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Abstract

Aggregation is among the core functionalities of
OLAP systems. Frequently, such queries are is-
sued in decision support systems to identify inter-
esting groups of data. When more than one ag-
gregation function is involved and the notion of
interest is not clearly defined, skyline queries pro-
vide a robust mechanism to capture the potentially
interesting points where (i) users do not need to
specify a ranking function and (ii) the result is in-
dependent of the dimension scales. For provid-
ing better exploration functionalities in the OLAP
system, in this paper, we propose to use skyline
gueries over aggregated data to identify thest
interesting groups Since the aggregation func-
tion has to be ad-hoc to cover a wide variety of
user interests, the skyline over the aggregates has
to be computed on the fly. Hence any algorithm to
compute such a skyline must be fast and be able to
progressively produce the result set with potential
skyline groups being produced as early as possi-
ble. We explore a family of algorithms which try

to consume only as many data records as are nec-
essary to compute the skyline and design an op-
timal algorithm. We further refine the algorithm
by taking into account systems issues such as disk
behavior which are often ignored but have strong
impact on real system performance. Experimental
results validate the performance and progressive
benefits of our algorithm.

INTRODUCTION

Multi-Objective optimization MOO) has been an impor-
tant subject of decision making for many decades. It deal&ty calls for essentially two components. One component
with problems that seek to simultaneously optimize mul-is that users should be able to express their customized
tiple objectives. For such problems, often there does nobbjective functions effectively or in other words the sys-
exist one single optimal solution in the traditional sensetem should supponser defined ad-hoc querieghe other
Instead, a number of alternative solutions may coexist incomponent is to avoid information overload by separat-
volving various trade-offs in different objectives. A pare
optimal set yields the feasible solutions that are not worséng ones. Topk query provides global order over the result
than any other alternatives with respect to all objectives a set. However, in many scenarios, users often do not know
hence defines an “efficient frontier” over the answer spacehow to quantify the trade-offs between different goals and
In recent years, the notion of multi-objective optimiza- just wish to quickly grasp what can be potentially inter-
tion over large data sets has been a subject of study in thesting. Furthermore, the different objective functions ca

database community. In particular, the skyline query op-
erator has attracted considerable amount of attention afte
its first introduction in 2001 [4]. Such interest is mainly
driven by the fundamental need for MOO in decision mak-
ing and data analysis scenarios. A classical example is the
hotel selection decision in which one would like to opti-
mize both the price and the distance to the beach. In fact,
skyline queries can be seen as an instance of the MOO
where each tuple in the database is considered a feasible
solution in a discrete solution space and attributes of-inte
est are considered as the optimization goals.

Unfortunately, existing research on skyline queries have
been mainly restricted to the problem of selecting “interes
ing™ objects/tuples from OLTP (On-line Transaction Pro-
cessing) databases. However, current enterprise decision
making systems primarily benefit more from OLAP (On-
line Analytical Processing) than OLTP. In the past 15 years,
OLAP has grown into a full-fledged market and become
the core technology in the broader category of business in-
telligence. OLAP exposes multi-dimensional views over
historical data with different levels of detail and equips a
alysts with exploration operations such as drill-down and
roll-up to effectively explore the often complex data spgce
enabling quick response time for ad-hoc analytical queries
over large data warehouses.

We believe that in order to further realize the potential of
both OLAP systems and the skyline operations, the skyline
operation must be applied to the OLAP context where it
rightly belongs. New functionalities have been constantly
pushed into OLAP engines to automate data exploration
and accelerate the process of knowledge discovery, eg.,
[25], [26]. Due to the often large and complex data spaces
in OLAP, analysts need the system to prioritize the cube
cells and highlight interesting subspaces. This functiona

ing the most interesting sub-space from the less interest-



be conflicting in nature, therefore a global order can hardly To further motivate the problem, we give another two
produce sensible results for everyone. This essentidlly ca application scenarios as follows. Consider an executive
for a new functionality which skyline operations can read-who explores the potential future locations to open new
ily offer. First, skyline query does not require any specific branches: she may wish to find the locations where the ex-
ranking functions from the user and nevertheless its resulpected profits are maximized and the expected operational
set contains records that maximize some ranking functionscosts are minimized. Both values involve aggregations over
Second, skyline query is defined over the orders within theéhe collected data of existing shops at each candidate loca-
attribute domains and thus is robust to the scale mismatction. As a final example, in a customer relationship ware-
among different domains. house, the analysts want to make series of decisions about
Another benefit of supporting the skyline operation into Marketing strategies for the coming holiday season. With
OLAP systems is that skyline results usually convey use@ fixed marketing budget, she wishes to see a quick sum-
ful trade-off informationin the aggregation space which Mary on some conflicting factorg. at different levels of IO.'
can lead to executable business operations. For examplg&tions (such as state, county, zip code and so on). Skyline
suppose that a vehicle manufacturer wants to make decfPerations provide a good candidate for such data summa-
sions about adjusting sales volume and profit across all thiiZation since it often captures such conflicting or unesdat
dealers in California. A useful guiding factor would be the CONcerns over historical data such as the total volume of
skyline which is computed by aggregating the profit per-Sa&/es and the customer complaint behavior.
car-sold and car sales volume for each dealer. The reason As a first step towards multi-objective data exploration
is that dealers with high volume but less profit have thein OLAP, this paper makes the following key contributions.
potential to increase the profit per car, while dealers withFirst, this is the first paper on supporting skyline aggre-
low volume but high profit-per-car have the potential to gations within OLAP systems. Second, we identify the
raise the sales volume. By adjusting the business strategyajor technical challenges, formulate the problem frame-
accordingly, manufactures can move further towards theitork, study properties and develop algorithms that allows
“efficient frontier”. us to effectively “push” the skyline operator into the ag-

In order to introduce the skyline operation into existing gregation phase thereby improving both performance and
OLAP systems, the main challenge is to efficiently com-Progressiveness. Finally, we conduct a thorough experi-
puteskyline over aggregatigrwhich although useful, has ment.al study to validate and further explore the proposed
not been studied in previous literature. To illustrate thissolutions.
problem, we give an example.

Example 1 For the car dealer application scenario above,
we can express it in a SQL-like syntax as follows:
SELECT DEALER, AV SALE PRI CE-COST.VALUE) 2 PRELIMINARIES

AS OB,

SUM QUANTI TY) AS OBJ,

FROM CAR SALES_TABLE 2.1 Query Model

GROUP BY DEALER

SKYLINE ON OBJ; MAX, OBJ, MAX We first normalize our query model. Consider an OLAP

fact table/"I" with p dimensional attribute®;, Do, ..., D,

andk measure attributel/;, Ms, ..., M}.. A skyline aggre-

gation query consists of two basic components: group-by
aedicates and the objective functions. Each objective-fun
ion O BJ; maps a group of tuples to a scalar value and can

be defined by users in an ad-hoc manner. We shall discuss
ore about objective functions later. Such query can be

(Qrmulated as follows:

As we can see, this problem exposes two unique chal
lenges for query processing. First, unlike traditional-sky
line problem where the attribute values from individual tu-
ples are considered, the input now becomes the aggregat
values from group of tuples defined by the group-by predi-
cate and thebjective functionsSecond, to make the prob-
lem even more challenging, these objective functions ar
defined by the user in an ad-hoc manner. Such a dynami
nature essentially makes existing index-based query proSELECT D, ..., D,, OBJi,...,OBJy
cessing methods such as BBS [22] no longer applicabl&ROM FT
(Another reason is that not a single OLAP system provide<sGROUP BY D1,...,D,

R-Tree support). On the other hand, methods that computeSKYLI NE ON OBJ,,0BJs,. .. ,0BJy

skyline groups after aggregation is finished will effecyve whereOBJy, ..., OBJ, ared objective functions defined
consume all the tuples in the fact table and therefore can bever the measure attributds\f;, Mo, ..., My }. Without
prohibitive in large data warehouses. In this paper, we adloss of generality, we assume that users always prefer
dress these challenges by pushing the skyline computaticemaller values on each objective function. Conceptu-
inside the aggregation operation and thereby limit the I/Cally, the d objective functions map each group toda
costs to provide the final answers. Our methods have prowdimensional space, which we denote aigective space
able properties as well as taking into consideration peatti And the query results are a set of groups that are not domi-
issues. nated by any other groups in this objective space.



