Please do not distribute — this is ongoing work that has not yet beenyblished.

Offline Framework for Performance Comparison of Software
Revisions

Nagy Mostafa and Chandra Krintz

Computer Science Department
Univ. of California, Santa Barbara

{nagy,ckrintz}Q@cs.ucsb.edu
UCSB Technical Report #2008-19 Nov. 21, 2008

Abstract

Repository-based version control systems such as CVS, RCS, Sidoyeand GIT, are extremely useful tools
that enable software developers to concurrently modify source coadggaaonflicting changes, and commit
updates as new revisions. Such systems facilitate collaboration with andreamtccontribution to shared
source code by large developer bases. In this work, we investigatenawrork that lays the groundwork for
“performance-aware” repository and revision control for Javayms. Our framework automatically tracks
behavioral differences across revisions to provide developers e#dttibbick as to how their change impacts
performance of the application. It does so as part of the repository cqmoaiss by profiling the performance
of the program or component, and performing automatic analyses that yddiftérences in the dynamic
behavior or performance between two code revisions.

In this paper, we present our analysis system that is based upon @mdi€xyprior work on calling context
tree (CCT) profiling and performance differencing. Our framewotlkptes the use of precise CCT information
annotated with performance metrics and call-site information, with a simple treeacsmp technique and
novel heuristics that together target the cause of performance diffesebetween code revisions without
knowledge of program semantics. We evaluate the efficacy of the frarkewong a number of open source
Java applications and present a case study in which we use the framewdiskinguish two revisions of the
popular FindBugs application.

1. Introduction

Software developers world-wide employ revision control (RC) systemarfanaging a vast number and
diversity of open-source and proprietary software code basesyREms facilitate and support distributed,
collaborative, and incremental contribution to shared source code vigstoepositories and a set of tools
that provide, among other things, access to files, management, trackihigrearching of revisions, automatic
resolution of conflicts, and feedback to developers when automatic ¢oafimution fails or when events occur
by other developers.

Client-server RC systems include CVS, RCS, Subversion, and the VisudioSTeam System (VSTS);

popular RC systems that implement distributed local repositories include Gd$ilFMercurial, and Codeville.

1 2008/11/21

Although these RC systems are stand-alone applications (the focus obdq)r support for revision control can
be and is integrated into other applications such as word process@adspeets, and databases. RC systems
enable developers to access and branch off of earlier revisions rofecipor file and in some cases provide
other services such as automatic testing (Visual Studio Team System (V&T=)efect or issue tracking (e.g.
Codeville, Fossil, VSTS).

In this work, we are interested in providing a new service for RC systearkitrg of revision performance
and dynamic behavior differences. To enable this, we have desigrkdrnghementedperformance-aware
revision control support (PARCSa service that provides feedback to developers as to how a charige tha
they have committed affects the behavior and performance of the oveptitaton. Given the complexity of
hardware and software and the popularity of collaborative developswgit tools are key to helping developers
understand the behavior of large applications and how local and inctelmandifications impact overall
performance over time.

PARCS is a program profiling and analysis framework that executesgagmousing test inputs when a
new source code revision is checked into an RC repository. PARCS huplals and extends prior work on
calling context tree (CCT) profiling [2, 14, 6, 4, 17] and performaniée@ncing [16], but is unique in that
it targets two different versions of the same program with the same inputeosatime platform. Prior work
has focused on identifying performance differences across twaigsas of the same program using different
inputs or underlying platforms [16]. PARCS instruments the program anelrgees a precise CCT during offline
(background) execution. PARCS annotates the CCT with a number ofetiffperformance metrics and can
store CCTs for later comparison across revisions.

To find CCT differences, PARCS first transforms the trees using comraemtatching that we extend with
feedback from changes that the developer has made to the code andrsiapddion techniques. As a result,
PARCS incrementally identifies topological differences in the CCTs of twimws. PARCS then classifies
these differences into four categories that distinguish the reason bisleinmbrformance differences: method
addition/deletion, direct code modification, indirect code modification eftewd, non-determinism. PARCS
excises all subtrees rooted at nodes where these differences tarigina

The CCTs that result after this pruning are identical topologically. PARGS/aes these trees for differences
in the performance metrics that annotate the trees. For this step, PARCs smsipigye weight matching and

performs an iterative algorithm to identify pairs of nodes with weight difiees that are significant, i.e., that are

2 2008/11/21

larger than the differences that are typical of a non-deterministic effeztlly, PARCS attributes the topological
and weight differences to specific code changes and reports its fanblawds to the developer.

We implement a PARCS prototype for Java programs via extensions to theJDgeivM from Sun
Microsystems. We empirically evaluate the efficacy of PARCS using a nunfibpea source Java programs and
employ PARCS to identify differences between two revisions of these apiphsaAlthough the test input that
PARCS employs for CCT creation determines the amount of topological aigtitveifference that it discovers,
we find that a single, well chosen input can lend significant insight intasdehal and performance differences
that result from source code changes. PARCS however, is able siigate any number of inputs concurrently.
We describe a detailed case study that we perform to attribute behavidna¢gormance differences to changes
made between revisions using a single input for the popular FindBugs aipgti¢10]. Overall, we find that
PARCS is easy to use and highly effective at helping to identify the causevigion-based behavioral and
performance differences.

In the section that follows, we provide background on the key comporneatsPARCS builds upon and
extends. We then detail the PARCS design and implementation (Section 3)ctlorSé, we present a case
study on our use of PARCS for revisions of the popular FindBugs apioican Section 5, we empirically
evaluate PARCS using a number of different open source applicationghél discuss related work (Section

6) and present our conclusions and plans for future work (Section 7)

2. PARCS

PARCS is performance-aware repository control support that identfjfeaamic behavioral and performance
differences that result from changes to source code from revisicgvision. To enable this, PARCS employs
a dynamic calling context tree (CCT) for collection and evaluation of dynamagram behavior. PARCS
compares two software revisions by identifying the topological and weigsedbdifferences between the CCTs
of the two revisions. We overview the background on CCTs and CCT tgpealldifferencing in the subsections

that follow. We detail the PARCS implementation of weight-based differencii@gation 3.

