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Abstract—Protecting user privacy in network communication
is vital in today’s open networking environment. Current anony-
mous routing protocols provide anonymity by forwarding traffic
through a static path of randomly selected relay nodes. In
practice, however, malicious relays can perform passive logging
attacks to compromise the anonymity of a flow. This degradation
is accelerated when nodes fail, forcing source node to reconstruct
a path, and in doing so, leaking more information to passive
loggers. This “predecessor attack” is highly effective anddifficult
to defend against on current systems. In this paper, we propose
a highly effective approach to blocking predecessor attacks by
leveraging trusted links from social networks. We first showhow
users can completely shield themselves from traditional logging
attacks. We then propose a hybrid logging attack optimized for
social networks, and perform detailed analysis to show thatwe
can defend against it using optimized path selection techniques.
Finally, we analyze detailed measurement traces from Facebook
to show that our approach is indeed feasible given the user
behavior in social networks today.

I. I NTRODUCTION

Protecting user privacy in network communication is vital
in today’s open networking environment. More specifically,
many applications desire the ability to hide the identity of
the communicating parties from each other and third-party
observers. Anonymous routing is used in many applications
such as anonymous web browsing [2] and anonymous voting.

While a number of anonymous communication protocols
have been proposed [5], [6], most of them are prone to passive
logging attacks like thepredecessor attack[21], [9]. In this
attack, attackers log the participants in an anonymous path.
As nodes fail or exit from the network during a session, paths
must be rebuilt. Attackers then correlate observed participants
over multiple paths to identify the communication endpoints,
since they must participate in each rebuilt path. This has been
shown to be highly effective in both theoretical analysis and
practical on the popular Tor network [3]. Note that this threat is
more severe for longer communication sessions with a higher
number of path rebuilds. As an increasing number of Internet
applications move towards a web services model, we expect
anonymous sessions to grow in length, further exposing users
to this type of attack.

Current defenses against these attacks are limited and in-
effective. One approach is to leverage “persistent nodes” in
the path to shield the end-points and limit their exposure to
attackers [20]. This was adopted into the Tor network [5] as
“guard” nodes. However, this solution is difficult to realize
in practice, since persistent nodes are rare in real systems
due to the complexity and costs of maintenance. A recent
Tor measurement study showed that very few nodes in Tor
have the stability and resources to serve as guard nodes [10].
In addition, the few nodes that are able to serve immediately

become high-yield targets for attacks. Another recent study
showed that attacking only a few nodes could compromise
the anonymity of a significant portion of the Tor network [3].

In this paper, we describe and investigate a highly effective
defense against logging attacks leveraging the prevalenceof
trusted social links between online users. Recent years has
seen rapid growth in social networks such as MySpace (190+
Million users) and Facebook (80+ Million users). Measure-
ments show that the average social network user has anywhere
between 5-150 direct friends [11]. We propose that anonymous
networks be built to leverage these social networks: users
would join an anonymous network along with their friends.
Instead of centralized infrastructure-based guard nodes,par-
ticipants can use trusted friend nodes to shield them from
passive logging attacks. Not only do these social links protect
the source node from malicious loggers, but their distributed
nature means that load is spread across the network, thus
avoiding tempting targets to attack and limiting the loss of
anonymity following a successful attack.

This paper makes three key contributions. First, we propose
and evaluate the effectiveness of several algorithms for using
social links to build buffers against logging attacks. Users must
utilize their social network wisely to defend against attackers
with knowledge of the social graph topology. Second, we
describe a novel two-phased attack against social anonymous
networks that reduces sender anonymity. We perform detailed
analysis to quantify its effectiveness, and use our resultsto de-
rive a more attack-resistant path construction algorithm based
on cliques. Finally, we study the feasibility of our approach
using measurement traces of Facebook, Tor and Gnutella. We
show that most social network users have sufficient number
of online friends to protect them across lengthy sessions, and
most users belong to sufficiently large cliques to ensure strong
anonymity against even our two-phased attack.

The rest of this paper is structured as follows. We de-
scribe related work in Section II, and then we describe our
assumptions and proposed design in Section III. Next, we
propose a two-phased logging attack, and analyze its impact
on path construction algorithms in Section IV. We then use
measurement results to demonstrate the feasibility of our
approach in Section V, and finally conclude.

