any instant, there is only one requeshain unchanged. For example, thessy Counting21] algorithm
corresponding to that element. This is equivalent to the element divides the stream into multiple rounds and at the end of the round
being in the input stream, which would anyway have to be allocated removes elements which are infrequent. Therefore, for adaptation
space to be buffered. Thus instead of the element being preseninto the framework, only th®verwriterequest irSpace Savingas

in the input buffer, it is encapsulated as a request in the queue.to be replaced by a request that removes the minimum frequency
Additional space is required for locks and synchronization, which bucket at round boundaries.

is again of the same order as the number of counters. Thus, the

space complexity for the parallel algorithm is of the same order as

that of the sequential algorithm, i.€)(%). 5. EXPERIMENTAL EVALUATION
. . In this section, we experimentally evaluate the proposed frame-
4.3.5 Answering Queries work. The experiments have been performed on an Intel Core 2

The Concurrent Stream Summasgructure maintains the ele- Quad Q6600 processor [18]. This processor has 4 cores, each co
ments in a sorted order, so that queries can efficiently traverse thisresponding to a hardware thread and operating at a clock speed of
structure to find the appropriate elements. Queries can be processed-4GHz, and the cores sharé.a Cache of 4MB. The machine has
with high efficiency because the elements of interest will have high 3.2 GB available main memory and runs Fedora Core Linux with
frequencies and reside in the rightmost end of the structure, and thekernel 2.6.26.6-49.fc8. All algorithms and the framework have
low frequency elements will be cluttered in the leftmost end (as- been implemented in C++ and compiled using GNU C++ compiler
suming frequencies increase from left to right). Therefore, as the with Level 2 optimization. The data set is synthetically generated
queries start from the minimum frequency, they can very quickly and follows zipfian distribution which is very close to realistic data
prune out the low frequency elements and reach the region of inter- distribution [32]. The zipfian factor determines whether the dis-
est. Again, queries can be answered without acquiring any locks. tribution is uniform or skewed. The frequency of the elements in
the distribution varies ag;, = -y where¢(a) = Y12 &
where N is the length of the streamA| is the size of the alpha-
bet, andf; represents the frequency of thi& frequent element.
Smaller values ofx represent lesser skew in the distribution with
a = 0 representing uniform distribution. As the value @fin-
creases, the skew of the data distribution also increases. The data

Point Queries These queries verify whether the query point is
frequent or is contained in the tdp- Frequent elements queries
are straightforward and can be answered directly fromSibarch
Structurewithout accessing th€oncurrent Stream Summaryhis

is done by looking up the query point in the search structure and
g?gor:;r(l)? Lt);z f;iglrjizgt IIhltes ffrree(?ljfr?ccg (')Sf ?ﬁ;‘,{%ﬁg;gﬁf%@égsn set has a total 050 million elements and an alphabet &fmil-

to be determined, and this can be done by a traversal through theI|on. GCC built-in atomic primitives were used for performing the

: atomic operations, anpthreadlibrary was used for threads and
structure, reading the buckets for the number of elements and thelocks. In our first set of experiments, we choose data witim

request queue statistics, thereby counting the number of elementsthe range 1.5 to 3.0. The lowervalues have not been evaluated

e e Sy DAl he fequen olements andement re mor e
k" element belonas can be determined ’Once this is known. if the esting and meaningful in a skewed distribution, than in a uniform
9 : ' distribution. In the case of a uniform data (suchras’ 1.0) there

frce)i(lttjie;icri/tﬁfetge quoetLyeEv(\jilgzta 'tigt;?]\;ewﬁsf;iqgﬁcgy' then the are a lot of infrequent elements, and s@ipace Savinghere will
P P, 9 ) be a lot ofOverwriterequests, thereby making the minimum fre-

Reporting the Answer Set These queries report the entire set of duency bucket a “hot spot”. Thus, such a distribution will not bene-
candidates that qualify the frequent elements query for the speci- fit from parallelization. For such a scenario, we propast tuning

f|ed Support or the to&_query for a given Value 0@ Answering and thl’Ottling(SeCtion 433), and the effectiveness of the scheme
these queries are costlier since they need to traverse through thdS demonstrated by the experiments in the latter part of this section
elements in the bucket. Again, once the appropriate buckets are defor data sets withw < 1. In all our experiments, the number of
termined through a traversal of the list of buckets, the elements canstreams is varied fror up to32 in multiples of2, and each stream

be reported by a traversal of the list of elements in the bucket. has 1 million elements, i.e., in an experiment with 32 streams, the
o total number of elements processedsmillion. The performance
4.4 Generalization of the Framework of algorithms does not vary significantly for smaller values of error