2.1 PARCS Dynamic Program Representation and Collection

PARCS collects, manipulates, and compares the dynamic behavior of amproging a data structure called
a calling context tree (CCT) [2]. A CCT captures the calling context ohehmamic method invocation that
occurs during program execution. Given a method call stack, the cabhimigxt is the list of methods that are

invoked without returning to reach a particular program point (in this easethod call).

3 2008/11/21

public void A(){
1:B();

5:C();

9: B();

}

public void B(){
1: D();

5: EQ);

}

public void C(){
1: FQ;

} S

public void D(){} 1 !

public void E(){}

public void FO{} (20 (B (F) (O (B
(b)

Figure 1. Code snippet with the corresponding CCT. (a) shows the correspo@dig with no call-site
information included. (b) shows the equivalent tree with call-site informatimvea as subscript

A CCT summarizes the dynamic call tree (DCT) of a program. Each node inGfie$a single activation of
a method during execution. An DCT edge from node X to node Y, repteaatynamic invocation of Y from the
code in X. DCTs can be annotated with additional runtime information suchezsigan time and arguments
for each node. One way to summarize the DCT, to reduce its potentially ensrsikr) is to instead use a
dynamic call graph (DCG). In a DCG each node corresponddl tactivations of a method. Such a summary
however can lose significant amounts of behavioral information aboeixéneution of a program.

The CCT is a data structure that provides a middle ground — it does ndtedha space of a DCT but
captures important behavior information that a DCG loses. In a CCT, aliasictis of the same method that
execute from the same calling context are aggregated into a single no@elg&rfrom node X to Y, as in the
DCT, represents a call from X to Y. The calling context of a node Y, tlusaptured by a series of nodes from
the root of the tree to node Y. The edge between two nodes recordsrtiinof times the program executes
that particular calling context.

Figure 1 illustrates an example of a CCT for a program with methods A througkgdtiming that A is the
entry method, (a) shows the CCT for a particular execution of the program.numbers on the edges are
invocation counts. For example, the invocation count on the edgB B 2, which means that D is called twice

from the context A-B.

4 2008/11/21

PARCS employs CCTs for its profile collection. However, we extend its implertient® distinguish call-
sites (prior work considers all calls to a method Y within method X to have the samext [16]). In our CCTSs,
PARCS records a method Y that is called from two different call-sites within ageindependently from each
other. Figure 1 (b) shows the CCT with call-site information (shown as sipis)c Distinguishing based on call-
site information increases the size of the CCT but provides more details thigoexecution that are useful to
developers for identifying behavioral and performance differeacesss revisions. The authors in [7] show that
call-site information is also important for coverage testing and anomaly deterdiog CCTs. We evaluate the
trade-off between size and accuracy of employing call-site informatioillémtifying performance differences
in Section 5.

The call-site CCT serves as a suitable data structure for comparingrparfoe across program revisions
as it captures context information which helps programmers better unugstaformance and correlate it to
the program semantics. Context information expressed as stack tracstllahe most widely used means
of describing program point of failure. Moreover, CCTs provide adytrade-off between size and accuracy
compared to DCTs and DCGs.

PARCS instruments each method entry and exit of the program to collect theSt€e PARCS is employed
by a revision control system off-line (in the background), we do nositer the overhead of exhaustive profiling
of the calling contexts. Exhaustive profiling is important for PARCS sincedibis to capture all calling context
behavior. PARCS annotates the collected CCTs with other profile informatiom as execution time and
invocation count. The PARCS framework is extensible enabling resaarthénvestigate its efficacy using

other performance metrics.

2.2 Identifying Topological Differences in CCTs

PARCS compares two CCTs to identify the topological differences betwesm.tin the subsections that
follow, we consider two well known topological tree matching algorithms: trapsfiormation and common
tree matching. We then present relaxed common tree matching, the algorithRARGS employs to identify

topological differences.

2.2.1 Tree Transformation

Shasha et al. [1] propose a tree comparison algorithm for orderes] theg employ dynamic programming for
its implementation. An ordered tree is a tree in which the children of each nededtal order. Given two trees,

the algorithm finds a sequence of operations that, when applied, trarsséore tree to the other. The algorithm

5 2008/11/21

Operations: (1) Rename C to N, (2) Rename B to M

Figure 2. Example of tree transformation.

is optimal in the number of transformation operations used (the edit distandd)as a time complexity of

O(|CCT1| x |CCT2|). The primary tree operations used are:

1. Delete X:delete node X and move its children to its parent Y; the children are insertbd same position

in the child order of Y at which X was positioned.

2. Insert X, Y, Padd node X to be a child of node Y at position P in the children order of Y.tX geonsecutive

subsequence of Y’s children.

3. Rename X, Yrename node X to Y.

Although this algorithm was originally designed for abstract trees, Zheangl employ the algorithm to
compare two CCTs for theameprogram that they execute on different platforms or with different infL8%
The authors in this prior work use the number of operations required teftram CCT1 to be CCT2, as a
difference metriavith which they compare two trees.

Figure 2 shows two CCTs with topological difference and the sequenesuating operations that transform
the left CCT to the right CCT. After applying the transformation the two CCT®be identical. All nodes that
are not involved in any transformations are matched nodes. The dottegsarr Figure 2 shows the matching.

The way the algorithm matches nodes relies solely on the node label andtitsrgesin the tree. It ignores
the context of the node (path from root to the node) and hence may malels math the same method name
but different contexts. For example, in Figure 2 method X called by method\Change completely different
semantic than X by method N. Considering the two to be equivalent could be diigleto performance
analysts. Since in PARCS we are comparing two versions of a prograne, ithexscuracies are more likely
to occur more often since the code is different across versions. uraetges in PARCS lead to incorrect

identification of differences and attribution of differences to code cbsng

6 2008/11/21

Also, using dynamic programming incurs quadratic time and space ovellvédd.this is tolerable for small
CCTs, it becomes hindering for larger ones. Since we rely on call-sitesG@Tmore accurate differencing,
using this algorithm becomes infeasible. For example, the call-site CCT of &gsdas 155,787 nodes. Thus
an array of more than 22.5 billion entry is needed.