II. CONTEXT AND RELATED WORK

We describe our work in the context of well-known Onion
Routing [5], [17] protocol, which has been thoroughly ana-
lyzed before [17], [21]. However, other protocols such as peer-
to-peer anonymous routing [6], [23] and mix networks [4] can
benefit from our work in the same way.
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Fig. 1. Onion Routing path consists of randomly selected nodes. Our
proposal, (a), has a friend node in the first position, with rest of the
path members chosen randomly.

In Onion Routing, the source initiates a low-latency anony-
mous communication with a receiver by setting up a path
consisting of randomly selected nodes in the network. The
path starts with the source and terminates at the receiver as
shown in Figure 1. We assume that the source and the receiver
are not malicious, but the randomly chosen intermediate nodes
on the path can be malicious attackers.

Since our goal is to improve anonymity through the ad-
dition of trustednodes in the path, we focus mainly on the
node selection component of path building. Unless otherwise
specified, we utilize the well-studied Onion Routing path setup
algorithm for other components [5].

To simplify our analysis, we consider the problem of
securing a single flow against attacks. While there might be
multiple flows at any given time between different pairs of
endpoints, we assume that attackers can disambiguate between
different flows using timing correlation.

Finally, social networks have been the focus of several
recent measurement studies [11], [1]. Following their inte-
gration into file-sharing networks [18] and online auction
systems [16], the research community has also proposed to
exploit trust from social networks to improve the security of
email and distributed systems [7], [22], [12].

III. SYSTEM MODEL AND DESIGN

We describe our system model, followed by an overview of
our design and detailed strategies for path construction.

A. Assumptions and Attack Model

First we define terminology used in this paper. We refer to
each participant in the network as anode, the node initiating
an anonymous connection as thesource, and the destination of
the anonymous connection as thereceiver. An anonymouspath
consists of a number of intermediate proxies each referred to
as arelay. Continuous communication between a source and a
receiver is called a “session.” As node churn disrupts sessions,
paths are rebuilt to reconnect the two endpoints. We refer to
the time period between two successive rebuilds of a path as
a “round.”

We assume that nodes in the anonymous network belong to
a social network, and have a set of friends from that network
who are also participants in the anonymous network. For
example, we can deploy a peer-to-peer anonymous network
on top of the Facebook application platform. Note that users
in the anonymous network do not need to belong to the same
social networkS, as long as their friends from outsideS also
participate in the same anonymous network. We also assume

that a user has access to both her list of friends and also
their lists of friends, as is the case on Facebook. Moreover,
we design a strategy to discover nodes in the k-hop social
neighborhood, so that each source is able to build a stronger
anonymous path prefaced by hops in this social neighborhood.
We describe the discovery procedure in detail, and formally
prove our anonymity benefits in Section IV.

Attack Model. Like prior work on passive logging [21], we
assume a model where attackers are users who can passively
monitor and log their communication with other nodes. We
assume that in a network ofN nodes,c (where c < N )
users are malicious attackers who can collude with each other
and share their logs with zero delay. However, attackers do
not perform active attacks such as dropping or corrupting
packets. We further assume that the attackers can perform
timing attacks and hence can successfully perform predecessor
attacks [21].

In addition to performing the predecessor attack, we assume
that the attackers are powerful enough to obtain the full social
network topology,e.g.by crawling the social network. Given
this information, a group of attackers can tailor customized
logging attacks for social network enhanced anonymous sys-
tems. Wescribe such an attack later in Section IV. Finally, we
also allow the possibility that an attacker can compromise any
node in the network, and can therefore passively observe the
traffic routed by the local user for her friends.

Note that this is a highly conservative model. In practice,
attackers will find it difficult to obtain complete connectivity
data for a social network, and is highly unlikely to compromise
all friend nodes of an anonymous user.

B. Anonymity via Social Networks

At a high level, we are proposing that source nodes in
anonymous systems leverage the presence of “trusted” friend
nodes to shield them from being observed by passive attackers.
We rely on an assumption of inherent trust between links
in the social network. This trust comes from both social
relationships established between users in the real world and
from explicit authorization required to become “friends” in a
social network. Social links have been shown to be effectivein
introducing trust into a variety of applications [18], [16]. More
specifically, a recent measurement study of a social auction
system confirmed that even transitive social links help protect
users from malicious attackers by filtering them from the social
network [16].