2.2 Feature Expressions, Objective Functions and

Skyline Groups Figure 1: Example

Table 1: Base

Intuitively an objective functiorOB.J represents one par- | 91| d2 d3 ml m2 Table 2: Aggregate
ticular goal of the userOBJ(G) over a group of tuples |a |e |[x | 16| 8 . ’
G has two components and A, whereF is afeatureex- |a |e |y |6 |3 2 e f
pressionand A is an aggregation function such 8&M alel|y |2]5 a | 8,20| 6,6
A feature expressioit’ is defined over each tuplein G ale |z |8 |4 b| 63| 5,3
by mapping the measure attributes’®fto an intermedi- a|f |x |6 |2 c| 3,5 | 4,6
ate scalar value. For example, on a sales table, a featuea |f |z |9 |2 Query O1
expression can be the number of items sold multiplied by a |f |y |3 |2 Select d1, d2, AVG(m1) as ol.
the sale price for each sales transaction. Essentialy/ ble |x |6 |0 sSUM(m2) as o2,
takes a group of tuples as input and applies the feature exb |e |[x |6 |3 From Base_Table
pressionF’ to each of the tuples to emit a set of intermediate| b |f |z |5 |1 Group By di, d2
values which are then aggregated by applying aggregationn |f [z |5 |2 Skyline on o1 MIN, o2 MIN.
function A to produce a final scalar value. cle|y |3 |5

Given a fact table'T with measuresd\/;, M», M;, and cl|lflzlale

dimensionsD;, D,..., D,,. A skyline aggregation query
first partitions the tuples ifi"7" into different groups based aggregate function! and a feature expressidi. Among
on thegrouping attributesand for each the resulting group, hese two components, feature expressions tend to be user
d values are computed based on thebjective functions  gefined while aggregate functions tend to be pre-defined
{OBJ1,0BJs,...,OBJy} defined in theSKYLINE ON  gystem functions. The reasons behind this claim include the
clause. A groupy, is said to be dominated by another gigiiculty in constructing a large number of useful aggre-
group g if for every objectiveri, F;(g2) < Fi(g1) and  gation functions by composing a small set of pre-defined
for at least one objectivé’; we haveF)(g2) < Fj(g1):  aggregation functions and also in the effort necessary to
The skyline groups are those groups that are not dominateieqrate user defined aggregate functions into extensible
by any other group. We assume minimum to be “better’yaiahase systems. Feature expressions, on the other hand,
for domlnat|or_1 but adapting the solutions for maximum in- 510w easy composition of pre-defined expressions and
volves only minor changes. hence can be easily integrated into user interfaces theg spa
/IPing will redraw the figure _ _the user from having to directly interact with the execution
Example 2: Table 1 shows a base table having three di-engine of database systems. Hence we should attempt to
mensions{ Dy, Ds, D3} and two measureg)My, Ms}.  support a wide class of feature expressions and commonly
Query Q; groups by two dimension®); and Dy and |;geq aggregate functions.
for each group computes respectively the AVERAGE and We allow arbitrary monotonic feature expressions.

fSulrJ1<I§/|ti£cr)1rs n;fs(";g;g\/‘[i ajzd(]\}%. a‘;rée(r)e;ojre tfef;)b(er‘C)tl)VG Monotone feature expressions are those whose value does
whereF. and? caln be selen gs linear funQCtigﬂssz+ not decrease when the measure values increase. As far
L 2 Sl as aggregate functions are concerned, the solutions we de-

0 x My and0 x My + 1 x M, respectively in this simple .
velop are correct for monotone aggregate functions and ef-
example andi, andA, are SUM and AVERAGE respec- ot for self-maintainable aggregate functions and func

tively. Ta_ble .2 shows the aggregate Vall.JeS of .th.e .d'ﬁer'tions which can be expressed in terms of self-maintainable
ent combinations of>; and D,. The goal is to minimize

. aggregate functions. LeH be an aggregate function
OBJ, andOB.J,. The skyline groupsc, e) and(b, f) are : - :
highlighted in bold (] that on the input tuple grou = {ti,t2,...,t,} out

puts A(G) as the aggregate. L&t be the set obtained
2.3 Assumptions by replacing one element i&¥ say¢; with ¢;. Then A

' is monotone ifA({t;}) < A({t;}) implies A(G') <
As defined above a query consists of a grouping componend(G). A is self-maintainable if we can calculatyG’)
and an objective component. We assume that the groupingom only A(G), A({t;}) and A({t;}). More rigorously
component is pre-computed. Pre-computing the groupinghere exists a known functio® such that A(G') =
component is not difficult as the grouping component is just/ (A(G), A({t;}), A({t;})). SUMis an example aggregate
a sub-set of the dimensional attributes and therefore ndunction that is monotone and self-maintainable. SUM is
ad-hoc. However space limitations may prevent us fronself-maintainable because we can calculate the new sum-
pre-materializing all possible dimensional attribute tdm mation by adding the difference betweehanda, to the
nations. Since our focus is on data exploration sessions, ild result. Average is example of an aggregate function
a query is posed that involves a Group-By that has not beethat can be expressed in terms of self-maintainable aggre-
materialized, it can be computed once and used at least fayate functions COUNT andSUM). Median and many other
the rest of the session. holistic functions [11] are not self-maintainable. Hdlist

Next we specify the class of objective functions we sup-functions are usually difficult to handle efficiently in OLAP

port. An objective is determined by two components, ansettings [1] and are left as future work.



2.4 Problem Analysis tion mentioned above. But we have auxiliary information

Aggregation queries if computed on demand result in ba pout the list. Because we knov_v that the list has only pos-

response times since most aggregation queries have ive numbe(s, even before reading one tuple we kn(_)w that
Re summation is at least zero. When the first tuple is read,

make at least one pass over large data sets. This well I(m)\'\f:pecause the list is sorted and the length is known we know

problem is the major technical challenge in attempting tothat the summation is at least 1+3*1=4. Similarly when we

It?L(J:IOr(g?fcre?:tt?vsklellgih%%?(;a;ﬁgvlvn:ﬁe%l_séftcs)yssﬁ:;?fsy. ag?hggread the second tuple, 2, we know that the summation is at
ob'gctives rather than a pre-determined setpof objective least 1+2+2 *2=7 and hence we can conclude that the sum
) P ) ill exceed the given threshold 6. Thus we have avoided

Two approaches have been suggested in the past for thé%anning through the entire list by essentially coming up

problem. The fi_rst is to essentially materialize _th(_e ansWersith a lower bound on the value that the aggregation func-
to a pre-determined set of queries either by building appro:.

riate views [7] or even by materializing the entire (or por- tion can eventually attain. We would like to use this idea of
P y 9 P using lower bounds of unread tuples to lower bound aggre-

tion of the)_data_cube [11]. Thi$ approach is not applicable ate functions in computing the skyline groups. The idea of
when dealing with ad-hoc queries. The second approach ounding unread tuples has been used in a variety of con-
to keep the user engaged during the course of the execu“quts for top-k problems [17, 5, 8] and also for computing
of a long aggregation query by providing running ag9re-e skyline in vertically partiti,on,ed data sets [2]

gates with confidence bounds [13]. But when dealing with Bound Definition: The example above deals Wi.th a list of
skyline queries the aggregation is not the end-product but mbers. But ouréoal is to compute the skyline groups in a

rather an intermediate phase in query processing and hen -dimensional objective space. So we start by defining the

presenting the aggregates is of little value. However thismuIti-dimensionaI equivalent of a lower bound. Given a set
approach is useful if we can adapt it to show potential sky- f d objective function®) B.J = {OB.J;, 1 < i < d} which

line points as the query is being executed. In this paper W%efine an objective space for each graupWe define a

follow a third approach which is to push the skyline oper- ) .
ator into the aggregation phase. The basic idea is to prun%?ﬁr;geogﬂgt?vee e;n ;s;lr:l?éﬁ)ﬁg&? thﬁsrl?]sgtg)cr:ucgfl
away partially aggregated groups as soon as it becomeék. . )€ pace (9) e
clear that they cannot make it into the final skyline andp05|t|0n ofg in the objective space, then for every objective
_— : 2 OBJ;, OBJ,(g) < OBJi(g).
therefore reduces significant amount of time which may . : . . .
Bounds of ad-dimensional point are essentially points

otherwise be spent on a full aggregation. This allows us , . X ) . . ;
to take advantage of the selectivity of the skyline operatmy\’.hICh are either identical to the point or located in the re-

to avoid a full aggregation and also output skyline points a lon t_hat domlna_tes the point. l_:or example, in atwo di-
early as possible. mensional objective space(i$, 3) is the actual position of

agroupg, then(1,2), (2, 3), (3, 3), etc are possible bounds
for g. Note that by this definition if some group domi-
3 SOLUTION FRAMEWORK nates the bound of another grogptheng; also dominates