For the above reasons, we investigate an alternative approach to CChingabased on common tree

matching.

2.2.2 Common Tree Matching

Common tree matching is a well-known, simple technique for comparing two treealgorithm traverses the
tree level-by-level, comparing nodes. Each node in the tree has an ©heeorder of node: is the position of
n amongst its siblings. For example, in Figure 3 (a), the order of nodes AdB-are 1, 1 and 2, respectively.

We define equivalence of two nodes recursively as follows:

Definition 1. Node Equivalence:

Noden; € C'CT; is equivalent to nodey € CCTs iff

1. n; andny have the same method name
2. n1 andns have the same order

3. n1 andny have equivalent parent nodes

This definition implies that equivalent nodes always have the same contertoler, if two nodes are not
equivalent, we consider the subtrees rooted at them a topologicakdifer

Figure 3 (a) illustrates a common tree matching example. First, we compareodes, rsince they are equal,
we proceed to the second level (A's children). On the second level ri@dide B exists in both trees, thus we
consider it on the common tree and will process all of its children once we todbe third level. The second
node C in the left tree corresponds to F in the right, which is a mismatch; wet tegin C and F and their
subtrees as a topological difference. We do the same thing (apply a misrizatoble C in the right tree. The
grey nodes constitute the resulting common-tree.

The problem with common-tree matching is that it follows a very conservasfiaition of equivalence. In
the right tree of Figure 3 (a), method A has been modified to call method IFebiéfmalls C. If this is the case,
we should report C as part of the common-tree. Because of the definftieguivalence, we report C in the

right tree as a mismatch. To overcome this limitation and to capture such charsmsde code, we relax the

7 2008/11/21

.8,

Figure 3. Common tree matching example. (a) shows strict common tree matching. (b) #mwalaxed
common tree matching. Grey nodes are the common tree found in each case

definition above to use the relative ordering among matched nodes insteéadefivition of equivalence then

becomes:

Definition 2. Relaxed Node Equivalence:

Noden; € CCT; is equivalent to node, € CCTs iff

1. nq andny have the same method name
2. n1 andns have equivalent parent nodes

3. all matched left siblings ofi; are matched to left siblings of, and all matched left siblings of, are

matched to left siblings of; .

We refer to the version of the algorithm that employs this definitioreEsed common-tree matchingsing
this algorithm, equivalent nodes still have the same context. The diffeisrihat they do not have the exact
child order. Figure 3 (b) shows that using Definition 2, we can match notfée@mploy relaxed common-tree

matching within PARCS to identify topological differences between two CChicgfam revisions).
3. PARCS Implementation

Figure 4 overviews the PARCS process. We employ PARCS for revisibdava programs in our current
prototype. We start by checking out the source code of the two revisfanterest from a code repository (e.g.
CVS). We then compile the source code to bytecode. Next, we run the twgiorey using the same test input
via a modified Java Virtual Machine that builds CCTs from the execution.Allegenerate the CCTs of earlier
revisions on-the-fly, in parallel, or store them in the repository. Devetopan specify the input that PARCS

uses to generate CCTs; PARCS can evaluate multiple inputs and CCT paiusreottly.

8 2008/11/21

test input

Test Run
Q| Q
a0
Nl e
rev bc changelist ¥ common-
> L Tovological tree Weich
Compiler Bytecode opologica cight
s > i ‘Comparatorj> Comparator Matching

rev,) be
? topological weight
differences differences

Figure 4. Framework overviewrev; andrewvs refer to old and new revisions, respectivély, andbcs are the
corresponding bytecode.

In addition, PARCS performs a fast, static bytecode comparison on theorevito extract method-level
changes. PARCS feeds the CCTs and this bytecode change-list into thmamntal topological comparator.
After this component removes all topological differences from the CEARCS performs weight matching on
the resulting trees to identify nodes with the largest differences in perfaenaetrics. We detail each of these

steps in the following subsections.
3.1 CCT Collection

The PARCS system generates CCTs by exhaustively recording all ajpmtianethods calls and returns. For
this study, we record only application methods and ignore calls to the Jatimeuand library code to keep
CCT sizes small and CCT processing fast. We can easily extend this systestutte library calls if necessary.
Since the libraries will not change from revision to revision, we need oatfopm weight matching on them to
identify performance differences that occur indirectly from applicatiotiecchanges. Our CCTs, as described
earlier, distinguish contexts for each call-site invoked. The performanatgcs with which we annotate CCTs
include invocation count, and the average and standard deviation aftexetime. We store all CCTs in a

relational database for future analysis.
3.2 Method-level Bytecode Comparison

After compiling the two revisions, we perform a bytecode comparison torgena list of all added, deleted,
modified, and renamed methods. The process starts by compiling sourdeofitesach revision code base to
get the set of class files. The class files therefore belong to either theation or any local Java modules it
uses. We do not consider class files that are dynamically downloaded aeéwork or created at runtime.

We have chosen to implement this comparison on the Java virtual machine inteienegdresentation (byte-

code) rather than source code because of its compact and readilyokv/&lanat as opposed to manipulating

9 2008/11/21

the diff files of repository. Also, some source code changes are s3eld?ARCS since they have no effect
on the program semantics (e.g. variable declaration relocation within a metmiahle renaming, replacing
a for-loop with a while-loop, ... etc.). Most of these changes are notctefleon the bytecode and hence are
automatically ignored. The same argument holds for any other virtual maichémmediate form.

We match the class files from the two revisions according to their packagdamsthames. For each matched
pair of class files, we generate a list of methods that each class file corBgieemparing the two lists, we

build the following method sets:

1. Added Methodsmethods present in the new revision but not in the old one.

2. Deleted Methodsmethods present in the old revision but not in the new one.

3. Modified Methodsmethods present in both revisions with everything identical except foratie lsody.

4. Renamed Methodsnethods present in both revision with everything identical except for theadethme.

We compare methods by their fully qualified names and code bodies. A fullifigdanethod name consists
of the full package name, class hame, and method signature. The methatlisdgronsists of method name,
number and type of parameters, and return type. We consider a methodaahaéidinly the code body has been

changed. Renamed methods have only changed method names.

