
Inter-OS Communication on
Highly Parallel Multi-Core Architectures

Lamia Youseff, Dmitrii Zagorodnov, and Rich Wolski

Department of Computer Science
University of California, Santa Barbara
{lyouseff, dmitrii, rich}@cs.ucsb.edu

Abstract. The next generation of large-scale machines for scientific computing
will consist of a large number of nodes, each supporting many-core and multi-
core processor configurations. On one hand, to extract performance from such
machines, the operating system will have to be streamlined.On the other hand, the
heterogeneity of these machines – i.e., the variety of communication channels and
computing elements – will demand a larger set of OS services to achieve scala-
bility. We believe that high-performance OS paravirtualization techniques, where
different light-weight OS instances cooperate to provide the different OS services,
can resolve this conflict. Current research in paravirtualization aims to isolate OS
instances for performance guarantees and security; in a high-performance com-
puting setting, however, thread synchronization and inter-core communication
within an application require that the memory is shared and coordinated to meet
the application needs. In this paper, we present an approachto enabling efficient
memory sharing and synchronization across OS instances running on a multi-core
machine. Our performance evaluation shows that this approach allows native ex-
ecution speeds in a paravirtualized setting, along with communication latencies
that are lower than under any existing inter-OS communication mechanism.

1 Introduction
The next generation of large-scale machines for scientific computing will consist of a
large number of nodes, each supporting many-core and multi-core processor configu-
rations with heterogeneous communication channels (memory and I/O) and computing
elements (GPUs, vector units, etc.). This heterogeneity implies the possibility of differ-
ent computational features that must be successfully amalgamated by applications that
aim to use the full capability of an individual machine. At the same time, new research
in the area of operating systems for large-scale architectures indicates that to achieve
performance, and to remove “OS noise,” operating systems must be made very lean and
specifically focused [1, 2, 3]. Thus, at a time when machine heterogeneity is demand-
ing abroaderset of OS services to achieve scalable performance, the current research
indicates that operating systems must becomenarrowerand more specialized lest they
retard this performance.

We believe that recent developments in high-performance operating system virtual-
ization techniques offer a way out of this quandary as they allow multiple OS instances
to share one machine. Current virtualization systems, suchas Xen [4] and VMware [5],
are specifically designed toisolate processes or threads running in different operat-
ing systems from each other. With the possibility of107 cores within a single HPC

machine, however, both flexibility and scalability requirements make it necessary to
be able to support – within the same machine – multiple operating systems that can be
used simultaneously by asinglelarge-scale application. Such application will consist of
“tasks” that exchange messages, but within which differentforms of parallelism based
on shared memory (e.g., MIMD or SIMD/vector) will be combined.

The goal of our work is to allow different lightweight OS instances, as well as
heavier-weight utility operating systems coexisting on the same physical multi-core
machine, to cooperate simultaneously, under the control ofone application. To that
end, we present an approach that enables efficient memory sharing and synchroniza-
tion across light-weight OS instances, based on paravirtualized OS kernels running on
top of the Xen hypervisor [4]. Our performance evaluation shows that it is possible to
enable native execution speeds with intelligent memory sharing mechanism. Further-
more, we confirmed experimentally that the latency of communication – which is of
paramount importance to high-performance applications – is considerably lower with
shared-memory than with any type of socket communication.

The remainder of this paper is organized as follows. The nextsection describes re-
lated work, both to provide context for this paper and to further motivate our approach.
In Section 3, we describe our technique, including the implementation details of shared
memory across OS instances. We present and analyze the performance of memory shar-
ing in Section 4. In Section 5, we draw conclusions and summarize our future plans.

2 Related Work
Generally speaking, there are three classes of approaches for deploying multiple oper-
ating systems on a single machine in a high-end, scalable, HPC setting. They are trans-
parent virtualization, paravirtualization, and microkernels. The approaches differ by the
nature of the interface between the operating systems and the underlyingcoordination
layer, which ensures safe sharing of hardware resources by the systems.

