
Please do not distribute – this is ongoing work that has not yet been published.

Offline Framework for Performance Comparison of Software
Revisions

Nagy Mostafa and Chandra Krintz

Computer Science Department

Univ. of California, Santa Barbara

{nagy,ckrintz}@cs.ucsb.edu

UCSB Technical Report #2008-19 Nov. 21, 2008

Abstract

Repository-based version control systems such as CVS, RCS, Subversion, and GIT, are extremely useful tools
that enable software developers to concurrently modify source code, manage conflicting changes, and commit
updates as new revisions. Such systems facilitate collaboration with and concurrent contribution to shared
source code by large developer bases. In this work, we investigate a framework that lays the groundwork for
“performance-aware” repository and revision control for Java programs. Our framework automatically tracks
behavioral differences across revisions to provide developers with feedback as to how their change impacts
performance of the application. It does so as part of the repository commitprocess by profiling the performance
of the program or component, and performing automatic analyses that identify differences in the dynamic
behavior or performance between two code revisions.

In this paper, we present our analysis system that is based upon and extends prior work on calling context
tree (CCT) profiling and performance differencing. Our framework couples the use of precise CCT information
annotated with performance metrics and call-site information, with a simple tree comparison technique and
novel heuristics that together target the cause of performance differences between code revisions without
knowledge of program semantics. We evaluate the efficacy of the framework using a number of open source
Java applications and present a case study in which we use the frameworkto distinguish two revisions of the
popular FindBugs application.

1. Introduction

Software developers world-wide employ revision control (RC) systems for managing a vast number and

diversity of open-source and proprietary software code bases. RCsystems facilitate and support distributed,

collaborative, and incremental contribution to shared source code via storage repositories and a set of tools

that provide, among other things, access to files, management, tracking, and branching of revisions, automatic

resolution of conflicts, and feedback to developers when automatic conflict resolution fails or when events occur

by other developers.

Client-server RC systems include CVS, RCS, Subversion, and the Visual Studio Team System (VSTS);

popular RC systems that implement distributed local repositories include GIT, Fossil, Mercurial, and Codeville.

1 2008/11/21

Although these RC systems are stand-alone applications (the focus of our work), support for revision control can

be and is integrated into other applications such as word processors, spreadsheets, and databases. RC systems

enable developers to access and branch off of earlier revisions of a project or file and in some cases provide

other services such as automatic testing (Visual Studio Team System (VSTS)) and defect or issue tracking (e.g.

Codeville, Fossil, VSTS).

In this work, we are interested in providing a new service for RC systems: tracking of revision performance

and dynamic behavior differences. To enable this, we have designed and implementedperformance-aware

revision control support (PARCS), a service that provides feedback to developers as to how a change that

they have committed affects the behavior and performance of the overall application. Given the complexity of

hardware and software and the popularity of collaborative development,such tools are key to helping developers

understand the behavior of large applications and how local and incremental modifications impact overall

performance over time.

PARCS is a program profiling and analysis framework that executes a program using test inputs when a

new source code revision is checked into an RC repository. PARCS buildsupon and extends prior work on

calling context tree (CCT) profiling [2, 14, 6, 4, 17] and performance differencing [16], but is unique in that

it targets two different versions of the same program with the same input on the same platform. Prior work

has focused on identifying performance differences across two executions of the same program using different

inputs or underlying platforms [16]. PARCS instruments the program and generates a precise CCT during offline

(background) execution. PARCS annotates the CCT with a number of different performance metrics and can

store CCTs for later comparison across revisions.

To find CCT differences, PARCS first transforms the trees using common tree matching that we extend with

feedback from changes that the developer has made to the code and simplerelaxation techniques. As a result,

PARCS incrementally identifies topological differences in the CCTs of two revisions. PARCS then classifies

these differences into four categories that distinguish the reason behindthe performance differences: method

addition/deletion, direct code modification, indirect code modification effect,and non-determinism. PARCS

excises all subtrees rooted at nodes where these differences originate.

The CCTs that result after this pruning are identical topologically. PARCS analyzes these trees for differences

in the performance metrics that annotate the trees. For this step, PARCs employs simple weight matching and

performs an iterative algorithm to identify pairs of nodes with weight differences that are significant, i.e., that are

2 2008/11/21

larger than the differences that are typical of a non-deterministic effect.Finally, PARCS attributes the topological

and weight differences to specific code changes and reports its findings back to the developer.

We implement a PARCS prototype for Java programs via extensions to the OpenJDK JVM from Sun

Microsystems. We empirically evaluate the efficacy of PARCS using a number of open source Java programs and

employ PARCS to identify differences between two revisions of these applications. Although the test input that

PARCS employs for CCT creation determines the amount of topological and weight difference that it discovers,

we find that a single, well chosen input can lend significant insight into behavioral and performance differences

that result from source code changes. PARCS however, is able to investigate any number of inputs concurrently.

We describe a detailed case study that we perform to attribute behavioral and performance differences to changes

made between revisions using a single input for the popular FindBugs application [10]. Overall, we find that

PARCS is easy to use and highly effective at helping to identify the cause ofrevision-based behavioral and

performance differences.

In the section that follows, we provide background on the key componentsthat PARCS builds upon and

extends. We then detail the PARCS design and implementation (Section 3). In Section 4, we present a case

study on our use of PARCS for revisions of the popular FindBugs application. In Section 5, we empirically

evaluate PARCS using a number of different open source applications. We then discuss related work (Section

6) and present our conclusions and plans for future work (Section 7).

2. PARCS

PARCS is performance-aware repository control support that identifies dynamic behavioral and performance

differences that result from changes to source code from revision torevision. To enable this, PARCS employs

a dynamic calling context tree (CCT) for collection and evaluation of dynamic program behavior. PARCS

compares two software revisions by identifying the topological and weight-based differences between the CCTs

of the two revisions. We overview the background on CCTs and CCT topological differencing in the subsections

that follow. We detail the PARCS implementation of weight-based differencing inSection 3.