3.3 Incremental Topological Comparison
There are four primary reasons for topological differences betweemevisions:
e Reason 1 Addition/Deletion of Methodsany calls to such methods introduces a topological difference.

e Reason 2 Direct Modification:code modification that explicitly enables/disables or adds/deletes a call to a

method existing in both revisions.

e Reason 3Indirect Modification:a change in the program that has a side effect. For example, a gloladllgar
update or a configuration file change that affects which methods are.calt] some modifications may

have hidden effect on another method execution time, such as the déftect® thrashing.

e Reason 4 Non-determinismtandomness in the program execution.
Using the code change information that we obtain from the bytecode compavie label CCT nodes as
“added”, “deleted”, “modified” or “renamed”. This mapping of code ©fa to the dynamic CCT enables

topological differencing to proceed incrementally. Using these reasegardes, we apply the relaxed common-

tree matching technique that we describe in Section 2.2.2, incrementally in thges:s

10 2008/11/21

20 (20%) 17 (34%)

20 (20%) 10 (10%) 5 (10%) 7 (14%)
7(7%) 8 (16%) 3 (6%)

25(25%) 8 (8%) 7(14%) 3 (6%)
(@) ®)

Figure 5. Weight matching example. Common trees with identical topology and differeghtge
Stage 1. We excise all subtrees rooted at added and deleted nodes from thea@@T®g each change for

later attribution (Reason 1).

Stage2. We identify topological differences that are most likely due to direct modifingfeason 2). Given
the set of modified nodes, we identify the modified nodes that are highegatalors in the tree. X is a dominator
of Y, if the path from the CCT rootto Y contains X (and X and Y are both modifiedes). A highest dominator
is a modified node with no modified dominators (i.e. highest in the tree). Using éfisittbon, we match
highest dominators across the two CCTs using method signatures andtsoWexignore unmatched nodes
as we handle them in Stage 3. For each pair of matched highest dominaggrerfarm relaxed common-tree
matching on the subtrees rooted at them. We report all differences thiitidvas potentially resulting from
direct modification. Although this is the most likely cause (and is the most commouriaxperience), it is
possible that the differences we identify result from side-effects nrdeierminism. We excise these subtrees

and report each change.

Stage 3. Finally, we conduct a global topological comparison for what remainsefwlo CCTs and record
each change. These topological differences are either due to sdtsedf non-determinism (Reason 3 and 4).
We excise (and report) all subtrees rooted at unmatched nodes.

3.4 Identifying Weight Differences

With all topological differences reported and omitted from the two CCTs, #nes pemaining are identical in
topology but they may vary in performance metrics. PARCS next perforaightvmatching to identify the
differences in weights across CCTs. Weight differencing is a key coemiocof PARCS since it identifies dif-
ferences that are due to changes to the code made by the developehatige functionality without changing
the method call behavior. In addition, weight matching identifies behaviodgparformance differences due to
modification side effects (and non-determinism).

The PARCS weight matching algorithm quantifies the degree of similarity betthedmwo trees in terms of

their annotated performance data using an overlap metric defined anuh @siEdt work [9, 5, 6, 16]. We define

11 2008/11/21

overlap in our setting as:

overlap(|CCT|, |CCTy|) =

Z min(pweight(ny, CCTY), pweight(ng, CCTy))

n1eCCTy
no€CCTy
nl=n2

wheren; = ny means that; in CCT; is equivalent ton, in CCT;, (the two nodes match). We define
pweight(n;, CCT;) as the percentage of the total weight across all nodesSGH; that is represented by
the weight of node:; in CCT;. The degree of overlap ranges from 0% to 100% and indicates how much
of the performance of’C'T; is similar to that ofCC'T5, i.e. how much oflC’CT5'’s performance is covered by
CCTy. 100% overlap indicates perfectly identical CCTs. Note that since themigleterminism and noise in
performance data — it is likely to be the case that two CCTs generated by fexedifruns of the same program

on the same platform with the same input, do not have 100% overlap. For kxahgplatest revision of the
popular FindBugs application (that we analyse in the next section), 8% %verlap in execution time using
our test input. Figure 5 illustrates the common-trees from Figure 3 that PARS &innotated with absolute
node weights angweights (shown in parenthesis). The overlap of the two CCTs is 76%.

To identify the pairs of nodes that constitute the most significant perforendifierence, we employ this
overlap metric as part of an iterative weight matching algorithm based updrethployed in [16] for node
matching. Our algorithm is parameterized by an overlap threshold (and nafhedes of interest). However,
we automate generation of the overlap threshold value by computing the pperieentage of two CCTs for
the latest revision — the same program, on the same platform, using the same Bipug &xecute twice. This
overlap value captures the difference that we expect from noise amdeterminism. Developers can set this
threshold to a different value, to investigate other weight difference gbso desired. Alternatively, developers
can specify the number of nodes they are interested in investigating, i.e.ps#hfe to specify that no more
than 10 matched nodes are returned. The nodes that PARCS retutims arethods responsible for the greatest
contribution to the overall weight difference between the two revisions.

We first compute theweight difference between each pair of matched nodes. We sort the pairsle$ imo
decreasing order of this difference. The pair sequence for the dgamipigure 5is A, E, D, C, H, B and I. We
compute the overlap of the CCTs and compare it to the threshold. If the pweallize is less than the threshold,

we perform an iterative computation to adjust the weights (to produce avestap value).

12 2008/11/21

Specifically, we iterate over the pairs in order of largest to smalkestght difference, and for each pair we
adjust the smalbweight to be equal to the large one. We then recompute overlap and compare tleiso/tie
overlap threshold (or to the maximum node count specified if any). Oncer ¢ftteshold is reached, PARCS
reports the nodes for which it performed weight adjustment.

