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Abstract

Aggregation is among the core functionalities of
OLAP systems. Frequently, such queries are is-
sued in decision support systems to identify inter-
esting groups of data. When more than one ag-
gregation function is involved and the notion of
interest is not clearly defined, skyline queries pro-
vide a robust mechanism to capture the potentially
interesting points where (i) users do not need to
specify a ranking function and (ii) the result is in-
dependent of the dimension scales. For provid-
ing better exploration functionalities in the OLAP
system, in this paper, we propose to use skyline
queries over aggregated data to identify themost
interesting groups. Since the aggregation func-
tion has to be ad-hoc to cover a wide variety of
user interests, the skyline over the aggregates has
to be computed on the fly. Hence any algorithm to
compute such a skyline must be fast and be able to
progressively produce the result set with potential
skyline groups being produced as early as possi-
ble. We explore a family of algorithms which try
to consume only as many data records as are nec-
essary to compute the skyline and design an op-
timal algorithm. We further refine the algorithm
by taking into account systems issues such as disk
behavior which are often ignored but have strong
impact on real system performance. Experimental
results validate the performance and progressive
benefits of our algorithm.

1 INTRODUCTION
Multi-Objective optimization (MOO ) has been an impor-
tant subject of decision making for many decades. It deals
with problems that seek to simultaneously optimize mul-
tiple objectives. For such problems, often there does not
exist one single optimal solution in the traditional sense.
Instead, a number of alternative solutions may coexist in-
volving various trade-offs in different objectives. A pareto
optimal set yields the feasible solutions that are not worse
than any other alternatives with respect to all objectives and
hence defines an “efficient frontier” over the answer space.

In recent years, the notion of multi-objective optimiza-
tion over large data sets has been a subject of study in the

database community. In particular, the skyline query op-
erator has attracted considerable amount of attention after
its first introduction in 2001 [4]. Such interest is mainly
driven by the fundamental need for MOO in decision mak-
ing and data analysis scenarios. A classical example is the
hotel selection decision in which one would like to opti-
mize both the price and the distance to the beach. In fact,
skyline queries can be seen as an instance of the MOO
where each tuple in the database is considered a feasible
solution in a discrete solution space and attributes of inter-
est are considered as the optimization goals.

Unfortunately, existing research on skyline queries have
been mainly restricted to the problem of selecting “interest-
ing”‘ objects/tuples from OLTP (On-line Transaction Pro-
cessing) databases. However, current enterprise decision
making systems primarily benefit more from OLAP (On-
line Analytical Processing) than OLTP. In the past 15 years,
OLAP has grown into a full-fledged market and become
the core technology in the broader category of business in-
telligence. OLAP exposes multi-dimensional views over
historical data with different levels of detail and equips an-
alysts with exploration operations such as drill-down and
roll-up to effectively explore the often complex data spaces,
enabling quick response time for ad-hoc analytical queries
over large data warehouses.

We believe that in order to further realize the potential of
both OLAP systems and the skyline operations, the skyline
operation must be applied to the OLAP context where it
rightly belongs. New functionalities have been constantly
pushed into OLAP engines to automate data exploration
and accelerate the process of knowledge discovery, eg.,
[25], [26]. Due to the often large and complex data spaces
in OLAP, analysts need the system to prioritize the cube
cells and highlight interesting subspaces. This functional-
ity calls for essentially two components. One component
is that users should be able to express their customized
objective functions effectively or in other words the sys-
tem should supportuser defined ad-hoc queries. The other
component is to avoid information overload by separat-
ing the most interesting sub-space from the less interest-
ing ones. Top-k query provides global order over the result
set. However, in many scenarios, users often do not know
how to quantify the trade-offs between different goals and
just wish to quickly grasp what can be potentially inter-
esting. Furthermore, the different objective functions can



be conflicting in nature, therefore a global order can hardly
produce sensible results for everyone. This essentially calls
for a new functionality which skyline operations can read-
ily offer. First, skyline query does not require any specific
ranking functions from the user and nevertheless its result
set contains records that maximize some ranking functions.
Second, skyline query is defined over the orders within the
attribute domains and thus is robust to the scale mismatch
among different domains.

Another benefit of supporting the skyline operation into
OLAP systems is that skyline results usually convey use-
ful trade-off informationin the aggregation space which
can lead to executable business operations. For example,
suppose that a vehicle manufacturer wants to make deci-
sions about adjusting sales volume and profit across all the
dealers in California. A useful guiding factor would be the
skyline which is computed by aggregating the profit per-
car-sold and car sales volume for each dealer. The reason
is that dealers with high volume but less profit have the
potential to increase the profit per car, while dealers with
low volume but high profit-per-car have the potential to
raise the sales volume. By adjusting the business strategy
accordingly, manufactures can move further towards their
“efficient frontier”.

In order to introduce the skyline operation into existing
OLAP systems, the main challenge is to efficiently com-
puteskyline over aggregation, which although useful, has
not been studied in previous literature. To illustrate this
problem, we give an example.
Example 1. For the car dealer application scenario above,
we can express it in a SQL-like syntax as follows:
SELECT DEALER, AVG(SALE PRICE-COST VALUE)
AS OBJ1,
SUM(QUANTITY) AS OBJ2

FROM CAR SALES TABLE
GROUP BY DEALER
SKYLINE ON OBJ1 MAX, OBJ2 MAX

As we can see, this problem exposes two unique chal-
lenges for query processing. First, unlike traditional sky-
line problem where the attribute values from individual tu-
ples are considered, the input now becomes the aggregated
values from group of tuples defined by the group-by predi-
cate and theobjective functions. Second, to make the prob-
lem even more challenging, these objective functions are
defined by the user in an ad-hoc manner. Such a dynamic
nature essentially makes existing index-based query pro-
cessing methods such as BBS [22] no longer applicable
(Another reason is that not a single OLAP system provides
R-Tree support). On the other hand, methods that computes
skyline groups after aggregation is finished will effectively
consume all the tuples in the fact table and therefore can be
prohibitive in large data warehouses. In this paper, we ad-
dress these challenges by pushing the skyline computation
inside the aggregation operation and thereby limit the I/O
costs to provide the final answers. Our methods have prov-
able properties as well as taking into consideration practical
issues.

To further motivate the problem, we give another two
application scenarios as follows. Consider an executive
who explores the potential future locations to open new
branches: she may wish to find the locations where the ex-
pected profits are maximized and the expected operational
costs are minimized. Both values involve aggregations over
the collected data of existing shops at each candidate loca-
tion. As a final example, in a customer relationship ware-
house, the analysts want to make series of decisions about
marketing strategies for the coming holiday season. With
a fixed marketing budget, she wishes to see a quick sum-
mary on some conflicting factors at different levels of lo-
cations (such as state, county, zip code and so on). Skyline
operations provide a good candidate for such data summa-
rization since it often captures such conflicting or unrelated
concerns over historical data such as the total volume of
sales and the customer complaint behavior.

As a first step towards multi-objective data exploration
in OLAP, this paper makes the following key contributions.
First, this is the first paper on supporting skyline aggre-
gations within OLAP systems. Second, we identify the
major technical challenges, formulate the problem frame-
work, study properties and develop algorithms that allows
us to effectively “push” the skyline operator into the ag-
gregation phase thereby improving both performance and
progressiveness. Finally, we conduct a thorough experi-
mental study to validate and further explore the proposed
solutions.

2 PRELIMINARIES

2.1 Query Model

We first normalize our query model. Consider an OLAP
fact tableFT with p dimensional attributesD1,D2, ...,Dp

andk measure attributesM1,M2, ...,Mk. A skyline aggre-
gation query consists of two basic components: group-by
predicates and the objective functions. Each objective func-
tion OBJi maps a group of tuples to a scalar value and can
be defined by users in an ad-hoc manner. We shall discuss
more about objective functions later. Such query can be
formulated as follows:

SELECT D1,...,Dp,OBJ1, ..., OBJd

FROM FT
GROUP BY D1,...,Dp

SKYLINE ON OBJ1, OBJ2,..., OBJd

whereOBJ1, ..., OBJd ared objective functions defined
over the measure attributes{M1,M2, ...,Mk}. Without
loss of generality, we assume that users always prefer
smaller values on each objective function. Conceptu-
ally, the d objective functions map each group to ad-
dimensional space, which we denote asobjective space.
And the query results are a set of groups that are not domi-
nated by any other groups in this objective space.