2.1 PARCS Dynamic Program Representation and Collection

PARCS collects, manipulates, and compares the dynamic behavior of a program using a data structure called

a calling context tree (CCT) [2]. A CCT captures the calling context of each dynamic method invocation that

occurs during program execution. Given a method call stack, the calling context is the list of methods that are

invoked without returning to reach a particular program point (in this casea method call).

3 2008/11/21

public void A(){
1: B();
5: C();
9: B();
}

public void B(){
1: D();
5: E();
}

public void C(){
1: F();
}

public void D(){}
public void E(){}
public void F(){}

Figure 1. Code snippet with the corresponding CCT. (a) shows the correspondingCCT with no call-site
information included. (b) shows the equivalent tree with call-site information shown as subscript

A CCT summarizes the dynamic call tree (DCT) of a program. Each node in the DCT is a single activation of

a method during execution. An DCT edge from node X to node Y, represents a dynamic invocation of Y from the

code in X. DCTs can be annotated with additional runtime information such as execution time and arguments

for each node. One way to summarize the DCT, to reduce its potentially enormous size, is to instead use a

dynamic call graph (DCG). In a DCG each node corresponds toall activations of a method. Such a summary

however can lose significant amounts of behavioral information about theexecution of a program.

The CCT is a data structure that provides a middle ground – it does not require the space of a DCT but

captures important behavior information that a DCG loses. In a CCT, all activations of the same method that

execute from the same calling context are aggregated into a single node. Anedge from node X to Y, as in the

DCT, represents a call from X to Y. The calling context of a node Y, thus,is captured by a series of nodes from

the root of the tree to node Y. The edge between two nodes records the number of times the program executes

that particular calling context.

Figure 1 illustrates an example of a CCT for a program with methods A through F. Assuming that A is the

entry method, (a) shows the CCT for a particular execution of the program.The numbers on the edges are

invocation counts. For example, the invocation count on the edge B→D is 2, which means that D is called twice

from the context A→B.

4 2008/11/21

PARCS employs CCTs for its profile collection. However, we extend its implementation to distinguish call-

sites (prior work considers all calls to a method Y within method X to have the same context [16]). In our CCTs,

PARCS records a method Y that is called from two different call-sites within method X independently from each

other. Figure 1 (b) shows the CCT with call-site information (shown as subscripts). Distinguishing based on call-

site information increases the size of the CCT but provides more details aboutthe execution that are useful to

developers for identifying behavioral and performance differencesacross revisions. The authors in [7] show that

call-site information is also important for coverage testing and anomaly detectionusing CCTs. We evaluate the

trade-off between size and accuracy of employing call-site information foridentifying performance differences

in Section 5.

The call-site CCT serves as a suitable data structure for comparing performance across program revisions

as it captures context information which helps programmers better understand performance and correlate it to

the program semantics. Context information expressed as stack traces are still the most widely used means

of describing program point of failure. Moreover, CCTs provide a good trade-off between size and accuracy

compared to DCTs and DCGs.

PARCS instruments each method entry and exit of the program to collect the CCT. Since PARCS is employed

by a revision control system off-line (in the background), we do not consider the overhead of exhaustive profiling

of the calling contexts. Exhaustive profiling is important for PARCS since it isable to capture all calling context

behavior. PARCS annotates the collected CCTs with other profile information such as execution time and

invocation count. The PARCS framework is extensible enabling researchers to investigate its efficacy using

other performance metrics.

2.2 Identifying Topological Differences in CCTs

PARCS compares two CCTs to identify the topological differences between them. In the subsections that

follow, we consider two well known topological tree matching algorithms: tree transformation and common

tree matching. We then present relaxed common tree matching, the algorithm thatPARCS employs to identify

topological differences.

2.2.1 Tree Transformation

Shasha et al. [1] propose a tree comparison algorithm for ordered trees; they employ dynamic programming for

its implementation. An ordered tree is a tree in which the children of each node have total order. Given two trees,

the algorithm finds a sequence of operations that, when applied, transforms one tree to the other. The algorithm

5 2008/11/21

Operations: (1) Rename C to N, (2) Rename B to M

Figure 2. Example of tree transformation.

is optimal in the number of transformation operations used (the edit distance) and has a time complexity of

O(|CCT1| × |CCT2|). The primary tree operations used are:

1. Delete X:delete node X and move its children to its parent Y; the children are inserted atthe same position

in the child order of Y at which X was positioned.

2. Insert X, Y, P:add node X to be a child of node Y at position P in the children order of Y. X gets a consecutive

subsequence of Y’s children.

3. Rename X, Y:rename node X to Y.

Although this algorithm was originally designed for abstract trees, Zhuanget. al employ the algorithm to

compare two CCTs for thesameprogram that they execute on different platforms or with different inputs[16].

The authors in this prior work use the number of operations required to transform CCT1 to be CCT2, as a

difference metricwith which they compare two trees.

Figure 2 shows two CCTs with topological difference and the sequence ofresulting operations that transform

the left CCT to the right CCT. After applying the transformation the two CCTs become identical. All nodes that

are not involved in any transformations are matched nodes. The dotted arrows in Figure 2 shows the matching.

The way the algorithm matches nodes relies solely on the node label and its post-order in the tree. It ignores

the context of the node (path from root to the node) and hence may match nodes with the same method name

but different contexts. For example, in Figure 2 method X called by method C may have completely different

semantic than X by method N. Considering the two to be equivalent could be misleading to performance

analysts. Since in PARCS we are comparing two versions of a program, these inaccuracies are more likely

to occur more often since the code is different across versions. Inaccuracies in PARCS lead to incorrect

identification of differences and attribution of differences to code changes.