In our example, we first adjust A's weight in the right CCT to be 8.25 (wischpweight of 20% to match
that of A in the left CCT). When we recompute overlap, the result &.35%. We compare this resulting value
to the overlap percentage and the number 1 (since we have adjustedrptetha specified maximum number

of nodes to return, if any. We continue to adjust the second pair (E)itifareone of these constraints is met.

3.5 Attributing Topological and Weight Differences

In our current prototype of PARCS, we report each difference withoedered list of methods that are
most likely to be the cause of the difference. We also report supportidgrese and data for each method
(context, performance metrics, etc.). In addition, PARCS presents thextamformation (annotated subtrees,
complete CCTs with highlighted node differences, etc.) to developers ihigedformat for easy viewing and
investigation. The source repository software identifies all changestmadeh of these methods that we report.
The exact attribution of a difference to a specific change howeverepds by hand — however with PARCS
support (described below). We walk through an example of this pracdise next section for two revisions of
the FindBugs application.

To identify the most likely methods causing each difference that PARCS idsntilie employ a simple
heuristic. We consider the reasons we list in Section 3.3 as the potentialsc&ios Stage 1 differences, we
report the parents of the excised subtrees (callers to added/deleteddg)effar subtree excised in Stage 2,
we report the list of modified nodes on the path from the subtree root toGfer@ot starting from the closest
modified dominator upwards. For Stage 3 and weight matching, we repodifteezsnces along with their

context.

4. Usage Example: FindBugs

In this section we demonstrate, by example, how we apply these heuristicatifyitlee reason for topological
and weight differences. To enable this, we compare the CCTs of twaarsisf FindBugs [10], a Java tool to
find bugs statically in Java code.

First, we execute Stage 1 of the algorithm to remove all subtrees rootedeat/ddleted nodes and Stage 2

to find subtrees of differences dominated by modified nodes. Figure @élizissl a subset of the CCT from the

13 2008/11/21

latest FindBugs revision. We only show node ID’s for conveniencevamientify the modified methods with
rectangular nodes. The nodes in gray are those that Stage 2 identifie@nt from the CCT of the earlier
revision. These are the nodes that Stage 2 removes. Stage 2 returnsdhallisnodified nodes between the
subtree root and the CCT root for all removed subtrees. PARCSsotfakettist from the modified node nearest
to the subtree to the furthest. For the subtree rooted at node 29747 SAREns the lis{29744, 19913.

For this case study, we first investigate the reason behind the topologfeatices in the three subtrees
rooted at 29745, 29747 and 29748 which correspond to methods:

Item.init(), Item.makeCrossMethod@nd Item.equals()in the FindBugs application, respectively. As we de-
scribe previously, there are three potential reasons behind theseidifés. The first and most likely reason
is direct code modification that introduced/enabled these calls. In suek,dhe modified method nodes will
be one of the ancestors of the subtrees roots (in this case nodes 28V49% 3) that Stage 2 returns. The
second reason is a side effect of some modification that indirectly calesssltlrees. Finally, the reason may
be non-determinism during execution.

We begin by investigating the methods that correspond to the nodes that Staperts (29744 then
19913): FieldSummary.setCompletefhd FindBugs2.analyzeApplicatipmespectively. Using the differences
in the source code of these methods reported by the source code rgp(@sitour bytecode analysis tool), we
find that the modified methdéieldSummary.setCompleteif)serts these three calls in the latest revision but not
in the former.

We repeat the same procedure to find the cause for the differentesibbaed at nodes 130194 and 130190.
The ordered list of candidate methods that Stage 2 repd78is82, 19913. Again, we start by the node closest
to the subtree root which corresponds to mettidUnrelatedTypesinGenericContainer.analyzeMethod()
which implements a source code change that inserts the two calls.

After removing all topological difference during Stage one and two, tietopological differences remain-
ing, if any, will be due to either indirect modification or non-determinism ofcexien. By running stage three
of the algorithm, we find one tree removed from each CCT both rooted at thddlva\ersion.clini{not shown
in the figure). This method is the class initializer for the cldessaVersionAnalyzing this method, we find that
non-determinism is the reason. In particular, the use of the Java datausttdashSemakes no guarantee to
the iteration order of the set. The order by which the items inHthshSetare processed dictates the point at

which the class initializer aJavaVersions invoked to cause topological difference.

14 2008/11/21

Figure 6. Visualization of topological differences between two Findbugs revisidhs. grayed nodes are a
subset of those nodes removed by Stage 2. Rectangular nodesenépreslified methods. Our case study
investigates the cause behind the differences for the subtrees rootdkst29747, 29748, and 29745.

App. Name

nodes old rev.

nodes new rev

Description

checkstyle 1127149 1127299 | atool to help programmers write Java code that adheres to a codingusta
doctorj 360270 360276 | javadoc analysis tool

findbugs 155787 153518 | uses static analysis to look for bugs in Java code

jaranalyzer 569 548 | dependency management utility for jar files

java2html 3177 1366 | Java code to html convertor

jruby 113796 125436 | Java implementation of the Ruby programming language

jython 69648 70741 | Java implementation of the Python programming language

pmd 481033 481034 | scans Java code and looks for potential problems (bugs, dead. cede.)

Table 1. Applications evaluated with their CCT size for two revisions.

Finally, we investigate the reason for the total execution time difference batwhe two CCTs (with

topological differences excised). We find that the node with the higliféstehce inpweight is of the method

PreorderVisitor.visitCode()PARCS reports that both the execution time and invocation count haseghamitpe

new revision. The invocation count drops from 8469 in the old revisio®Y5n the new one. PARCS reports

that this method invokes a call @pCodeStackDetector.visitCoddifat was removed in the new revision and

added to the caller dPreorderVisitor.visitCode()This change causes a drop in the invocation count of that

method which decreases its total execution time.

