
UCSB Computer Science Technical Report 2008-18, November 2008.

Clouded Data: Comprehending Scalable Data Management
Systems

Sudipto Das Shyam Antony Divyakant Agrawal Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara
{sudipto, shyam, agrawal, amr}@cs.ucsb.edu

ABSTRACT
Managing petabytes of data for millions of users has been a
challenge for big internet based enterprises such as Google,
Yahoo!, and Amazon. Even though database management
systems have a long history of managing enterprise level data
and information, they are deemed to be unsuitable in this
context. This resulted in an architectural redesign of data
management systems with an eye towards the requirements
of high scalability, high availability, and low latency while
providing weaker consistency and lower application general-
ity. In this paper, we try to comprehend what is fundamen-
tally different in the internet-scale applications that allowed
these data management systems to achieve orders of mag-
nitude higher levels of scalability compared to traditional
databases. With an understanding of these modern systems,
we also make an attempt to predict future application re-
quirements and raise two fundamental questions: where do
we really stand in terms of scalable data management, and
how far are we from providing scalable data management as
a service, just as computing is provided as a service in large
scale infrastructures?

1. INTRODUCTION
Recent years have seen the emergence of large scala data

management systems such Google’s Bigtable1, PNUTS [7]
from Yahoo!, Amazon’s Dynamo [8] and some similar but
undocumented systems. All of these systems deal with peta-
bytes of data, serve online requests with stringent latency
and availability requirements, accommodate erratic work-
loads such as flash crowds, offer variants of a key-value data
model highly amenable to partitioning, run on cluster com-
puting architectures; thus staking claims to some of the ter-
ritories that used to be occupied by database systems. In
this paper, we analyze some of the salient features of these
systems and their current and future impact on large scale
data management systems.

Historically, distributed database systems were the first
generic solution that dealt with data split across multiple
machines. These systems continued to maintain the seman-
tics of their centralized counterparts by ensuring global se-
rializability. This made good short term sense since appli-
cations could be ported with no effort, but was not sustain-
able beyond a few machines due to the crippling effect on
performance cause by partial failures and synchronization

1Even though Google’s solution is a combination of Chubby [3],
Google File System [9], and Bigtable [5], for simplicity, we refer
to it as Bigtable.

overhead. This point is very well recognized and installa-
tions with significant amounts of data with database back-
ends rarely use such a setup for online transactions. Data
is typically partitioned with individual online transactions
restricted to one or few partitions. Analysis queries which
need a global view are run offline. Thus the frequently cited
problem of distributed transactions, such as large coordi-
nated commits, while true, are rarely used in practical in-
stallations. But database engines continue to retain various
assumptions forced by their goal of closely adhering to the
design of their centralized counterparts.

The data model supported by the modern systems is a
collection of key-value pairs with read and write operations
on individual items. While the systems vary in the struc-
ture imposed on the value, it can be readily seen that these
semantics naturally permit data partitioning. Furthermore,
for operations in the key-value model, each partition can
be assigned to a separate database server and no tight cou-
pling is needed among these servers. Note that this elimi-
nates the need for any coordinated commit. In other words,
this setup is among the best case scenarios for distributed
database systems. Nonetheless, distributed databases have
been found inadequate, resulting in the emergence of sys-
tems like Bigtable, Dynamo and PNUTS. We believe that
the core problem lies in dealing with workload dynamicity
and repartitioning. In typical partitioned databases, repar-
titioning is a relatively infrequent operation, usually done
with manual intervention and auto tuning tools. The im-
plicit assumption is that the server managing each shard is
provided with enough resources to meet the performance and
availability goals of the system. In a system with petabytes
of data, this would result in an enormous amount of over-
provisioning when the load distribution among the data items
is not predictable. The solution is obvious – there is a critical
need for rapid dynamic repartitioning while simultaneously
sustaining performance and availability, and this is where a
traditional partitioned database based setup would collapse.

