Inter-OS Communication on
Highly Parallel Multi-Core Architectures

Lamia Youseff, Dmitrii Zagorodnov, and Rich Wolski

Department of Computer Science
University of California, Santa Barbara
{lyouseff, dmitrii, rich;@cs.ucsb.edu

Abstract. The next generation of large-scale machines for scientifilsputing
will consist of a large number of nodes, each supporting reamg and multi-
core processor configurations. On one hand, to extract npeaftce from such
machines, the operating system will have to be streaml@adhe other hand, the
heterogeneity of these machines —i.e., the variety of conization channels and
computing elements — will demand a larger set of OS servizeshieve scala-
bility. We believe that high-performance OS paravirtuatian techniques, where
different light-weight OS instances cooperate to provigedifferent OS services,
can resolve this conflict. Current research in paravirzadibn aims to isolate OS
instances for performance guarantees and security; infag@gormance com-
puting setting, however, thread synchronization and iotéee communication
within an application require that the memory is shared aatdinated to meet
the application needs. In this paper, we present an apptoaatabling efficient
memory sharing and synchronization across OS instancagwan a multi-core
machine. Our performance evaluation shows that this appratows native ex-
ecution speeds in a paravirtualized setting, along withroamication latencies
that are lower than under any existing inter-OS commurooatiechanism.

1 Introduction

The next generation of large-scale machines for scientifioputing will consist of a
large number of nodes, each supporting many-core and warii{processor configu-
rations with heterogeneous communication channels (megarat 1/0) and computing
elements (GPUs, vector units, etc.). This heterogeneipji@s the possibility of differ-
ent computational features that must be successfully anated by applications that
aim to use the full capability of an individual machine. Aetbame time, new research
in the area of operating systems for large-scale architestindicates that to achieve
performance, and to remove “OS noise,” operating systens beumade very lean and
specifically focused [1, 2, 3]. Thus, at a time when machirterogeneity is demand-
ing abroaderset of OS services to achieve scalable performance, therdugsearch
indicates that operating systems must becoareowerand more specialized lest they
retard this performance.

We believe that recent developments in high-performaneeating system virtual-
ization techniques offer a way out of this quandary as thieyvahnultiple OS instances
to share one machine. Current virtualization systems, aacten [4] and VMware [5],
are specifically designed tigolate processes or threads running in different operat-
ing systems from each other. With the possibility16f cores within a single HPC

machine, however, both flexibility and scalability requirents make it necessary to
be able to support — within the same machine — multiple operal/stems that can be
used simultaneously bysinglelarge-scale application. Such application will consist of
“tasks” that exchange messages, but within which diffefemhs of parallelism based
on shared memory (e.g., MIMD or SIMD/vector) will be comhihe

The goal of our work is to allow different lightweight OS iastces, as well as
heavier-weight utility operating systems coexisting oa #ame physical multi-core
machine, to cooperate simultaneously, under the contranef application. To that
end, we present an approach that enables efficient memoryngteand synchroniza-
tion across light-weight OS instances, based on paralizethOS kernels running on
top of the Xen hypervisor [4]. Our performance evaluatioovgh that it is possible to
enable native execution speeds with intelligent memoryisganechanism. Further-
more, we confirmed experimentally that the latency of comication — which is of
paramount importance to high-performance applicatiorss considerably lower with
shared-memory than with any type of socket communication.

The remainder of this paper is organized as follows. The sestion describes re-
lated work, both to provide context for this paper and tolfartmotivate our approach.
In Section 3, we describe our technique, including the imm@lstation details of shared
memory across OS instances. We present and analyze therpanice of memory shar-
ing in Section 4. In Section 5, we draw conclusions and suriz@aur future plans.