The baseline solution first aggregates all groups. Since thée in the objective space. Also note thayif is not domi-
grouping part is pre-computed, the aggregation phase cdtted by the bound of another grogptheng, cannot be
be accomplished with a single pass over the data. The aglominated by,. Letb; andb, be two bounds of a group
gregated groups are then input into a skyline computatioy- Then we say, is tighter thanb, if b, dominates; .
algorithm such as LESS [10] which outputs the skylineThe_ 'qghtest bound is that Wh_lch is identical to the actual
groups. The prime target for optimization is the aggrega+osition of the group in the objective space.

tion phase since its input is much larger than the input to the

skyline computation phase. How can we optimize the ag3.2 Bounding Strategy

gregation phase when it makes only a single pass over t .
data? Since the aggregation phase reads every tuple, if \l}\%ow do we deterrr_nne a l?)ound for a group before any tu-
can design an algorithm which reads only as many tupleg es of that group is read? How do we tighten that bound

! : ' ? i i
as are necessary to compute the skyline, we can potential Eetnevgr a trL]JpIelzd(or set Cg:ﬁmg? IS reta;d ' Andffmally, 'n,)
come up with a solution faster and more progressive tha at order should we read the difierent tuples ot a group:
the baseline solution. e call an answer to this three part question asanding

strategy

In the above one dimensional example, the bounding
strategy is very simple. The initial bound of O is derived by
To motivate the intuition behind the proposed solutions weusing the fact that all the tuples are positive integers. The
start with a contrived and simple example. Consider alifferent tuples are read in increasing order of their one di
sorted list of positive numbers (1,2,3,4). The length of themensional value. And, the bound is tightened every time
list is known. Suppose we want to determine if the summaa tuple is read by essentially using the newly read value as
tion of the numbers in the list exceeds a threshold, say &he lower bound for every unread tuple. We develop gen-
We can read through the list until the partial aggregate exeral d-dimensional bounding strategies in the next section.
ceeds the threshold. This is analogous to the full aggrega-or now, we take a bounding strategy as a black box which

3.1 Bounds in Multi-dimensional Objective Space



takes the current bound of a group as input, reads one or Intuitively, the fundamental problem is that from the
more tuples from that group and provides a tighter boundiefinition of a bound it is possible that a bound could be
for that group. Each time a group is passed to a boundingdentical to the actual position of the group it bounds in
strategy it consumes some tuples of the group. This givethe objective space. Since we do not allow algorithms the
rise to a family of algorithms which differ primarily in the power of “look-ahead”, any correct algorithm has to treat
order in which they pass different groups to the boundinga bound as potentially being the same as the actual posi-

strategy, i.egroup ranking strategies tion. The corollary above provides an interesting insight.
There is a minimum amount of “work” that any algorithm
3.3 Lower Bounding Skyline Groups Algorithms in the LBSGA family must perform before it can output the

irst skyline group. Since this minimum work itself could

We consider the family of all algorithms that use the sam ! .
bounding strategy and use only the information provide e pretty large for large datasets, we should consider algo-
ithms which have the ability to at least identify potential

by the bounds in determining the skyline groups. We ter . .
this family of algorithms as théower bounding skyline skyline groups early and hence can be first presented to the
ser.

groups algorithms (LBSGA)n restricting the algorithms _ di int of lqorith
to use only the information provided by bounds we do limit fl‘t somﬁ intermediate ?]omt orana ?orl:t m, suppfge
the optimizing power of the algorithms. We could add agd-iS the skyline based on the bounds of all groups, then we

ditional power to the algorithms, for example, by develop-C2ll S the current skyline and the skyline based on the ac-
ing an equivalent notion of upper bound in addition to thet4@ %b]ecnve values of the ghroups aslthe_f%nal_skyllne set
lower bound notion developed above. However even undep- The next pro_lperty jays that almy fa gorithm tl)n LB@ST;GA
this restriction, as we show later, we were able to arrive a}'aS {0 necessarily read more tuples from membets.

efficient algorithms. Next we state some properties of al\N€Y have unread tuples.

gorithms in the LBSGA family and identify one which is Property 2. Letg. be any group with unread tuples in the
optimal in terms of the total number of tuples read. Thesecurrent skyline seS.. Then no correct algorithm in LB-
properties may be viewed as an adaptation to the skyIingGA can terminatec without reading more tuples from
context of some of the properties developed for thekop- Furthermore, if for every group it$. all tuples have been
problem in [17]. read. thenS.. — S. ’

The first property defines a lower bound on the number ™~ ¢
of tuples from a given group that any algorithm in the LB- Proof. For any groupg, € S. further processing is nec-
SGA family must read. Intuitively, we must read at leastessary. Otherwise gwill continue to belong to the cur-
as many tuples as are necessary for the bounding strategynt skyline thereby preventing the actual skyline with ex-
to tighten the bound enough for the bound to be dominate@ct features being materialized. Given any syghe S,
by the actual position of some other group in the objectiveandg,,, ¢ S., whatever scorg,,, can achieve in the fea-
space. As already mentioned, if a groyfpdominates a ture space gcan possibly do better. Therefore we have to
bound ofg, theng’ also dominates the actual positiongf prioritize g, over g,,,. When all the groups in S are fully
in the objective space. evaluated we can declare S to be the final skyline because

Property 1. LetS denote the set of skyline groups and let fOr every group g, not in S there is atleast one point in
¢ be a given non skyline group. Then the minimum numbep Which can dominate the bound and hence by transitiv-
of tuples to be read frorp beforeg is discarded by any ity of dominance the actual position of,gin the feature
algorithm in the LBSGA family is the minimum number of SPac€- o
tuples needed by the bounding strategy followed to produce

a bound ofy that is dominated by at least one groupdin Sinceg. is a member of the current skyline, it is not

dominated by the bounds of any other group and hence is
Proof. For any group in the final skyline all tuples have to also not dominated by the actual position of other groups in
be retrieved since we need the actual scores in the featuthe objective space. Thus no algorithm in LBSGA can dis-
space for such groups. Let g be any group not in the skyeardg. without reading more tuples. On the other hand an
line. Suppose an algorithm prunes away g before retrievinglgorithm cannot declarg. to be a member of the skyline
H7"™ tuples wherel ™" is as defined above. Then sup- either, since any algorithm in LBSGA has to read all tuples
pose the unseen tuples of g are such that the objectives fom a group before declaring it as a skyline group. Since it
g matches its bound. Then no group can dominate g ani necessary to read more tuples from every membé, of
hence by definition g should have been declared as pathat has unread tuples, any algorithm which at every point
of the skyline thereby proving that the algorithm is incor- reads more tuples only from some membefphas to be
rect. O optimal.