2.2 Feature Expressions, Objective Functions and
Skyline Groups

Intuitively an objective functionOBJ represents one par-
ticular goal of the user.OBJ(G) over a group of tuples
G has two componentsF andA, whereF is a feature ex-
pressionand A is an aggregation function such asSUM.
A feature expressionF is defined over each tuplet in G
by mapping the measure attributes ofT to an intermedi-
ate scalar value. For example, on a sales table, a feature
expression can be the number of items sold multiplied by
the sale price for each sales transaction. EssentiallyOBJ
takes a group of tuples as input and applies the feature ex-
pressionF to each of the tuples to emit a set of intermediate
values which are then aggregated by applying aggregation
functionA to produce a final scalar value.

Given a fact tableFT with measuresM1,M2,Mk and
dimensionsD1,D2...,Dp. A skyline aggregation query
first partitions the tuples inFT into different groups based
on thegrouping attributes, and for each the resulting group,
d values are computed based on thed objective functions
{OBJ1, OBJ2,..., OBJd} defined in theSKYLINE ON
clause. A groupg1 is said to be dominated by another
groupg2 if for every objectiveFi, Fi(g2) ≤ Fi(g1) and
for at least one objectiveFj we haveFj(g2) < Fj(g1).
The skyline groups are those groups that are not dominated
by any other group. We assume minimum to be “better”
for domination but adapting the solutions for maximum in-
volves only minor changes.

//Ping will redraw the figure
Example 2: Table 1 shows a base table having three di-

mensions{D1, D2, D3} and two measures{M1, M2}.
Query Q1 groups by two dimensionsD1 and D2 and
for each group computes respectively the AVERAGE and
SUM for measuresM1 andM2. Therefore the objective
functions areOBJ1 = A1(F1) and OBJ2 = A2(F2))
whereF1 andF2 can be seen as linear functions:1×M1 +
0 × M2 and0 × M1 + 1 × M2 respectively in this simple
example andA1 andA2 are SUM and AVERAGE respec-
tively. Table 2 shows the aggregate values of the differ-
ent combinations ofD1 andD2. The goal is to minimize
OBJ1 andOBJ2. The skyline groups〈c, e〉 and〈b, f〉 are
highlighted in bold.�

2.3 Assumptions

As defined above a query consists of a grouping component
and an objective component. We assume that the grouping
component is pre-computed. Pre-computing the grouping
component is not difficult as the grouping component is just
a sub-set of the dimensional attributes and therefore not
ad-hoc. However space limitations may prevent us from
pre-materializing all possible dimensional attribute combi-
nations. Since our focus is on data exploration sessions, if
a query is posed that involves a Group-By that has not been
materialized, it can be computed once and used at least for
the rest of the session.

Next we specify the class of objective functions we sup-
port. An objective is determined by two components, an

Figure 1: Example
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Table 1: Base

Table 2: Aggregate

Skyline on o1 MIN, o2 MIN.

Group By d1, d2

From Base_Table
          SUM(m2) as o2,

Select d1, d2, AVG(m1) as o1,
Query Q1

aggregate functionA and a feature expressionF . Among
these two components, feature expressions tend to be user
defined while aggregate functions tend to be pre-defined
system functions. The reasons behind this claim include the
difficulty in constructing a large number of useful aggre-
gation functions by composing a small set of pre-defined
aggregation functions and also in the effort necessary to
integrate user defined aggregate functions into extensible
database systems. Feature expressions, on the other hand,
allow easy composition of pre-defined expressions and
hence can be easily integrated into user interfaces that spare
the user from having to directly interact with the execution
engine of database systems. Hence we should attempt to
support a wide class of feature expressions and commonly
used aggregate functions.

We allow arbitrary monotonic feature expressions.
Monotone feature expressions are those whose value does
not decrease when the measure values increase. As far
as aggregate functions are concerned, the solutions we de-
velop are correct for monotone aggregate functions and ef-
ficient for self-maintainable aggregate functions and func-
tions which can be expressed in terms of self-maintainable
aggregate functions. LetA be an aggregate function
that on the input tuple groupG = {t1, t2, ..., tn} out-
puts A(G) as the aggregate. LetG′ be the set obtained
by replacing one element inG say ti with t′i. Then A
is monotone ifA({t′i}) ≤ A({ti}) implies A(G′) ≤
A(G). A is self-maintainable if we can calculateA(G′)
from only A(G), A({ti}) and A({t′i}). More rigorously
there exists a known functionU such that A(G′) =
U(A(G), A({ti}), A({t′i})). SUM is an example aggregate
function that is monotone and self-maintainable. SUM is
self-maintainable because we can calculate the new sum-
mation by adding the difference betweena′

i andai to the
old result. Average is example of an aggregate function
that can be expressed in terms of self-maintainable aggre-
gate functions (COUNT andSUM). Median and many other
holistic functions [11] are not self-maintainable. Holistic
functions are usually difficult to handle efficiently in OLAP
settings [1] and are left as future work.



2.4 Problem Analysis

Aggregation queries if computed on demand result in bad
response times since most aggregation queries have to
make at least one pass over large data sets. This well known
problem is the major technical challenge in attempting to
incorporate skyline operator into OLAP systems. To be
truly effective, we should allow the user to specify ad-hoc
objectives rather than a pre-determined set of objectives.
Two approaches have been suggested in the past for this
problem. The first is to essentially materialize the answers
to a pre-determined set of queries either by building appro-
priate views [7] or even by materializing the entire (or por-
tion of the) data cube [11]. This approach is not applicable
when dealing with ad-hoc queries. The second approach is
to keep the user engaged during the course of the execution
of a long aggregation query by providing running aggre-
gates with confidence bounds [13]. But when dealing with
skyline queries the aggregation is not the end-product but
rather an intermediate phase in query processing and hence
presenting the aggregates is of little value. However this
approach is useful if we can adapt it to show potential sky-
line points as the query is being executed. In this paper we
follow a third approach which is to push the skyline oper-
ator into the aggregation phase. The basic idea is to prune
away partially aggregated groups as soon as it becomes
clear that they cannot make it into the final skyline, and
therefore reduces significant amount of time which may
otherwise be spent on a full aggregation. This allows us
to take advantage of the selectivity of the skyline operator
to avoid a full aggregation and also output skyline points as
early as possible.

3 SOLUTION FRAMEWORK

The baseline solution first aggregates all groups. Since the
grouping part is pre-computed, the aggregation phase can
be accomplished with a single pass over the data. The ag-
gregated groups are then input into a skyline computation
algorithm such as LESS [10] which outputs the skyline
groups. The prime target for optimization is the aggrega-
tion phase since its input is much larger than the input to the
skyline computation phase. How can we optimize the ag-
gregation phase when it makes only a single pass over the
data? Since the aggregation phase reads every tuple, if we
can design an algorithm which reads only as many tuples
as are necessary to compute the skyline, we can potentially
come up with a solution faster and more progressive than
the baseline solution.