15

2008/11/21

App. Name | #old | #new #old #new | deleted added | modified | renamed
files files | methods| methods| methods| methods| methods| methods
checkstyle | 1386 | 1386 11948 11953 3 8 11 0
doctorj 226 226 3934 3937 2 5 4 0
findbugs 3570 | 3569 27424 27415 12 3 11 0
jaranalyzer | 413 423 3397 3486 26 115 587 0
java2htmi 121 132 819 873 138 192 302 0
jruby 4156 | 4259 25514 26653 773 1912 1592 0
jython 1819 | 1820 15487 15520 0 33 39 0
pmd 923 923 11336 11336 4 4 6 0

Table 2. Parameters and results of bytecode comparison.

5. Experimental Evaluation

Our experimental platform is a dual-core Intel Core 2 Duo machine cloak@d4 GHz with 4M of L2 cache
and 2GB of main memory running Linux-2.6.24. The Java virtual machine igsddtSpot version 13.0-b02
within OpenJDK 1.7.0. We extended our JVM to instrument and collect pagoce statistics and method calls
and returns. We ignore calls to the JVM runtime and to the Java librariesficieaty.

Table 1 describes the eight open-source Java applications that we exsauate PARCS empirically. For
each application, we use PARCS to compare the dynamic behavior of twoydbstable revisions of the
code running with the same test input. For some applications we compareeiestead of revisions because
revisions are unavailable (jaranalyzer, java2html and jruby). We ugpedtfe Byte Code Engineering Library
(BCEL) [8] to perform bytecode comparison of revisions. The seadithird column of the table show the
CCT size, in number of nodes, of the old and new revisions, respectigelach application.

The test input that PARCS employs for CCT creation determines the amounpabdical and weight
difference found. Software developers can expose more diffesebg orchestrating special test inputs. For
our experiments, we construct the input ourselves or employ one ptbbiglehe application repository. In
addition, we plan to investigate using multiple inputs (multiple CCT comparisons) mptbging automatic
test input generation as part of future work. We plan to make all of owt&@VM modifications, and BCEL

tool available should this paper be accepted.

5.1 Bytecode Comparison

We first quantify the changes that PARCS finds when performing metivetidgtecode comparison between
two revisions using Table 2. Columns two and three show the number of uclegpsefiles from each application
code base. Columns four and five show the number of methods in the oldeandewisions, respectively.
Columns six to nine contain the difference in terms of methods added, deletddiesti@nd renamed. The

highest numbers belong to jaranalyzer, javazhtml and jruby, for whicluseereleases instead of revisions.

16 2008/11/21

PARCS finds no renamed methods for any of the applications. This is leecéuke strict definition of a
renamed method that we adopt in which only the method name should changey &ur tests, we have found
that a method name change is always accompanied by a change in the sigmdlg containing class, which

we classify as a method removal then addition (Section 3.2).

5.2 Topological Difference

To evaluate the common-tree matching algorithm that PARCS employs, we quhatifital number of subtrees
and nodes that PARCS removes from both trees at each stage. Retemptbie-tree matching proceeds by
comparing nodes of the two trees level-by-level. The algorithm does noéed to compare subtrees rooted at
unmatched nodes, and reports them as a topological difference. Aftep@ogical differences are removed,
what remains is the common-tree which is the intersection of the two CCTs camnpdeehave quantified the
size of the common-tree obtained for each application. The bigger the cotnesosize, the more topologically
similar the CCTs are.

We show the results in Table 3. The third columns is the common-tree size &piagye of the CCT size
of the old revision. Six of the eight applications show high similarity (above J8%,md shows the highest
similarity as only one node is reported as a topological difference. As weignepreviously, we compare
releases for jaranalyzer, java2html and jruby. As expected, java2imdhjraby show low similarity, while
jaranalyzer shows high similarity between its releases. These empiriclibreslicate that relaxed common-
tree matching is effective for comparing software close revisions andgthioeing conservative, does not delete
large portions of the trees as the case for releases and distant revisions

The other columns show the number of subtrees and the equivalent nahmosles that PARCS removes at
each stage. The columns titled “added” and “deleted” contain data abonéss removed due to being rooted
at added or deleted nodes (Section 3.2). The one titled “modified” contagssttrat have at least one modified
node as a dominant node. “Side effects” are unmatched subtreesrthat b& classified as any of the above.
Zero values under these columns indicate that no added, deleted or moagiedds were executed during
execution. Pmd has zeros in all three categories because of the low noinchanged methods (Table 2).

We also studied the benefit of using CCTs with call-site information. As mentibatate, call-site CCTs
contain more information as they distinguish methods called from the same coutédm different call-sites.
This extra information becomes useful for topological comparison asdatevnore differences that would have

been, using ordinary CCTs, aggregated with other subtrees.

17 2008/11/21

App. common common deleted added modified side effects

Name tree size| tree size (%)|| subtrees| nodes|| subtrees| nodes|| subtrees| nodes|| subtrees| nodes
checkstyle | 1122368 99.58 159 | 1059 80 521 984 | 4743 522 | 3389
doctorj 360249 99.99 0 0 6 18 7 30 0 0
findbugs 135528 87.00 19 | 19856 5| 17967 29 418 2 8
jaranalyzer 538 94.39 0 0 8 10 8 10 8 22
java2html 421 13.25 42 | 1314 37 608 23 | 1779 0 0
jruby 8804 7.74 1811 | 97983 2159 | 93883 1467 | 29768 0 0
jython 62955 89.29 0 0 786 | 6671 1395 | 5600 276 | 3067
pmd 481033 100.00 0 0 0 0 0 0 1 1

Table 3. Subtrees and nodes removed at each stage of topological differencing

App. Name || deleted || added || modified || side effects
checkstyle 76 66 102 0
doctorj 0 4 6 0
findbugs 19 5 28 2
jaranalyzer 0 4 4 5
javazhtml 25 20 20 0
jruby 1196 || 1754 808 0
jython 0 125 218 37
pmd 0 0 0 1

Table 4. Subtrees removed at each stage for CCTs without call-site information.