In this paper, we explain the application of the proposed frame- bounde, while larger values ot result in performance degrada-
work for parallelizing theSpace Savinglgorithm. One of the rea-  tion. Largere also results in smaller number of buckets, and hence
sons for selectingpace Savingvas that a recent work [6] com- lesser chance for exploiting parallelism. In our experiments, we set
pared a number of frequency counting algorithms and demonstratede = 0.0001. In this section, for a fair evaluation, we compare the
that Space Savingutperforms similar algorithms in terms of pro- ~ cooperativedesign to theshared design Theindependentiesign
cessing speed and accuracy (expressed as precision and reall). A is not included in the comparison since its performance is heavily
other reason is thaBpace Savindias a constant space bound of ~dependent on the query rate andvhereas the remaining two are
O(1) and this simplifies the algorithm implementation. more stable.

The thread cooperatiorbased framework is not limited to the
Space Savinglgorithm and can be easily extended to other fre- 5.1 Saturated Workload
guency counting algorithms. It is evident from the description of  In this experiment, we evaluate the maximum throughput of the
the IncrementCounteoperation that the framework can handle ar- proposed design by usingsaturated workloadvherein a thread
bitrary increments in frequency of the elements. Thus, any fre- always has some element to process whenever it has finished pro-
qguency counting algorithm in which the frequency of the counters cessing the earlier element, or in other words, a threadtigrated
increases monotonicalalgorithms such akossy Counting21]), with work. Figure 9 provides a comparison of the execution times
can be adapted to the framework. For adapting other algorithms, of the “cooperation” based design (referred t€a®pin this graph
most of the operations (except ti@erwrite operation) will re- as well as the rest of the graphs in this section) and the “contention”
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Figure 9: Execution time for saturated workload.
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Figure 13: Comparison of the execution time for saturated
workload. In this experiment, the “cooperation” based design

6 with “auto-tuning” is compared with the “shared” design.

> D the load and can be treated as “load-shedding” and this might result
Ej :g ggg:mz in reduced execution times;) if the structure is lightly loaded, it
33_4 1216 Streams has the potential to accommodate more concurrency, and hence a
n ~<-32 Streams failed read implies failed opportunity and this will lead to increased

3 , execution time. Thus, for a system that is performing at its peak for

a saturated workload, an unsaturated workload will result in an in-
%‘ crease in total time of completion due to slower arrival rate. But for
.5

3 a system which is overloaded for a saturated workload, an unsatu-
rated workload might lead to lesser execution time.

Figure 11 plots the execution time of the two designs as the fail-
ure probability is varied. Along the-axis we plot the number of
streams and along thg-axis, we plot the execution time in sec-
onds. The different lines correspond to different values of zipfian
based design (referred to 8kared). Along thez-axis, we plot the « and the different designs. The zipfiarof the input distribution
number of streams (and hence the number of threads), and alongs varied from1.5 to 3.0 and the experiment is repeated for dif-
the y-axis we plot the execution time in seconds. Different lines in ferent probabilities of not finding a stream element when a thread
the graph correspond to different valuesofAn ideal system with is ready. It is evident from Figure 11 that the behavior of the de-
linear speed-up will have a horizontal line, and the smaller the slope signs is almost similar to that with the saturated case (Figure 9) ex-
of the graphs, the better it is. As is evident from Figure 9, not only cept that with increasing failure probability, the graphs @mop
doesCoop outperformShared in terms of execution timeCoop and Shared are getting closer. This is due to the fact that the
demonstrates better scalability since the slope of the lines corre-low contention overhead i€@oop allows more concurrency com-
sponding taCoopis considerably smaller than that8hared The pared to that ofShared In Shared the contention overhead is
benefits ofCoop with respect to execution time can be seen from very high (Figure 6), and if a thread “fails” a read and does not
Figure 10 which plots the speedup ©@bop compared tcShared access the structure, it contributes to reducing the contention over-
In this figure, ther-axis represents the varying zipfianand the head on the structure, and hence the overall execution time does
y-axis corresponds to the speedup. For a particular zipfisthe not increase much. The increased execution tim@amfp with in-
speedup is computed af}ffgj‘fed T(f‘;")p wherei represents the creasing failure probability is further evident from Figure 12 which
number of streams (4, 8, etc.). As is evident from FigureCdhp plots the speedup corresponding to the times in Figure 11. In this
outperformsShared by a factor ranging fron2 — 5.5X. This ex- figure, we again plot the failure probability along theaxis and
periment demonstrates the superiority of the performance of the the speedup along theaxis. The speedup is computed similar to
proposed “cooperation” based design. the way described in the previous subsection, but instead of com-

puting at a particulas, here it is computed at a particular value of
5.2 Unsaturated Workload the probability. As is evident from Figure 12, as the failure proba-