3.1 Bounds in Multi-dimensional Objective Space

To motivate the intuition behind the proposed solutions we
start with a contrived and simple example. Consider a
sorted list of positive numbers (1,2,3,4). The length of the
list is known. Suppose we want to determine if the summa-
tion of the numbers in the list exceeds a threshold, say 6.
We can read through the list until the partial aggregate ex-
ceeds the threshold. This is analogous to the full aggrega-

tion mentioned above. But we have auxiliary information
about the list. Because we know that the list has only pos-
itive numbers, even before reading one tuple we know that
the summation is at least zero. When the first tuple is read,
because the list is sorted and the length is known we know
that the summation is at least 1+3*1=4. Similarly when we
read the second tuple, 2, we know that the summation is at
least 1+2+2 *2=7 and hence we can conclude that the sum
will exceed the given threshold 6. Thus we have avoided
scanning through the entire list by essentially coming up
with a lower bound on the value that the aggregation func-
tion can eventually attain. We would like to use this idea of
using lower bounds of unread tuples to lower bound aggre-
gate functions in computing the skyline groups. The idea of
bounding unread tuples has been used in a variety of con-
texts for top-k problems [17, 5, 8] and also for computing
the skyline in vertically partitioned data sets [2].
Bound Definition: The example above deals with a list of

numbers. But our goal is to compute the skyline groups in a
d-dimensional objective space. So we start by defining the
multi-dimensional equivalent of a lower bound. Given a set
of d objective functionsOBJ = {OBJi, 1 ≤ i ≤ d} which
define an objective space for each groupg. We define a
bound ofg to be an estimateOBJ(g) of the position of
g in the objective space such that ifOBJ(g) is the actual
position ofg in the objective space, then for every objective
OBJi, OBJ i(g) ≤ OBJi(g).

Bounds of ad-dimensional point are essentially points
which are either identical to the point or located in the re-
gion that dominates the point. For example, in a two di-
mensional objective space if〈3, 3〉 is the actual position of
a groupg, then〈1, 2〉, 〈2, 3〉, 〈3, 3〉, etc are possible bounds
for g. Note that by this definition if some groupg1 domi-
nates the bound of another groupg2 theng1 also dominates
g2 in the objective space. Also note that ifg1 is not domi-
nated by the bound of another groupg2 theng1 cannot be
dominated byg2. Let b1 andb2 be two bounds of a group
g. Then we sayb1 is tighter thanb2 if b2 dominatesb1.
The tightest bound is that which is identical to the actual
position of the group in the objective space.

3.2 Bounding Strategy

How do we determine a bound for a group before any tu-
ples of that group is read? How do we tighten that bound
whenever a tuple (or set of tuples) is read? And finally, in
what order should we read the different tuples of a group?
We call an answer to this three part question as abounding
strategy.

In the above one dimensional example, the bounding
strategy is very simple. The initial bound of 0 is derived by
using the fact that all the tuples are positive integers. The
different tuples are read in increasing order of their one di-
mensional value. And, the bound is tightened every time
a tuple is read by essentially using the newly read value as
the lower bound for every unread tuple. We develop gen-
erald-dimensional bounding strategies in the next section.
For now, we take a bounding strategy as a black box which



takes the current bound of a group as input, reads one or
more tuples from that group and provides a tighter bound
for that group. Each time a group is passed to a bounding
strategy it consumes some tuples of the group. This gives
rise to a family of algorithms which differ primarily in the
order in which they pass different groups to the bounding
strategy, i.e.group ranking strategies.

3.3 Lower Bounding Skyline Groups Algorithms

We consider the family of all algorithms that use the same
bounding strategy and use only the information provided
by the bounds in determining the skyline groups. We term
this family of algorithms as thelower bounding skyline
groups algorithms (LBSGA). In restricting the algorithms
to use only the information provided by bounds we do limit
the optimizing power of the algorithms. We could add ad-
ditional power to the algorithms, for example, by develop-
ing an equivalent notion of upper bound in addition to the
lower bound notion developed above. However even under
this restriction, as we show later, we were able to arrive at
efficient algorithms. Next we state some properties of al-
gorithms in the LBSGA family and identify one which is
optimal in terms of the total number of tuples read. These
properties may be viewed as an adaptation to the skyline
context of some of the properties developed for the top-k
problem in [17].

The first property defines a lower bound on the number
of tuples from a given group that any algorithm in the LB-
SGA family must read. Intuitively, we must read at least
as many tuples as are necessary for the bounding strategy
to tighten the bound enough for the bound to be dominated
by the actual position of some other group in the objective
space. As already mentioned, if a groupg′ dominates a
bound ofg, theng′ also dominates the actual position ofg
in the objective space.

Property 1. Let S denote the set of skyline groups and let
g be a given non skyline group. Then the minimum number
of tuples to be read fromg beforeg is discarded by any
algorithm in the LBSGA family is the minimum number of
tuples needed by the bounding strategy followed to produce
a bound ofg that is dominated by at least one group inS.

Proof. For any group in the final skyline all tuples have to
be retrieved since we need the actual scores in the feature
space for such groups. Let g be any group not in the sky-
line. Suppose an algorithm prunes away g before retrieving
Hmin

g tuples whereHmin
g is as defined above. Then sup-

pose the unseen tuples of g are such that the objectives of
g matches its bound. Then no group can dominate g and
hence by definition g should have been declared as part
of the skyline thereby proving that the algorithm is incor-
rect.

Corollary 1. In order to declare a groupg as a skyline
group, any algorithm in the LBSGA family has to read from
every other groupg′ at least as many tuples as are neces-
sary such that the bound the algorithm can determine for
g′ using those tuples is guaranteed not to dominateg.

Intuitively, the fundamental problem is that from the
definition of a bound it is possible that a bound could be
identical to the actual position of the group it bounds in
the objective space. Since we do not allow algorithms the
power of “look-ahead”, any correct algorithm has to treat
a bound as potentially being the same as the actual posi-
tion. The corollary above provides an interesting insight.
There is a minimum amount of “work” that any algorithm
in the LBSGA family must perform before it can output the
first skyline group. Since this minimum work itself could
be pretty large for large datasets, we should consider algo-
rithms which have the ability to at least identify potential
skyline groups early and hence can be first presented to the
user.

At some intermediate point of an algorithm, supposeSc

is the skyline based on the bounds of all groups, then we
call Sc the current skyline and the skyline based on the ac-
tual objective values of the groups as the final skyline set
S. The next property says that any algorithm in LBSGA
has to necessarily read more tuples from members ofSc if
they have unread tuples.

Property 2. Let gc be any group with unread tuples in the
current skyline setSc. Then no correct algorithm in LB-
SGA can terminate without reading more tuples fromgc.
Furthermore, if for every group inSc all tuples have been
read, thenSc = S.

Proof. For any groupgs ∈ Sc further processing is nec-
essary. Otherwise gs will continue to belong to the cur-
rent skyline thereby preventing the actual skyline with ex-
act features being materialized. Given any suchgs ∈ Sc

andgns /∈ Sc, whatever scoregns can achieve in the fea-
ture space gs can possibly do better. Therefore we have to
prioritize gs over gns. When all the groups in S are fully
evaluated we can declare S to be the final skyline because
for every group gns not in S there is atleast one point in
S which can dominate the bound and hence by transitiv-
ity of dominance the actual position of gns in the feature
space.

Sincegc is a member of the current skyline, it is not
dominated by the bounds of any other group and hence is
also not dominated by the actual position of other groups in
the objective space. Thus no algorithm in LBSGA can dis-
cardgc without reading more tuples. On the other hand an
algorithm cannot declaregc to be a member of the skyline
either, since any algorithm in LBSGA has to read all tuples
from a group before declaring it as a skyline group. Since it
is necessary to read more tuples from every member ofSc

that has unread tuples, any algorithm which at every point
reads more tuples only from some member ofSc has to be
optimal.

3.4 The MOOLAP Algorithm Framework

The analysis so far immediately suggests a simple algo-
rithm. The algorithm works as follows. Compute the cur-
rent skyline based on the initial bounds. Then for every



group in the current skyline tighten the bound using the
bounding strategy. Recompute the current skyline. Repeat
this process until for every group in the current skyline we
have read all tuples. The disadvantage of this algorithm is
obvious. Ifcmax denotes the number of times the bounding
strategy has to be invoked before it consumes all the tuples
of some group in the final skyline, then the algorithm will
have to perform at leastcmax skyline computations. Thus
while this simple algorithm is optimal in terms of the num-
ber of tuples read, its worst case time complexity (which is
O(cmax ∗ |groups|2)) is not good. Therefore the challenge
is to come up with an algorithm which avoids the repeated
recomputation of the skyline and still finds a way to draw
tuples only from the groups which belong to the current
skyline.