2.1 Coordinating multiple operating systems

Undertransparent virtualization, the coordination-layer interface is the Instruction Set
Architecture (ISA) – i.e., the hardware-software interface – of some architecture. The
instructions from this virtualized ISA may be interpreted purely in software, as done by
BOCHS [6] and QEMU [7] emulators, or – when the virtualized ISA matches the ISA
of machine’s hardware – unprivileged instructions can execute on the hardware directly,
through a technique calledfull virtualization (with which only privileged instructions
are handled in software). VMware [5, 8, 9] is the best-known example of this approach.
The ability to run existing systems out-of-the-box is the key advantage of transparent
virtualization; the key disadvantage is the loss of performance due to the interception
of privileged operations by the coordination layer.

With paravirtualization– a term introduced by one of the first projects to implement
this technique [10] – the coordination-layer interface changes somewhat, typically by
losing the privileged hardware instructions and gaining the operations for communicat-
ing with the coordination layer, which is called ahypervisorin this setting. To date,

paravirtualized systems have outperformed systems running under transparent virtu-
alization by paying the price of the additional developmenteffort required to port a
standard system to a hypervisor. Xen [4, 11] is the most prevalent paravirtualization
system in use, at present. Many Linux versions are supportedby it and ports for OS X
and Solaris are under way. Our own work has investigated the performance of Xen in
High Performance Computing (HPC) settings [12, 13]. We found that for many sci-
entific applications, the performance impact associated with using Xen is statistically
insignificant. Consequently, paravirtualization is our method of choice.

Under themicrokernelapproach, the interface between the systems and the coor-
dination layer in microkernels moves away from low-level hardware-specific opera-
tions to message-passing primitives through which all system components communi-
cate, including the multiple operating systems that could be sharing it. Although a
traditional operating system can be ported to run on top of a microkernel, obtaining
best performance typically requires significant re-engineering of system’s architecture.
Mach [14, 15] is perhaps the most successful example of a microkernel system that is
capable of supporting a full-featured OS. Generally speaking, the additional flexibility
provided by a microkernel implies a performance penalty that is difficult to overcome;
nevertheless, careful implementation has been able to address some of these challenges.

2.2 Inter-OS communication in Xen

Based on our previous investigation [12, 13] into paravirtualization in HPC setting, we
chose Xen as our starting point. Communication between processes in different guest
operating systems under Xen can be achieved in several ways.

Hypervisor (Xen)

Guest
OS

Process (a)

Guest
OS

Process (b)

Hypervisor (Xen)

Guest
OS

Process (a)

Guest
OS

Process (b)
Shared
Memory

Hypervisor (Xen)

Guest
OS

Process (a)

Guest
OS

Process (b)
Shared
Memory

(ii) Communication through

kernel-level shared buffer

(e.g., XenSocket and Xway)

(i) Inter-process communication

through TCP connection
(iii) Inter-OS and inter-process

communications through memory

shared by OS instances

Fig. 1. This figure shows three types of approaches to establishing communication
between processes executing in different OS instances running over Xen. (The solid
lines represent the data paths, while the dashed lines represent the control paths.)
(i)Communication between two processes in two OS instances canuse a standard
TCP/IP connection. All data and control communication go through the hypervisor,
hence the high performance overhead. Alternatively(ii), a TCP/IP connection can be
used for the control channel, while the data passes through akernel-level shared mem-
ory buffer, as done by XenSocket and Xway. In our approach(iii), control channel is
established through Xen (using one hypercall) but all data communications proceed
through kernel-level or user-level buffers. No copies are needed.

Perhaps the most intuitive communication method is a standard TCP connection. In
that case, both control and data pass through Xen hypervisor, as illustrated in Fig. 1 (i),

incurring the overhead of data copying, TCP state management, and the necessary ne-
gotiation with the hypervisor viahypercalls(Xen’s equivalent of a system call, allowing
the guest OS to invoke a privileged method in the hypervisor). Menon et al. [16] mea-
sured this performance penalty usingnetperf [17] TCP streaming benchmark over a
single connection. Their study found that Xen guests lag behind by 80% and67% in
the measured maximum transmit and receive TCP streaming throughput, respectively,
relative to native Linux performance.