At a very generic level, the goal of a scalable data manage-
ment system is to sustain performance and availability over
a large data set without significant over-provisioning. The
resource utilization requirement demands that the system be
highly dynamic. In Section 2, we discuss the salient features
of three major systems from Google, Yahoo!, and Amazon,
that meet these goals. The design of these systems is in-
teresting not only from the point of view of what concepts
they use (e.g. consensus protocol) but also what concepts
they eschew (e.g. distributed two phase locking, disk page
centric size limitations etc.). Some aspects reflect individual



S. Das et al., Clouded Data: Comprehending Scalable Data Management Systems

choices, while other aspects are inherent to meet the data
management challenges outlined above. Careful analysis of
the latter is necessary to facilitate future work.

Note that our discussion above is entirely driven by the
assumption that the workload consists of simple operations
on individual items. In situations where this assumption
does not hold, many applications have to rely on traditional
databases. For example, in online stores, shopping cart and
session management can be handled with a key-value system
but the checkout process may have to fall back on a tradi-
tional database to facilitate the various expressive queries
needed during order processing. Furthermore, these opera-
tions cannot be simply pushed offline since activities such as
order or payment processing demands an online setup. In
Section 3, we address the question of whether this hybrid
mechanism of using scalable systems for simple operations
and relying on databases for everything else (with compara-
tively smaller workloads) can last. We analyze some poten-
tial applications of the future as well as the repercussions
of the sheer increase in scale of the checkout-style work-
load. We predict that the need for scalable systems en-
hanced to support carefully chosen operations beyond simple
read/write on individual items will arise. Once such systems
are available as commodity systems that can be purchased,
the utility of databases engines in their current form becomes
questionable. Of course, building such commodity systems
will involve tremendous engineering as well as research chal-
lenges. What better community can one think of to meet
these challenges but a rejuvenated database community!

2. ANALYSIS
Abstractly, a distributed system can be modeled as a com-

bination of two different components. The system state,
which is the distributed meta data critical for the proper
operation and the health of the system. This state requires
stringent consistency guarantees and fault-tolerance to en-
sure the proper functioning of the system in the presence of
different types of failures. But scalability is not a primary
requirement for system state. On the other hand is the
application state, which is the application specific informa-
tion which the distributed system stores. The consistency,
scalability and availability of the application state is depen-
dent purely on the requirements of the type of application
that the system aims to support and different systems pro-
vide varying trade-offs between different attributes. In most
cases, high scalability and high availability is given a higher
priority. Early attempts to design distributed databases in
the late eighties and early nineties made a design decision
to treat both the system state and applications state as a
cohesive whole in a distributed environment. We contend
that the decoupling of the two states is the root cause for
the high scalability of modern systems.

Even though not all systems under consideration provide
a clear demarcation between the two types of state, each of
them does employ different techniques for maintaining the
two different types of state. Such a demarcation is necessary
to improve our understanding of the systems and demon-
strates how the systems deal with these states differently,
since the correctness and consistency requirements of the
two are very different.

2.1 System State
The meta data and information required to correctly man-

age the distributed system is referred to as the system state.
In a distributed data management system, when data is
partitioned to achieve scalability, and replicated to achieve
fault-tolerance, the system must have a consistent view of
the mappings of partitions to nodes, and that of a parti-
tion to its replicas. If the application data is dynamically
partitioned to provide better load-balancing and resource
utilization or replicas are relocated to deal with failures, the
corresponding system state needs to maintain the correct
and consistent view of the mappings. In addition, if there
is a notion of the master amongst the replicas, the system
must also be aware of the location of the master at all times.
Note that this information is in no way linked to the data
hosted by the system, rather it is required for the proper
operation of the entire system. Since this state is critical
for operating the system, a distributed system cannot afford
any inconsistency or loss. In a more traditional context, this
corresponds to the system state in the sense of an operat-
ing systems which has a global view about the state of the
machine it is controlling.