2 Reated Work

Generally speaking, there are three classes of approamhdsgloying multiple oper-
ating systems on a single machine in a high-end, scalabl€,3¢Ring. They are trans-
parent virtualization, paravirtualization, and micrakels. The approaches differ by the
nature of the interface between the operating systems andhttierlyingcoordination
layer, which ensures safe sharing of hardware resources by thensys

2.1 Coordinating multiple operating systems

Undertransparent virtualizationthe coordination-layer interface is the Instruction Set
Architecture (ISA) — i.e., the hardware-software integfacof some architecture. The
instructions from this virtualized ISA may be interpretedgy in software, as done by
BOCHS [6] and QEMU [7] emulators, or — when the virtualizedI®atches the ISA

of machine’s hardware — unprivileged instructions can eteon the hardware directly,
through a technique callefdll virtualization (with which only privileged instructions
are handled in software). VMware [5, 8, 9] is the best-knowemeple of this approach.
The ability to run existing systems out-of-the-box is thg kelvantage of transparent
virtualization; the key disadvantage is the loss of perfamoe due to the interception
of privileged operations by the coordination layer.

With paravirtualization— a term introduced by one of the first projects to implement
this technique [10] — the coordination-layer interfacerdies somewhat, typically by
losing the privileged hardware instructions and gainiregaperations for communicat-
ing with the coordination layer, which is calledhgpervisorin this setting. To date,

paravirtualized systems have outperformed systems rgrnunidler transparent virtu-
alization by paying the price of the additional developmeffibrt required to port a
standard system to a hypervisor. Xen [4, 11] is the most peav@aravirtualization
system in use, at present. Many Linux versions are suppbytéidand ports for OS X
and Solaris are under way. Our own work has investigated éhmance of Xen in
High Performance Computing (HPC) settings [12, 13]. We tbtimat for many sci-
entific applications, the performance impact associated wsing Xen is statistically
insignificant. Consequently, paravirtualization is ouitinoel of choice.

Under themicrokernelapproach, the interface between the systems and the coor-
dination layer in microkernels moves away from low-levetdwaare-specific opera-
tions to message-passing primitives through which allesystomponents communi-
cate, including the multiple operating systems that cowddsharing it. Although a
traditional operating system can be ported to run on top ofi@akernel, obtaining
best performance typically requires significant re-engjiimgy of system'’s architecture.
Mach [14, 15] is perhaps the most successful example of eokecnel system that is
capable of supporting a full-featured OS. Generally spagkhe additional flexibility
provided by a microkernel implies a performance penalty ihdifficult to overcome;
nevertheless, careful implementation has been able tessldome of these challenges.

2.2 Inter-OScommunicationin Xen

Based on our previous investigation [12, 13] into parawilization in HPC setting, we
chose Xen as our starting point. Communication betweenegs®s in different guest
operating systems under Xen can be achieved in several ways.

7 TN
P P b
[rocess (|) Proceee (a) Shared Procew (b) [Pmcess (a) Process (b)
‘Guest Guesl * k Guesl Memory Guest A 4 Guest Memory Guest +
\ 0s . 0s N os

Hypervisor (Xen) Hypervisor (Xen) Hypervisor (Xen)
(i) Inter-process communication (i) Communication through (iii) Inter-OS and inter-process
through TCP connection kernel-level shared buffer communications through memory
(e.g., XenSocket and Xway) shared by OS instances

Fig.1. This figure shows three types of approaches to establishamgnwnication

between processes executing in different OS instancesngiover Xen. (The solid
lines represent the data paths, while the dashed lines septethe control paths.)
(iYCommunication between two processes in two OS instancesis@m standard

TCP/IP connection. All data and control communication gmtiyh the hypervisor,

hence the high performance overhead. Alternatiyg)y a TCP/IP connection can be
used for the control channel, while the data passes throukgrael-level shared mem-
ory buffer, as done by XenSocket and Xway. In our apprg¢agh control channel is

established through Xen (using one hypercall) but all dadenmunications proceed
through kernel-level or user-level buffers. No copies areded.

Perhaps the most intuitive communication method is a stanb@pP connection. In
that case, both control and data pass through Xen hyperasdlustrated in Fig. 1 (i),

incurring the overhead of data copying, TCP state managemet the necessary ne-
gotiation with the hypervisor viaypercalls(Xen’s equivalent of a system call, allowing
the guest OS to invoke a privileged method in the hyperviddenon et al. [16] mea-
sured this performance penalty usingtperf[17] TCP streaming benchmark over a
single connection. Their study found that Xen guests lagriaehy 80% and67% in
the measured maximum transmit and receive TCP streamingghput, respectively,
relative to native Linux performance.