Corollary 1. In order to declare a grougy as a skyline .
group, any algorithm in the LBSGA family has to read from3'4 The MOOLAP Algorithm Framework

every other groug/’ at least as many tuples as are neces-The analysis so far immediately suggests a simple algo-
sary such that the bound the algorithm can determine forithm. The algorithm works as follows. Compute the cur-
¢’ using those tuples is guaranteed not to dominate rent skyline based on the initial bounds. Then for every



group in the current skyline tighten the bound using theAlgorithm 1 MOOLAP Algorithm
bounding strategy. Recompute the current skyline. Repea%: BS: the underlying bounding strategies;

H H H i : G: candidate groups;
this process until for every group in the curre_nt skyllne WE 3. &: priority qufue tﬁat stores bounds and corresponding group references;
have read all tuples. The disadvantage of this algorithm is4: s: the set of skyline groups;

P P H 5: for each grougy € G do

obvious. Ifc,,qz denotes the numbgr of times the bounding B B9 getiniiaBound():
strategy has to be invoked before it consumes all the tuples:
of some group in the final skyline, then the algorithm will gg endior
have to perform at least,,... skyline computations. Thus 10: s = 0;

i S i i i i 11: LOOP:
while this simple algorithm is optimal in terms of the num- 75: == Ol = 0 do

g.unseeTuples g.numTuples
Q.insert(L1 N orm(g.bound),g)

ber of tuples read, its worst case time complexity (which is13:
O(Cmaa * [groups|?)) is not good. Therefore the challenge 12
is to come up with an algorithm which avoids the repeateds:
recomputation of the skyline and still finds a way to drawgi
tuples only from the groups which belong to the currentig:
skyline. 20:

To achieve this we essentially use a best-first strategy2:
which has been used in a variety of contexts, e.g., [21]5431;
[14]. We exploit the fact that the bound with the minimum 25:
score with respect to some monotone function, say/the 36
norm, always belongs to the current skyline. We term thexs:
monotone function the group ranking function. We arrange%gf

g = Q.getMin();
for eachs € Sdo
if s dominategy.boundthen
discardg and gotoLOOP
end if
end for
if g.unreadTuples == then
S=5U{g}
gotoLOOP
end if
BS.tightenBound(g)
g.unreadTuples -3s.numTuplesUsedForTightening
for eachs € S do
if s dominategy.boundthen
discardg and gotoLOOP
end if
end for

X L Q.insert(L1 N orm(g.bound), g);
the bounds in an external memory priority queue on thes1: end while

basis of their group ranking. The final skyline sgtis

initially empty. The algorithm (called the MOOLAP al- firstttuples drawn by both algorithms frograre the same.
gorithm) is given inAl gorithm 1. At each step we From principle 1 it follows that at the instart decided to
retrieve the bound with minimum group ranking function discard g it should have guaranteed that there exists anothe
score from the priority queud-{ ne 14) and check if it  groupg’ which dominates the bound gfat that depth. Fur-

is dominated by any group in the final skyline get If it thermore, since the algorithms can use only the best bound
is dominated it is immediately discarddd (he 14-18). it follows that for g’ every tuple has been drawn by The
Otherwise we use the bounding strategy to read more tu:1-norm of the bound of at the depth t is greater than the
ples and tighten its bound.{ ne 23-24). The bound is L1-norm of the actual score @f. Hence whery makes it
then again checked for dominance and if it is dominatedo the head of the priority queue at deptl’ twould have

by some group inS, it is discarded(i ne 25-29). If been fully materialized and hence is either present in the
the bound is fully materialized, i.e., it does not have an-skyline setS or there exists some other grogfpin S which
other unread tuple it is added to the final skyline Set dominates the actual feature space positiogl @ind hence

(Li ne 19-22). Otherwise itis reinserted into the priority the bound of g. Therefore moolap algorithm will also dis-
queueR on the basis of its adjusted group ranking functioncardg at depth t contradicting our assumption. Hence the
scoreli ne 30). Finally, we would like to reiterate here moolap algorithm is optimal among algorithms satisfying
that the MOOLAP framework so far treats the Boundingthe criteria laid down in the above theorem when the cost is
Strategy as a black box, which will be discussed in detaildetermined by the number of tuples drawn per group.]

in next section.

The next property specifies the interplay between the
bounding strategy followed and the final skyline Setfor
any non-skyline group, the bounding strategy angl to-
gether determine the number of tuples to be retrieved from

Theorem 1. If the algorithm is run to completion, then 9: For the same group and fixed5 different bounding

everv skvline aroun is fully materialized. Furthermoree th §trategies will consume diﬁ‘erenft number 01_‘ tuples. Sim-
very SKyine group 1S ety 1tz . & larly for the same group and fixed bounding strategy,

skyline groups are materialized in non-decreasing order of ' . : . .

their group ranking function score. differentSs result in the bounding strategy consuming dif-
ferent number of tuples.

Theorem 2. The MOOLAP algorithm is an optimal algo-

rithm in the LBSGA family where the cost is the number of°roperty 3. Consider the MOOLAP algorithm developed
tuples read. above. The number of tuple¥, consumed from any non-

skyline group,g, depends only on the bounding strategy
Proof. Let A be an algorithm which for some group  followed and the final skyline sét In particular, the num-
draws t tuples before discarding the group which is lesder of tuples read frong is equal to the number of tuples
than t' the number of tuples drawn by moolap algorithm.necessary for the bounding strategy to tighten the bound
Since both algorithms use the same bouding strategy thenough to be dominated by at least one membef. oV

Lemma 1. Every group in the priority queu&) in the
MOOLAP algorithm will make it to the head of the priority
gueue in finite time.



is independent of the number of tuples that have to be readssumes that we know the count of each group. Assum-
for any other non-skyline groug. ing that count is known is a reasonable assumption since
it can be pre-computed. However to retrieve efficiently in
Proof. Hy' cannot be more than such a depth d becausg-ascending order there has to be an index on the tuples on
the L1 norm score of g's bound at that depth is more thanhe basis of thei’-value. This is clearly not possible for
that of the skyline point in S which dominates it and hencead-hoc feature expressions in which case we have to fall
when g makes it to the head of the priority queue it wouldback on sorting the tuples on the basis of theivalues.
fail the dominance check. Hcannot be less than such a Our original goal is to avoid a full scan of all the tuples and
depth because then when g makes it to the head of the prihis goal is obviously not achievable if we sort the tuples of
ority queue the algorithm would dictate that another tupleeach group.

be drawn from g. O Another fundamental problem with OOBS arises when
we try to generalize OOBS to the general case where the
4 Bounding Strategies skyline is computed over multiple objective functions. Can

we order the tuples in some manner such that for all mono-
The design space for potential bounding strategies isypretttonic feature expressions the order returns a close approx-
large. In this section we explore part of this space. In adimation of the respectivé-ascending order? The answer
dition to arriving at an efficient bounding strategy our goalis unfortunately no. The counter-argument is as follows.
is to identify the different factors that should be consgder |f one tuple dominates (in the measure space) another then
in designing a bounding strategy. As already mentionedglearly for any monotonic function the former should be
prior research in top- query processing over aggregatesretrieved first to approximate thB-ascending order. But
also used the idea of bounding unseen tuples. We start ogonsider a set af tuples in which none of the tuples domi-
attempt to develop an effective bounding strategy on the banate any other. In this case it is possible to defihmono-
sis of the bounding strategy developed for togueries in  tonic functions such that for each of the functions fiie
[17] and use the inadequacies of the strategy as the motivaiscending order corresponds to a distinct order among the
tion for developing alternate strategies. In order to lager 1! possible orderings amongtuples. Thus an order which
the ideas developed in tdplet us first consider the skyline is good for one feature expression can be arbitrarily bad for
groups problem with only one objective and then the sky-another even though both are monotonic. Hence trying to

line query becomes essentially the topuery. approximate the”-ascending order for multiple objective
functions is not a good strategy.
4.1 One Objective Bounding Strategy The two problems cited above has to do with the fact that

o , drawing tuples inf’-ascending order is inherently difficult
Let OBJ = A(F) be the one objective function W.r.t. \yhen the feature expressidhis an adhoc function. Obvi-
which the skyline groups are to be calculated, where ously in developing an alternative solution we should try to
stands for the aggregation function aid denotes the  gyercome this problem. Is this the only problem which we
feature expression. Let denote the top- (minimum)  spoyld try to overcome in designing a generalized bounding
OB.J value among all groups. Then _wh|le executing thestrategy? Prior research provides no answer to this ques-
MOOLAP algorithm, for each non-skyline groypve have  tjon and hence in the next subsection we investigate a class
to draw exactly as many tuples as necessary for the condi aggregate functions for which drawing the tuplesiin
tion OBJ(g) > 0 to be satisfied. The basic assumption gscending order is a non-issue. This allows us to isolate

of the one objective bounding strategy (OOBS) is that it isissues other than those arising from feascending order
possible to organize the tuples of a group in such a way thagroblem.