Friend Selection. Each user has access to a list of her
friends and each friend’s list of friends (friends-of-friends, or
FoF). Using this information, the source node can construct
a communication path such that trusted friends or FoFs are
inserted into the path to block attackers from observing the
source or destination.

Using only one-hop friends as shields is risky. With the
social link topology, an attacker can use a successful prede-
cessor attack to narrow down the source to a smaller set of
users. Instead, we propose that the source choosek nodes from
its k-hop social “neighborhood.” This consists of all nodes
reachable withink social hops from the source. We refer to this



neighborhood as the friend-of-friend (FoF) network. We show
later via experiments that we achieve sufficient neighborhood
sizes usingk = 2.

Path Formation Strategy. The source node can utilize its
FoF nodes in different ways to improve anonymity. The FoF
nodes can be positioned as the first node on the path to protect
the source, as the last node on the path to protect the receiver,
in both positions, or at all positions along the path. We focus
on using FoF as the first hop to improve source anonymity,
and defer analysis of other strategies for future work.

In this strategy, the sources constructs the path with a
trusted FoF nodeF as the first relay after the source. Other
relays in the path are chosen at random. Unless an attacker
compromises the FoF, no attacker can observe the source
directly. From the attackers’ point of view,F could either be a
random relay, the source node, or a friend of the source node.
If F fails or leaves, the source reforms a new path replacing
F with a new friend. However, if a non-FoF relay leaves, the
source rebuilds the path using the same FoF nodeF , replacing
only the randomly chosen nodes. This way of reusing FoF
nodes exposes fewer FoF nodes to the attackers and hence
limits information leakage.

Path Construction with FoF. First, a source must obtain
a set of nodes within itsk−hop social neighborhood. We pro-
pose that all nodes send periodic neighbor discovery messages
to its friend nodes in the anonymous network. Each node
appends its own nodeID to the message before forwarding
it on, until a per-message time-to-live parameter expires.This
background discovery traffic periodically updates each user
with a list of currently online friends1. Alternatively, a user
can query a friend for a list of their online friends. When a
node discovers new FoF nodes, it queries for their public key
from a Certificate Authority, and caches the key.

To construct a path, the source chooses at random a se-
quence ofk socially-connected nodes in its FoF neighborhood.
It uses the sequence of FoF nodes as the preamble to the path,
and chooses random relays to form the rest of the path. While
there might be up tok FoF nodes on the path, we treat the
entire FoF chain as one friend for the sake of analysis.

Note that a compromised friend in this FoF chain does not
gain any more information than a random malicious node
following the chain. Indeed, a compromised FoF does not
know its location on the chain, and therefore cannot determine
if its predecessor is the source. We treat a compromised FoF
the same as a malicious node, and the following analysis
applies also in this scenario.

IV. A NALYSIS OF ATTACKS AND DEFENSES

In this section, we analyze the resilience of our approach
against passive logging attacks. First we describe why our
approach is resilient against both the predecessor and inter-
section attacks. We then present a new two-phase passive
logging attack, and use detailed analysis to show its impacton
our system. Finally, we describe a modified path construction

1While this could provide limited topology information to potential attack-
ers, we already assume that attackers can crawl the full social network.

algorithm that provides stronger protection against the two-
phase attack.

A. A Two-Phase Attack

Two logging attacks have been proven most effective against
anonymous systems: the predecessor attack which passively
logs traffic across rebuilt paths, and the intersection attack,
which combining sets of nodes that possibly contain the
communicating end-points. However, neither of these attacks,
as described by the literature [19], [20], is effective against
our approach. The predecessor attack fails, because the source
always hides behind one or more FoF nodes, and is never
observed directly by an attacker. The best the predecessor
attack can do is to identify the FoF node associated with a
particular flow. On the other hand, the intersection attack is
ineffective in our attack model, because attackers do not have
global knowledge of the online/offline status of nodes in the
network.

The attackers can, however, combine a modified version of
the predecessor attack with a version of intersection attack to
attack our system. In this combined attack, the attackers first
try to narrow down the possible friends of friends used to
shield the source. After the FoF nodes have been sufficiently
logged, the attackers can perform an intersection attack using
the social link structure information they have to identifythe
possible source. This is what we call astwo-phaseattack.