XenSocket[18] offers a socket-like API for communication using shared memory.
Bypassing the hypervisor for data copying allows XenSocketto achieve up to72 times
the throughput experienced by regular Xen-based TCP connections. This approach is
illustrated in Fig. 1 (ii). XenSocket reduced the number of hypercalls invoked for inter-
OS communication to just a few, mainly to discover the other guest OS and establish the
shared buffer. Despite the significant reduction in the number of hypercalls,XenSocket
still lags behind the standard Linux socket communication throughput by 33%. This
overhead is caused by the extra memory copies in and out of theshared buffer, which
are needed to ensure isolation between the communicating OSs.Xway[19] is a project
similar to XenSocket. It achieves up to100 times the throughput of a standard TCP
stream by replacing the TCP protocol with a simpler “Xway” protocol. Unfortunately,
no performance measurements comparing Xway to native Linuxare currently available.

Our research is different from XenSocket and Xway in severalways. The two
projects strive to hide the shared memory buffer using the POSIX socket interface;
We, on the other hand, expose the shared memory to the programmer. Furthermore,
XenSocket and Xway assume that the communicating OS instances can not trust each
other. In our model, the different OS instances cooperate toefficiently share and syn-
chronize the memory within an application. Fig. 1 (iii) illustrates our approach, where
we limit the interaction with Xen hypervisor to a single hypercall (during shared mem-
ory setup). Hence, we minimize the performance penalty. In other words, the isolation
restriction between OS instances is not as strict in our model, and relaxing this con-
straint allows us to reach native performance.

Memory in large-scale machines is certain to be a valuable resource – perhaps more
valuable than additional processors. Thus, the current approach to hosting multiple op-
erating systems, which is to partition statically the available memory among the guests,
implies too great a fragmentation penalty. Moreover, as recent developments in the
Xen community indicate [20], efficient memory sharing is essential for some cross-OS
communications. Our work provides one efficient solution tointer-OS memory sharing
without imposing significant performance overhead.

3 Methodology
In this section, we describe our approach to enabling communication across OS in-
stances running on a Xen hypervisor. We describe how memory isolation and memory
sharing are currently implemented in Xen (version 3.0.4) and what changes we had to
make to enable inter-OS instances communication.

3.1 Memory management in Xen

The current approach to implementing memory isolation in Xen relies on the “con-
troller” intercepting all updates to critical virtual memory state in the operating system.
In Xen parlance, there is a “master” operating system (referred to as device driver do-
main, domain 0, ordom0), guest operating systems (each referred to asdomU), and
the Xen hypervisor itself (which sits between the hardware and OS domains) [4]. We
will adopt this nomenclature for the remainder of this paper. However, while the Xen
literature often draws a distinction between dom0 and the hypervisor, it is often conve-
nient to think of them as being co-mingled. That is, dom0 and the hypervisor, together,
implement the native virtualization functionality necessary to host one or more domUs.

In this parlance, then, the basic Xen memory isolation mechanism works as follows.
Xen is responsible for partitioning the available physicalmemory among hosted domUs
and mapping it into their respective address spaces. To do so, the memory each domU
uses to implement its own page tables is marked asread-onlyto that domU. That is,
each domU can only read the memory used to implement its own page tables, but Xen
has read and write access to this memory. When a domU needs to update its page
tables, it must explicitly call Xen through a hypercall so that Xen can check to ensure
the memory being updated belongs to that domU (and not some other domU or dom0).
The paravirtualization occurs because domU must be explicitly modified to make this
call in any place where it would normally just update its pagetables by writing memory.
(In practice, the Linux kernel uses a a set of C pre-processormacros for all page table
entry accesses, which simplifies modifications.)

This approach allows each domU to run at “native” speeds as long as page table
entries do not need to be written. However, when page tables are written in a domU
(page faults, memory extensions viasbrk(), page permission changes, or process
creation), the performance penalty is substantial since the domU must make a hypercall
to Xen so that the change can be checked. Moreover, since thread creation in Linux uses
many of the same kernel mechanisms as process creation, the penalty for this approach
in an HPC context can be high.