To achieve this we essentially use a best-first strategy
which has been used in a variety of contexts, e.g., [21],
[14]. We exploit the fact that the bound with the minimum
score with respect to some monotone function, say theL1

norm, always belongs to the current skyline. We term the
monotone function the group ranking function. We arrange
the bounds in an external memory priority queue on the
basis of their group ranking. The final skyline setS is
initially empty. The algorithm (called the MOOLAP al-
gorithm) is given inAlgorithm 1. At each step we
retrieve the bound with minimum group ranking function
score from the priority queue (Line 14) and check if it
is dominated by any group in the final skyline setS. If it
is dominated it is immediately discarded (Line 14-18).
Otherwise we use the bounding strategy to read more tu-
ples and tighten its bound (Line 23-24). The bound is
then again checked for dominance and if it is dominated
by some group inS, it is discarded(Line 25-29). If
the bound is fully materialized, i.e., it does not have an-
other unread tuple it is added to the final skyline setS
(Line 19-22). Otherwise it is reinserted into the priority
queueQ on the basis of its adjusted group ranking function
score(Line 30). Finally, we would like to reiterate here
that the MOOLAP framework so far treats the Bounding
Strategy as a black box, which will be discussed in detail
in next section.

Lemma 1. Every group in the priority queueQ in the
MOOLAP algorithm will make it to the head of the priority
queue in finite time.

Theorem 1. If the algorithm is run to completion, then
every skyline group is fully materialized. Furthermore, the
skyline groups are materialized in non-decreasing order of
their group ranking function score.

Theorem 2. The MOOLAP algorithm is an optimal algo-
rithm in the LBSGA family where the cost is the number of
tuples read.

Proof. Let A be an algorithm which for some groupg
draws t tuples before discarding the group which is less
than t’ the number of tuples drawn by moolap algorithm.
Since both algorithms use the same bouding strategy the

Algorithm 1 MOOLAP Algorithm
1: BS: the underlying bounding strategies;
2: G: candidate groups;
3: Q: priority queue that stores bounds and corresponding group references;
4: S: the set of skyline groups;
5: for each groupg ∈ G do
6: BS.getInitialBound(g);
7: g.unseeTuples =g.numTuples
8: Q.insert(L1Norm(g.bound),g)
9: end for
10: S = ∅;
11: LOOP:
12: while Q! = ∅ do
13: g = Q.getMin();
14: for eachs ∈ Sdo
15: if s dominatesg.boundthen
16: discardg and gotoLOOP
17: end if
18: end for
19: if g.unreadTuples == 0then
20: S = S ∪ {g}
21: gotoLOOP
22: end if
23: BS.tightenBound(g)
24: g.unreadTuples -=bs.numTuplesUsedForTightening
25: for eachs ∈ S do
26: if s dominatesg.boundthen
27: discardg and gotoLOOP
28: end if
29: end for
30: Q.insert(L1Norm(g.bound), g);
31: end while

first t tuples drawn by both algorithms fromg are the same.
From principle 1 it follows that at the instantA decided to
discard g it should have guaranteed that there exists another
groupg′ which dominates the bound ofg at that depth. Fur-
thermore, since the algorithms can use only the best bound
it follows that forg′ every tuple has been drawn byA. The
L1-norm of the bound ofg at the depth t is greater than the
L1-norm of the actual score ofg′. Hence wheng makes it
to the head of the priority queue at depth tg′ would have
been fully materialized and hence is either present in the
skyline setS or there exists some other groupg′′ in S which
dominates the actual feature space position ofg′ and hence
the bound of g. Therefore moolap algorithm will also dis-
cardg at depth t contradicting our assumption. Hence the
moolap algorithm is optimal among algorithms satisfying
the criteria laid down in the above theorem when the cost is
determined by the number of tuples drawn per group.

The next property specifies the interplay between the
bounding strategy followed and the final skyline setS. For
any non-skyline groupg, the bounding strategy andS to-
gether determine the number of tuples to be retrieved from
g. For the same groupg and fixedS different bounding
strategies will consume different number of tuples. Sim-
ilarly for the same groupg and fixed bounding strategy,
differentSs result in the bounding strategy consuming dif-
ferent number of tuples.

Property 3. Consider the MOOLAP algorithm developed
above. The number of tuples,N , consumed from any non-
skyline group,g, depends only on the bounding strategy
followed and the final skyline setS. In particular, the num-
ber of tuples read fromg is equal to the number of tuples
necessary for the bounding strategy to tighten the bound
enough to be dominated by at least one member ofS. N



is independent of the number of tuples that have to be read
for any other non-skyline groupg′.

Proof. Hα
g cannot be more than such a depth d because

the L1 norm score of g’s bound at that depth is more than
that of the skyline point in S which dominates it and hence
when g makes it to the head of the priority queue it would
fail the dominance check. Hαg cannot be less than such a
depth because then when g makes it to the head of the pri-
ority queue the algorithm would dictate that another tuple
be drawn from g.

4 Bounding Strategies

The design space for potential bounding strategies is pretty
large. In this section we explore part of this space. In ad-
dition to arriving at an efficient bounding strategy our goal
is to identify the different factors that should be considered
in designing a bounding strategy. As already mentioned,
prior research in top-k query processing over aggregates
also used the idea of bounding unseen tuples. We start our
attempt to develop an effective bounding strategy on the ba-
sis of the bounding strategy developed for top-k queries in
[17] and use the inadequacies of the strategy as the motiva-
tion for developing alternate strategies. In order to leverage
the ideas developed in top-k let us first consider the skyline
groups problem with only one objective and then the sky-
line query becomes essentially the top-1 query.

4.1 One Objective Bounding Strategy

Let OBJ = A(F ) be the one objective function w.r.t.
which the skyline groups are to be calculated, whereA
stands for the aggregation function andF denotes the
feature expression. Letθ denote the top-1 (minimum)
OBJ value among all groups. Then while executing the
MOOLAP algorithm, for each non-skyline groupg we have
to draw exactly as many tuples as necessary for the condi-
tion OBJ(g) > θ to be satisfied. The basic assumption
of the one objective bounding strategy (OOBS) is that it is
possible to organize the tuples of a group in such a way that
at any step it is possible to draw the tuple with the minimum
F (feature expression) value. OOBS also assumes that the
number of tuples associated with each group is known. At
each step OOBS draws the tuple with minimumF value,
i.e., it reads the tuples inF -ascending order and uses the
F -value of the last read tuple as a lower bound on theF
value of the unread tuples. The number of unread tuples is
known since the total number of tuples in a group is known.
This effectively bounds the objective valueOBJ since the
aggregation functionA is monotone. Thus at each step the
bound improves because the estimate of theF -value of one
of the unread tuples is replaced with its actual value and
also the estimate of theF -value of the other unread tuples
improves.

Even for the one objective case there is a fundamental
problem with OOBS. It assumes that it is possible to re-
trieve the tuples of a group inF -ascending order and also

assumes that we know the count of each group. Assum-
ing that count is known is a reasonable assumption since
it can be pre-computed. However to retrieve efficiently in
F -ascending order there has to be an index on the tuples on
the basis of theirF -value. This is clearly not possible for
ad-hoc feature expressions in which case we have to fall
back on sorting the tuples on the basis of theirF -values.
Our original goal is to avoid a full scan of all the tuples and
this goal is obviously not achievable if we sort the tuples of
each group.