In many realistic applications, the workload might not be sat- bility increases, the speedup decreases. These experiments further
urated, i.e., due to variable arrival rates, when a thread is readystrengthen the claim that the “cooperation” based design has low
to process the next stream element, there is a likelihood that thecontention overhead and allows higher concurrency, as a result of
next element has not yet arrived. In such a case, we say that thewhich decreased packet arrival rate increases execution time which
read “failed” and the thread needs to wait for the arrival of the next is bound to happen in a system operating at its peak.
element when the read “succeeds”. We model this behavior by al- . .
lowing a read to “fail” with certain probability. In other words, a 5.3 Evaluation of Auto Tunmg
failure probability of 10% means that with every read, there is a In Section 4.3.3, we discussed the potential for usintp tun-

10% chance that the read will fail. Thus the saturated workload ing and throttlingto deal with “hot-spots” when processing uniform
considered in the previous subsection has a failure probability of data distributions. In all the previous experiments, we considered
0%. That experiment would demonstrate the overhead on the sys-distributions for zipfiany > 1.5, and in this section, we evaluate
tems at higher arrival rates. When a read “fails”, the thread does notthe impact ofauto tuningfor o < 1.0. Due to too many overwrites
access thonitored Set. This might have two implications)) if of minimum frequency element in the case of uniform distributions,
the structure is already overloaded, this will lead to a reduction in the minimum frequency bucket becomes a “hot-spot”. Profiling ex-

2 2.5
Zipfian a

Figure 10: Speedup of the “cooperation” based design com-
pared to the “contention” based design for saturated workload.
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Figure 14: Speedup of the “cooperation” based design with
“auto-tuning” compared to the “contention” based design for
saturated workload.

periments revealed that withoatito-tuning for o = 0.5, the max-
imum sampled queue size grows to ab®ut 4 orders magnitude
higher than in the case with > 1.5. This results in severe per-
formance degradation since a majority of the work is delegated to
a single thread, thereby reducing the system to a sequential syste
with all the overhead of a concurrent systehato tuning and throt-
tling prevents queues from building up rapidly, and allows better
distribution of the work. Our experimental samples using 1.5
showed maximum queue size of the order of hundreds and aver-
age queue size of the order of tens. So, in our experiments, we se
the queue size threshojdto 500. Therefore, for skewed data, the
threads will hardly be throttled and can perform at their peak rate,
while for almost uniform data, threads will be repeatedly throttled
incorporating admission control and better load distribution.

In Figure 13, we plot the execution time of the Cooperation based
design usingauto tuningand compare it wittShared Along the
z-axis, we plot the number of streams and along gkexis, we
plot the execution time in seconds. Different lines correspond to
different values oty, andCoop AT represents “cooperation” based
design withauto tuning In this experiment, we use a saturated
workload. To improve clarity of the graph, we only provide the
lines corresponding ta = 0.5 and1 (our new data sets) and =
1.5 and2.5 (representatives from the previously used data sets). As
is evident from the figureCoop AT performs reasonably for lower
values ofa (almost uniform) wher€oop AT outperformsShared
by a factor of~ 2X. For higher values (skewed), its performance
is almost similar to that of the “cooperation” based design without
auto tuning

Auto tuningintroduces the overhead of profiling of queue sizes,
and when the threads are not throttled (in the skewed case), this is
pure overhead compared @oop. But our experiments reveal that
this overhead is limited te- 5% (for example, fora. = 2.0 and
number of streams aks, the average execution time f@oop is
4.195586s and that ofCoop AT is 4.299514 resulting in an over-

rrpead of~ 3.29%). Thus for a very small overhead, we have an

algorithm that performs well for the entire spectrumcof If the
system designer knows that the stream to be processed has a high
skew, thenauto tuningcan be turned off allowing higher perfor-
mance, but turning oauto tuningonly marginally degrades per-
lformance while allowing greater flexibility.