6 2008/11/21

Also, using dynamic programming incurs quadratic time and space overhead.While this is tolerable for small

CCTs, it becomes hindering for larger ones. Since we rely on call-site CCTs for more accurate differencing,

using this algorithm becomes infeasible. For example, the call-site CCT of FindBugs has 155,787 nodes. Thus

an array of more than 22.5 billion entry is needed.

For the above reasons, we investigate an alternative approach to CCT matching based on common tree

matching.

2.2.2 Common Tree Matching

Common tree matching is a well-known, simple technique for comparing two trees. The algorithm traverses the

tree level-by-level, comparing nodes. Each node in the tree has an order. The order of noden is the position of

n amongst its siblings. For example, in Figure 3 (a), the order of nodes A, B and F are 1, 1 and 2, respectively.

We define equivalence of two nodes recursively as follows:

Definition 1. Node Equivalence:

Noden1 ∈ CCT1 is equivalent to noden2 ∈ CCT2 iff

1. n1 andn2 have the same method name

2. n1 andn2 have the same order

3. n1 andn2 have equivalent parent nodes

This definition implies that equivalent nodes always have the same context. Moreover, if two nodes are not

equivalent, we consider the subtrees rooted at them a topological difference.

Figure 3 (a) illustrates a common tree matching example. First, we compare root nodes, since they are equal,

we proceed to the second level (A’s children). On the second level, the first node B exists in both trees, thus we

consider it on the common tree and will process all of its children once we moveto the third level. The second

node C in the left tree corresponds to F in the right, which is a mismatch; we report both C and F and their

subtrees as a topological difference. We do the same thing (apply a mismatch)for node C in the right tree. The

grey nodes constitute the resulting common-tree.

The problem with common-tree matching is that it follows a very conservative definition of equivalence. In

the right tree of Figure 3 (a), method A has been modified to call method F before it calls C. If this is the case,

we should report C as part of the common-tree. Because of the definition of equivalence, we report C in the

right tree as a mismatch. To overcome this limitation and to capture such changes tosource code, we relax the

7 2008/11/21

Figure 3. Common tree matching example. (a) shows strict common tree matching. (b) showsthe relaxed
common tree matching. Grey nodes are the common tree found in each case

definition above to use the relative ordering among matched nodes instead. Our definition of equivalence then

becomes:

Definition 2. Relaxed Node Equivalence:

Noden1 ∈ CCT1 is equivalent to noden2 ∈ CCT2 iff

1. n1 andn2 have the same method name

2. n1 andn2 have equivalent parent nodes

3. all matched left siblings ofn1 are matched to left siblings ofn2 and all matched left siblings ofn2 are

matched to left siblings ofn1.

We refer to the version of the algorithm that employs this definition asrelaxed common-tree matching. Using

this algorithm, equivalent nodes still have the same context. The differenceis that they do not have the exact

child order. Figure 3 (b) shows that using Definition 2, we can match node C. We employ relaxed common-tree

matching within PARCS to identify topological differences between two CCTs (program revisions).

3. PARCS Implementation

Figure 4 overviews the PARCS process. We employ PARCS for revisions of Java programs in our current

prototype. We start by checking out the source code of the two revisionsof interest from a code repository (e.g.

CVS). We then compile the source code to bytecode. Next, we run the two revisions using the same test input

via a modified Java Virtual Machine that builds CCTs from the execution. We can generate the CCTs of earlier

revisions on-the-fly, in parallel, or store them in the repository. Developers can specify the input that PARCS

uses to generate CCTs; PARCS can evaluate multiple inputs and CCT pairs concurrently.

8 2008/11/21

Figure 4. Framework overview.rev1 andrev2 refer to old and new revisions, respectively.bc1 andbc2 are the
corresponding bytecode.

In addition, PARCS performs a fast, static bytecode comparison on the revisions to extract method-level

changes. PARCS feeds the CCTs and this bytecode change-list into the incremental topological comparator.

After this component removes all topological differences from the CCTs,PARCS performs weight matching on

the resulting trees to identify nodes with the largest differences in performance metrics. We detail each of these

steps in the following subsections.

3.1 CCT Collection

The PARCS system generates CCTs by exhaustively recording all application methods calls and returns. For

this study, we record only application methods and ignore calls to the Java runtime and library code to keep

CCT sizes small and CCT processing fast. We can easily extend this system toinclude library calls if necessary.

Since the libraries will not change from revision to revision, we need only perform weight matching on them to

identify performance differences that occur indirectly from application code changes. Our CCTs, as described

earlier, distinguish contexts for each call-site invoked. The performancemetrics with which we annotate CCTs

include invocation count, and the average and standard deviation of execution time. We store all CCTs in a

relational database for future analysis.

3.2 Method-level Bytecode Comparison

After compiling the two revisions, we perform a bytecode comparison to generate a list of all added, deleted,

modified, and renamed methods. The process starts by compiling source filesfrom each revision code base to

get the set of class files. The class files therefore belong to either the application or any local Java modules it

uses. We do not consider class files that are dynamically downloaded over a network or created at runtime.

We have chosen to implement this comparison on the Java virtual machine intermediate representation (byte-

code) rather than source code because of its compact and readily available format as opposed to manipulating

9 2008/11/21

the diff files of repository. Also, some source code changes are useless to PARCS since they have no effect

on the program semantics (e.g. variable declaration relocation within a method,variable renaming, replacing

a for-loop with a while-loop, ... etc.). Most of these changes are not reflected on the bytecode and hence are

automatically ignored. The same argument holds for any other virtual machineintermediate form.

We match the class files from the two revisions according to their package andclass names. For each matched

pair of class files, we generate a list of methods that each class file contains. By comparing the two lists, we

build the following method sets:

1. Added Methods:methods present in the new revision but not in the old one.

2. Deleted Methods:methods present in the old revision but not in the new one.

3. Modified Methods:methods present in both revisions with everything identical except for the code body.

4. Renamed Methods:methods present in both revision with everything identical except for the method name.

We compare methods by their fully qualified names and code bodies. A fully qualified method name consists

of the full package name, class name, and method signature. The method signature consists of method name,

number and type of parameters, and return type. We consider a method modified, if only the code body has been

changed. Renamed methods have only changed method names.