3.2 Memory sharing in Xen

Baseline implementation of Xen cannot implement memory sharing across domUs eas-
ily. Because the standard memory management hardware only supports read-write and
read-only permissions, Xen must be interposed betweenall page table entry changes in
any domU and it is not possible to share memory regions selectively. To address this
difficulty, grant tableswere recently added to Xen. Grant tables allow different domUs
to “grant” access to regions of their own memory to dom0 for the purpose of delivering
message data from device drivers. Two data delivery techniques are currently supported
by grant tables: shared pages and page flipping.

In using grant tables to grant access to shared pages, the granter domU allocates
a new grant reference and fills out its access permissions. Once the grantee domain
receives this grant reference, it uses it along with the granter domU domain ID to
map the granted frame to its local memory. It does the mappingby calling the“GNT-
TABOPmapgrant ref” hypercall. Once the memory mapping is established, the granter

and grantee domUs can read and write to the shared memory without the intervention of
the Xen hypervisor. The domUs can later terminate the page sharing using the hypervi-
sor’s hypercall“GNTTABOP unmapgrant ref” . This simple protocol ensures minimal
intervention from the hypervisor, and thus minimal performance overhead since only
one hypercall is needed for sharing memory.

Page flipping, on the other hand, transfers ownership of a page frame from the
granter domain to the grantee. The ownership transfer is done by having the grantee call
the hypervisor through the“GNTTABOP transfer” hypercall after the granter domU
has authorized the transfer. Page flipping is efficient for transferring large amount of
data between domains, where the overhead of the hypercall isamortized by the through-
put of data transfer. Its overhead, however, retards the performance of TCP/IP connec-
tions between domains running on the same physical machine,since the package size
transferred is too small to amortize that cost. Some projects worked on optimizing page-
flipping overhead in Xen. Menon et al [16] experimented with using memory-copying
instead of page-flipping and found that it provides lower performance overhead. Menon
et al’s optimizations are not merged into mainstream Xen, yet.

We modified the implementation of page sharing so that memorycan be shared be-
tween domUs to enable fast memory sharing in different guestoperating systems. The
reader familiar with the Xen reference documentation [21] may find our Xen modifi-
cations unnecessary, since the reference manual states that grant tables are a generic
memory sharing interface between domUs. However, using Xenversion 3.0.4 we tried
using them to share data outside of the split driver implementation (i.e., between two
domUs rather than between a domU and dom0) and found that the current implemen-
tation does not allow that. We created a patch for our system to allow arbitrary sharing
between domUs and implemented the sharing functionality intwo kernels modules: one
that grants the shared page, and the other that maps the granted page to the grantee’s
guest OS virtual memory.

4 Performance Evaluation
Using our modified version of Xen, we are able to compare the performance of mem-
ory sharing between threads running under native Linux on separate cores, and between
threads running in separate domUs hosted by Xen hypervisor.The purpose of this in-
vestigation is to determine if shared memory communicationperformance is impacted
adversely by virtualization.

In each of the experiments we use a two-core, 2.8-GHz PentiumD with an 800-MHz
processor bus and 2 MB of L2 cache. The machine memory system uses a 533-MHz
bus with 1 GB of dual interleaved DDR2 SDRAM cores. We use our modified Xen
v3.0.4 and the 2.6.19 Linux kernel.

4.1 Memory sharing micro-benchmarks

We crafted three simple micro-benchmarks to measure the efficiency of memory shar-
ing. Two of the benchmarks pass control back and forth(ping-pong)between two
threads of execution for a set number of turns by modifying data in a memory region
shared by the threads. The benchmarks were written in C, neither relying on existing

(a)
for (i = 0; i < iter; i++) {

while (my id == turn) { }
turn = my id;

}

(b)

sem[0] = sem init(0);
sem[1] = sem init(1);
for (i = 0; i < iter; i++) {

sem P(sem[my id]);
turn = my id;
sem V(sem[!my id]);

}

Fig. 2. Simplified C code forRaw (a) andSync(b) micro-benchmarks. The same code runs in
two threads, with the value ofmy id being the only difference (it is 0 in one thread and 1 in the
other). Variableturn and the semaphore structures in (b) are in shared memory.

synchronization libraries or hardware support for synchronization, which makes them
usable without modifications both in user-space and inside the kernel. Both use busy
waiting (instead of proper sleep/wakeup) to minimize context switches.