In Phase I, the attackers perform a modified predecessor
attack. Each time an attacker receives a flow from a nodex,
the attacker stores the following information:

• the identity of the nodex from which it got the flow;
• all nodes withink−hop social distance ofx, because

the source can be any node between1 and k hops. We
represent the friends at distance1 as:
Fx,1 =

⋃

i fx,1,i = {fx,1,1, fx,1,2, fx,1,3, ...};
the friends at distance2 as:
Fx,2 =

⋃

i fx,2,i = {fx,2,1, fx,2,2, fx,2,3, ...};
and so on until the friends at distancek:
Fx,k =

⋃

i fx,k,i = {fx,k,1, fx,k,2, fx,k,3, ...}
We aggregate the previous sets of nodes in order to have
a more compact notation and avoid duplicate nodes as:
Fx =

⋃k
i=1 Fx,i.

Phase II begins when the attackers find the possible sets
that include the source with high confidence, and proceeds:

• Select the most seen sets amongFx, for any observedx
•

⋂

for any x Fx = {v|v ∈ Fx for any x}

The attackers should narrow down in Phase I the possible
friend sets (Fx for anyx at distance≤ k from the source) by
observing the flows. Sufficient number of observations must be
made in order to identify with high probability which logged
friend sets contain the real source node. Then in Phase II, the
attackers use a threshold of observations to filter out which
observed friend sets contain the real source, and perform an
intersection across all of them to isolate the identity of the
source. If Phase II begins too early, i.e. with an insufficient
number of observations, then an incorrect friend set, one that
does not contain the real source, can be included in the set



intersection. This intersection then proceeds to remove the true
source from the result set, and guarantees an incorrect result.

Performed correctly, the attackers can identify after Phase
II the source of the communication. However, compared to
existing anonymous routing proposals [5], [19], our system
requires significantly more number of observations by the
attackers (and therefore more time). In the next section, we
present detailed proofs to quantify the necessary number of
rounds observed (recall that a round is the time between
successive rebuilds of a path). These results serve to quantify
the robustness of our social-based defenses, and also deter-
mine the necessary threshold that attackers must attain before
proceeding to Phase II.

B. Analytical Results

First, we need to understand the number of rounds the
attackers should spend in the worst case before moving to
the second phase. In Theorem 1, we bound the number of
rounds needed in Phase I of the attack to identify, with high
probability, the source’sk−hop neighborhood. The Theorem
1 is organized following the guidelines introduced in [21].

Theorem 1. The number of rounds that “c” colluding at-
tackers have to perform passive logging in the network is
O((N

c )2f log N).

Proof: For any of thec colluding attackers to be able
to log the source node’s FoF nodes, the attacker should be
positioned just after the FoF nodes on the path, which is
k−hop distance from the source. Letf be the total number of
distinct friends in at most k-hop neighborhood of a particular
source. The attackers need to log each of thef friends and
the destination enough time to be sure that they have gotten
the right information. The probability that an attacker canlog
one of the source’s friends is the combination of the following
two probabilities:

Event A: The source chooses that particular friend
as its first hopP [A] = ( 1

f ).
Event B: An attacker is on the first position after the
selected friendP [B] = ( c

N ).

On the other hand, the probability to log the right destination
is equal to the probability to be the last node before the
destination on the path. LetC be the event an attacker occupies
the last position on the path. In our network,P [C] = c

N . Now,
in each round the attackers store the right information (storing
one of thef eligible friends and be the last node before the
destination) with probabilityP [A ∩ B] ∩ P [C] = ( c

N )2 1
f .

At this point, we divide the following part of the theorem
in two parts. First, we bound the number of rounds required
to see each of thef friends in the source node’s k-hop social
neighborhood a sufficient number of times. Second, we prove
that no other nodes can be logged so many times in the
equivalent number of rounds.