XenSockefl8] offers a socket-like API for communication using stthreemory.
Bypassing the hypervisor for data copying allows XenSotketchieve up t@2 times
the throughput experienced by regular Xen-based TCP ctionscThis approach is
illustrated in Fig. 1 (ii). XenSocket reduced the numberyjércalls invoked for inter-
OS communication to just a few, mainly to discover the othergg OS and establish the
shared buffer. Despite the significant reduction in the nemalb hypercallsXenSocket
still lags behind the standard Linux socket communicatfmoughput by 33%. This
overhead is caused by the extra memory copies in and out chéred buffer, which
are needed to ensure isolation between the communicatisg®&y[19] is a project
similar to XenSocket. It achieves up 100 times the throughput of a standard TCP
stream by replacing the TCP protocol with a simpler “Xwaybdtarcol. Unfortunately,
no performance measurements comparing Xway to native laneigurrently available.

Our research is different from XenSocket and Xway in severays. The two
projects strive to hide the shared memory buffer using th&IRGsocket interface;
We, on the other hand, expose the shared memory to the prograrkurthermore,
XenSocket and Xway assume that the communicating OS iresazan not trust each
other. In our model, the different OS instances cooperaédficiently share and syn-
chronize the memory within an application. Fig. 1 (iii) #lwates our approach, where
we limit the interaction with Xen hypervisor to a single hygal (during shared mem-
ory setup). Hence, we minimize the performance penaltytheronords, the isolation
restriction between OS instances is not as strict in our meae relaxing this con-
straint allows us to reach native performance.

Memory in large-scale machines is certain to be a valuakleuree — perhaps more
valuable than additional processors. Thus, the currerbagh to hosting multiple op-
erating systems, which is to partition statically the aafalie memory among the guests,
implies too great a fragmentation penalty. Moreover, agmedevelopments in the
Xen community indicate [20], efficient memory sharing isesg&l for some cross-OS
communications. Our work provides one efficient solutiomter-OS memory sharing
without imposing significant performance overhead.

3 Methodology

In this section, we describe our approach to enabling conmgation across OS in-

stances running on a Xen hypervisor. We describe how mersolgtion and memory

sharing are currently implemented in Xen (version 3.0.4) what changes we had to
make to enable inter-OS instances communication.

3.1 Memory management in Xen

The current approach to implementing memory isolation im Xelies on the “con-
troller” intercepting all updates to critical virtual memycstate in the operating system.
In Xen parlance, there is a “master” operating system (refeto as device driver do-
main, domain 0, odomQ, guest operating systems (each referred td@sl), and
the Xen hypervisor itself (which sits between the hardwaie @S domains) [4]. We
will adopt this nomenclature for the remainder of this paptwever, while the Xen
literature often draws a distinction between domO and theehyisor, it is often conve-
nient to think of them as being co-mingled. That is, domO0 dredhypervisor, together,
implement the native virtualization functionality necagsto host one or more domuUs.

In this parlance, then, the basic Xen memory isolation meishaworks as follows.
Xen is responsible for partitioning the available physioeimory among hosted domUs
and mapping it into their respective address spaces. To,dbesomemory each domU
uses to implement its own page tables is markedead-onlyto that domU. That is,
each domU can only read the memory used to implement its oge {adles, but Xen
has read and write access to this memory. When a domU needsd&teuits page
tables, it must explicitly call Xen through a hypercall sattien can check to ensure
the memory being updated belongs to that domU (and not samee ddmU or domO).
The paravirtualization occurs because domU must be e#tplioiodified to make this
callin any place where it would normally just update its ptd®es by writing memory.
(In practice, the Linux kernel uses a a set of C pre-processaros for all page table
entry accesses, which simplifies modifications.)

This approach allows each domU to run at “native” speeds Bg &s page table
entries do not need to be written. However, when page talb&svatten in a domU
(page faults, memory extensions \8&r k() , page permission changes, or process
creation), the performance penalty is substantial sineeldmU must make a hypercall
to Xen so that the change can be checked. Moreover, sin@lthreation in Linux uses
many of the same kernel mechanisms as process creatioreriaéypfor this approach
in an HPC context can be high.