Another fundamental problem with OOBS arises when
we try to generalize OOBS to the general case where the
skyline is computed over multiple objective functions. Can
we order the tuples in some manner such that for all mono-
tonic feature expressions the order returns a close approx-
imation of the respectiveF -ascending order? The answer
is unfortunately no. The counter-argument is as follows.
If one tuple dominates (in the measure space) another then
clearly for any monotonic function the former should be
retrieved first to approximate theF -ascending order. But
consider a set ofn tuples in which none of the tuples domi-
nate any other. In this case it is possible to definen! mono-
tonic functions such that for each of the functions theF -
ascending order corresponds to a distinct order among the
n! possible orderings amongn tuples. Thus an order which
is good for one feature expression can be arbitrarily bad for
another even though both are monotonic. Hence trying to
approximate theF -ascending order for multiple objective
functions is not a good strategy.

The two problems cited above has to do with the fact that
drawing tuples inF -ascending order is inherently difficult
when the feature expressionF is an adhoc function. Obvi-
ously in developing an alternative solution we should try to
overcome this problem. Is this the only problem which we
should try to overcome in designing a generalized bounding
strategy? Prior research provides no answer to this ques-
tion and hence in the next subsection we investigate a class
of aggregate functions for which drawing the tuples inF -
ascending order is a non-issue. This allows us to isolate
issues other than those arising from theF -ascending order
problem.

4.2 Virtual Tuples Bounding Strategy

We distinguish between two classes of objective functions.
In one class the feature expression involves only one mea-
sure of the base table, e.g.,2 × M1. We call such objec-
tive functionssimple. In the other case is calledcomposite
objective functions where the feature expression involves
multiple measures, e.g.,M1 + M2.

In this section we investigate an OOBS like bounding
strategy when all the objective functions involved are sim-
ple. We note in passing that simple objective functions are
the only kind of objective functions possible when the base
table has only one measure. In this case the user might still
want to compute multiple aggregates, e.g. the total and av-
erage sale per customer. The reason we can sidestep the
two fundamental limitations of OOBS in simple objective



functions is as follows. Consider all the objective functions
whose feature expressions involves a certain measureMi.
Then drawing the tuples in ascending order ofMi satis-
fies theF -ascending order for all these objective functions
since they are monotone and hence the increasing order of
Mi corresponds to the increasing order of theF -values.
But how do we reconcile theF -ascending order simulta-
neously for objective functions over different measures?
For example, if〈1, 9〉 and〈9, 1〉 are two tuples of a group
and the aggregate functions areSUM on measureM1 and
M2 respectively, then reading tuplet1 after t2 guarantees
F -ascending order for the first aggregation function and
not the second. Similarly drawing the second tuple after
the first, will guaranteeF -ascending order for the second
aggregation function and not for the first. We can solve
this problem if we can create tuples which are reordered
as 〈1, 1〉 and 〈9, 9〉. Since the feature expression of ev-
ery objective involves only one measure, such reordering
preserves the correctness of aggregation. We call such re-
ordered tuples asvirtual tuples.

In general the virtual tuples bounding strategy (VTBS)
works as follows. In a pre-processing step, we create vir-
tual tuples by sorting each measure while fixing the other
measures in place. Thus virtual tuples are created such that
the tuple order is in ascending order for every measure.
Then whenever the MOOLAP algorithm demands that an-
other tuple of a group be read we read the next virtual tuple.
Example 3: As a more detailed example, consider the

group{a,e} from Example 2. It has four tuples{(16,8),
(6,3), (2,5) and (8,4)}. The corresponding virtual tuples
are obtained by sorting independently each measure and
are respectively{(2,3), (6,4), (8,5) and (16,8)}. �

Observation 1. Aggregating over the virtual tuples pre-
serves the correctness of aggregation and guaranteesF -
ascending order for every objective function.

The above observation follows from the assumptions
that the feature expressions are monotonic and also that
the aggregation functions are simple, i.e. their output is
affected only by one measure and is independent of other
measures. VTBS consumes one tuple on every invocation
from the MOOLAP algorithm. While this is the best strat-
egy to minimize the total number of tuples consumed, it has
I/O problems since the granularity of disk access is a page
(block). Once a tuple is consumed, the group ranking func-
tion score (L1Norm or such) of the corresponding group
increases and hence the group may descend deeper into the
priority queueQ maintained by the MOOLAP algorithm.
This could result in the same page being read from the disk
multiple times unless there is a buffer hit. A simple solu-
tion to avoid this problem is to consume immediately and
aggressively a page worth of tuples every time VTBS is
invoked.

To make more observations we evaluated VTBS exper-
imentally. The details of the experimental setup are pro-
vided in the experimental section later. But now we present
representative results which allow us to draw some conclu-
sions about VTBS. Note that we present results for only

one workload here but they show representative behavior
observed in many different workloads. Briefly, the work-
load description is as follows: there are 10000 groups in the
workload. The number of tuples per group is normally dis-
tributed with an average of 5000. There are four measures
M1−4 and four objective functions which areOBJ1 =
SUM(mi

1), OBJ2 = SUM(mi
2), OBJ3 = SUM(mi

3)
andOBJ4 = SUM(mi

4). The value ofi was varied in the
experiments and the results are shown in Figure 2. They
axis plots the percentage of tuples drawn by the MOOLAP
algorithm. For VTBS, the savings are impressive when the
feature expression is linear but shows steady degradation as
higher degree polynomial functions are used as the feature
expression. This problem arises in VTBS (and hence also
in OOBS) because theF -value of the last read tuple in a
group is used to bound all the unread tuples. For functions
of smaller rate of change such as the linear function the dif-
ference between the bound and the actual value of unread
tuples is not as high as in functions which show larger rate
of change such asx10. As a result the obtained bound is
very loose and hence a large number of tuples have to be
retrieved before the bound has been tightened enough to
discard the group. This high sensitivity to the nature of the
feature expression is clearly undesirable since the solution
should be efficient for a wide class of feature expressions.

Figure 2: Sensitivity to Feature Expression
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4.3 Index Bounding Strategy

Based on our discussion of prior work and our experimental
observation above we lay down the following four criteria
for a useful bounding strategy. First, it should not rely on
building an index or other such structures which depend on
the query parameters. Second, it should be general enough
to be applied to objective functions with both composite
and simple feature expressions. Third, it should preferably
use pages rather than individual tuples as the granularity
of access. Fourth, it should not bound a large number of
unseen tuples with a single value.

4.3.1 Basic Idea

The basic idea is that if we precompute and store some suc-
cinct statistics about the tuples of a group, we may be able
to come up with tight bounds. Our new strategy, which
we call theIndex Bounding Strategy (IBS), works as fol-
lows. Partition the tuples of a group into different pages.



Precompute and store meta-information necessary to lower
bound all the tuples in each page. Then the initial bound
for the tuples is obtained by reading just the meta informa-
tion. Subsequently whenever a group makes it to the head
of the priority queue in the MOOLAP algorithm, its bound
is refined by reading one unread page and replacing the es-
timate provided by the meta-information for that page with
the actual information. The new strategy gives rise to a va-
riety of questions. What kind of meta-information should
be stored about each page? To improve the bound, in what
order should different pages be read? How to decide which
tuples are put together in the same page?

The meta-information stored about each page of tuples
should be small in size so that it can be retrieved in a few
I/Os as compared to reading all the data pages. If some of
the bounds obtained using the meta-information turns out
to be loose, it impacts only the corresponding pages of un-
read tuples and not the entire set of unseen tuples as was
the case for VTBS. We divide the pages into index pages
and data pages. Index pages hold the meta-data while data-
pages store the corresponding tuples. The meta-data stored
for each page is simple and small. For each data page, an
entry in the index page stores the minimum value of each
measure and the number of tuples in that data page. Since
we assume that the feature expressions and aggregation
functions are monotonic this information is sufficient to ob-
tain a bound. For example, consider a groupg with one
data page containing two tuples{(1,9), (9,1)}. The corre-
sponding index page entry will hold (1,1) as the minimum
measures forg and 2 as the number of tuples. Suppose
we have a query with one objectiveOBJ1 = A1(F1) =
SUM(M1 + M2) then a lower bound for the objective is
obtained asSUM((1 + 1), (1 + 1)) = SUM(2, 2) = 4.
Index pages are not created for groups having less than a
page worth of tuples.