Bigtable’s design [5] segregates the different parts of the
system and provides abstractions that simplify the design.
There is no data replication at Bigtable layer, so there is no
notion of replica master. The rest of Bigtable’s system state
is maintained in a separate component called Chubby [3].
The system state needs to be stored in a consistent and
fault-tolerant store, and Chubby [3] provides that abstrac-
tion. Chubby guarantees fault-tolerance through log-based
replication and consistency amongst the replicas is guaran-
teed through a Paxos based consensus protocol [4]. All the
replicas in Chubby are equivalent and store a consistent view
of the system. The Paxos protocol [12] at the core guaran-
tees safety in the presence of different types of failures and
ensures that the replicas are all consistent even when some
replicas fail. But the high consistency comes at a cost: the
limited scalability of Chubby as it typically has few replicas
(five) and a single master. Thus if a system makes too many
calls to Chubby, it might become a bottleneck. But since the
critical system meta data is considerably small and usually
cached, even Chubby being at the heart of a huge system
does not hurt its performance.

In PNUTS [7], there is no clear demarcation of the system
state. Partition (or tablet) mapping is maintained persis-
tently by an entity called the tablet controller, which is a
single pair of active/standby servers. This entity also man-
ages tablet relocation between different servers. Note that
since there is only one tablet controller, it might become a
bottleneck. Again, as with Chubby, an engineering solution
to move the tablet controller away from the data path, and
caching of mappings is used. On the other hand, the map-
ping of tablets to its replicas is maintained by the Yahoo!
Message Broker (YMB) which acts as a fault-tolerant guar-
anteed delivery publish-subscribe system. Fault-tolerance
in YMB is achieved through replication – at a couple of
nodes to commit the change, and more replicas created grad-
ually [7]. Again, better scalability is ensured through limit-
ing the number of nodes (say two in this case) requiring syn-
chronization. The per-record master information is stored as
meta data for the record. Thus, the system state in PNUTS
is split between the tablet controller and the message broker.

On the other hand, Amazon’s Dynamo [8] uses an ap-
proach similar to peer-to-peer systems [15]. Partitioning of
data is at a per-record granularity through consistent hash-



UCSB Computer Science Technical Report 2008-18, November 2008.

ing [10]. The key of a record is hashed to a space that forms a
ring and is statically partitioned. Thus the location of a data
item can be computed without storing any explicit mapping
of data to partitions. Replication is done at nodes that are
neighbors of the node to which a key hashes to, a node which
also acts as the master (although Dynamo is multi-master,
as we will see later). Thus, Dynamo does not maintain a
dynamic system state with consistency guarantees on that,
a design different compared to PNUTS or Bigtable. Mini-
mal membership maintenance is done through administrator
intervention. But lesser state comes at a cost: there can po-
tentially be an issue with over provisioning (given the static
partitioning of hash space), dealing with which is a challenge
for Dynamo.

Even though not in the same vein as scalable data man-
agement systems, we consider Sinfonia [1], a system from
HP Laboratories, since it is designed to provide an efficient
platform for building distributed systems. Sinfonia [1] can
be used to efficiently design and implement systems such as
distributed file systems. The system state of the filesystem
(e.g. the inodes) need to be maintained as well as manipu-
lated in a distributed setting, and Sinfonia provides efficient
means for guaranteeing consistency of these critical oper-
ations. Sinfonia provides a concept of minitransactions, a
light weight version of distributed transactions, supporting
only a small set of operations. The idea is to use a protocol
similar to Two Phase Commit (2PC) for committing a trans-
action, and the actions of the transaction are piggy backed
on the messages sent out during the first phase. Thus, only
a small set of operations is supported in Sinfonia. The light
weight nature of minitransactions allow the system to scale
to hundreds of nodes, but the cost paid is a reduced set of
operations. Since no data management system in the same
vein as Bigtable or PNUTS is built on Sinfonia, we limit
our discussion of Sinfonia more as a representative system
to maintain system state.