To assess the additional differences revealed via call-site CCTs, wecbawared the number of subtrees
removed as topological differences using both types of CCTs. Highmebeuof subtrees removed means more
differences that PARCS discovers. Table 4 summarizes our results. Sionflable 3, it shows the numbers of
subtrees removed divided into the four classifications. For most applisattom difference is significant. For
example, checkstyle has 522 subtrees removed as side effects usisigec@GT Table 3. This number drops
to zero when switching to a conventional CCT. This indicates that all thdstee®s are merged under other
subtrees (of the same context and root method name) that were suttgesatched, and thus the difference is
hidden. This case occurs when the same method is invoked multiple times froamikeentext from different
call sites. This effect is not present for FindBugs and hence the msrabenearly identical.

The trade off that we make for this increase in detail (and thus undenstpofdprogram behavior) is in the
CCT size. In Table 5, we quantify this overhead for both revisions ofpplications. Columns two and three
show the CCT size as the number of nodes, with and without call-site inform&ti@nfourth column is the
percent increase in CCT size due to using call-site information. The oldara§java2html shows the highest
increase (478.69%) while jaranalyzer’s new revision shows the lo2&s14%). The average increase is slightly
more than the original size of the CCT. The data show that the increaseriig sie@lar across revisions. The

only two exceptions are java2html and jruby, for which we employ releasésad of revisions.

18 2008/11/21

App. Name # nodes # nodes| Difference (%)
w call-site | w/o call-site

checkstyleold 1127149 307424 266.64
checkstylenew 1127299 307544 266.55
doctorjold 360270 260061 38.53
doctorjnew 360276 260064 38.53
findbugsold 155787 98979 57.39
findbugsnew 153518 97222 57.90
jaranalyzerold 570 465 22.58
jaranalyzemew 548 452 21.24
java2htmlold 3177 549 478.69
java2htmlnew 1366 469 191.26
jruby_old 113803 68694 65.67
jruby_new 125439 85545 46.64
jython_old 70507 33840 108.35
jython_new 70741 33494 111.20
pmd.old 481033 375506 28.10
pmd.new 481034 375507 28.10

Avg =114.21%

Table 5. Comparison of CCT size with and without call-site information.

W initial
W 5 nodes
B 10 nodes
B 20 nodes
7] gg noges
100 [} nodes
RIS (IR 1B R IE B .
3 CERISEEE (IR I R W IR .
%_ 97~
I 9%
$ 951
© o4
93

jruby
jython

>
(]
X
(8]
(0]
N
o

£
s
=
N
g
5,

[%2)

o 8

=S

S 3

he]

c c

= ©

Y- —_
S,

@

pmd

overlap(%)

W initial
W 5 nodes
B 10 nodes
B 20 nodes
7] 2318 noges
100] nodes

99

98-

97~

96

95~

94

93

jruby
pmd

jython

: 2
g 2
19 o
S =]
0} =
= Y
o

o £

N

> =
N

£ ¢

= Ko

(b)

Figure 7. Initial and weight-adjusted Overlap for metrics execution time (a) and invatatant (b).

5.3 Weight Difference

After PARCS removes all topological differences from both CCTs, theairing trees are topologically

identical. This means that if the two trees are traversed in some order @agtiufirst), the nodes encountered

at thek!” step in both trees will be identical in terms of method name and context. Othengtara, however,

may vary, such as call-site, average execution time and invocation count.

In this section, we quantify the weight similarity of the two identical CCTs foheagplication using the

overlap metric from in Section 3.4. We first compute the initial overlap of the tagstrthen we study the effect

of weight adjustment. We consider two types of weights in this evaluation: &sccount and total execution

time. The invocation count is how many times a method (node) was called froeifisall-site. The total

execution time is the average execution time multiplied by invocation count.

19

2008/11/21

Figure 7 presents these results. The left graph is when we use exdoutas the weight and the right graph
is when we use invocation count as the weight. The graphs show the ingidhpand how it increases after we
weight-adjust the top 5, 10, 20, 40 and 80 node pairs. The increaseiitapyis highly monotonic for execution
time. Also, the initial overlap is high (above 94%). This indicates that the nodehimg found by the relaxed
common-tree matching is very accurate (and that the pair are likely to be seafigigiimilar), since they exhibit
similar execution time. The initial overlap for invocation count is nearly 100#4fost applications. This is
expected since invocation counts should vary more on change of usés nagher than on functional upgrades.

However it is still a useful and interesting metric to consider.

6. Related Work

Since the CCT data structure was originally proposed [2], much resbascbeen contributed that decrease
its size and collection overhead. In [14], the idea of the Partial CallingeXbiiree (PCCT) is proposed. A
PCCT is partial because the tree is built using sampling of the runtime stack ttaaaepth and updating
the tree accordingly. The idea was further used in [5, 6, 4, 17] and@atewith more efficient sampling
schemes that decrease overhead while maintaining high accuracy optiogiagate CCT. The accuracy metric
used, however, is the overlap (Section 3.4) of the approximate CCT withullheGT, which does not capture
the significance of the topological differences between the two CCTsther avords, if a number of short-
running methods is missing from the approximate CCT, the accuracy will be slaffélsted while the change
in performance could be drastic. Also, call-site information is ignored fke d size reduction. Since our
approach is entirely offline, we chose to build a full CCT with call-site infornmaitncorporated.

In [3, 11, 12, 13], algorithms for syntactical, semantic, and structunalpesison of software versions is
proposed. All of these prior works, however, operate statically. Thilifierent from our approach, since we
rely on dynamic profile (CCT) generated by test runs of the applicatidgirigeon dynamic profile can expose
unforeseen effects of code modifications that are hard to identify usitygstatic analysis. Our approach thus
complements these efforts.

Zhang et al. propose a technique to match entire execution histories ofdégi@pr versions running with the
same input [15]. The execution history contains control flow taken, sghveduced, addresses referenced and
data dependences. This is different from our technique since thiesevorks assume semantically equivalent
versions (e.g. optimized and unoptimized) while we compare different regisiba program that can include

functional upgrades.