3.2 Memory sharingin Xen

Baseline implementation of Xen cannot implement memoryisgacross domuUs eas-
ily. Because the standard memory management hardware qnmppgs read-write and
read-only permissions, Xen must be interposed betw#grage table entry changes in
any domU and it is not possible to share memory regions $&dctTo address this
difficulty, grant tableswere recently added to Xen. Grant tables allow different dem
to “grant” access to regions of their own memory to domO ferphirpose of delivering
message data from device drivers. Two data delivery teciesigqre currently supported
by grant tables: shared pages and page flipping.

In using grant tables to grant access to shared pages, theegolomU allocates
a new grant reference and fills out its access permissionse @re grantee domain
receives this grant reference, it uses it along with the tgradomU domain ID to
map the granted frame to its local memory. It does the mappyneplling the*GNT-
TABOPmapgrantref” hypercall. Once the memory mapping is established, thegran

and grantee domUs can read and write to the shared memoguwttie intervention of
the Xen hypervisor. The domUs can later terminate the pagerghusing the hypervi-
sor’s hypercaltGNTTABOP.unmapgrantref”. This simple protocol ensures minimal
intervention from the hypervisor, and thus minimal perfanoe overhead since only
one hypercall is needed for sharing memory.

Page flipping, on the other hand, transfers ownership of & peegne from the
granter domain to the grantee. The ownership transfer is dgmaving the grantee call
the hypervisor through th&GNTTABOP. transfer” hypercall after the granter domuU
has authorized the transfer. Page flipping is efficient fandferring large amount of
data between domains, where the overhead of the hypereatidgtized by the through-
put of data transfer. Its overhead, however, retards thfepeance of TCP/IP connec-
tions between domains running on the same physical macéimze the package size
transferred is too small to amortize that cost. Some prejgotked on optimizing page-
flipping overhead in Xen. Menon et al [16] experimented wising memory-copying
instead of page-flipping and found that it provides lowefq@@nance overhead. Menon
et al's optimizations are not merged into mainstream Xenh, ye

We modified the implementation of page sharing so that memamybe shared be-
tween domUs to enable fast memory sharing in different gojestating systems. The
reader familiar with the Xen reference documentation [2&}rfind our Xen modifi-
cations unnecessary, since the reference manual stategrdima tables are a generic
memory sharing interface between domUs. However, usingvéesion 3.0.4 we tried
using them to share data outside of the split driver impleiatean (i.e., between two
domUs rather than between a domU and domO) and found thatithent implemen-
tation does not allow that. We created a patch for our systeatidw arbitrary sharing
between domUs and implemented the sharing functionalityirkernels modules: one
that grants the shared page, and the other that maps thed@ege to the grantee’s
guest OS virtual memory.

4 Performance Evaluation

Using our modified version of Xen, we are able to compare thtBopaance of mem-
ory sharing between threads running under native Linux parsge cores, and between
threads running in separate domUs hosted by Xen hypenvikerpurpose of this in-
vestigation is to determine if shared memory communicatieriormance is impacted
adversely by virtualization.

In each of the experiments we use a two-core, 2.8-GHz Pemiwith an 800-MHz
processor bus and 2 MB of L2 cache. The machine memory syssemai533-MHz
bus with 1 GB of dual interleaved DDR2 SDRAM cores. We use oodified Xen
v3.0.4 and the 2.6.19 Linux kernel.

4.1 Memory sharing micro-benchmarks

We crafted three simple micro-benchmarks to measure tredesftiy of memory shar-
ing. Two of the benchmarks pass control back and f@piing-pong)between two
threads of execution for a set number of turns by modifying daa memory region
shared by the threads. The benchmarks were written in (heraiglying on existing

senf0] = seminit(0);

for (i ;h_ol; i(< it_zr; i:+) {) O fi?‘(l] zge”f'n;,(tlér SR
e nmy.l == urn . i N
(a) , turn = ny.d; (b) tsﬁxp(:i;{_inz;_l D

semV(sen{!ny.id]);
}

Fig. 2. Simplified C code foRaw (a) and Sync(b) micro-benchmarks. The same code runs in
two threads, with the value ofy _i d being the only difference (it is 0 in one thread and 1 in the
other). Variablet ur n and the semaphore structures in (b) are in shared memory.

synchronization libraries or hardware support for synafration, which makes them
usable without modifications both in user-space and ingidekernel. Both use busy
waiting (instead of proper sleep/wakeup) to minimize crngavitches.