Thus, when it comes to critical system state, the system
designers rely on traditional mechanisms for ensuring con-
sistency and fault-tolerance, and are willing to compromise
scalability. But this choice does not hurt the system perfor-
mance since this state is a very small fraction of the actual
state (application state comprises the majority of the state).
In addition, another important distinction of these systems
is the number of nodes communicating to ensure consistency
of the system state. In the case of Chubby and YMB, a com-
mit for a general set of operations is carried on a small set
of participants (five and two respectively [3, 7]). On the
other hand, Sinfonia provides limited transactional support
and hence can scale to a larger number of nodes. This is in
contrast to traditional distributed database systems, which
tried to make both ends meet, i.e., providing strong consis-
tency guarantees for both system state and application state
over any number of nodes.

2.2 Application State
Distributed data management systems are designed to

host huge amounts of data for the applications which these
systems aim to support. We refer to this application spe-
cific data as the application state. The application state is
typically at least an order of magnitude larger than the sys-
tem state, and the consistency, scalability and availability
requirements vary based on the applications.

2.2.1 Data Model
The distinguishing feature of the three main systems we

consider in this paper is their simple data model. The pri-
mary abstraction is a table of items where each item is a key-
value pair. The value can either be an uninterpreted string
(as in Dynamo), or can have structure (as in PNUTS and
Bigtable). Atomicity is supported at the granularity of a sin-
gle item – i.e., atomic read/write, and atomic read-modify-
write is possible to only individual items and no guaran-
tee is provided across objects. It is a common observation
that many operations are restricted to a single entity, iden-
tifiable with a primary key. However, the disk centric na-
ture of database systems forces relatively small row lengths
(or blobs). Hence, even for single entities, there is a need
to normalize data to span multiple rows in different tables.
The novelty of these systems lie in doing away with these
assumptions, thus allowing very large rows. In addition,
single-object atomic access is sufficient for many applica-
tions, and thus transactional properties and the generality
of traditional databases are an overkill. These systems ex-
ploit this simplicity to achieve high scalability.

Restricting data accesses to a single-object results in con-
siderably simpler design for providing data management func-
tionality. Now, instead of viewing the entire table (or database)
as a single entity, it allows the designers the flexibility of op-
erating at a much finer granularity. In the presence of such
restrictions, application level data manipulation is restricted
to a single compute node boundary and thus obviates the
need for multi-node coordination and synchronization using
2PC or Paxos. As a result, modern systems can scale to
millions of data tuples using horizontal partitioning. The
logic behind such a design is that even though there can
be potentially millions of requests, the requests are gener-
ally distributed throughout the data set, and all requests
are limited to accesses to a single object or record. Es-
sentially, these systems leverage inter-request parallelism in
their workloads. Once data has been distributed on multiple
hosts, the challenge now is in providing fault-tolerance and
load distribution. Different systems achieve this using dif-
ferent techniques such as replication, dynamic partitioning,
partition relocation and so on. In addition, single-object se-
mantics of the modern applications have allowed data to be
less correlated, thereby allowing modern systems to tolerate
non-availability of certain portions of data. This is different
from traditional distributed databases that considered data
as a cohesive whole.

Single Object Operations and Consistency. Once
operations are limited to a single object, providing single
object consistency while ensuring scalability is tractable. If
there is no object level replication, then consistency can be
achieved with more ease. All requests for an object arrive
at a single node that hosts the object, and even if the entire
data set is partitioned across multiple hosts, the single-object
nature of requests makes them limited to a single node. The
system can now provide operations such as atomic reads,
atomic writes, and atomic read-modify-write. Atomic read-
modify-writes can also be used by the application to ensure
some form of isolation.