5.4 Profiling the Cooperation based design

In this section, we provide an in depth analysis of the proposed
“cooperation” based parallel design with and withauto tuning
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Figure 15: Detailed profile of cooperation based design without auttuning while processing a saturated workload.

for both saturated and unsaturated workloads. Figures 15 and 16with buckets inStream Summargnd removing the requests from
provide results for the design withoatito tuningfor saturated and the queue when processing them. Sub figure (b) plots the sampled
unsaturated workloads respectively, while Figures 17 and 18 pro- queue size and theaxis plots the queue size in log scale. The bars
vide the corresponding results for the design waittio tuning For correspond to the average of the sampled queue sizes, while the
unsaturated workloads, we select failure threshold 20% as a rep-thin lines correspond to the maximum queue size. Sub figure (c)
resentative graph. The experimental parameters are similar to thatplots the percentage of requests delegated in the hash table, where
used in the experiments of the previous set of experiments. Thethe percentage is plotted along tix@xis. Sub figure (d) plots the
number of streams and hence threads are varied from 4 to 32 inwait times for the requests that are delegated in the queues corre-
multiples of 2, and the number of elements is each stream is setsponding to the buckets in tretream summary structureRecall

to 1 million. For the design withowuto tuning the zipfiana is that when a frequency bucket in tseream summargtructure is
varied from 1.5 to 3.0, while for the design wigtuto tuning « is not available, the request is delegated by enqueuing the request in
varied from 0.5 to 3.0. In all the figures, theaxis plots the num- the queue for the bucket. The wait time corresponds to the time

ber of streams and hence the number of threads in the system. Fogap between the instant when the request is enqueued to the instant
all figures, sub figure (a) plots the profile of the time spent on the at which the request is processed by the thread owning the bucket.
various important operations expressed as a percentage of the total he y-axis plots the wait time in seconds (plotted in log scale) and
time of execution. The-axis plots the time spent on operations the bars correspond to the average wait times while the thin lines
as a percentage of total timelashrefers to the time spent for the  overlaid on the bars correspond to the maximum sampled wait time.
hash table operationStream Summangfers to the time spent for ~ Sub figure (e) plots the average bulk update size. Again recall that
the Stream SummargperationsQueuerefers to the sum of time requests delegated in the hash table result in accumulated counts
spent in appending the delegated requests to the queues associatedhich are processed in bulkiflk increments in Section 4.2), and
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Figure 16: Detailed profile of cooperation based design without autéuning while processing an unsaturated workload with a miss
probability of 20%.

the y-axis plots the average bulk updates. Finally, sub figure (f) for the queue operations is higher for smaller values of zipfian
plots the stretch of requests served. Whenever a thread acquires &his is because for more uniform distributions, different threads
frequency bucket, it continues to serve all the requests delegated taare generally processing different elements, and hence would not
the buckets, and can only relinquish the bucket once all the requestsbe blocked at the hash table, therefore resulting in large number of
have been served. A stretch is defined as the number of request&ccesses to thetream Summarnsince the summary structure has
which a thread serves between acquiring a bucket and subsequentlyimited parallelism due tducket level synchronization a lot of
releasing it, and thg-axis plots the stretch of requests served (in requests are delegated in this structure. The increase in number of
log scale). As earlier, the bars correspond to the average stretchconcurrent accesses to the request queues result in the increase in
of requests, while the overlaid lines correspond to the maximum time for queue operations.

stretch of requests. The above analysis is further supported by Figures 15(b), 16(b),
Figures 15(a), 16(a), 17 and 18(a) demonstrate that very little 17(b), 18(b) and Figures 15(c), 16(c), 17(c), 18(c) which plet th

time is spent in the hash table fefement level synchronization average sampled queue size and percentage of requests delegated

and theStream Summaifpr bucket level synchronization(in con- in the hash table respectively. As discussed earlier, for smaller val-

trast to Figure 6). A considerable portion of the time is spent on the ues of zipfiane, the minimum frequency bucket becomes a “hot
operations related to the request queue, and a more scalable queuspot”, and this is reflected by the considerably larger queue sizes
implementation would thus result in further improvement in perfor- for « = 1.5 in Figures 15(b) and 16(b). The queue sizes for
mance of the proposed design. Our present queue implementatiorn = 0.5 and1.0 in Figures 17(b) and 18(b) demonstrate the suc-
does not allocate memory wisely, and this is in part responsible cess ofauto tuningin limiting the queue sizes even for uniform dis-
for the high overhead of the queue operations. Note that the time tributions, and explains the improved performanc€obp AT as
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Figure 17: Detailed profile of cooperation based design with auto tuing while processing a saturated workload.