at any step itis possible to draw the tuple with the minimum
I (feature expression) value. OOBS also assumes that thf
number of tuples associated with each group is known. At”
each step OOBS draws the tuple with minimufrvalue,  We distinguish between two classes of objective functions.
i.e., it reads the tuples if'-ascending order and uses the In one class the feature expression involves only one mea-
F-value of the last read tuple as a lower bound on khe sure of the base table, e.g.x M;. We call such objec-
value of the unread tuples. The number of unread tuples itve functionssimple In the other case is calletbmposite
known since the total number of tuples in a group is known.objective functions where the feature expression involves
This effectively bounds the objective val@e3J since the  multiple measures, e.gl{; + Ms.
aggregation functiorl is monotone. Thus at each step the  In this section we investigate an OOBS like bounding
bound improves because the estimate offthealue of one  strategy when all the objective functions involved are sim-
of the unread tuples is replaced with its actual value angle. We note in passing that simple objective functions are
also the estimate of the-value of the other unread tuples the only kind of objective functions possible when the base
improves. table has only one measure. In this case the user might still
Even for the one objective case there is a fundamentalvant to compute multiple aggregates, e.g. the total and av-
problem with OOBS. It assumes that it is possible to re-erage sale per customer. The reason we can sidestep the
trieve the tuples of a group iR-ascending order and also two fundamental limitations of OOBS in simple objective

2 Virtual Tuples Bounding Strategy



functions is as follows. Consider all the objective funno one workload here but they show representative behavior
whose feature expressions involves a certain meakljre observed in many different workloads. Briefly, the work-
Then drawing the tuples in ascending order)df satis- load description is as follows: there are 10000 groups in the
fies theF-ascending order for all these objective functionsworkload. The number of tuples per group is normally dis-
since they are monotone and hence the increasing order aibuted with an average of 5000. There are four measures
M; corresponds to the increasing order of thievalues. M;_, and four objective functions which a@BJ; =
But how do we reconcile thé-ascending order simulta- SUM (mt), OBJ, = SUM (m}), OBJ3 = SUM (m})
neously for objective functions over different measuresandOB.J, = SUM (m!). The value of was varied in the
For example, if(1,9) and (9, 1) are two tuples of a group experiments and the results are shown in Figure 2.¢The
and the aggregate functions é@&Mon measurelf; and  axis plots the percentage of tuples drawn by the MOOLAP
M- respectively, then reading tuple aftert, guarantees algorithm. For VTBS, the savings are impressive when the
F-ascending order for the first aggregation function andfeature expression is linear but shows steady degradagion a
not the second. Similarly drawing the second tuple aftehigher degree polynomial functions are used as the feature
the first, will guaranted”-ascending order for the second expression. This problem arises in VTBS (and hence also
aggregation function and not for the first. We can solvein OOBS) because th&-value of the last read tuple in a
this problem if we can create tuples which are reorderedjroup is used to bound all the unread tuples. For functions
as(1,1) and(9,9). Since the feature expression of ev- of smaller rate of change such as the linear function the dif-
ery objective involves only one measure, such reorderindgerence between the bound and the actual value of unread
preserves the correctness of aggregation. We call such rédples is not as high as in functions which show larger rate
ordered tuples agrtual tuples of change such as'®. As a result the obtained bound is
In general the virtual tuples bounding strategy (VTBS)very loose and hence a large number of tuples have to be

works as follows. In a pre-processing step, we create virretrieved before the bound has been tightened enough to
tual tuples by sorting each measure while fixing the othediscard the group. This high sensitivity to the nature of the
measures in place. Thus virtual tuples are created such thégature expression is clearly undesirable since the soluti
the tuple order is in ascending order for every measureshould be efficient for a wide class of feature expressions.
Then whenever the MOOLAP algorithm demands that an-
other tuple of a group be read we read the next virtual tuple.

Example 3: As a more detailed example, consider the
group {a,& from Example 2. It has four tuple§16,8),
(6,3), (2,5) and (8,4) The corresponding virtual tuples
are obtained by sorting independently each measure and
are respectively(2,3), (6,4), (8,5) and (16,8) O

Observation 1. Aggregating over the virtual tuples pre-
serves the correctness of aggregation and guaranfées
ascending order for every objective function.

Figure 2: Sensitivity to Feature Expression

VTBS

fhiy
1=}
S

P R - =]
S S s S

Percentage of Tuples Read

_ . m U X5 X0 X%
The above observation follows from the assumptions Feature Expression

that the feature expressions are monotonic and also that

the aggregation functions are simple, i.e. their output is

affected only by one measure and is independent of othe4.3  Index Bounding Strategy

measures. VTBS consumes one tuple on every invocatiog d di . fori kand . tal
from the MOOLAP algorithm. While this is the best strat- ased on our diSCUsSIon ot priorwork and our eéxperimenta

egy to minimize the total number of tuples consumed, it haibservatlon above we lay down the following four criteria

o

I/O problems since the granularity of disk access is a pag or a.usefullbounding strategy. First, it shou[d not rely on
(block). Once a tuple is consumed, the group ranking funcy uilding an index or other such structures which depend on

tion score {,;Norm or such) of the corresponding group the query parameters. Second, it should be general enough

increases and hence the group may descend deeper into ﬁqebe.applled to objective f_unctlon§ W't.h both composite
priority queueQ maintained by the MOOLAP algorithm. and simple feature expressions. Third, it should prefgrab_l
This could result in the same page being read from the disk>€ Pages rather than individual tuples as the granularity
multiple times unless there is a buffer hit. A simple solu- of access. Four.th, It S_hOUId hot bound a large number of
tion to avoid this problem is to consume immediately ang"nseen tuples with a single value.

aggresswely a page worth of tuples every time VTBS S, 31 Basic Idea
invoked.

To make more observations we evaluated VTBS experThe basic idea is that if we precompute and store some suc-
imentally. The details of the experimental setup are pro<inct statistics about the tuples of a group, we may be able
vided in the experimental section later. But now we presento come up with tight bounds. Our new strategy, which
representative results which allow us to draw some concluwe call thelndex Bounding Strategy (IBS)orks as fol-
sions about VTBS. Note that we present results for onlylows. Partition the tuples of a group into different pages.



Precompute and store meta-information necessary to lowesince we have only one objective functiSb/ M (M,), ev-
bound all the tuples in each page. Then the initial bouncery time a data page is read, the value of the bound in-
for the tuples is obtained by reading just the meta informa<creases by precisely thieof the page. In reading the pages
tion. Subsequently whenever a group makes it to the heaith -descending order we ensure that after every page read
of the priority queue in the MOOLAP algorithm, its bound we have the tightest bound possible. Bounds are improved
is refined by reading one unread page and replacing the eby replacing estimates with their actual values. Therefore
timate provided by the meta-information for that page withintuitively, the tuples should be retrieved in the descegdi
the actual information. The new strategy gives rise to a vaerder so that the difference between the estimate and the ac-
riety of questions. What kind of meta-information should tual F' values is maximized. But we cannot determine the
be stored about each page? To improve the bound, in whaklta value of a page without actually retrieving all pages.
order should different pages be read? How to decide whiclHence we need to approximate it with some statistics. Our
tuples are put together in the same page? strategy is to store, in addition to the minimum measure
The meta-information stored about each page of tuplesalues, the average measure values with the meta-data as-
should be small in size so that it can be retrieved in a fewsociated with a page. Then we compute the difference be-
I/Os as compared to reading all the data pages. If some dfveen thel” score of the average values and fscore of
the bounds obtained using the meta-information turns outhe minimum values and use it to approximate tléa-
to be loose, it impacts only the corresponding pages of undescending order.
read tuples and not the entire set of unseen tuples as was When we have more than one objective function, we
the case for VTBS. We divide the pages into index pagesidopt a round-robin strategy. First the first objective func
and data pages. Index pages hold the meta-data while dattien is used to choose the next block, then the second objec-
pages store the corresponding tuples. The meta-data storéde function is used to choose from among the remaining
for each page is simple and small. For each data page, docks and so on. This brings an element of fairness so that
entry in the index page stores the minimum value of eaclone objective function is not “deprived” of pages which
measure and the number of tuples in that data page. Sinémprove its bound the best for long. Our implementation
we assume that the feature expressions and aggregatioomputes the schedule of data page ordering the first time
functions are monotonic this information is sufficient te ob the index pages are loaded. Then we use an in-memory
tain a bound. For example, consider a grgupith one  cache to store this schedule and probe it whenever the cor-
data page containing two tuplg4,9), (9,1}. The corre- responding group pops out from the priority queue from the
sponding index page entry will hold (1,1) as the minimumMOOLAP framework.
measures foy and 2 as the number of tuples. Suppose
we have a query with one objectiveB.J; = A;(F1) =  4.3.3 Tuple Grouping Strategy
SUM (M, + M) then a lower bound for the objective is _ _ i
obtained asSUM ((1 + 1), (1 + 1)) = SUM(2,2) = 4. Finally, which tuples should end up in the same page? Intu-