Replication and Consistency. Most modern systems
need to support per-object replication for high availability,
and in some cases to improve the performance by distribut-
ing the load amongst the replicas. This increases the com-
plexity for providing consistency guarantees, as updates to



S. Das et al., Clouded Data: Comprehending Scalable Data Management Systems

an object need to be propagated to the replicas as well. Fur-
thermore, traditional techniques for recovery [17] are needed,
but are simpler due to absence of undo operations. Different
systems use different mechanisms to synchronize the repli-
cas thereby providing different levels of consistency such as
eventual consistency, timeline consistency and so on. In ad-
dition, the systems can also be classified into two classes
based on the number of nodes that can concurrently write
to a single object: single master systems where only one
replica has the privilege of processing updates, and multi
master systems where multiple nodes can concurrently pro-
cess updates on the same object.

2.2.2 The Systems
In Bigtable [5], a single node (referred to as tablet server)

is assigned the responsibility for part of the table (known as
a tablet) and performs all accesses to the records assigned to
it. The application state is stored in GFS which is treated
as a scalable, consistent, fault-tolerant storage for user data,
while providing scalable access to the data. There is no repli-
cation of user data inside Bigtable (all replication is handled
at the storage level i.e., GFS, with some coordination from
Bigtable for logging and recovery), hence it is by default
single master. Bigtable also supports atomic read-modify-
write on single records. Even though scans on a table are
supported, they are best-effort without providing any con-
sistency guarantees.

PNUTS [7] is developed with the goal to provide efficient
read access to geographically distributed clients while pro-
viding serial single-key writes. PNUTS explicitly performs
replication to ensure fault-tolerance. The replicas are often
geographically distributed, helping improve performance of
web applications attracting users from different parts of the
world. As noted earlier in Section 2.1, Yahoo! Message Bro-
ker (YMB), in addition to maintaining the system state, also
aids in providing application level guarantees by serializing
all requests to the same key. PNUTS uses a single master
per record and the master can only process updates by pub-
lishing to a single broker, as a result providing single-object
time line consistency where updates on a record are applied
in the same order to all the replicas [7]. Even though the sys-
tem supports multi-object operations such as range queries,
no consistency guarantees are provided. PNUTS allows the
clients to specify the consistency requirements for reads: a
read that does not need the guaranteed latest version can
be satisfied from a local copy and hence has low latency,
while reads with desired level of freshness (including read
from latest version) are also supported but might result in
higher latency.

Dynamo [8] was designed to be a highly scalable key-value
store that is highly available to reads but particularly for
writes. This system is designed to make progress even in the
presence of network partitions. The high write availability
is achieved through an asynchronous replication mechanism
which returns success to the application as soon as a small
number of replicas have replied. The write is eventually
propagated to other replicas. To further increase availabil-
ity, there is no statically assigned coordinator (thereby mak-
ing this a multi master system), and thus, the single-object
writes also do not have a serial history. In the presence of
failures, high availability is achieved at the cost of lower con-
sistency. Stated formally, Dynamo only guarantees eventual
consistency, i.e. all updates will be eventually delivered to

all replicas, but with no guaranteed order. In addition, Dy-
namo allows multiple divergent versions of the same record,
and relies on application level reconciliation based on vector
clocks [11].

2.3 Design Choices
So far in this section, our discussion focussed on the cur-

rent design of major internet-scale systems. We anticipate
more such key-value based systems will be built in the near
future, perhaps as commodity platforms. In such cases,
there are a few issues that need to be carefully considered
and considerable deviation from the current solutions may
be appropriate.

Structure of Value. Once the design decision to al-
low large values in key-value pairs is made, the structure
imposed on these values becomes critical. At one extreme,
one could treat the value as an opaque blob-like object, and
applications are responsible for semantic interpretation for
read/writes. This is in fact the approach taken in Dynamo.
Presumably this suits the needs of Amazon’s workload but is
too limited for a generic data serving system. On the other
hand, PNUTS provides a more traditional flat row like struc-
ture. Again, the row can be pretty large and frequent schema
changes are allowed without compromising availability or
performance. Also, rows may have many empty columns as
is typical for web workloads. In Bigtable, the schema con-
sists of column families and applications may use thousands
of columns per family without altering the main schema, ef-
fectively turning the value into a 2D structure. Other choices
that should be considered include restricting the number of
columns, but allowing each column to contain lists or more
complex structures. This issue needs to be studied further
since the row design based on page size in no longer ap-
plicable, and hence more flexibility for novel structures is
available.