shown in Figure 13. Finally, Figures 15(c), 16(c), 17(c) and 18(c) gation in the hash table is much cheaper when compared to dele-
show the successful removalwéitsassociated witkelement level gation in the stream summary structure), but the requests are pro-
synchronization by plotting the requests delegated in the hash ta- cessed in larger bulks, resulting in the effect similar to multiple
ble as a percentage of the total number of requests. For higher stream elements being processed in a single pass. A similar behav-
(skewed streams) and increasing number of threads, more thread$or can be observed for the rest of the experiments plotted in Fig-
are likely to be processing the same elements (since in a skewedures 16(e), 17(e), and 18(e). Note that in Figures 17(e), and,18(e
distribution, few elements have dominant presence in the stream).the average bulk updates for zipfian= 0.5 is almost equal to
Therefore, more requests are delegated in the hash table dite to 1, which coupled with the low percentage of hash table delega-
ement level synchronization The number of hash delegations in-  tions (Figures 17(c) and 18(c)) and increasing queue sizes (Fig-
crease with the number of threads and the increase Mote that ures 17(b) and 18(b)) further supports the previous analysis that fo
in spite of the large number of requests delegated in the hash tableuniform streams, thetream summargtructure, and especially the
neither is the hash table a point of contention, nor is a significant minimum frequency bucket becomes the “hot-spot”. Additionally,
portion of execution time spent synchronization in the hash table as demonstrated by Figures 15(d), 16(d), 17(d), and 18(d), the re
(Figures 15(a) and 17(a)). This demonstrates the efficiency of the quests delegated in tlstream summargtructure have an average
proposedooperatiorbased design in reducing thaitsassociated wait time of about a micro second, and maximum wait times of
with synchronization. about 10ms. This shows thdelegationdoes not introduce huge
Figures 15(c) and 15(e) together explains the improved perfor- waits for the enqueued requests, while removing the necessity of
mance of the design for skewed distributions of the input streams. threads waiting for locks. Additionally, sub figures (b), (d), and
As can be seen, for skewed streams, not only does a large per{f) of Figures 15, 16, 17, and 18, show the effectiveness of the
centage of requests delegated in the hash table (recall that deleproposedauto tuningapproach in limiting the building up of the
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Figure 18: Detailed profile of cooperation based design with auto tung while processing an unsaturated workload with a miss
probability of 20%.

request queues for uniform data distributions, and as a result even6. CONCLUDING REMARKS

when the structure becomes a hot spot, performance is still reason- | this paper, we consider the problem of analyzing multiple data
able and does not degrade. _ streams and propose a parallel algorithm for the problem in the
Now evaluating the impact of unsaturated workloads, if we refer context of multicore processors. The proposed design uses the con-
to Figures 15 and 16, it can be seen that the reduced workload re-cept ofthread cooperatiorto removewaits associated with locks.
sults in decrease in the percentage of requests delegated in the hasRemoval of thewaits is particularly significant in the context of
table, and the average size of bulk updates. This further supportsmyiticore processors where a waiting thread results in wasted CPU
the performance results where unsaturated workload resulted in de'cycles. Additionally, the proposed model allows synchronization
terioration of performance of theooperationbased design, since  ysing only atomic operations which are much cheaper than locks
the proposed design supports more parallelism, and unsaturatioryequired for synchronizing in the “contention” based design. The
leads to lost opportunity of processing more data. Similar trends proposed design conceptually segregates the requests from the ex-
can be observed in Figure 17 and 18 even when the system usegcution threads, and whenever a shared resource required by the
auto tuning request is not available, only the request is block#elggated,
These results explain the major performance benefits observed ingng the thread can move on to process the next request. This is
the previous section where performance of the proposed design wasxtremely important in the context of parallelism in multicore pro-

evaluated, and further assert the efficiency of the proposeder- cessors, and the benefits of the proposed design is evident from
ation based design in removing waits associated withtention the experimental results which show that the proposed “coopera-
based locking designs. tion” based design outperforms the traditional “contention” based

design by a factor o — 5.5X over the entire spectrum of uni-
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form to skewed data sets. In spitemdlti-streamanalysis systems [3] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Load

being extremely hard to parallelize, our parallel design effectively Management and High Availability in the Medusa

uses the inherent parallelism in multicores with significantly lower Distributed Stream Processing SystemSIGMOD, pages

overhead. In addition to the gains for comparatively skewed data, 929-930, 2004.