Index pages are not created for groups having less than ively tuples which are geometrically close together stlou
page worth of tuples. end up in the same page as it reduces the error in the es-

timation provided by the index pages. This is the strat-
egy we adopt even though it penalizes objective functions
which show sharp gradation in some narrow region. We di-

Initially, the index pages are read to obtain the initial vide the tuples into different pages by usitiglimensional
bounds of groups. Then whenever the MOOLAP a|go-equi-Width partitioning, wheré stands for the number of
rithm invokes the bounding strategy to read more tuples fofneasures. Pages corresponding to sparse buckets of the
a group, an unread data page of the group is read and t@Ui-Width partitioning are combined together at the end of
bound is tightened. In what order should the data pages dire-processing. The rest of the issues discussed above are
a group be read to ensure that only the minimum number ofrthogonal to the partition strategy adopted and hence al-
pages necessary are read? Consider the simple case whéggnate partition strategies such/asneans clustering can
there is only one measurdl; and one objective function, be adopted easily. We explore this point further in the ex-
OBJ, = SUM(M,). Letp be some data page with  Perimental section.
tuples{t,, s, ..., t, } and lett,,;, be the tuple with mini-
mum M; value. Then the partial sum provided by the in- 4.4 Sequential Index Bounding Strategy
dex pages for the data pagés ¢,,,;, x n. Defined(p) to be
Yic1—n(t;) — tmin X n, i.€,0 denotes the error in the par-
tial sum obtained from the index page entry forThen, in  Figure3 shows the sensitivity of IBS to the feature expres-
order to read only the minimum number of data pageg of sion. It can be seen that IBS shows much less sensitivity to
the data pages of should be retrieved in-descending or- the nature of the feature expression as the index pages to-
der. In order words, we can best refine the boun@ 6%/, gether provide a fairly tight bound. IBS has satisfied all the
by fetching the data page with largest “bound estimationfour criteria we laid down above. The preprocessing par-
error” from the group. titions tuples based on their position in the measure space
But the intuition in this simple case is straightforward. and is independent of the query. Both composite and sim-

4.3.2 Data Page Ordering Strategy

4.4.1 Observations from the Index Bounding Strategy



ple functions are supported by IBS. Page is the fundamentailgorithm 2 Moolap Using SIBS
unit of access and one value per page is used to bound the for each groug € G do
H i _ 2:  g.bound = calculateBound(g.minMeasures, g.numTuples)
unseen tuples. Finally as it can be seen fro é an av 3. for each index page | of go
erage IBS has to read only a small percentage of the tuples:  for each indexPageEntry ie oo
-an impressive savings in terms of the tuples not read. IS %.lf)ound: updateBound(g.bound, ie.minMeasures, ie.numTuples)
i A . end for

would appear that we have designed a solution that has met  end for
all our goals Q.insert(L1Norm(g.bound), g)

' . end for
1 S=PS={}
. LOOP:
: while Q is not emptydo
T g=Q.getMin();

Figure 3: Performance of IBS
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14: if g € PSthen

15 PS.erase(g)

16: endif

17: if dominated(S, g) or dominated(PS,togn
18 discard g and goto LOOP
19: endif

20: if g.unreadTuples ==then
21:

22

23

24

25

26

27

28

29

30

S =SuU {g} and goto LOOP
end if
while (DataPage page = g.readNextPage()) != Nt
minMeasures = page.minMeasures
for each tuple tin pagdo
updateBound(g, minMeasures, t)
end for
if dominated(S, g) or dominated(PS,tggn
discard g and goto LOOP

Percentage of Tuples Seen
=

Unfortunately, previous research in tégesearch [17, © endif
5] and also the properties we developed assumed that sa%%i end while
. . . 1 for eachein PSlo
ings in terms of number of tuples consumed is necessarys: it g.nound dominatestaen
and sufficient for savings in time and hence optimized only34: PS.erase(e)

f 35: end if
the number of tuples. Figure4 shows that other factors haves: end for
come into play which has resulted in not only the savings3/: i FF’,SS-ZZZ%P)&‘CQ“?E“
in number of tuples not translating into savings in time but3g: endif g
has also resulted in a large slow down. The “naive” method, =~ Q:insert(L1Norm(g.bound), g)
. . 40: end while

of computing all the aggregates followed by computing the

skyline using the LESS [10] algorithm has not only beaten

our supposedly “intelligent” method but has done so by arlarger yvorkloads even with s_equentlal_ access the full ag-
order of magnitude. Thus IBS has resulted in an algorith regation method takes considerable time to terminate and

which consumes only a small fraction of the tuples but re- ence any significant savings in th? time taken to termi-
sults in an order of magnitude slow dowwWhere did the nate Is usefull. Secondly and more |mportar_1tly reme;mbgr
time g@ that our goal is to allow the user to use skyline queries in

The main reason behind the above mentioned slow dowf " interactive manner. Hence in order' to kegp the user en-
is disk behavior. Recall that we assumed that the groupin aged we should output potential skyline points. Potential

part of the problem is pre-materialized. Our implementa- kyline groups are those groups which may not be actually

t@on of thi_s part (_an_sures_that the tuples are s_tored sequert?-'f9 t;]netzgg:gagsgl'&isset_r?‘it f?;rlfasn”rge;){igﬁ?gelt?lézr?:n
tially on disk. This is achievable under most circumstances’ S0 cCompute i)tential .skyline roSgs t? repeatedly com-
since it is a pre-processing step. Sequential read of a d.a?duting thg skyIFi)ne over the grogps vt?hos)(/a aggregatiyon has
bage IS orders of magnltudg fa_ster t_han the a regd WhICEeen completed. This has two problems. First it loses the
involves a random seek. This disparity in access time off- P : P :

sets the advantage derived from consuming less tuples (d §§quent|al advantage since it has to perft_)rm a random seek
0 compute the skyline after the aggregation of every group

pages). We note in passing that pre-grouping the data fol- . ) - .
lowed by sequential access for full aggregation at quer)'/s complete. Also t.he q_uallty of potentlgl sI_<yI|ne points
time was not one of the methods experimentally evaluated"®Y be very poor since In o_rder to outwit thls_method all
in the top% case [17] and hence this problem was not un-2n adversary has t? do_|s h'de the groups ‘.Nh'Ch are good
covered earlier. in terms of the user’s pbjectlves Iaterlln the file. Thu_s if we
can develop a bounding strategy which takes considerably
less time than the time taken by the full aggregation method
while outputting both the final skyline aggregates and the
Before developing a bounding strategy that takes into acpotential skyline aggregates of very high quality earljs it
count these factors, we should first answer the question Worth the effort.

it is even necessary to develop a more complicated method Now we develop a bounding strategy called the sequen-
than the full aggregation method? We believe it is necestial index bounding strategy (SIBS) that takes into account
sary for the following reasons. First of all, the workload the disk access time. Our strategy is not to outperform the

used in the above experiment is a small workload. Foradvantage offered by sequential access but rather to use