4.3.2 Data Page Ordering Strategy

Initially, the index pages are read to obtain the initial
bounds of groups. Then whenever the MOOLAP algo-
rithm invokes the bounding strategy to read more tuples for
a group, an unread data page of the group is read and the
bound is tightened. In what order should the data pages of
a group be read to ensure that only the minimum number of
pages necessary are read? Consider the simple case where
there is only one measureM1 and one objective function,
OBJ1 = SUM(M1). Let p be some data page withn
tuples{t1, t2, ..., tn} and lettmin be the tuple with mini-
mumM1 value. Then the partial sum provided by the in-
dex pages for the data pagep is tmin ×n. Defineδ(p) to be
Σi=1−n(ti) − tmin × n, i.e,δ denotes the error in the par-
tial sum obtained from the index page entry forp. Then, in
order to read only the minimum number of data pages ofg,
the data pages ofg should be retrieved inδ-descending or-
der. In order words, we can best refine the bound ofOBJ1

by fetching the data page with largest “bound estimation
error” from the group.

But the intuition in this simple case is straightforward.

Since we have only one objective functionSUM(M1), ev-
ery time a data page is read, the value of the bound in-
creases by precisely theδ of the page. In reading the pages
in δ-descending order we ensure that after every page read
we have the tightest bound possible. Bounds are improved
by replacing estimates with their actual values. Therefore,
intuitively, the tuples should be retrieved in the descending
order so that the difference between the estimate and the ac-
tual F values is maximized. But we cannot determine the
delta value of a page without actually retrieving all pages.
Hence we need to approximate it with some statistics. Our
strategy is to store, in addition to the minimum measure
values, the average measure values with the meta-data as-
sociated with a page. Then we compute the difference be-
tween theF score of the average values and theF score of
the minimum values and use it to approximate thedelta-
descending order.

When we have more than one objective function, we
adopt a round-robin strategy. First the first objective func-
tion is used to choose the next block, then the second objec-
tive function is used to choose from among the remaining
blocks and so on. This brings an element of fairness so that
one objective function is not “deprived” of pages which
improve its bound the best for long. Our implementation
computes the schedule of data page ordering the first time
the index pages are loaded. Then we use an in-memory
cache to store this schedule and probe it whenever the cor-
responding group pops out from the priority queue from the
MOOLAP framework.

4.3.3 Tuple Grouping Strategy

Finally, which tuples should end up in the same page? Intu-
itively tuples which are geometrically close together should
end up in the same page as it reduces the error in the es-
timation provided by the index pages. This is the strat-
egy we adopt even though it penalizes objective functions
which show sharp gradation in some narrow region. We di-
vide the tuples into different pages by usingk-dimensional
equi-width partitioning, wherek stands for the number of
measures. Pages corresponding to sparse buckets of the
equi-width partitioning are combined together at the end of
pre-processing. The rest of the issues discussed above are
orthogonal to the partition strategy adopted and hence al-
ternate partition strategies such ask-means clustering can
be adopted easily. We explore this point further in the ex-
perimental section.

4.4 Sequential Index Bounding Strategy

4.4.1 Observations from the Index Bounding Strategy

Figure3 shows the sensitivity of IBS to the feature expres-
sion. It can be seen that IBS shows much less sensitivity to
the nature of the feature expression as the index pages to-
gether provide a fairly tight bound. IBS has satisfied all the
four criteria we laid down above. The preprocessing par-
titions tuples based on their position in the measure space
and is independent of the query. Both composite and sim-



ple functions are supported by IBS. Page is the fundamental
unit of access and one value per page is used to bound the
unseen tuples. Finally as it can be seen from 2b, on an av-
erage IBS has to read only a small percentage of the tuples
- an impressive savings in terms of the tuples not read. It
would appear that we have designed a solution that has met
all our goals.

Figure 3: Performance of IBS
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Unfortunately, previous research in top-k research [17,
5] and also the properties we developed assumed that sav-
ings in terms of number of tuples consumed is necessary
and sufficient for savings in time and hence optimized only
the number of tuples. Figure4 shows that other factors have
come into play which has resulted in not only the savings
in number of tuples not translating into savings in time but
has also resulted in a large slow down. The “naive” method
of computing all the aggregates followed by computing the
skyline using the LESS [10] algorithm has not only beaten
our supposedly “intelligent” method but has done so by an
order of magnitude. Thus IBS has resulted in an algorithm
which consumes only a small fraction of the tuples but re-
sults in an order of magnitude slow down.Where did the
time go?

The main reason behind the above mentioned slow down
is disk behavior. Recall that we assumed that the grouping
part of the problem is pre-materialized. Our implementa-
tion of this part ensures that the tuples are stored sequen-
tially on disk. This is achievable under most circumstances
since it is a pre-processing step. Sequential read of a data
page is orders of magnitude faster than the a read which
involves a random seek. This disparity in access time off-
sets the advantage derived from consuming less tuples (data
pages). We note in passing that pre-grouping the data fol-
lowed by sequential access for full aggregation at query
time was not one of the methods experimentally evaluated
in the top-k case [17] and hence this problem was not un-
covered earlier.

4.4.2 Incorporating the Disk Behavior

Before developing a bounding strategy that takes into ac-
count these factors, we should first answer the question if
it is even necessary to develop a more complicated method
than the full aggregation method? We believe it is neces-
sary for the following reasons. First of all, the workload
used in the above experiment is a small workload. For

Algorithm 2 Moolap Using SIBS
1: for each groupg ∈ G do
2: g.bound = calculateBound(g.minMeasures, g.numTuples)
3: for each index page I of gdo
4: for each indexPageEntry ie of Ido
5: g.bound = updateBound(g.bound, ie.minMeasures, ie.numTuples)
6: end for
7: end for
8: Q.insert(L1Norm(g.bound), g)
9: end for
10: S = PS ={}
11: LOOP:
12: while Q is not emptydo
13: g = Q.getMin();
14: if g∈ PSthen
15: PS.erase(g)
16: end if
17: if dominated(S, g) or dominated(PS, g)then
18: discard g and goto LOOP
19: end if
20: if g.unreadTuples == 0then
21: S = S∪ {g} and goto LOOP
22: end if
23: while (DataPage page = g.readNextPage()) != NILdo
24: minMeasures = page.minMeasures
25: for each tuple t in pagedo
26: updateBound(g, minMeasures, t)
27: end for
28: if dominated(S, g) or dominated(PS, g)then
29: discard g and goto LOOP
30: end if
31: end while
32: for each e in PSdo
33: if g.bound dominates ethen
34: PS.erase(e)
35: end if
36: end for
37: if PS.hasSpace()then
38: PS.add(g)
39: end if

Q.insert(L1Norm(g.bound), g)
40: end while

larger workloads even with sequential access the full ag-
gregation method takes considerable time to terminate and
hence any significant savings in the time taken to termi-
nate is useful. Secondly and more importantly remember
that our goal is to allow the user to use skyline queries in
an interactive manner. Hence in order to keep the user en-
gaged we should output potential skyline points. Potential
skyline groups are those groups which may not be actually
be in the final skyline set but are still very good in terms
of the user’s objectives. The full aggregation method can
also compute potential skyline groups by repeatedly com-
puting the skyline over the groups whose aggregation has
been completed. This has two problems. First it loses the
sequential advantage since it has to perform a random seek
to compute the skyline after the aggregation of every group
is complete. Also the quality of potential skyline points
may be very poor since in order to outwit this method all
an adversary has to do is hide the groups which are good
in terms of the user’s objectives later in the file. Thus if we
can develop a bounding strategy which takes considerably
less time than the time taken by the full aggregation method
while outputting both the final skyline aggregates and the
potential skyline aggregates of very high quality early, itis
worth the effort.