In the first benchmark – termedRaw– control is passed using a single shared binary
variable, as shown in Fig. 2 (a)1. This experiment measures the raw speed of memory
sharing. The second benchmark – denotedSync– uses classic P/V semaphores im-
plemented usingbakery algorithm[22] to enforce synchronized (and necessarily alter-
nating) access to a shared integer variable, which is modified at each turn, as shown
in Fig. 2 (b).Syncbenchmark demonstrates the performance of a more realisticfine-
grained synchronization scenario.

In addition to the two shared-memory benchmarks, we wrote a simple program
to ping-pong an integer through a TCP socket by alternatingsend() andrecv()
invocations in each thread. Our intent was to measure the overhead of TCP connection
management and Xen protection mechanisms.

4.2 Performance results

We used our micro-benchmarks to measure the latency of communication between two
threads as follows. For each benchmark run, the threads wereping-ponging for106

times. We then computed the mean duration of an iteration (along with its standard
deviation).

For each benchmark, we studied three cases. The first is memory sharing between
processes executing under native Linux, the second is memory sharing between dom0
and a domU, and the third is memory sharing between two domUs.In all cases we
enable Linux processor affinity to minimize cache and TLB pollution effects. Finally,
we were concerned about the possibility that enabling support for SMP threading in the
dom0 kernel might perturb the results (all domUs in this study were not SMP-enabled).
Thus we conducted the experiments both for the native dom0 without SMP support and
with it enabled. Table 1 summarizes the results.

In the table, each row corresponds to a benchmark, with Sync appearing twice
(Sync1k involved passing one thousand bytes from one thread to the other instead of
a single integer) and the socket-based ping-pong results listed asTCP. The columns are
divided into three sections: one for native Linux with SMP enabled (left-most section),

1 A diligent reader may notice that the code does not force strict alternation since it is possible
for one of the threads to loop around twice as the other only loops around once; by keeping
track of iterations made we know that in practice alternation is the norm.

Native dom0 w/o SMP dom0 w/ SMP
Linux dom0-domU domU-domU dom0-dom0 dom0-domU domU-domU

Raw 0.49 (0.03) 0.36 (0.007) 0.36 (0.005) 0.36 (0.009) 0.35 (0.005) 0.39 (0.03)
Sync 1.4 (0.02) 0.8 (0.01) 0.8 (0.02) 0.8 (0.01) 0.78 (0.03) 0.8 (0.02)
Sync1k 3.4 (0.07) 3.3 (0.05) 3.3 (1.14) 2.8 (0.15) 3.1 (0.2) 2.9 (0.1)
TCP 52.6 (0.4) 56.7 (0.2) 80.9 (0.3) 38.4 (0.3) 70.3 (0.4) 104.0 (0.5)

Table 1. Latency of communication underRaw, Sync, and TCPmicro-benchmarks. The units
are microseconds, each number not in parentheses is the average over106 iterations of25 runs
and the parenthesized number is the standard deviation of the25 runs.

one for Xen dom0 with SMP disabled (middle section) and one with Xen dom0 with
SMP enabled (right-most section). In the middle section, reading from left to right, the
values correspond to dom0-domU sharing and domU-domU sharing, respectively. In
the right section, also reading from left to right, the values correspond to dom0-dom0
sharing, dom0-domU sharing, and domU-domU sharing, respectively. Each cell of the
table shows the average time of25 runs of the benchmark in microseconds, each run
completing106 iterations. The sample standard deviation over the25 runs is shown in
parenthesis. For example, the first cell in the first row contains the values0.49(0.03),
which indicates that for the Raw benchmark, for25 runs, the average elapsed time per
iteration (one ping-pong) is0.49 microseconds with a standard deviation of0.03.