In the first benchmark — termdé®aw— control is passed using a single shared binary
variable, as shown in Fig. 2 (a)This experiment measures the raw speed of memory
sharing. The second benchmark — dendsgtic— uses classic P/V semaphores im-
plemented usintpakery algorithnm{22] to enforce synchronized (and necessarily alter-
nating) access to a shared integer variable, which is mddifieeach turn, as shown
in Fig. 2 (b).Syncbenchmark demonstrates the performance of a more rediistic
grained synchronization scenario.

In addition to the two shared-memory benchmarks, we wrotangle program
to ping-pong an integer through a TCP socket by alternaieigd() andrecv()
invocations in each thread. Our intent was to measure théhead of TCP connection
management and Xen protection mechanisms.

4.2 Performanceresults

We used our micro-benchmarks to measure the latency of concation between two
threads as follows. For each benchmark run, the threads piregeponging for10°
times. We then computed the mean duration of an iteratian¢gpivith its standard
deviation).

For each benchmark, we studied three cases. The first is mesharing between
processes executing under native Linux, the second is mesharing between domO
and a domU, and the third is memory sharing between two dormJsll cases we
enable Linux processor affinity to minimize cache and TLByt@n effects. Finally,
we were concerned about the possibility that enabling sup@oSMP threading in the
domO kernel might perturb the results (all domUs in this gtwere not SMP-enabled).
Thus we conducted the experiments both for the native dortibwi SMP support and
with it enabled. Table 1 summarizes the results.

In the table, each row corresponds to a benchmark, with Sppeaing twice
(Syngk involved passing one thousand bytes from one thread to ther aistead of
a single integer) and the socket-based ping-pong resstisllasTCP. The columns are
divided into three sections: one for native Linux with SMRkeled (left-most section),

1 A diligent reader may notice that the code does not forcetsitiernation since it is possible
for one of the threads to loop around twice as the other ordpsaaround once; by keeping
track of iterations made we know that in practice altermaisothe norm.

Native domO w/o SMP domOw/ SMP
Linux dom0-domU domU-domU dom0-domO domO-domU domU-domU

Raw 0.49(0.03) 0.36(0.007) 0.36(0.005) 0.36 (0.009) 0.350)0 0.39 (0.03)
Sync 1.4(0.02) 0.8(0.01) 0.8(0.02) 0.8(0.01) 0.78(0.03) 0.82p
Synex 3.4(0.07) 3.3(0.05) 3.3(1.14) 2.8(0.15) 3.1(0.2) 2.9Y0.1
TCP 52.6(0.4) 56.7(0.2) 80.9(0.3) 38.4(0.3) 70.3(0.4) 100.8)

Table 1. Latency of communication und&aw, Syng and TCP micro-benchmarks. The units
are microseconds, each number not in parentheses is thagaeverl 0° iterations of25 runs
and the parenthesized number is the standard deviatioreafihuns.

one for Xen domO with SMP disabled (middle section) and orte Wen domO with
SMP enabled (right-most section). In the middle sectioadirg from left to right, the
values correspond to dom0-domU sharing and domU-domUrsiaréspectively. In
the right section, also reading from left to right, the valeerrespond to dom0-domO
sharing, dom0O-domU sharing, and domU-domU sharing, reispéc Each cell of the
table shows the average time 2if runs of the benchmark in microseconds, each run
completingl0¢ iterations. The sample standard deviation over2theuns is shown in
parenthesis. For example, the first cell in the first row ciostéhe value$.49(0.03),
which indicates that for the Raw benchmark, #6rruns, the average elapsed time per
iteration (one ping-pong) i8.49 microseconds with a standard deviatiorddif3.