Now we develop a bounding strategy called the sequen-
tial index bounding strategy (SIBS) that takes into account
the disk access time. Our strategy is not to outperform the
advantage offered by sequential access but rather to use



it while still trying to consume less tuples. The complete
MOOLAP algorithm using SIBS as the bounding strategy
is listed in Algorithm 2. SIBS maintains a set of potential
skyline groups in addition to the set of final skyline groups.
Initially both sets are empty. In a pre-processing step, SIBS
builds index pages similar to IBS but this time the index
pages store only the minimum measures and not the aver-
age measures. Thus the index page entries are more com-
pact in SIBS when compared to IBS. All the index pages
are read in the beginning to compute the initial bound of
all groups and the priority queue of the MOOLAP algo-
rithm is organized as usual (lines 1-9). The head of
the priority queue is popped and letg be the correspond-
ing group. Ifg is dominated by some group in either the
potential skyline set or the final skyline set,g is discarded
(lines 14-20). If it is not dominated then instead of in-
serting the group back into the priority queue, the sequen-
tially next page ofg is read and the process is repeated
(lines 24-32). When all the pages ofg are read,g is
inserted back into the priority queue and also into the po-
tential skyline set if the potential skyline set has size less
than its fixed capacity. Wheng makes it to the head of the
priority queue again and if it is still not dominated by either
the members of the potential skyline set or the final skyline
set it is removed from the potential skyline set and added
to the final skyline set. Note that in this bounding strategy
a group arrives at the head of the priority queue at most
twice. The first time it is either discarded after reading a
few pages or all its pages are read. The second time it is
added to the final skyline set if it is not dominated. SIBS is
so named since it draws the pages of a group by sequential
access. Unlike IBS, SIBS does not intelligently schedule
the data pages within the group but instead draws the pages
in stored order. Clearly this would increase the percentage
of tuples consumed which is shown in Figure4. But Figure4
also shows that this increase is offset by the time advantage
due to the sequential accesses. From Figure4 it can be seen
that SIBS is significantly faster than full aggregation.

Since SIBS and IBS are on the two opposite ends of
trading sequential access against the number of data page
transferred. It is worth noting that the benefits of sequential
access used in SIBS can definitely be combined with the
intelligent data page scheduling in IBS to harness the best
of both worlds. In this paper, we do not explore further into
such a hybrid solution and leave it as the future work.

Figure 4: Performance of SIBS
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5 EXPERIMENTS
5.1 Experiment Setup

In this section we conduct extensive experiments to ex-
plore the design space of the algorithms. We have imple-
mented the MOOLAP algorithm framework and the bound-
ing strategies discussed in the paper in C++. Since the Se-
quential Index Bounding Strategy (SIBS) is the final, com-
plete solution that we have arrived at in the paper, through-
out this section, we use MOOLAP to refer to the MOOLAP
framework that employs the SIBS as the underlying bound-
ing strategy. The MOOLAP algorithm leverages on an
external memory priority queue described in [24] with
a cache size of 20MB. We have implemented the block-
based storage manager from scratch. Each data page size
is fixed at 4KBytes throughout the experiments. For com-
parison, we have also implemented the full aggregation al-
gorithm and the LESS algorithm[10] as our baseline algo-
rithm for the skyline aggregation computation. The exper-
iments were conducted on a dual pentium-4 processor ma-
chine with 1GB of main memory and a 500GB IDE hard
disk. A preemptible version of the 2.6.17 Linux SMP ker-
nel was used as the operating system. Note that in all our
experiments we read directly from disk to user space by-
passing the kernel space and hence also the kernel level
buffering. Neither the MOOLAP algorithm nor the base-
line full aggregation read the same data page more than
once in the same run and hence buffering has no impact.
However given the sequential access pattern of MOOLAP
(with the sequential index bounding strategy) and baseline
solution, both could benefit from aggressive read-ahead.
This is studied in a separate experiment and by default the
aggressive read-ahead is turned off.

One of the fundamental problems in attempting to eval-
uate the performance of ad-hoc user-defined queries lies
in designing representative queries that capture many dif-
ferent possibilities. Since the scope of this paper is novel,
there does not exist a public query benchmark for our prob-
lem. Therefore we define our own objective functions. Re-
call that objective functions have two components, the ag-
gregation function and the feature expression. For the ag-
gregation functions,SUM andAVERAGE are used. For the
feature expressions, we define various polynomials over the
measure attributes. The advantage of using polynomials is
that it allows us to define a large family of feature func-
tions showing various rate of changes by changing weights
and powers. For simple feature expressions, we use poly-
nomials of the formFi = mp

i wherei varies from 1 to the
number of objectives andp determines the rate of change
of the feature expression. For the composite feature expres-
sions, we use polynomials of the formFi = Σmp

i wherei
varies from 1 to the total number of measures andp varies
from 1 to the number of objectives.

The experiment database consists of the group-by at-
tributes and the measure attributes. The measure attributes
of each data tuple are generated by the widely used genera-
tor [4] in the previous skyline literature. The total number
of groups is fixed in each experiment and the number of



tuples belonging to each group follows the normal distri-
bution. We use the following defaults for the parameters
except in experiments where they are varied. The num-
ber of groups is 10000. The number of tuples per group
is normally distributed with an average equal to 5000 and
standard deviation of 0.2. The tuple size is fixed at 100
bytes irrespective of number of measures (using padding
when necessary). In other words, our default database size
consists of 50M records or 5G bytes in disk size. The de-
fault partition method used is the equi-width partition. The
default maximum buckets number is 100 and the maxi-
mum allowed size of potential skyline groups in Sequen-
tial Index Bounding Strategy (SIBS) is 200. The default
power of simple polynomials in feature expressions is 5.
The default number of measures and objectives are both 4.
All the experiments have been run over both uniform and
anti-correlated measures. We show only the results for the
anti-correlated case, since it is considered as the most chal-
lenging and closest to the real world scenario of optimizing
conflict objectives (results are consistent over other distri-
butions as well).

5.2 Experiment Results

5.2.1 Impact of number of measures
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Figure 5: Effects of the Number of Measures (Anti-
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on Average, 5GBytes)

Figure 5 shows the impact of the number of measures
on the performance of MOOLAP in terms of both elapsed
time and the I/O cost. Composite feature expressions are
used here to combine all the measures in each objective
function. Note that even though we vary the number of
measures, the tuple size is fixed. Thus the primary impact
of the increasing number of measures is the increasing error
contributed to the bound obtained from the corresponding
index pages. When the number of measures is less than 5,
MOOLAP is order of magnitude faster than the baseline.
For higher number of measures, MOOLAP is still around
50-60 percent faster. The correlation between the measures
affects the performance when the number of measures are
changed. But the effects are uneven. Note that the baseline
method also shows a slight increase in time with increase in
number of measures. That is due to the extra computational
cost needed to process the extra measures.
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Figure 6: Effects of the Number of Objectives (Anti-
correlated Measures, 10K Groups, 5K Tuples Per Group
on Average, 5GegaBytes)

5.2.2 Impact of number of objective functions

The impact of the number of objectives on the performance
of MOOLAP is very similar to that of number of measures
and is shown in Figure 6. Again, if the number of objec-
tives is less than 5, MOOLAP is much faster than baseline
methods and for more than 5 objectives, MOOLAP is still
considerably faster. The cost of the baseline increases with
increasing objectives, again, due to the extra computational
cost. With the increase of objectives, MOOLAP perfor-
mance degrades due to the fact that more groups are in the
final skyline results and hence more I/Os need to be per-
formed to read pages from the extra groups.

5.2.3 Scalability of MOOLAP

Figure 7 examines the scalability of the MOOLAP al-
gorithm in terms of the number of groups and tuples re-
spectively. By varying both the average group size and
the group number from 1K to 100K, we have covered all
sizes of databases up to 100GBytes. In both cases, the
MOOLAP algorithm scales much better than the baseline
aggregation method which has to consume every tuple. In
all the four figures, MOOLAP consistently outperforms the
baseline method by orders of magnitude. For example, on
the 100GBytes databases, MOOLAP completes within 3
minutes whereas the baseline method takes several hours.