From the table, we can see that memory sharing via modified grant tables under Xen
(first three rows) proceeds at native speeds. It may appear that, in fact, Xen is faster (the
first element in the first column is larger than the others). However, in this case, the
memory sharing had to be between user-level processes (since the kernel is not multi-
threaded). We included this test as a control of our measurement infrastructure as we
would expect user-space to user-space transfers to be more expensive. In all other cases
shown in the first three rows, however, the transfers are kernel-to-kernel and the data
indicates that the speeds are the same. More rigorously, comparisons of the means using
a t-test for all but the first value in the first row provides no evidence contradicting the
assertion that the means are the same.

The values in the bottom two rows of the table allow us to speculate on how shared-
memory communication compares to the two socket-based approaches discussed in
section 2. Specifically, Sync1k results are comparable to one data point reported for
XenSocket [18] in which one thousand bytes were being transferred from one DomU to
another. The bandwidth reported was 2250 Mbps, which corresponds to 3.4 microsec-
onds per iteration involving transfer of 1000 bytes. This number is the same as the
user-space number for Sync1k (left-most column), confirming that bulk data transfers
are equally efficient with shared memory and message passing.

When it comes to latency for fine-grained synchronization,however, shared-memory
programs perform better, as our TCP experiment (in the last row of Table 1) illustrates.
Ping-pong in shared memory is at least50 faster than a socket ping-pong. And the more
domUs are involved the worse the performance. This degradation is mainly caused by
the network layer implementation in Xen, in which a page-flipping technique – as ex-
plained in section 3.2 – is used to avoid memory copying.

These simple experiments indicate that it is possible to achieve memory sharing
among OS instances at native execution speeds for multi-core systems using paravirtu-
alization. They also indicate how existing Xen functionality might be adapted to support
high-performance multi-kernels. They do not, however, demonstrate how memory man-
agement can be unified between hosted operating systems. In this case, we pinned the
memory shared between threads so that Linux memory scheduling would not inadver-
tently interfere with the results. Moreover, in the cases with Xen, memory is partitioned,
and there are as many asthreememory schedulers active simultaneously – one in each
domU and one in dom0. These schedulers are unaware of each other and uncoordinated,
which could lead to thrashing if a single memory-intensive application were running in
the hosted systems.

5 Conclusion and Future Work
This paper represents our first step towards developing support for efficient coordina-
tion and management of light-weight OS instances on parallel multi-core architectures.
Our approach leverages recent developments in paravirtualization, particularly the Xen
hypervisor, to enable multiple OS instances to share one machine. Although memory
sharing among OS instances is not allowed in the standard Xendistribution, a small
patch can enable such sharing. We used micro-benchmarks to study the overhead of
our approach and to compare it to related (socket-based) approaches. Our results show
that memory sharing can be achieved at the speed of the systemwithout paravirtualiza-
tion. In particular, our measurements agree with the bulk message-passing throughput
reported for XenSocket (apparently on a similar hardware configuration). Furthermore,
we confirmed that for fine-grained synchronization, which weconsider crucial to max-
imizing performance of peta-scale applications, the latency is considerably lower with
shared-memory than with message passing.

In this paper, we presented an approach to enabling efficientmemory sharing and
synchronization across OS instances running on a multicoremachine. Our future plans
are to continue investigating how to preserve this level of performance (perhaps through
further modifications to the Xen grant tables mechanism) while eliminating the mem-
ory partitioning and the redundant – and possibly conflicting – memory schedulers.
The next step will be to understand if the mechanism can be used to support full ad-
dress space sharing and to develop a new mechanism if the generality of the current
paravirtualization techniques cannot be sufficiently adapted. Further in the future, we
plan to develop other mechanisms necessary for deploying one application across mul-
tiple OSs, such as inter-OS thread scheduling and delegation of I/O handling from one
OS to another.