3.3 Incremental Topological Comparison

There are four primary reasons for topological differences betweentwo revisions:

• Reason 1Addition/Deletion of Methods:any calls to such methods introduces a topological difference.

• Reason 2 Direct Modification:code modification that explicitly enables/disables or adds/deletes a call to a

method existing in both revisions.

• Reason 3Indirect Modification:a change in the program that has a side effect. For example, a global variable

update or a configuration file change that affects which methods are called. Also, some modifications may

have hidden effect on another method execution time, such as the effect of cache thrashing.

• Reason 4Non-determinism:randomness in the program execution.

Using the code change information that we obtain from the bytecode comparison, we label CCT nodes as

“added”, “deleted”, “modified” or “renamed”. This mapping of code change to the dynamic CCT enables

topological differencing to proceed incrementally. Using these reason categories, we apply the relaxed common-

tree matching technique that we describe in Section 2.2.2, incrementally in three stages:

10 2008/11/21

Figure 5. Weight matching example. Common trees with identical topology and different weights.

Stage 1. We excise all subtrees rooted at added and deleted nodes from the CCTsand log each change for

later attribution (Reason 1).

Stage 2. We identify topological differences that are most likely due to direct modification (Reason 2). Given

the set of modified nodes, we identify the modified nodes that are highest dominators in the tree. X is a dominator

of Y, if the path from the CCT root to Y contains X (and X and Y are both modified nodes). A highest dominator

is a modified node with no modified dominators (i.e. highest in the tree). Using this definition, we match

highest dominators across the two CCTs using method signatures and contexts. We ignore unmatched nodes

as we handle them in Stage 3. For each pair of matched highest dominators, we perform relaxed common-tree

matching on the subtrees rooted at them. We report all differences that wefind as potentially resulting from

direct modification. Although this is the most likely cause (and is the most common in our experience), it is

possible that the differences we identify result from side-effects or non-determinism. We excise these subtrees

and report each change.

Stage 3. Finally, we conduct a global topological comparison for what remains of the two CCTs and record

each change. These topological differences are either due to side effects or non-determinism (Reason 3 and 4).

We excise (and report) all subtrees rooted at unmatched nodes.

3.4 Identifying Weight Differences

With all topological differences reported and omitted from the two CCTs, the parts remaining are identical in

topology but they may vary in performance metrics. PARCS next performs weight matching to identify the

differences in weights across CCTs. Weight differencing is a key component of PARCS since it identifies dif-

ferences that are due to changes to the code made by the developers thatchange functionality without changing

the method call behavior. In addition, weight matching identifies behavioral and performance differences due to

modification side effects (and non-determinism).

The PARCS weight matching algorithm quantifies the degree of similarity betweenthe two trees in terms of

their annotated performance data using an overlap metric defined and usedin prior work [9, 5, 6, 16]. We define

11 2008/11/21

overlap in our setting as:

overlap(|CCT1|, |CCT2|) =

∑

n1∈CCT1

n2∈CCT2

n1≡n2

min(pweight(n1, CCT1), pweight(n2, CCT2))

wheren1 ≡ n2 means thatn1 in CCT1 is equivalent ton2 in CCT2 (the two nodes match). We define

pweight(ni, CCTi) as the percentage of the total weight across all nodes inCCTi that is represented by

the weight of nodeni in CCTi. The degree of overlap ranges from 0% to 100% and indicates how much

of the performance ofCCT1 is similar to that ofCCT2, i.e. how much ofCCT2’s performance is covered by

CCT1. 100% overlap indicates perfectly identical CCTs. Note that since there is non-determinism and noise in

performance data – it is likely to be the case that two CCTs generated by two different runs of the same program

on the same platform with the same input, do not have 100% overlap. For example, the latest revision of the

popular FindBugs application (that we analyse in the next section), has a 99.3% overlap in execution time using

our test input. Figure 5 illustrates the common-trees from Figure 3 that PARCShas annotated with absolute

node weights andpweights (shown in parenthesis). The overlap of the two CCTs is 76%.

To identify the pairs of nodes that constitute the most significant performance difference, we employ this

overlap metric as part of an iterative weight matching algorithm based upon that employed in [16] for node

matching. Our algorithm is parameterized by an overlap threshold (and number of nodes of interest). However,

we automate generation of the overlap threshold value by computing the overlap percentage of two CCTs for

the latest revision – the same program, on the same platform, using the same input, that we execute twice. This

overlap value captures the difference that we expect from noise and non-determinism. Developers can set this

threshold to a different value, to investigate other weight difference pairs, if so desired. Alternatively, developers

can specify the number of nodes they are interested in investigating, i.e., it is possible to specify that no more

than 10 matched nodes are returned. The nodes that PARCS returns arethe methods responsible for the greatest

contribution to the overall weight difference between the two revisions.

We first compute thepweight difference between each pair of matched nodes. We sort the pairs of nodes in

decreasing order of this difference. The pair sequence for the example in Figure 5 is A, E, D, C, H, B and I. We

compute the overlap of the CCTs and compare it to the threshold. If the overlap value is less than the threshold,

we perform an iterative computation to adjust the weights (to produce a new overlap value).

12 2008/11/21

Specifically, we iterate over the pairs in order of largest to smallestpweight difference, and for each pair we

adjust the smallpweight to be equal to the large one. We then recompute overlap and compare this value to the

overlap threshold (or to the maximum node count specified if any). Once either threshold is reached, PARCS

reports the nodes for which it performed weight adjustment.

In our example, we first adjust A’s weight in the right CCT to be 8.25 (whichis apweight of 20% to match

that of A in the left CCT). When we recompute overlap, the result is≈ 83.35%. We compare this resulting value

to the overlap percentage and the number 1 (since we have adjusted one pair) to the specified maximum number

of nodes to return, if any. We continue to adjust the second pair (E), if neither one of these constraints is met.