Support for Scripting. The second design decision is
determining the operations that can be supported on the
server side. With relation-like rows, one could push various
filtering, such as projection or selection, to the system, be-
fore a query is answered, as supported by PNUTS. On the
other hand, Bigtable allows clients to ship their own script
which is then executed inside the system, i.e, a client ships
a Sawzall script (similar to prepared statements in DBMS)
and the system executes it with the object named in the
request as input. This kind of scripting provides the poten-
tial for executing relatively complex operations without too
much network traffic. The ability to add such support, leads
us to speculate that an efficient design, in which the object
structure resembles a row with column families and each
family storing common data structures such as short lists or
maps that can be manipulated or filtered by client-provided
scripts.

System Consistency Mechanism. As discussed ear-
lier, maintaining consistency of the system state is important
for these systems. One obvious problem is to how to keep
track of each partition assignment and consensus based solu-
tions seem to be a good solution. But to add more features
to the system, there is a need for reliable communication
between partitions, e.g. supporting batched blind writes.
PNUTS resorts to a reliable message delivery system for this
purpose and hence is able to support some features such as
key-remastering. This issue also needs further study since it
might bring unnecessary complexity and performance prob-



UCSB Computer Science Technical Report 2008-18, November 2008.

lems unless carefully designed.
Storage Decoupling. Given that data is partitioned

with a separate server responsible for operations on data
within each partition, it is possible to store the data and
run the server on the same machine. Clearly this avoids a
level of indirection. However we think such close coupling
between storage and servers is quite limiting since it makes
features such as secondary indexes very hard to implement
and involves much more data movement during partition
splitting/merging. It would be better to follow a design
where data is replicated at the physical level with a level
of indirection from the server responsible for that partition.
This is applicable even if there are geographically separated
logical replicas since each such replica can maintain local
physical replicas which would facilitate faster recovery by re-
ducing the amount of data transfer across data centers. This
design will need some mechanism to ensure that servers are
located as close as possible to the actual data for efficiency
while not being dependent on such tight coupling.

3. DATA MANAGEMENT TRENDS
In this section, we consider some potential trends in future

applications, and the resultant challenges that will have to
be faced by scalable systems.
Hybrid Systems. Anecdotal evidence suggests that many
medium scale data management companies use a hybrid of
a database engine and a custom solution. The custom solu-
tions handle scalability intensive events whereas the database
back-end handles reliability, persistence, etc. This is prob-
ably the only reasonable way at the current time since the
scalable systems discussed in the paper are “in-house” and
are not yet available commodity products. We predict that
such commodity systems will be available soon and investing
in such solutions may provide a way to the scalable mainte-
nance of data without significant development effort.

Surprisingly even companies with “in-house” scalable data
management solutions continue to use a hybrid mixture of
such systems and database systems for their varied appli-
cation tasks. Database systems are used in managing more
critical data such as order processing or payment manage-
ment while scalable systems are used for applications such
as web indexing or shopping cart management. From one
point of view, such hybrid solutions are very welcome since
they avoid the often repeated fallacy of shoe horning all data
into one complex system. However, it is important to an-
alyze the nature of the workloads being handled by high
scalable systems with simple data models, and those han-
dled by traditional databases. If the analysis reveals that
this hybrid data path is sufficient both in the short term as
well as the long term, more effort should be spend in tuning
these systems rather than making significant architectural
changes. We underscore that database systems provide ex-
cellent features such as well defined recovery, rock solid sta-
bility, declarative interfaces with high expressive power, and
efficient query optimization [13].