our design is also efficient for uniform data sets where achieving [4] A. Bulut and A. K. Singh. A unified framework for

parallelism is a much harder problem. In this paper, we implement monitoring data streams in real time.I@DE, pages 44-55,

the Space Savinglgorithm, but the framework is general enough 2005.

to accommodate other frequency counting algorithms [21]. [5] M. Charikar, K. Chen, and M. Farach-Colton. Finding
During the course of implementation of this system, we gained Frequent Items in Data Streams.|@ALP, pages 693—703,

useful experience and learned several important lessons which ap- 2002.

ply to parallel systems in generaFirst, even though individual [6] G. Cormode and M. Hadjieleftheriou. Finding frequent items

lock operations are not very expensive, acquiring and releasing mil- in data streamdProc. VLDB Endow.1(2):1530—1541, 2008.

lions of locks per second results in significant overhead, which is in [7] G. Cormode and S. Muthukrishnan. What's Hot and What's
part responsible for the inefficiency of tiskared designSecond Not: Tracking Most Frequent Items.DynamicaIAeCM
a lot of operations use locks only for mutual exclusion, and do not Traﬁs Database SysB0(1):249—278, 2005

require the serialization order imposed by locks. For such applica- [8] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk
tions, mutual exclusion can be achieved by using cheaper atomic y L » - 9P ! ) penyuik-

operations, whiledelegationallows removal of waits. Exploiting Gigascope: A Stream Database for Network Applications. In

. i - - A SIGMOD, pages 647651, 2003.
these application specific characteristics might result in significant
improvement in performanc@hird, frequent system calls are also [9] G. Das, D. Gunopul_os, N. Koudas, and N. Sarkas. Ad-hoc
expensive, and introduce significant overhead. Memory allocation top-k query answering for data streamsVIiiDB, pages
is one such expensive call, and frequent memory allocation can 183-194, 2007.

considerably deteriorate performance. As a result, spending time[10] S-Das, S. Antony, D. Agrawal, and A. El Abbadi. CoTS: A
with a custom memory allocator is often useful. Scalable Framework for Parallelizing Frequency Counting

In the last few years, there has been growing interest in dif- over Data Streams. ICDE, pages 1323-1326, 2009.
ferent non-conventional parallel processing architectures such asl11] E.D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Frequency
Graphics processors [13, 16], cell broadband engine [12, 17], e Estimation of Internet Packet Streams with Limited Space. In
These processors were originally designed for different applica- ESA volume 2461, pages 348-360, 2002.
tion domains, but recent results have shown promise in the use[12] B. Gedik, P. S. Yu, and R. Bordawekar. Executing Stream
of these processors for data management operations. The present  Joins on the Cell Processor. WW.DB, pages 363-374, 2007.
cooperation basedesign does not differentiate the processing ca- [13] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast

pabilities of the threads, and hence is suitable fomogeneous and approximate stream mining of quantiles and frequencies
conventional multicore architectures such as chip multiprocessors using graphics processors. 5\ GMOD, pages 611-622,
(CMP) [18, 27]. Heterogeneous processing capability in combina- 2005.

tion with specialized instructions, such as vector operations, sup-[14] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril,
ported by Graphics and Cell processors open new challenges. In A. Ailamaki, and B. Falsafi. Database Servers on Chip

the future, we would like to explore the possibility of extension of Multiprocessors: Limitations and Opportunities. DR,

the proposed paradigm to these other novel architectures. Addi- pages 339-350, 2007.

tionally, experiments in this paper concentrate on a specific type of [15] S. Harizopoulos, D. J. Abadi, S. Madden, and

CMP architecture [18] known as tHiat campprocessors [14]. The M. Stonebraker. OLTP through the looking glass, and what

fat campprocessors are characterized by fewer cores where each we found there. IIBIGMOD, pages 981-992, 2008.

core has been optimized for extremely efficient single thread per- [16] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
formance. Another class of CMPs, referred tdems campproces- and P. Sander. Relational joins on graphics processors. In
sors [14], are characterized by large number of cores and hegdwa SIGMOD, pages 511-524, 2008.

threads [27], but each hardware thread is not optimized for effi- [17] S. Héman, N. Nes, M. Zukowski, and P. Boncz. Vectorized
cient single thread performance. In the future, we would also like data processing on the cell broadband engin®aMoN,

to evaluate the performance of the proposed design on tease pages 1-6, 2007.
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