4.4.2 Incorporating the Disk Behavior



it while still trying to consume less tuples. The complete5 EXPERIMENTS
MOOLAP algorithm using SIBS as the bounding strategy
is listed in Algorithm 2. SIBS maintains a set of potential
skyline groups in addition to the set of final skyline groups.In this section we conduct extensive experiments to ex-
Initially both sets are empty. In a pre-processing stepSSIB plore the design space of the algorithms. We have imple-
builds index pages similar to IBS but this time the index mented the MOOLAP algorithm framework and the bound-
pages store only the minimum measures and not the aveing strategies discussed in the paper in C++. Since the Se-
age measures. Thus the index page entries are more comudential Index Bounding Strategy (SIBS) is the final, com-
pact in SIBS when compared to IBS. All the index pagesplete solution that we have arrived at in the paper, through-
are read in the beginning to compute the initial bound ofout this section, we use MOOLAP to refer to the MOOLAP
all groups and the priority queue of the MOOLAP algo- framework that employs the SIBS as the underlying bound-
rithm is organized as usudli(nes 1-9). The head of ing strategy. The MOOLAP algorithm leverages on an
the priority queue is popped and lgtbe the correspond- external memory priority queue described in [24] with
ing group. Ifg is dominated by some group in either the a cache size of 20MB. We have implemented the block-
potential skyline set or the final skyline setis discarded based storage manager from scratch. Each data page size
(I'i nes 14-20). Ifitis not dominated then instead of in- is fixed at 4KBytes throughout the experiments. For com-
serting the group back into the priority queue, the sequenparison, we have also implemented the full aggregation al-
tially next page ofg is read and the process is repeatedgorithm and the LESS algorithm[10] as our baseline algo-
(I'i nes 24-32). When all the pages af are readg is  rithm for the skyline aggregation computation. The exper-
inserted back into the priority queue and also into the poiments were conducted on a dual pentium-4 processor ma-
tential skyline set if the potential skyline set has sizes les chine with 1GB of main memory and a 500GB IDE hard
than its fixed capacity. Whepnmakes it to the head of the disk. A preemptible version of the 2.6.17 Linux SMP ker-
priority queue again and if it is still not dominated by eithe nel was used as the operating system. Note that in all our
the members of the potential skyline set or the final skylineexperiments we read directly from disk to user space by-
set it is removed from the potential skyline set and addegassing the kernel space and hence also the kernel level
to the final skyline set. Note that in this bounding strategybuffering. Neither the MOOLAP algorithm nor the base-
a group arrives at the head of the priority queue at mosline full aggregation read the same data page more than
twice. The first time it is either discarded after reading aonce in the same run and hence buffering has no impact.
few pages or all its pages are read. The second time it islowever given the sequential access pattern of MOOLAP
added to the final skyline set if it is not dominated. SIBS is(with the sequential index bounding strategy) and baseline
so named since it draws the pages of a group by sequentiablution, both could benefit from aggressive read-ahead.
access. Unlike IBS, SIBS does not intelligently scheduleThis is studied in a separate experiment and by default the
the data pages within the group but instead draws the pageggressive read-ahead is turned off.
in stored order. Clearly this would increase the percentage One of the fundamental problems in attempting to eval-
of tuples consumed which is shown in Figure4. But Figure4uate the performance of ad-hoc user-defined queries lies
also shows that this increase is offset by the time advantage designing representative queries that capture many dif-
due to the sequential accesses. From Figure4 it can be sefarent possibilities. Since the scope of this paper is novel
that SIBS is significantly faster than full aggregation. there does not exist a public query benchmark for our prob-
Since SIBS and IBS are on the two opposite ends ofeém. Therefore we define our own objective functions. Re-
trading sequential access against the number of data pagéll that objective functions have two components, the ag-
transferred. It is worth noting that the benefits of sequaénti gregation function and the feature expression. For the ag-
access used in SIBS can definitely be combined with th@regation functionsSUMand AVERAGE are used. For the
intelligent data page scheduling in IBS to harness the bedgature expressions, we define various polynomials over the
of both worlds. In this paper, we do not explore further into measure attributes. The advantage of using polynomials is
such a hybrid solution and leave it as the future work. ~ that it allows us to define a large family of feature func-
tions showing various rate of changes by changing weights
) and powers. For simple feature expressions, we use poly-
Figure 4: Performance of SIBS nomials of the formF; = m! wherei varies from 1 to the
T . a‘%meg?m number of objectives ang determines the rate of change
of the feature expression. For the composite feature expres
sions, we use polynomials of the forfi = Xm? wherei
varies from 1 to the total number of measures andries
from 1 to the number of objectives.
© The experiment database consists of the group-by at-
T e tributes and the measure attributes. The measure atsibute
H H . of each data tuple are generated by the widely used genera-
P R TR T B tor [4] in the previous skyline literature. The total number
FetreEesin FereEesin of groups is fixed in each experiment and the number of

5.1 Experiment Setup
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tuples belonging to each group follows the normal distri- " iW IR e ea e
bution. We use the following defaults for the parameters !

except in experiments where they are varied. The num- x

ber of groups is 10000. The number of tuples per group e« / —
is normally distributed with an average equal to 5000 and &l Agegaon + LESS —
standard deviation of 0.2. The tuple size is fixed at 100

bytes irrespective of number of measures (using padding Objectve Number Objecie Number
when necessary). In other words, our default database size™": . . s . . .
consists of 50M records or 5G bytes in disk size. The de- (a) Elapsed Time (b) /O

fault partition method used is the equi-width partition.€Th Figure 6: Effects of the Number of Objectives (Anti-

default maximum buckets number is 100 and the maxi- ;o rejated Measures, 10K Groups, 5K Tuples Per Group
mum allowed size of potential skyline groups in Sequen- 4 Average, 5GegaBytes)

tial Index Bounding Strategy (SIBS) is 200. The default
power of simple polynomials in feature expressions is 5. L .
The default number of measures and objectives are both £:2-2  Impact of number of objective functions
All the experiments have been run over both uniform an
anti-correlated measures. We show only the results for th : e
anti-correlated case, since it is considered as the mokt ch f MQOLAP IS very similar to th_at c_)f number of measures
lenging and closest to the real world scenario of optimizing;’f‘nOI 1S shown in Figure 6. Agz_am, if the number of obje_c-
conflict objectives (results are consistent over otherrielist tives is less than 5, MOOLAP is T““‘?h faster than ba}selme
butions as well). meth_ods and for more than 5 objectives, _MO_OLAP is st|I_I
considerably faster. The cost of the baseline increasés wit
increasing objectives, again, due to the extra computaition

he impact of the number of objectives on the performance

5.2 Experiment Results cost. With the increase of objectives, MOOLAP perfor-
mance degrades due to the fact that more groups are in the
5.2.1 Impact of number of measures final skyline results and hence more 1/0s need to be per-
formed to read pages from the extra groups.
. — . 5.2.3 Scalability of MOOLAP
X/ X/X . . -
/ e — Figure 7 examines the scalability of the MOOLAP al-
/ gorithm in terms of the number of groups and tuples re-
spectively. By varying both the average group size and
Measure Number wesenumeer—— the group number from 1K to 100K, we have covered all
: ‘ ° ’ : : ° °  sizes of databases up to 100GBytes. In both cases, the
(a) Elapsed Time (b) VO MOOLAP algorithm scales much better than the baseline

Figure 5. Effects of the Number of Measures (Anti- aggregation method which has to consume every tuple. In
correlated Measures, 10K Groups, 5K Tuples Per Grougll the four figures, MOOLAP consistently outperforms the

on Average, 5GBytes) baseline method by orders of magnitude. For example, on
the 100GBytes databases, MOOLAP completes within 3

Figure 5 shows the impact of the number of measureghinutes whereas the baseline method takes several hours.