An interesting observation comes in Figure 7(c). With
the increase of average group size (from 10K to 100K),
MOOLAP even becomes faster. Although counterintuitive,
this is quite reasonable. The number of final skyline groups
does not increase with the group size since the total group
number is fixed in this experiment. The only effect of a
larger average group size is the greater variance in the ob-
jective space, i.e. the probability of a “killer group” being
present increases. Such groups are good in terms of every
objective and thus dominate a large region of the objective
space. It should be also noted that the inability to exploit
such killer groups is one of the major disadvantages of the
baseline method. Finally, it is clear that anti-correlation of
the measure attribute is insufficient to bring out the worst
case behavior of the MOOLAP algorithm. So, the next ex-
periment studies the anti-correlation of the objectives.
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Figure 9: Other Experiments

5.2.4 Study of Anti-correlated Objectives

Note that just because the measures are anti-correlated
does not mean the aggregates are anti-correlated since ag-
gregation does not preserve correlation even if the aggre-
gate functions used are simple. In this experiment, we
study the performance of MOOLAP on data sets that are
anti-correlated in theobjective space. To simulate, anti-
correlation in the objective space, we first generated the ag-
gregate result and then split it into random parts. Note that
this technique only works when the feature expression is
linear and hence for this experiment only, a linear compos-

ite feature expression was used. As it can be seen from the
curve in Figure 8(a) and 8(b), MOOLAP also suffers from
the “curse of anti-correlation” which afflicts the skyline op-
erator. As it can be seen from this experiment, unlike top-k,
a query optimizer should be more careful while pushing the
skyline operator into other operators. However, MOOLAP
still outperforms the baseline algorithm by a great margin
(50% in both time and I/O cost).

Furthermore, we would like to emphasize the progres-
sive nature of the MOOLAP algorithm, i.e. most skyline
groups have been identified much earlier than the whole
process returns. To demonstrate, we show in Figure 8(c)



the percentage of skyline groups discovered over the time
domain. While the whole MOOLAP process takes more
than 500 seconds (which is already 50% faster than the
baseline), most skyline groups are computed much earlier.
For example, 20 percent of the skyline aggregates are dis-
covered in around a minute with the first several skyline
groups found almost instantaneously. Therefore, these ag-
gregates can be quickly shown to the user by highlighting
the corresponding cube cells, greatly improving the system
usability.

5.2.5 Impact of Partition Methods

Figure 9(a) shows the impact of the partition method used
on performance. Partitioning methods matters since the
bounds obtained in MOOLAP critically depends on the
error rates of the the estimation computed from the in-
dex entries. We compare the default equi-width partition
method withk-means clustering using different simple fea-
ture expressions. It can be seen that for smaller polyno-
mials the equi-width method is order of magnitude faster
thank-means clustering. This is probably due to the fact
that k-means clusters tuples on the basis of the centroids
of buckets while the way the index pages are built de-
mands that tuples be as close as possible to the plane de-
fined by the minimum measures. This disparity vanishes
when feature expressions of higher rate of increase are used
whereink-means and equi-width perform equally bad since
the error ratio begin to dominate. Nevertheless, we be-
lieve that feature expressions showing lower rate of change
are much more realistic than higher rate of change such as
F (x) = x25

5.2.6 Effects of Different Feature Expressions

Figure 9(b) shows the impact of the rate of change of the
feature expression on performance. Initially, when the fea-
ture expression changes fromx1 to x25 there is a sharp de-
crease in the performance of the MOOLAP algorithm. But,
beyond this point to even higher rates of increase seems to
have little effect. Thus, while the performance degrades as
the rate of change of the feature expression increases, the
performance stabilizes beyond a certain point. This trend
is analogous to the results in Figure 9(a). The bound es-
timation degrades with the increase of the rate of changes
in feature expressions, which causes MOOLAP to spend
more time on fully fetching data pages from unpromising
groups.

5.2.7 Impact of Aggressive Read-ahead

Figure 9(c) shows the impact of implementing aggressive
read-ahead on both the MOOLAP algorithm and the base-
line algorithm. The performance of both algorithms im-
prove significantly. This is mainly due to the fact that the
full aggregate algorithm’s I/Os are composed entirely of
sequential reads while in MOOLAP with SIBS the I/Os
are predominantly sequential interspersed with few random

seeks. MOOLAP consistently outperforms the baseline by
one order of magnitude.

It should be noted that these improvements were ob-
served when the system was quiescent otherwise. When
multiple queries were run concurrently the benefits of read-
ahead rapidly disappeared.

6 RELATED WORK

Skyline operator was introduced in [4]. There is a sig-
nificant amount of recent work exploring various aspects
of the skyline operator. The computation of the skyline it-
self is discussed in [16, 21] etc. But none of them target
an OLAP environment. The benefits of progresssiveness
in skyline query processing was discussed and studied in
[16, 21, 27]. There is a fairly large body of work, similar in
spirit to this paper, that attempt to apply the skyline oper-
ator in contexts beyond the traditional relational database.
Continuous skyline queries over data streams is studied in
[19, 20]. Using approximation to counter the bad selectiv-
ity of the skyline operator in high dimensions is studied in
[6]. Particularly relevant to a data warehousing environ-
ment is [30] which studies the problem of maintaining a
skyline view in the presence of inserts and deletes. Huang
et al. [15] study skyline query in mobile adhoc network en-
vironments. Skyline query in distributed settings is studied
in [2, 28, 29, 31].

Prior research closest in spirit to our work are [17] and
[18] both of which deal with the problem of top-k queries
in OLAP settings. In particular the idea of lower bounding
unread tuples was used in [17]. Work in iceberg queries
and iceberg cubes [9, 3] also share similar motivations in
trying to identify interesting parts of the data cube on the
basis of user specified criterion. Our idea to output poten-
tial skyline groups early was motivated by online aggrega-
tion studied in [13, 12].

7 CONCLUSION

On-line analytical processing (OLAP) is crucial for the suc-
cess of diverse futuristic decision making strategies. In
general, OLAP operates on ever increasingly large data sets
and is expected to provide on-line support for different ad-
hoc criteria. In this paper, we identified and introduced
the skyline operator for OLAP applications. The skyline
operator is an instance of the multi-objective optimization
problem, which generalizes many of the previous database
work, including ranking queries such as top-k. The multi-
objective optimization problem poses many novel and in-
teresting challanges in a multi-dimensional space. In this
paper, we investigated a family of algorithms to address
this challenge. Using the properties of the algorithms, we
were able to develop efficient algorithms that use succinct
meta data to optimize the number of tuples retrieved to an-
swwer the skyline query. The algorithms were implmented
in a prototype using real storage settings. This prototype
identified the interesting and realisitc problem, not previ-
ously identified in prior aggreation ranking work, of the



classic tradeoff between sequential and random access. As
a result, we modified our algorithms to exploit sequential
access when possible, even at the cost of sometimes re-
trieving more tuples. The final algorithm, MOOLAP with
SIBS, is shown to be superior to all prior attempts using a
variety of data sets and objective functions.

Various possible avenues of future work related to the
skyline over aggregates problems exist. One interesting
problem is to compute the skyline at the level of each
cuboid in a data cube apriori and store it. This presents a
much more compact view of the data cube and hence can be
stored without the space overhead which prevents the full
data cube from being materialized. Note that this is dis-
tinct from the skyline cube problem explored in [32, 23].
Another interesting avenue is to efficiently allow the user
to add or remove objectives on the fly. While this can be
achieved by repeatedly invoking the MOOLAP algorithm,
we hypothesize that it should be possible to use the com-
puted skyline efficiently in computing the skyline in the
new objective space. A related problem is to integrate sky-
line with drill-down and rollup operations. A much more
general direction is to investigate the incorporation of more
multi-objective query operators rather than just the skyline
which is but one specific instan of the multi-objective opti-
mization problem. In this paper, we essentially pushed the
skyline operator into the aggregation operator. It would be
interesting to investigate when and if the skyline operator
should be pushed into other operators while generating ef-
ficient query plans. Reference [6] would be a good starting
point for studying query optimization issues related to the
skyline operator.
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