20 2008/11/21

The work most similar to ours is described by Zhuang et al. in [16]. Theg daveloped a framework for
comparing CCTs of the same program when running on different platf¢campilers, runtimes, systems) or
with different inputs. They rely on the tree transformation algorithm pregas [1] to perform the comparison
efficiently. While this approach is useful to quantify the difference in atien on different platforms or
when using different inputs, it is not suitable for comparing functionalljed#nt versions of the program.
Furthermore, due to the nature of the tree transformation technique thpy; #tnodes matched from both
trees are not necessarily semantically equivalent. We have discusskaithison further in Section 2.2.1. Our
work is the first, to our knowledge, to focus on revision-based dynantiaber and performance differences

with support of source code repository systems.
7. Conclusion and Future Work

In this paper, we present PARCS, an offline analysis tool that automatidetifies differences between the
execution behavior of two revisions of an application. PARCS collectsranogpehavior and performance
characteristics via profiling and generation of calling context trees (EGVes annotate CCTs with call-site
information and performance metrics to facilitate identification of differenc€di topology (changes in the
calling patterns of the program) and in overall program performancewgight differencing). We overview our
techniques for identifying differences in CCTs and demonstrate how e®ARCs to attribute differences in
execution behavior and performance to specific changes in the sattee ¢

We have presented an empirical evaluation of PARCS using a number oknesiir Java applications.
We present what supports the use of call-site information to expose addlitapological differences than
conventional CCTs. We also quantify topological and weight differerfzetween two revisions of each
application. Our results show high topological similarity between close revisigthschanges constituting
less than 15% of the CCT size. For applications for which only releasesavailable to us (releases constitute
a very large number of revisions thus, many changes), we find muchifesarity. This result emphasizes
the importance of using PARCS for small, minor changes to track and gain & betterstanding of how
software updates impact overall behavior and performance. Mareowe approach to weight matching to
identify differences in performance metrics (node weights) has greatrrath% overlap for all applications
indicating that relaxed common-tree matching works well for revision congrar@verall, we find that PARCS
is most effective for incremental changes such as those common to revid®euch PARCS has the potential
for facilitating improved understanding of the behavior and performahceroplex software systems and their

evolution over time.

21 2008/11/21

As part of future work, we are investigating ways to generate inputs atitzaity and whether employing
multiple inputs (CCT comparisons) is effective to target and attribute betzsddferences. In addition, we
are considering coupling PARCS with static analysis to reveal more semarmtimation about the program
and code changes. Finally, we are working on automating the identificatimodification differences (Stage
2). With such support, only differences due to side-effects and eterainism will have to be investigated
by hand. The PARCS framework and visualization of behavior and pediace data however, significantly

simplifies this process.

References
[1] ALBERTO APOSTOLICQ Z. G. Pattern Matching AlgorithmsOxford University Press, 1997.

[2] AMMONS, G., BaLL, T., AND LARUS, J. R. Exploiting hardware performance counters with flow aantext
sensitive profiling. INPLDI '97: Proceedings of the ACM SIGPLAN 1997 conference mgRmming language
design and implementatigqiNew York, NY, USA, 1997), ACM, pp. 85-96.

[3] APIWATTANAPONG, T., ORSO, A., AND HARROLD, M. J. A differencing algorithm for object-oriented progra.
In ASE '04: Proceedings of the 19th IEEE international confieezon Automated software engineer{iigashington,
DC, USA, 2004), IEEE Computer Society, pp. 2—13.

[4] ARNOLD, M., AND GROVE, D. Collecting and exploiting high-accuracy call graphfges in virtual machines.
In CGO '05: Proceedings of the international symposium on Cgeleeration and optimizatio@Vashington, DC,
USA, 2005), IEEE Computer Society, pp. 51-62.

[5] ARNOLD, M., AND RYDER, B. G. A framework for reducing the cost of instrumented co8ESPLAN Not. 365
(2001), 168-179.

[6] ARNOLD, M., AND SWEENEY, P. F. Approximating the calling context tree via samplifigch. rep., IBM Research,
July 2000.

[7] BoND, M. D., AND MCKINLEY, K. S. Probabilistic calling context. I®@OPSLA '07: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object oriented programgraystems and applicatiofidew York, NY, USA,
2007), ACM, pp. 97-112.

[8] Bytecode engineering libraraittp: //jakarta.apache.org/bcel/.

[9] FELLER, P. T. Value profiling for instructions and memory locatiodMaster’s thesis, University of California, San
Diego, April 1998.

[10] Findbugs.http://findbugs.sourceforge.net/.

[11] JacksoN, D.,AND LADD, D. A. Semantic diff: a tool for summarizing the effects ofdiftccations. InProceedings
of the 21st IEEE International Conference on Software MaiahcgVictoria, BC, Canada, 1994), IEEE Press.

[12] LAskI, W., AND SZERMER, J. ldentification of program modifications and its appli@as in software maintenance.
In Proceedings of the IEEE International Conference on SafiWéaintenanceVictoria, BC, Canada, 1992), IEEE
Press, pp. 282—-290.

[13] MYERS, E. W. An o(nd) difference algorithm and its variatioddgorithmica 1(1986), 251-266.

[14] WHALEY, J. A portable sampling-based profiler for java virtual nmaek. InJAVA '00: Proceedings of the ACM
2000 conference on Java Granféew York, NY, USA, 2000), ACM, pp. 78-87.

[15] ZHANG, X., AND GUPTA, R. Matching execution histories of program versioB85SOFT Softw. Eng. Notes,3
(2005), 197-206.

[16] ZHUANG, X., KIM, S.,10 SERRANO, M., AND CHoI, J.-D. Perfdiff: a framework for performance difference
analysis in a virtual machine environment. @GO '08: Proceedings of the sixth annual IEEE/ACM interoaéil
symposium on Code generation and optimiza{idaw York, NY, USA, 2008), ACM, pp. 4-13.

22 2008/11/21

[17] ZHUANG, X., SERRANO, M. J., CaIN, H. W., AND CHoI, J.-D. Accurate, efficient, and adaptive calling context
profiling. SIGPLAN Not. 416 (2006), 263-271.

23 2008/11/21