However, a careful analysis from a long term point of view
should be made before allowing databases to reside in var-
ious important data paths. Even though the current scale
of the applications may not be affected by such hybrid solu-
tions, it is also necessary to determine if that will continue
to hold in the long run. We are aware of one installation in
which a database was used in data exhibiting high update
rate (such as streaming click events) and after a while be-

came practically unusable and various ad hoc solutions had
to be forced into the data path.

We think that systems will soon start emerging that oc-
cupy the middle ground more efficiently, i.e., systems which
inherit features from both traditional and current scalable
systems. This trend can also be observed in some recent re-
search [16]. Not just one big system, but various systems oc-
cupying different places in the consistency, availability, and
scalability spectrum, with well defined interfaces allowing
them to be purchased as separate commodities and compos-
able to create efficient data paths.
Future Application Trends: The basis of the systems
discussed in this paper is that atomic access to single ob-
jects is sufficient for many applications. This is indeed true
with the current generation of web scale applications – but
will that assumption continue to hold in the future? Clearly
atomic access to a large amount of data is unlikely to be
supported. But we can think of cases in which a small num-
ber of objects will need some kind of a synchronized access
for a short period of time. We provide a couple of examples
where this trend is likely to show up and how systems may
evolve to handle such situations.

With the growing popularity of Web 2.0 application, the
concept of collaborations have been put forward. Consider
the case of collaborative authoring (such as Wikipedia or
Google Docs) where multiple users are concurrently access-
ing a single document with the intent to collaboratively au-
thor the document. If we consider each document to be
one problem instance, there can be potentially millions of
such problem instances. But it must be noted that in most
of the cases, the number of users collaborating in a prob-
lem instance is small. Currently conflict resolution in these
systems are rather ad hoc. For example, in the context of
Google Docs, if there are concurrent modifications of the
same document, the application tries to merge the modifi-
cations. This seems to work well in many cases, but occa-
sionally it does garble the documents when two users are
concurrently modifying the same text. Similarly, GMail ad-
mits concurrent work on the same draft email and performs
application level conflict resolution, which is to create two
distinct drafts of the same email. Existing systems are thus
providing acceptable but ad hoc support for collaboration,
and it remains to be seen if such application level coordi-
nation without support from the data management service
will be sufficient with more complex operations and heavier
workloads.

Another interesting example is the increasing popularity
of online gaming, especially online multi-player games. With
financial incentives involved, this can grow into a lucra-
tive industry potentially attracting hundreds of thousands
of users. This is evident in a recent news article about a
free version of the Scrabble game becoming heavily popu-
lar in the Facebook social networking website [14]. Again,
such applications are similar to the collaborative authoring
case – a small number of users in the same instance, and
potentially millions of such instances. The present design
paradigm (single-object accesses) shows that a scalable de-
sign can be achieved while providing consistency guarantees,
as long as accesses are limited to a single node. So, a simple
design would require all users associated with a single game
instance to map onto the same node (which might be a logi-
cal node), and provide consistency guarantees on operations
restricted to this single node. But is this enough, when users



S. Das et al., Clouded Data: Comprehending Scalable Data Management Systems

would like to join or leave ongoing games? Let us take an
example of an online casino kind of application where a sin-
gle user, with a finite amount of money in his cart, can be
concurrently associated to multiple game instances where
he is investing money in different games from the cart. He
can concurrently lose as well as win money, and while these
transactions are being processed, he is also investing money
on other games he might be interested in. Evidently, this
is a hard problem to tackle in a scalable system. But then
again, the question we need to consider is whether these ap-
plications need high scalability or current hybrid solutions
are sufficient?
Infrastructural Trends. In addition to the new applica-
tions, there is a new infrastructural trend as well [6]. Popu-
larly known as Cloud Computing or Utility Computing, it is
the paradigm of providing computation and storage as a ser-
vice. Companies such as Amazon have come up with models
such as Elastic Compute Cloud (EC2) and Simple Storage
Service (S3) where the users need not be aware of the exact
details of which node is performing the desired computation,
or which node is actually storing the data. The users pay per
use, and hence need not worry about over-provisioning for
peak load, or maintaining the systems to deal with failures.
Once complexities are abstracted, the application developer
can concentrate on the development of the application logic.