Let X1, X2, ..., XT be T random variables such that:

Xi =







1, if the event (A∩ B)∩C
is true during the i-th round

0, otherwise.
Let pi be the probability thatXi = 1, in our casepi =

P [A ∩ B] ∩ P [c] and let µ = E[X ] =
∑T−1

i=0 pi. By

Chernoff bound [13] we haveP (X < (1 − τ)µ) < e
−µ(τ)2

2 .
In particularpi = ( c

N )2 1
f andτ = 1/2 we have:

µ =

T−1
∑

i=0

(
c

N
)2

1

f
= (

c

N
)2

T

f

and so, P (X < (1 − τ)µ) = P
(

X < 1/2(( c
N )2 T

f )
)

<

e−1/8(( c
N

)2 T
f

). This probability is < 1
N iff: T >

8(N
c )2f log N . We can see that with probabilityN−1

N the num-

ber of rounds used from the attackers isT = O
(

N
c

2
f log N

)

.
The second part is to calculate the number of times a node

not in the k-hop neighborhood of the source is seen. LetD
be the event that an attacker logs a node not in the k-hop
neighborhood from the source,P [D] = 1

N−c−f .
Let X1, X2, ..., XT be T random variables such that:

Xi =

{

1, if D is true during the i-th round
0, otherwise.

Let pi be the probability thatXi = 1, in our casepi = P [D]
and letµ1 = E[X ] =

∑T−1
i=0 pi = 1

N−c−f T . Using the Cher-
noff bound [13] we want to verify thatP (X > (1 + δ)µ1) <
e−µ1(δ), in particular when(1 + δ)µ1 = (1 − τ)µ such
that we can compare with the bound analyzed before. So
(1 + δ) 1

N−c−f T = 1
2 ( c

N )2 T
f means thatδ has to be

( c
N )2 (N−c−f)

2f − 1. In order to apply the Chernoff bound we
need to fixδ > 2e− 1 which is not a tight bound. Therefore,
P (X > (1 + δ)µ1) = P

(

X > ( c
N )2 T

2f

)

< e−( c
N

)2 T
2f which

is < 1
N for eachT > 2(N

c )2f log N . To summarize, this
theorem shows that inT > 8(N

c )2f log N rounds, each
node in the source’s k-hop social neighborhood is observed
more than1

2 ( c
N )2 T

f times, and other nodes are seen less than
1
2 ( c

N )2 T
f , with high probability.

At this point, the attackers are ready to proceed to Phase
II of the attack. The attackers only need to intersect the most
logged sets of nodes hoping that the intersection will result in
a small number of nodes that includes the source node.

Theorem 2. At the end of Phase II, the attackers may identify
the source node.

Proof: During Phase I,f distinct friends have been recog-
nized. As proven in Theorem 1, the attackers have to log nodes
for T > 8(N

c )2f log N rounds in order to observe the source’s
k-hop social neighborhood more than12 ( c

N )2 T
f times, and

therefore be sure that they are considering thef friends of the
right source. If Phase I ends too early,i.e. with an insufficient
number of observations, then an incorrect friend, one that
is not in real source’sk-hop social neighborhood, can be
included among the friends used in Phase II. The intersection
in Phase II then proceeds to remove the true source from the
result set, and guarantees an incorrect result. Therefore,the
attackers must waitT > 8(N

c )2f log N rounds before starting
the intersection Phase. The attackers have already stored the
nodes in the k-hop neighborhoods of each one of thesef
nodes. LetFx1 , Fx2 , .....Fxf

be the most logged sets during the
first phase (T rounds) of the attack such thatx1, x2, ..., xf are



thef distinct friends in k-hop neighborhood of the real source.
Then, if there exists a combination of a subset of1 ≤ i ≤ f of
Fx1 , Fx2 , .....Fxf

such that
⋂i

j=1 Fxj
−{source} = ∅, then at

the end of the intersection phase, the attackers can recognize
the real source. This is possible because a combination of
subsets could exist whose intersection consists of only one
node, the source. This comes from our empirical studies on
the Facebook network, where most nodes belong to multiple
distinct cliques that only intersect at the source nodes.

Optimization Based on Clique Selection. While our
approach forces attackers performing the two-phase attackto
pay a high cost in rounds, it can ultimately succumb to a
group of persistent attackers. We now describe an optimization
to our path construction algorithm that prevents the attack
from recognizing the source node, but only allows attackers
to identify a clique that includes the source. The optimization
uses cliques as shields rather than individual FoF nodes.