References

[1] Minnich, R., Sottile, M., Choi, S.E., Hendriks, E., McKie, J.: Right-weight kernels: an off-
the-shelf alternative to custom light-weight kernels. SIGOPS Oper. Syst. Rev.40(2) (2006)
22–28

[2] Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: Operating system issues for petascale
systems. SIGOPS Oper. Syst. Rev.40(2) (2006) 22–28

[3] Ong, H., Vetter, J., Studham, R.S., McCurdy, C., Walker,B., Cox, A.: Kernel-level single
system image for petascale computing. SIGOPS Oper. Syst. Rev. 40(2) (2006) 50–54

[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.: Vir-
tual machine monitors: Xen and the art of virtualization. In: Symposium on Operating
systems principles (SOSP). (2003)http://www.cl.cam.ac.uk/Research/SRG/
netos/xen/.

[5] VMWare, I.: VMWare home page (2007)http://www.vmware.com.
[6] Lawton, K., Guarneri, B.D.N., Ruppert, V., Bothamy, C.,Calabrese, M.: Bochs x86 PC

emulator Users Manual (2003)http://bochs.sourceforge.net/.
[7] Bellard, F.: QEMU home page (2007)http://fabrice.bellard.free.fr/

qemu/.
[8] J. Sugerman and G. Venkitachalam and B. Lim: Virtualizing I/O devices on VMware

workstations hosted virtual machine monitor. In: USENIX Annual Technical Conference.
(2001)

[9] Rosenblum, M., Garfinkel, T.: Virtual machine monitors:Current technology and future
trends. Computer38(5) (2005) 39–47

[10] Whitaker, A., Shaw, M., Gribble, S.: Scale and performance in the Denali isolation kernel.
In: Symposium on Operating Systems Design and Implementation (OSDI). (2002)http:
//denali.cs.washington.edu/.

[11] Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlayson, M., Herne, J., Matthews,
J.N.: Xen and the art of repeated research. In: USENIX AnnualTechnical Conference,
FREENIX Track. (2004) 135–144

[12] Youseff, L., R. Wolski, B. Gorda, C.K.: Paravirtualization for hpc systems. In: Proceedings
of Workshop on XEN in HPC Cluster and Grid Computing Environments (XHPC)best
paper award winner. (2006)

[13] Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Evaluating the performance impact of xen
on mpi and process execution for hpc systems. In: Proceedings of the First International
Workshop on Virtualization Technology in Distributed Computing (VTDC). (2006)

[14] Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub, D., Jones, M.: Mach:
A System Software Kernel. In: Computer Society International Conference. (1989)

[15] Black, D., Golub, G., Julin, D., Rashid, R., Draves, R.,Dean, R., Forin, A., Barrera, J.,
Tokuda, H., Malan, G., Bohman, D.: Microkernel Operating System Architecture and
Mach. In: Workshop on Micro-Kernels and Other Kernel Architectures. (1992)

[16] Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in xen. In:
USENIX Annual Technical Conference. (2006) 15–28

[17] Jones, R.: http://www.netperf.org/netperf/training/netperf.html
(2003) Netperf: a network performance Benchmark. Revision2.0.

[18] Zhang, X., McIntosh, S., Rohatgi, P., Griffin, J.L.: Xensocket: A high-throughput inter-
domain transport for vms. Technical report, IBM Research Technical Report RC24247
(2007)

[19] Team, T.X.: Xway: Lightweight communication between domains in a single
machine (2007)http://sourceforge.net/project/platformdownload.
php?group id=191553.

[20] Ben-Yehuda, M., Mason, J., Xenidis, J., Krieger, O., Doorn, L.V., Nakajima, J., Mallick,
A., Wahlig, E.: Utilizing iommus for virtualization in linux and xen. In: Proceedings of the
2006 Linux Symposium. (2006)http://www.linuxsymposium.org/2007/.

[21] Team, T.X.: Xen V3.0 for x86 Interface Manual (2005)http://www.cl.cam.ac.
uk/research/srg/netos/xen/readmes/interface.pdf.

[22] Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Communica-
tions of the ACM17(8) (1974) 453–455