3.5 Attributing Topological and Weight Differences

In our current prototype of PARCS, we report each difference with an ordered list of methods that are

most likely to be the cause of the difference. We also report supporting evidence and data for each method

(context, performance metrics, etc.). In addition, PARCS presents the context information (annotated subtrees,

complete CCTs with highlighted node differences, etc.) to developers in graphical format for easy viewing and

investigation. The source repository software identifies all changes madeto each of these methods that we report.

The exact attribution of a difference to a specific change however, proceeds by hand – however with PARCS

support (described below). We walk through an example of this processin the next section for two revisions of

the FindBugs application.

To identify the most likely methods causing each difference that PARCS identifies, we employ a simple

heuristic. We consider the reasons we list in Section 3.3 as the potential causes. For Stage 1 differences, we

report the parents of the excised subtrees (callers to added/deleted methods). For subtree excised in Stage 2,

we report the list of modified nodes on the path from the subtree root to the CCT root starting from the closest

modified dominator upwards. For Stage 3 and weight matching, we report thedifferences along with their

context.

4. Usage Example: FindBugs

In this section we demonstrate, by example, how we apply these heuristics to identify the reason for topological

and weight differences. To enable this, we compare the CCTs of two revisions of FindBugs [10], a Java tool to

find bugs statically in Java code.

First, we execute Stage 1 of the algorithm to remove all subtrees rooted at added/deleted nodes and Stage 2

to find subtrees of differences dominated by modified nodes. Figure 6 visualizes a subset of the CCT from the

13 2008/11/21

latest FindBugs revision. We only show node ID’s for convenience andwe identify the modified methods with

rectangular nodes. The nodes in gray are those that Stage 2 identifies asdifferent from the CCT of the earlier

revision. These are the nodes that Stage 2 removes. Stage 2 returns the list of all modified nodes between the

subtree root and the CCT root for all removed subtrees. PARCS orders the list from the modified node nearest

to the subtree to the furthest. For the subtree rooted at node 29747, PARCS returns the list{29744, 19913}.

For this case study, we first investigate the reason behind the topological differences in the three subtrees

rooted at 29745, 29747 and 29748 which correspond to methods:

Item.init(), Item.makeCrossMethod()and Item.equals(), in the FindBugs application, respectively. As we de-

scribe previously, there are three potential reasons behind these differences. The first and most likely reason

is direct code modification that introduced/enabled these calls. In such cases, the modified method nodes will

be one of the ancestors of the subtrees roots (in this case nodes 29744 and 19913) that Stage 2 returns. The

second reason is a side effect of some modification that indirectly causes the subtrees. Finally, the reason may

be non-determinism during execution.

We begin by investigating the methods that correspond to the nodes that Stage2 reports (29744 then

19913):FieldSummary.setComplete()and FindBugs2.analyzeApplication, respectively. Using the differences

in the source code of these methods reported by the source code repository (or our bytecode analysis tool), we

find that the modified methodFieldSummary.setComplete(), inserts these three calls in the latest revision but not

in the former.

We repeat the same procedure to find the cause for the different subtrees rooted at nodes 130194 and 130190.

The ordered list of candidate methods that Stage 2 reports is{78182, 19913}. Again, we start by the node closest

to the subtree root which corresponds to methodFindUnrelatedTypesInGenericContainer.analyzeMethod()

which implements a source code change that inserts the two calls.

After removing all topological difference during Stage one and two, the only topological differences remain-

ing, if any, will be due to either indirect modification or non-determinism of execution. By running stage three

of the algorithm, we find one tree removed from each CCT both rooted at method JavaVersion.clinit(not shown

in the figure). This method is the class initializer for the classJavaVersion. Analyzing this method, we find that

non-determinism is the reason. In particular, the use of the Java data structureHashSetmakes no guarantee to

the iteration order of the set. The order by which the items in theHashSetare processed dictates the point at

which the class initializer ofJavaVersionis invoked to cause topological difference.

14 2008/11/21

74869

122750103454

74828

21106

78180

19913

29731

16897

16896

10

1

78182

130190130194

130191 130193

130192

29744

2974529747 29748

29746

29743

29749 29750 29751 29752 29753103514

103515

Figure 6. Visualization of topological differences between two Findbugs revisions.The grayed nodes are a
subset of those nodes removed by Stage 2. Rectangular nodes represent modified methods. Our case study
investigates the cause behind the differences for the subtrees rooted atnodes 29747, 29748, and 29745.

App. Name # nodes old rev. # nodes new rev. Description
checkstyle 1127149 1127299 a tool to help programmers write Java code that adheres to a coding standard
doctorj 360270 360276 javadoc analysis tool
findbugs 155787 153518 uses static analysis to look for bugs in Java code
jaranalyzer 569 548 dependency management utility for jar files
java2html 3177 1366 Java code to html convertor
jruby 113796 125436 Java implementation of the Ruby programming language
jython 69648 70741 Java implementation of the Python programming language
pmd 481033 481034 scans Java code and looks for potential problems (bugs, dead code,... etc.)

Table 1. Applications evaluated with their CCT size for two revisions.

Finally, we investigate the reason for the total execution time difference between the two CCTs (with

topological differences excised). We find that the node with the highest difference inpweight is of the method

PreorderVisitor.visitCode(). PARCS reports that both the execution time and invocation count has changed in the

new revision. The invocation count drops from 8469 in the old revision to 5427 in the new one. PARCS reports

that this method invokes a call toOpCodeStackDetector.visitCode()that was removed in the new revision and

added to the caller ofPreorderVisitor.visitCode(). This change causes a drop in the invocation count of that

method which decreases its total execution time.