Even though most of the applications being hosted in the
clouds are generally computationally intensive data analy-
sis problems, it is predicted that enterprises such as finan-
cial institutions might outsource their business logic to the
cloud. In such a model of utility computing, it would be
possible to complement computing and raw storage with a
data management system which is provided as a service [2].
Stated in other words, can we have a system which provides
data management as a service, scale to millions of users if
the need arises, or provide consistency guarantees on multi-
object operations on a small set. For example, an applica-
tion developer designing an online shopping mall can use the
data management service to maintain shopping carts at the
scale of millions (while not requiring high consistency and
durability), and use the same service for order processing
in the scale of hundreds of thousands (requiring high con-
sistency, durability and fault-tolerance). The question we
need to answer is: do our present day systems live up to
these requirements?

4. CONCLUSION
In this paper, we analyze how the design of modern data

management systems has allowed them to scale to millions of
users and petabytes of data, while providing high availabil-
ity, and reasonable consistency which is sufficient for the ap-
plications they aim to serve. It is evident that these systems
have been designed with a complete understanding of the
characteristics of the applications which they aim to serve.
This realization of the application requirements helped de-
cide on the primary and secondary design goals and has led
to the widespread success of these systems. With the lessons
learned from these systems, we try to analyze the present
state of the art in data management solutions and discuss
whether these solutions would be enough to handle the ap-
plication requirements of the future. Considering the new
generation of collaborative applications, and the new infras-
tructural paradigms like cloud computing, the question we
want to ponder is how far are we from supporting scalable

modern applications and providing data management as a
service just as enterprises provide computing and storage as
a service?

5. REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In SOSP, pages 159–174, 2007.

[2] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on s3. In SIGMOD, pages
251–264, 2008.

[3] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In OSDI, pages 335–350, 2006.

[4] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In PODC, pages
398–407, 2007.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In OSDI, pages 205–218, 2006.

[6] The claremont report on database research. http://db.cs.
berkeley.edu/claremont/claremontreport08.pdf, May
2008.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s Hosted Data
Serving Platform. In VLDB, pages 1277–1288, 2008.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. In SOSP, pages 205–220, 2007.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP, pages 29–43, 2003.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and random
trees: distributed caching protocols for relieving hot spots
on the world wide web. In STOC, pages 654–663, 1997.

[11] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[12] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[13] J. M.Hellerstein, M. Stonebraker, and J. Hamilton.
Architecture of a database system. Foundations and Trends
in Databases, 1(2):141–259, 2007.

[14] Facebook scrabble application hit by legal woes.
http://www.dailyprincetonian.com/archives/2008/01/
21/news/19889.shtml.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages
149–160, 2001.

[16] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural
era: (it’s time for a complete rewrite). In VLDB, pages
1150–1160, 2007.

[17] G. Weikum and G. Vossen. Transactional information
systems: theory, algorithms, and the practice of
concurrency control and recovery. Morgan Kaufmann
Publishers Inc., 2001.

http://db.cs.berkeley.edu/claremont/claremontreport08.pdf
http://db.cs.berkeley.edu/claremont/claremontreport08.pdf
http://www.dailyprincetonian.com/archives/2008/01/21/news/19889.shtml
http://www.dailyprincetonian.com/archives/2008/01/21/news/19889.shtml

	Introduction
	Analysis
	System State
	Application State
	Data Model
	The Systems

	Design Choices

	Data Management Trends
	Conclusion
	References