From the table, we can see that memory sharing via modified tables under Xen
(first three rows) proceeds at native speeds. It may appetinttact, Xen is faster (the
first element in the first column is larger than the others)weleer, in this case, the
memory sharing had to be between user-level processeg (iadkernel is not multi-
threaded). We included this test as a control of our measememfrastructure as we
would expect user-space to user-space transfers to be mpgave. In all other cases
shown in the first three rows, however, the transfers areekéoakernel and the data
indicates that the speeds are the same. More rigorouslypaasons of the means using
at-test for all but the first value in the first row provides nod®iice contradicting the
assertion that the means are the same.

The values in the bottom two rows of the table allow us to sfa¢ewn how shared-
memory communication compares to the two socket-basedapipes discussed in
section 2. Specifically, Syng results are comparable to one data point reported for
XenSocket [18] in which one thousand bytes were being tearesfl from one DomU to
another. The bandwidth reported was 2250 Mbps, which cporeds to 3.4 microsec-
onds per iteration involving transfer of 1000 bytes. Thisntier is the same as the
user-space number for Symdleft-most column), confirming that bulk data transfers
are equally efficient with shared memory and message passing

When it comes to latency for fine-grained synchronizatiowdwver, shared-memory
programs perform better, as our TCP experiment (in the tagof Table 1) illustrates.
Ping-pong in shared memory is at ledStfaster than a socket ping-pong. And the more
domUs are involved the worse the performance. This degmadst mainly caused by
the network layer implementation in Xen, in which a pagegiiiyg technique — as ex-
plained in section 3.2 —is used to avoid memory copying.

These simple experiments indicate that it is possible taeaehmemory sharing
among OS instances at native execution speeds for mulisy@tems using paravirtu-
alization. They also indicate how existing Xen functiotathight be adapted to support
high-performance multi-kernels. They do not, however, destrate how memory man-
agement can be unified between hosted operating systentss lcase, we pinned the
memory shared between threads so that Linux memory scingdubuld not inadver-
tently interfere with the results. Moreover, in the casadviien, memory is partitioned,
and there are as many #seememory schedulers active simultaneously — one in each
domuU and one in domO. These schedulers are unaware of eagtaathuncoordinated,
which could lead to thrashing if a single memory-intensipplecation were running in
the hosted systems.

5 Conclusion and Future Work

This paper represents our first step towards developingostifigr efficient coordina-
tion and management of light-weight OS instances on paralii-core architectures.
Our approach leverages recent developments in paravidtiah, particularly the Xen
hypervisor, to enable multiple OS instances to share ondimacAlthough memory
sharing among OS instances is not allowed in the standarddié&gribution, a small
patch can enable such sharing. We used micro-benchmarksdyp the overhead of
our approach and to compare it to related (socket-baseddpagimes. Our results show
that memory sharing can be achieved at the speed of the systkaut paravirtualiza-
tion. In particular, our measurements agree with the bulksage-passing throughput
reported for XenSocket (apparently on a similar hardwardigaration). Furthermore,
we confirmed that for fine-grained synchronization, whichoeasider crucial to max-
imizing performance of peta-scale applications, the katés considerably lower with
shared-memory than with message passing.

In this paper, we presented an approach to enabling effimiemory sharing and
synchronization across OS instances running on a multima@hine. Our future plans
are to continue investigating how to preserve this levelsfgrmance (perhaps through
further modifications to the Xen grant tables mechanism)emtliminating the mem-
ory partitioning and the redundant — and possibly conflgctinmemory schedulers.
The next step will be to understand if the mechanism can be tessupport full ad-
dress space sharing and to develop a new mechanism if theagignef the current
paravirtualization techniques cannot be sufficiently agldpFurther in the future, we
plan to develop other mechanisms necessary for deployie@pnplication across mul-
tiple OSs, such as inter-OS thread scheduling and delegatidO handling from one
OS to another.