15 2008/11/21

App. Name # old # new # old # new deleted added modified renamed
files files methods methods methods methods methods methods

checkstyle 1386 1386 11948 11953 3 8 11 0
doctorj 226 226 3934 3937 2 5 4 0
findbugs 3570 3569 27424 27415 12 3 11 0
jaranalyzer 413 423 3397 3486 26 115 587 0
java2html 121 132 819 873 138 192 302 0
jruby 4156 4259 25514 26653 773 1912 1592 0
jython 1819 1820 15487 15520 0 33 39 0
pmd 923 923 11336 11336 4 4 6 0

Table 2. Parameters and results of bytecode comparison.

5. Experimental Evaluation

Our experimental platform is a dual-core Intel Core 2 Duo machine clockedat 2.4 GHz with 4M of L2 cache

and 2GB of main memory running Linux-2.6.24. The Java virtual machine usedis HotSpot version 13.0-b02

within OpenJDK 1.7.0. We extended our JVM to instrument and collect performance statistics and method calls

and returns. We ignore calls to the JVM runtime and to the Java libraries for efficiency.

Table 1 describes the eight open-source Java applications that we use toevaluate PARCS empirically. For

each application, we use PARCS to compare the dynamic behavior of two closeyet stable revisions of the

code running with the same test input. For some applications we compare releases instead of revisions because

revisions are unavailable (jaranalyzer, java2html and jruby). We used Apache Byte Code Engineering Library

(BCEL) [8] to perform bytecode comparison of revisions. The secondand third column of the table show the

CCT size, in number of nodes, of the old and new revisions, respectively, for each application.

The test input that PARCS employs for CCT creation determines the amount of topological and weight

difference found. Software developers can expose more differences by orchestrating special test inputs. For

our experiments, we construct the input ourselves or employ one provided by the application repository. In

addition, we plan to investigate using multiple inputs (multiple CCT comparisons) and employing automatic

test input generation as part of future work. We plan to make all of our inputs, JVM modifications, and BCEL

tool available should this paper be accepted.

5.1 Bytecode Comparison

We first quantify the changes that PARCS finds when performing method-level bytecode comparison between

two revisions using Table 2. Columns two and three show the number of uniqueclass files from each application

code base. Columns four and five show the number of methods in the old and new revisions, respectively.

Columns six to nine contain the difference in terms of methods added, deleted, modified and renamed. The

highest numbers belong to jaranalyzer, java2html and jruby, for which weuse releases instead of revisions.

16 2008/11/21

PARCS finds no renamed methods for any of the applications. This is because of the strict definition of a

renamed method that we adopt in which only the method name should change. During our tests, we have found

that a method name change is always accompanied by a change in the signature or the containing class, which

we classify as a method removal then addition (Section 3.2).

5.2 Topological Difference

To evaluate the common-tree matching algorithm that PARCS employs, we quantifythe total number of subtrees

and nodes that PARCS removes from both trees at each stage. Relaxed common-tree matching proceeds by

comparing nodes of the two trees level-by-level. The algorithm does not proceed to compare subtrees rooted at

unmatched nodes, and reports them as a topological difference. After all topological differences are removed,

what remains is the common-tree which is the intersection of the two CCTs compared. We have quantified the

size of the common-tree obtained for each application. The bigger the common-tree size, the more topologically

similar the CCTs are.

We show the results in Table 3. The third columns is the common-tree size as percentage of the CCT size

of the old revision. Six of the eight applications show high similarity (above 89%). Pmd shows the highest

similarity as only one node is reported as a topological difference. As we mention previously, we compare

releases for jaranalyzer, java2html and jruby. As expected, java2html and jruby show low similarity, while

jaranalyzer shows high similarity between its releases. These empirical results indicate that relaxed common-

tree matching is effective for comparing software close revisions and, though being conservative, does not delete

large portions of the trees as the case for releases and distant revisions.

The other columns show the number of subtrees and the equivalent numberof nodes that PARCS removes at

each stage. The columns titled “added” and “deleted” contain data about subtrees removed due to being rooted

at added or deleted nodes (Section 3.2). The one titled “modified” contains trees that have at least one modified

node as a dominant node. “Side effects” are unmatched subtrees that cannot be classified as any of the above.

Zero values under these columns indicate that no added, deleted or modifiedmethods were executed during

execution. Pmd has zeros in all three categories because of the low numberof changed methods (Table 2).

We also studied the benefit of using CCTs with call-site information. As mentionedbefore, call-site CCTs

contain more information as they distinguish methods called from the same contextbut from different call-sites.

This extra information becomes useful for topological comparison as it reveals more differences that would have

been, using ordinary CCTs, aggregated with other subtrees.

17 2008/11/21

App. common common deleted added modified side effects
Name tree size tree size (%) subtrees nodes subtrees nodes subtrees nodes subtrees nodes
checkstyle 1122368 99.58 159 1059 80 521 984 4743 522 3389
doctorj 360249 99.99 0 0 6 18 7 30 0 0
findbugs 135528 87.00 19 19856 5 17967 29 418 2 8
jaranalyzer 538 94.39 0 0 8 10 8 10 8 22
java2html 421 13.25 42 1314 37 608 23 1779 0 0
jruby 8804 7.74 1811 97983 2159 93883 1467 29768 0 0
jython 62955 89.29 0 0 786 6671 1395 5600 276 3067
pmd 481033 100.00 0 0 0 0 0 0 1 1

Table 3. Subtrees and nodes removed at each stage of topological differencing.

App. Name deleted added modified side effects
checkstyle 76 66 102 0
doctorj 0 4 6 0
findbugs 19 5 28 2
jaranalyzer 0 4 4 5
java2html 25 20 20 0
jruby 1196 1754 808 0
jython 0 125 218 37
pmd 0 0 0 1

Table 4. Subtrees removed at each stage for CCTs without call-site information.