Intuitively, members of social networks with similar “in-
terests” are tied in together in the social graph. This process
leads groups of friends to form maximally connected cliques.
In fact, an entire social network can be viewed as cliques of
friends connected via common friends. Each node in the social
network may be a part of multiple different cliques,e.g. a
clique of colleagues, a clique of students in the same class,
etc. We use detailed measurements to justify the prevalenceof
cliques in social networks in Section V.

In this modified algorithm, we exploit these cliques in path
construction. The source uses one of its friends in its biggest
clique as first hop of itsj−hop random walk, with1 ≤ j ≤ k.
As before, the random walk proceeds to includej − 1 friends
until j hops are exhausted. By using this strategy to include
cliques right after the source, we obtain a stronger result on
source anonymity, as shown in Theorem 3.

Theorem 3. Phase II of the two-phase attack ends when it
identifies all the members of the source node’s biggest social
clique, with each member equally likely to be the source.

Proof: Let’s again defineFx1 , Fx2 , .....Fxf
for any xi

as the sets of the most logged nodes during the first phase
(T > 8(N

c )2f log N rounds) of the attack. Because of the
fact that each of thexi nodes are at most(k − 1)-hop away
from one of the source’s clique nodes, all the source’s nodes
in its biggest clique will appear in each ofFxi

sets. The
nodes that belong in the source’s biggest clique are always
used as the first hops of the FoF chain. Therefore, on the
reverse path from the attacker to the real source, all of these
nodes are indistinguishable from the real source. Therefore,
⋂f

i=1 Fxi
= {v|v ∈ source′s biggest clique}.

To summarize, Phase I of our attack proceeds asymptotically
f times slower than the predecessor attack [21]. In addition,
we showed that we could improve our defense against Phase
II of the attack by modifying our path construction to utilize
cliques. This prevents source nodes from being identified,
further improving source anonymity.

V. FEASIBILITY STUDY

In this section, we evaluate the feasibility of our proposal
using simulations driven by measurements of Tor, Facebook,
and Gnutella. We first try to understand the size of friend-
of-friend networks for real social network users. Larger FoF
networks means more online friends that can shield the user
from attacks. To this end, we obtained an anonymized dataset
of 380,000 user profiles from Facebook’s New York City
regional network2.

K-hop Neighborhoods in a Friend-of-Friend Network.
We define thek-hop neighborhood of a noden as the set
of all nodes in the social network graph that are at mostk
hops away fromn. n’s 1-hop neighborhood consists of all of
n’s direct friends, and its 2-hop neighborhood consists of its
direct friends and all of their first order friends.

We measure neighborhood sizes in our Facebook dataset for
different hop lengths and plot the CDF in Figure 2. We see
that more than half of all users have a 1-hop neighborhood
size greater than 100. In addition, nearly 80% of the nodes
have more than 100 FoFs in their 2-hop neighborhood, and
nearly 70% of them have more than 1000 FoFs. With these
large two-hop neighborhoods, users should be able to locate
sufficient online friends to provide protection against attackers.
We will examine that question in the next experiment.

One relevant question is, can we trust social links as real
indicators of trust? While we did not perform user studies
to quantify this, we did perform a high level experiment
to understand the level of interaction between “friends” on
Facebook. By examining user interactions on Wall posts and
Photo albums, we conservatively estimate that an average
Facebook user directly interacts with more than 1/3 of their
friends list. More details are included in a forthcoming paper.

Availability of Friends. We next model the online avail-
ability of friends by understanding how many of thek-hop
friends are available during the course of a typical anonymous
session. Unfortunately, we are not aware of any studies on
user session lengths in social networks. To drive our avail-
ability simulation, we use availability data obtained fromtwo
measurement traces, one of user activity on the Gnutella file-
sharing network [15], and our own measurements of user
online times and user session lengths on the Tor network.

We gathered our Tor measurements by hosting and moni-
toring a Tor node for 1 week. We measured session lengths of
more than 70,000 circuits going through our node, and plot a
CDF in Figure 3. The average session length in our measure-
ment is 853 seconds (14.2 minutes), which is consistent witha
recent measurement study [10]. In addition, we also measured
the availability of Tor nodes (node uptimes) by querying the
Tor node directory. Along with the Gnutella data, we use these
uptime numbers in our simulation of availability in the FoF
neighborhood.