References

[1] Minnich, R., Sottile, M., Choi, S.E., Hendriks, E., MoKiJ.: Right-weight kernels: an off-
the-shelf alternative to custom light-weight kernels. SFS Oper. Syst. Rex0(2) (2006)
22-28

[2] Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: Opangtisystem issues for petascale
systems. SIGOPS Oper. Syst. R&)(2) (2006) 22—-28

[3] Ong, H., Vetter, J., Studham, R.S., McCurdy, C., Wallgr,Cox, A.: Kernel-level single
system image for petascale computing. SIGOPS Oper. Systd®@) (2006) 50-54

[4] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,Ho, A., Neugebauer, R.: Vir-
tual machine monitors: Xen and the art of virtualization.. Symposium on Operating
systems principles (SOSP). (2008)t p: / / ww. cl . cam ac. uk/ Resear ch/ SRE
net os/ xen/ .

[5] VMWare, I.: VMWare home page (2007 t p: / / www. vhwar e. com

[6] Lawton, K., Guarneri, B.D.N., Ruppert, V., Bothamy, Calabrese, M.: Bochs x86 PC
emulator Users Manual (2008} t p: / / bochs. sour cef or ge. net /.

[7] Bellard, F.. QEMU home page (200Wttp://fabrice.bellard.free.fr/
gemu/ .

[8] J. Sugerman and G. Venkitachalam and B. Lim: VirtualigihfO devices on VMware
workstations hosted virtual machine monitor. In: USENIXrAial Technical Conference.
(2001)

[9] Rosenblum, M., Garfinkel, T.: Virtual machine monitoBurrent technology and future
trends. Computed8(5) (2005) 39-47

[10] Whitaker, A., Shaw, M., Gribble, S.: Scale and perfontein the Denali isolation kernel.
In: Symposium on Operating Systems Design and Implementé®SDI). (2002ht t p:

/I denali.cs.washi ngt on. edu/.

[11] Clark, B., Deshane, T., Dow, E., Evanchik, S., Finlays®l., Herne, J., Matthews,
J.N.: Xen and the art of repeated research. In: USENIX Aniieahnical Conference,
FREENIX Track. (2004) 135-144

[12] Youseff, L., R. Wolski, B. Gorda, C.K.: Paravirtualtian for hpc systems. In: Proceedings
of Workshop on XEN in HPC Cluster and Grid Computing Enviremis (XHPC)best
paper award winner(2006)

[13] Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Evaluat) the performance impact of xen
on mpi and process execution for hpc systems. In: Procegdihthe First International
Workshop on Virtualization Technology in Distributed Coutipg (VTDC). (2006)

[14] Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R.,iRpA., Golub, D., Jones, M.: Mach:
A System Software Kernel. In: Computer Society InternaldDonference. (1989)

[15] Black, D., Golub, G., Julin, D., Rashid, R., Draves, Bean, R., Forin, A., Barrera, J.,
Tokuda, H., Malan, G., Bohman, D.: Microkernel Operatingst®yn Architecture and
Mach. In: Workshop on Micro-Kernels and Other Kernel Arebtures. (1992)

[16] Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing netikovirtualization in xen. In:
USENIX Annual Technical Conference. (2006) 15-28

[17] Jones, R.: http://wwmv. net perf. org/ netperf/training/ netperf.htnl
(2003) Netperf: a network performance Benchmark. Revigion

[18] zhang, X., McIntosh, S., Rohatgi, P., Griffin, J.L.: >aatket: A high-throughput inter-
domain transport for vms. Technical report, IBM Researcbhiecal Report RC24247
(2007)

[19] Team, T.X.: Xway: Lightweight communication betweerongains in a single
machine (2007)htt p://sour cef orge. net/ proj ect/ pl at f or mdownl oad.
php?group. d=191553.

[20] Ben-Yehuda, M., Mason, J., Xenidis, J., Krieger, O.obqg L.V., Nakajima, J., Mallick,
A., Wahlig, E.: Utilizing iommus for virtualization in linand xen. In: Proceedings of the
2006 Linux Symposium. (200&)t t p: / / www. | i nuxsynposi um or g/ 2007/ .

[21] Team, T.X.: Xen V3.0 for x86 Interface Manual (200®)t p: / / www. cl . cam ac.
uk/ resear ch/ srg/ net os/ xen/ readmnes/ i nter f ace. pdf.

[22] Lamport, L.: A new solution of Dijkstra’s concurrentqgramming problem. Communica-
tions of the ACM17(8) (1974) 453—-455