To assess the additional differences revealed via call-site CCTs, we have compared the number of subtrees

removed as topological differences using both types of CCTs. Higher number of subtrees removed means more

differences that PARCS discovers. Table 4 summarizes our results. Similarto Table 3, it shows the numbers of

subtrees removed divided into the four classifications. For most applications, the difference is significant. For

example, checkstyle has 522 subtrees removed as side effects using call-site CCT Table 3. This number drops

to zero when switching to a conventional CCT. This indicates that all those subtrees are merged under other

subtrees (of the same context and root method name) that were successfully matched, and thus the difference is

hidden. This case occurs when the same method is invoked multiple times from the same context from different

call sites. This effect is not present for FindBugs and hence the numbers are nearly identical.

The trade off that we make for this increase in detail (and thus understanding of program behavior) is in the

CCT size. In Table 5, we quantify this overhead for both revisions of ourapplications. Columns two and three

show the CCT size as the number of nodes, with and without call-site information. The fourth column is the

percent increase in CCT size due to using call-site information. The old revision of java2html shows the highest

increase (478.69%) while jaranalyzer’s new revision shows the lowest (21.24%). The average increase is slightly

more than the original size of the CCT. The data show that the increase is nearly similar across revisions. The

only two exceptions are java2html and jruby, for which we employ releases instead of revisions.

18 2008/11/21

App. Name # nodes # nodes Difference (%)
w call-site w/o call-site

checkstyleold 1127149 307424 266.64
checkstylenew 1127299 307544 266.55
doctorj old 360270 260061 38.53
doctorj new 360276 260064 38.53
findbugsold 155787 98979 57.39
findbugsnew 153518 97222 57.90
jaranalyzerold 570 465 22.58
jaranalyzernew 548 452 21.24
java2htmlold 3177 549 478.69
java2htmlnew 1366 469 191.26
jruby old 113803 68694 65.67
jruby new 125439 85545 46.64
jython old 70507 33840 108.35
jython new 70741 33494 111.20
pmd old 481033 375506 28.10
pmd new 481034 375507 28.10

Avg = 114.21%

Table 5. Comparison of CCT size with and without call-site information.

initial
5 nodes
10 nodes
20 nodes
40 nodes
80 nodes

 92
 93
 94
 95
 96
 97
 98
 99

 100

ch
ec

ks
ty

le

do
ct

or
j

fin
db

ug
s

ja
ra

na
ly

ze
r

ja
va

2h
tm

l

jru
by

jy
th

on

pm
d

ov
er

la
p(

%
)

(a)

initial
5 nodes
10 nodes
20 nodes
40 nodes
80 nodes

 92
 93
 94
 95
 96
 97
 98
 99

 100
ch

ec
ks

ty
le

do
ct

or
j

fin
db

ug
s

ja
ra

na
ly

ze
r

ja
va

2h
tm

l

jru
by

jy
th

on

pm
d

ov
er

la
p(

%
)

(b)

Figure 7. Initial and weight-adjusted Overlap for metrics execution time (a) and invocation count (b).

5.3 Weight Difference

After PARCS removes all topological differences from both CCTs, the remaining trees are topologically

identical. This means that if the two trees are traversed in some order (e.g. breadth-first), the nodes encountered

at thekth step in both trees will be identical in terms of method name and context. Other parameters, however,

may vary, such as call-site, average execution time and invocation count.

In this section, we quantify the weight similarity of the two identical CCTs for each application using the

overlap metric from in Section 3.4. We first compute the initial overlap of the two trees, then we study the effect

of weight adjustment. We consider two types of weights in this evaluation: invocation count and total execution

time. The invocation count is how many times a method (node) was called from specific call-site. The total

execution time is the average execution time multiplied by invocation count.

19 2008/11/21

Figure 7 presents these results. The left graph is when we use executiontime as the weight and the right graph

is when we use invocation count as the weight. The graphs show the initial overlap and how it increases after we

weight-adjust the top 5, 10, 20, 40 and 80 node pairs. The increase in overlap is highly monotonic for execution

time. Also, the initial overlap is high (above 94%). This indicates that the node matching found by the relaxed

common-tree matching is very accurate (and that the pair are likely to be semantically similar), since they exhibit

similar execution time. The initial overlap for invocation count is nearly 100% for most applications. This is

expected since invocation counts should vary more on change of user inputs rather than on functional upgrades.

However it is still a useful and interesting metric to consider.

6. Related Work

Since the CCT data structure was originally proposed [2], much researchhas been contributed that decrease

its size and collection overhead. In [14], the idea of the Partial Calling-Context Tree (PCCT) is proposed. A

PCCT is partial because the tree is built using sampling of the runtime stack to a certain depth and updating

the tree accordingly. The idea was further used in [5, 6, 4, 17] and extended with more efficient sampling

schemes that decrease overhead while maintaining high accuracy of the approximate CCT. The accuracy metric

used, however, is the overlap (Section 3.4) of the approximate CCT with the full CCT, which does not capture

the significance of the topological differences between the two CCTs. In other words, if a number of short-

running methods is missing from the approximate CCT, the accuracy will be slightlyaffected while the change

in performance could be drastic. Also, call-site information is ignored for sake of size reduction. Since our

approach is entirely offline, we chose to build a full CCT with call-site information incorporated.

In [3, 11, 12, 13], algorithms for syntactical, semantic, and structural comparison of software versions is

proposed. All of these prior works, however, operate statically. This isdifferent from our approach, since we

rely on dynamic profile (CCT) generated by test runs of the application. Relying on dynamic profile can expose

unforeseen effects of code modifications that are hard to identify using only static analysis. Our approach thus

complements these efforts.

Zhang et al. propose a technique to match entire execution histories of two program versions running with the

same input [15]. The execution history contains control flow taken, values produced, addresses referenced and

data dependences. This is different from our technique since these prior works assume semantically equivalent

versions (e.g. optimized and unoptimized) while we compare different revisions of a program that can include

functional upgrades.