We ran our trace-driven availability experiment by mapping
nodes in our experiment to nodes in the Gnutella and Tor
datasets, using observed join and leave events in each dataset

2We obtained the dataset legitimately, and have been communicating with
Facebook regarding our techniques and the dataset.
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Friend-of-Friend Neighborhood Size 1000 2000 3000 4000 5000
Live Neighbors in Tor (% live after 20 mins) 528 (87.50%) 1083 (87.41%) 1635 (88.41%) 2178 (88.53%) 2639 (88.10%)

Live Neighbors in Gnutella (% live after 20 mins) 275 (91.50%) 593 (91.12%) 850 (91.4%) 1168 (90.92%) 1479 (91.34%)

TABLE I
FOR USERS WITH FRIEND-OF-FRIEND NETWORKS RANGING IN SIZE FROM1000TO 5000,WE SHOW THE NUMBER OF EXPECTED LIVE NODES IF USER

AVAILABILITY FOLLOWS MEASUREMENTS OF THE TOR NETWORK OR THEGNUTELLA NETWORK. VALUES IN PARENTHESIS SHOW THE PERCENTAGE OF
THOSE LIVE NODES THAT WOULD REMAIN ONLINE THROUGHOUT A20-MIN SESSION.

to drive node behavior in our network. We then select random
users and measure the availability of their friends at random
times (t) during our simulation. We group the availability
results by the size of each user’s FoF neighborhood size, and
report the results in Table I. Each neighborhood size group has
data from at least 500 data points. As we can clearly see, for
users with FoF neighborhoods of size 1000 (more than 38% of
Facebook users, as shown in Figure 2), more than half of them
are likely to be online based on Tor data, and more than 25%
of them are likely to be online based on Gnutella data. It has
been observed that users in Gnutella exhibit frequent churn
compared to other peer-to-peer applications [8], so we use
the Gnutella results as a lower bound on our FoF availability
results. Even so, we see that most users can expect hundreds
of users in their FoF neighborhood to be online at any time.

FoF nodes can best shield a user from observation if they
are online for the entire duration of a user session. We now
quantify the percentage of online FoFs who will remain online
for the entire duration of a 20-minute session. The 20-minute
value is chosen as a conservative estimate based on our
observations of Tor user sessions. For each of our random
observations at timet, we compute the percentage of FoFs
online at timet who remain continuously online at least until
t+20 minutes. We plot the results in parenthesis in Table I. In
both experiments driven by Gnutella and Tor, more than 80%
of online FoFs remain online for the session duration, making
them suitable as potential shields for the user.

Cliques in the Facebook Graph. We next quantify
the number and size of user connectivity cliques in social
networks. Searching for cliques is a known NP-hard problem,
and the best tool we could find was Cliquer [14], which is still
limited by its significant memory footprint. More specifically,
even on a server with 32GB of RAM, Cliquer was limited
to graphs of less than 1 million edges. Therefore, we ran
Cliquer on a smaller dataset of 16,000 users from the Facebook
Monterey Bay network.

Since we are interested in identifying large cliques to

protect each user, we compute for each user the largest social
clique that they are a member of. We plot the results as a
CDF in Figure 4. Clearly, users vary significantly in their
involvement in social cliques. The biggest observed cliques
had 17 members. Roughly 58% of all users were members
of cliques of size 3 or larger, and more than 18% of all users
belonged to cliques of size 7 or larger. Note that by definition,
each user connected to the social graph belongs to a clique of
size 2 consisting of the user and their connected friend.

These results show that even against the modified two-phase
logging attack, our path construction techniques can provide
most users with reasonable anonymity sets that cannot be
compromised by the attacker.

VI. CONCLUSIONS

In this paper, we propose and evaluate strategies to lever-
age “trusted” social links to protect anonymous communi-
cation from passive logging attacks. We investigate several
approaches, propose a new two-phase logging attack on so-
cial anonymous networks, and analyze the robustness of our
techniques against the attack. Our techniques prove resilient
even when attackers learn the social network structure and
compromise trusted friends. Finally, we use measurements
of Tor, Facebook and Gnutella to show that our system can
indeed improve anonymity significantly on today’s anonymous
networks.
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