20 2008/11/21

The work most similar to ours is described by Zhuang et al. in [16]. They have developed a framework for

comparing CCTs of the same program when running on different platforms(compilers, runtimes, systems) or

with different inputs. They rely on the tree transformation algorithm proposed in [1] to perform the comparison

efficiently. While this approach is useful to quantify the difference in execution on different platforms or

when using different inputs, it is not suitable for comparing functionally different versions of the program.

Furthermore, due to the nature of the tree transformation technique they adopt, the nodes matched from both

trees are not necessarily semantically equivalent. We have discussed thislimitation further in Section 2.2.1. Our

work is the first, to our knowledge, to focus on revision-based dynamic behavior and performance differences

with support of source code repository systems.

7. Conclusion and Future Work

In this paper, we present PARCS, an offline analysis tool that automaticallyidentifies differences between the

execution behavior of two revisions of an application. PARCS collects program behavior and performance

characteristics via profiling and generation of calling context trees (CCTs). We annotate CCTs with call-site

information and performance metrics to facilitate identification of differences inCCT topology (changes in the

calling patterns of the program) and in overall program performance (viaweight differencing). We overview our

techniques for identifying differences in CCTs and demonstrate how we use PARCs to attribute differences in

execution behavior and performance to specific changes in the source code.

We have presented an empirical evaluation of PARCS using a number of well-known Java applications.

We present what supports the use of call-site information to expose additional topological differences than

conventional CCTs. We also quantify topological and weight differences between two revisions of each

application. Our results show high topological similarity between close revisionswith changes constituting

less than 15% of the CCT size. For applications for which only releases were available to us (releases constitute

a very large number of revisions thus, many changes), we find much less similarity. This result emphasizes

the importance of using PARCS for small, minor changes to track and gain a better understanding of how

software updates impact overall behavior and performance. Moreover, our approach to weight matching to

identify differences in performance metrics (node weights) has greater than 94% overlap for all applications

indicating that relaxed common-tree matching works well for revision comparison. Overall, we find that PARCS

is most effective for incremental changes such as those common to revisions. As such PARCS has the potential

for facilitating improved understanding of the behavior and performance of complex software systems and their

evolution over time.

21 2008/11/21

As part of future work, we are investigating ways to generate inputs automatically and whether employing

multiple inputs (CCT comparisons) is effective to target and attribute behavioral differences. In addition, we

are considering coupling PARCS with static analysis to reveal more semantic information about the program

and code changes. Finally, we are working on automating the identification ofmodification differences (Stage

2). With such support, only differences due to side-effects and non-determinism will have to be investigated

by hand. The PARCS framework and visualization of behavior and performance data however, significantly

simplifies this process.

References
[1] A LBERTO APOSTOLICO, Z. G. Pattern Matching Algorithms. Oxford University Press, 1997.

[2] A MMONS, G., BALL , T., AND LARUS, J. R. Exploiting hardware performance counters with flow and context
sensitive profiling. InPLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming language
design and implementation(New York, NY, USA, 1997), ACM, pp. 85–96.

[3] A PIWATTANAPONG, T., ORSO, A., AND HARROLD, M. J. A differencing algorithm for object-oriented programs.
In ASE ’04: Proceedings of the 19th IEEE international conference on Automated software engineering(Washington,
DC, USA, 2004), IEEE Computer Society, pp. 2–13.

[4] A RNOLD, M., AND GROVE, D. Collecting and exploiting high-accuracy call graph profiles in virtual machines.
In CGO ’05: Proceedings of the international symposium on Codegeneration and optimization(Washington, DC,
USA, 2005), IEEE Computer Society, pp. 51–62.

[5] A RNOLD, M., AND RYDER, B. G. A framework for reducing the cost of instrumented code. SIGPLAN Not. 36, 5
(2001), 168–179.

[6] A RNOLD, M., AND SWEENEY, P. F. Approximating the calling context tree via sampling.Tech. rep., IBM Research,
July 2000.

[7] BOND, M. D., AND MCK INLEY, K. S. Probabilistic calling context. InOOPSLA ’07: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object oriented programming systems and applications(New York, NY, USA,
2007), ACM, pp. 97–112.

[8] Bytecode engineering library.http://jakarta.apache.org/bcel/.

[9] FELLER, P. T. Value profiling for instructions and memory locations. Master’s thesis, University of California, San
Diego, April 1998.

[10] Findbugs.http://findbugs.sourceforge.net/.

[11] JACKSON, D., AND LADD , D. A. Semantic diff: a tool for summarizing the effects of modifications. InProceedings
of the 21st IEEE International Conference on Software Maintenance(Victoria, BC, Canada, 1994), IEEE Press.

[12] LASKI , W., AND SZERMER, J. Identification of program modifications and its applications in software maintenance.
In Proceedings of the IEEE International Conference on Software Maintenance(Victoria, BC, Canada, 1992), IEEE
Press, pp. 282–290.

[13] MYERS, E. W. An o(nd) difference algorithm and its variations.Algorithmica 1(1986), 251–266.

[14] WHALEY, J. A portable sampling-based profiler for java virtual machines. InJAVA ’00: Proceedings of the ACM
2000 conference on Java Grande(New York, NY, USA, 2000), ACM, pp. 78–87.

[15] ZHANG, X., AND GUPTA, R. Matching execution histories of program versions.SIGSOFT Softw. Eng. Notes 30, 5
(2005), 197–206.

[16] ZHUANG, X., K IM , S., IO SERRANO, M., AND CHOI, J.-D. Perfdiff: a framework for performance difference
analysis in a virtual machine environment. InCGO ’08: Proceedings of the sixth annual IEEE/ACM international
symposium on Code generation and optimization(New York, NY, USA, 2008), ACM, pp. 4–13.

22 2008/11/21

[17] ZHUANG, X., SERRANO, M. J., CAIN , H. W., AND CHOI, J.-D. Accurate, efficient, and adaptive calling context
profiling. SIGPLAN Not. 41, 6 (2006), 263–271.

23 2008/11/21