on the performance of MOOLAP in terms of both elapsed An interesting observation comes in Figure 7(c). With
time and the 1/O cost. Composite feature expressions arthe increase of average group size (from 10K to 100K),
used here to combine all the measures in each objectivielOOLAP even becomes faster. Although counterintuitive,
function. Note that even though we vary the number ofthis is quite reasonable. The number of final skyline groups
measures, the tuple size is fixed. Thus the primary impaatioes not increase with the group size since the total group
of the increasing number of measures is the increasing errarumber is fixed in this experiment. The only effect of a
contributed to the bound obtained from the correspondindarger average group size is the greater variance in the ob-
index pages. When the number of measures is less than fective space, i.e. the probability of a “killer group” bgin
MOOLAP is order of magnitude faster than the baseline present increases. Such groups are good in terms of every
For higher number of measures, MOOLAP is still aroundobjective and thus dominate a large region of the objective
50-60 percent faster. The correlation between the measurapace. It should be also noted that the inability to exploit
affects the performance when the number of measures aseich killer groups is one of the major disadvantages of the
changed. But the effects are uneven. Note that the baselif®mseline method. Finally, it is clear that anti-correlatad
method also shows a slight increase in time with increase ithe measure attribute is insufficient to bring out the worst
number of measures. That is due to the extra computationalase behavior of the MOOLAP algorithm. So, the next ex-
cost needed to process the extra measures. periment studies the anti-correlation of the objectives.
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Figure 8: Study of Anti-Correlated Objective Space
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Figure 9: Other Experiments
5.2.4 Study of Anti-correlated Objectives ite feature expression was used. As it can be seen from the

curve in Figure 8(a) and 8(b), MOOLAP also suffers from
Note that just because the measures are anti-correlatéte “curse of anti-correlation” which afflicts the skylinp-o
does not mean the aggregates are anti-correlated since agyator. As it can be seen from this experiment, unlikekop-
gregation does not preserve correlation even if the aggrea query optimizer should be more careful while pushing the
gate functions used are simple. In this experiment, weskyline operator into other operators. However, MOOLAP
study the performance of MOOLAP on data sets that arestill outperforms the baseline algorithm by a great margin
anti-correlated in thebjective space To simulate, anti- (50% in both time and I/O cost).
correlation in the objective space, we first generated the ag Furthermore, we would like to emphasize the progres-
gregate result and then split it into random parts. Note thasive nature of the MOOLAP algorithm, i.e. most skyline
this technique only works when the feature expression igroups have been identified much earlier than the whole
linear and hence for this experiment only, a linear composprocess returns. To demonstrate, we show in Figure 8(c)



the percentage of skyline groups discovered over the timeeeks. MOOLAP consistently outperforms the baseline by

domain. While the whole MOOLAP process takes moreone order of magnitude.

than 500 seconds (which is already 50% faster than the It should be noted that these improvements were ob-

baseline), most skyline groups are computed much earlieserved when the system was quiescent otherwise. When
For example, 20 percent of the skyline aggregates are disnultiple queries were run concurrently the benefits of read-

covered in around a minute with the first several skylineahead rapidly disappeared.

groups found almost instantaneously. Therefore, these ag-

gregates can be quickly shown to the user by highlightin% RELATED WORK
the corresponding cube cells, greatly improving the system

usability. Skyline operator was introduced in [4]. There is a sig-
nificant amount of recent work exploring various aspects
5.2.5 Impact of Partition Methods of the skyline operator. The computation of the skyline it-

self is discussed in [16, 21] etc. But none of them target
Figure 9(a) shows the impact of the partition method useén OLAP environment. The benefits of progresssiveness
on performance. Partitioning methods matters since thén skyline query processing was discussed and studied in
bounds obtained in MOOLAP critically depends on the[16, 21, 27]. There is a fairly large body of work, similar in
error rates of the the estimation computed from the in-spirit to this paper, that attempt to apply the skyline oper-
dex entries. We compare the default equi-width partitionator in contexts beyond the traditional relational databas
method withk-means clustering using different simple fea- Continuous skyline queries over data streams is studied in
ture expressions. It can be seen that for smaller polynofl9, 20]. Using approximation to counter the bad selectiv-
mials the equi-width method is order of magnitude fasterity of the skyline operator in high dimensions is studied in
than k-means clustering. This is probably due to the fact[6]. Particularly relevant to a data warehousing environ-
that k-means clusters tuples on the basis of the centroidment is [30] which studies the problem of maintaining a
of buckets while the way the index pages are built de-skyline view in the presence of inserts and deletes. Huang
mands that tuples be as close as possible to the plane detal. [15] study skyline query in mobile adhoc network en-
fined by the minimum measures. This disparity vanishesironments. Skyline query in distributed settings is staldi
when feature expressions of higher rate of increase are uséd [2, 28, 29, 31].
whereink-means and equi-width perform equally bad since  Prior research closest in spirit to our work are [17] and
the error ratio begin to dominate. Nevertheless, we bef18] both of which deal with the problem of top-k queries
lieve that feature expressions showing lower rate of changi OLAP settings. In particular the idea of lower bounding
are much more realistic than higher rate of change such amread tuples was used in [17]. Work in iceberg queries

F(x) = 2% and iceberg cubes [9, 3] also share similar motivations in
trying to identify interesting parts of the data cube on the
5.2.6 Effects of Different Feature Expressions basis of user specified criterion. Our idea to output poten-

tial skyline groups early was motivated by online aggrega-
Figure 9(b) shows the impact of the rate of change of thaion studied in [13, 12].
feature expression on performance. Initially, when the fea
ture expression changes fram to 225 there is a sharp de-
crease in the performance of the MOOLAP algorithm. But,7 CONCLUSION
beyond this point to even higher rates of increase seems On-line analytical processing (OLAP) is crucial for the suc
have little effect. Thus, while the performance degrades asess of diverse futuristic decision making strategies. In
the rate of change of the feature expression increases, tlgeneral, OLAP operates on ever increasingly large data sets
performance stabilizes beyond a certain point. This trendind is expected to provide on-line support for different ad-
is analogous to the results in Figure 9(a). The bound eshoc criteria. In this paper, we identified and introduced
timation degrades with the increase of the rate of changethe skyline operator for OLAP applications. The skyline
in feature expressions, which causes MOOLAP to spendperator is an instance of the multi-objective optimizatio
more time on fully fetching data pages from unpromisingproblem, which generalizes many of the previous database
groups. work, including ranking queries such as top-k. The multi-
objective optimization problem poses many novel and in-
teresting challanges in a multi-dimensional space. In this
paper, we investigated a family of algorithms to address
Figure 9(c) shows the impact of implementing aggressivehis challenge. Using the properties of the algorithms, we
read-ahead on both the MOOLAP algorithm and the basewere able to develop efficient algorithms that use succinct
line algorithm. The performance of both algorithms im- meta data to optimize the number of tuples retrieved to an-
prove significantly. This is mainly due to the fact that the swwer the skyline query. The algorithms were implmented
full aggregate algorithm’s 1/0Os are composed entirely ofin a prototype using real storage settings. This prototype
sequential reads while in MOOLAP with SIBS the 1/Os identified the interesting and realisitc problem, not previ
are predominantly sequential interspersed with few randonously identified in prior aggreation ranking work, of the

5.2.7 Impact of Aggressive Read-ahead



classic tradeoff between sequential and random access. A§8] R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-

a result, we modified our algorithms to exploit sequential tion algorithms for middleware. IfProc. of POD$S

access when possible, even at the cost of sometimes re- 2001.

trieving more tuples. The final algorithm, MOOLAP with ) ) )

SIBS, is shown to be superior to all prior attempts using a [9] M. Fang, N. Shivakumar, H. Garcia-Molina, and

variety of data sets and objective functions. R. Motwani. Computing iceberg queries efficiently.
Various possible avenues of future work related to the !N Proc. of VLDB 1998.

skyline over aggregates problems exist. One interestin?lo]

problem is to compute the skyline at the level of each

cuboid in a data cube apriori and store it. This presents a

much more compact view of the data cube and hence can be

stored without the space overhead which prevents the fullj1] 3. Gray, A. Bosworth, A. Layman, and H. Pirahesh.

P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. Rroc. of VLDB
2005.

data cube from being materialized. Note that this is dis- Data cube: A relational aggregation operator general-
Another interesting avenue is to efficiently allow the user ICDE, 1996.

to add or remove objectives on the fly. While this can be
achieved by repeatedly invoking the MOOLAP algorithm, [12] P. Hass and J. Hellerstein. Ripple joins for online ag-
we hypothesize that it should be possible to use the com-  gregation. InProc. of SIGMOD 1997.

puted skyline efficiently in computing the skyline in the . i

new objective space. A related problem is to integrate sky[13] J. Hellerstein, P. Hass, and H. Wang. Online aggrega-
line with drill-down and rollup operations. A much more tion. InProc. of SIGMOD 1997.

general direction is to investigate the incorporation ofeno
multi-objective query operators rather than just the sigyli
which is but one specific instan of the multi-objective opti-

mization problem. In this paper, we essentially pushed the15] 7. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline

skyline operator into the aggregation operator. Itwould be ~ gueries against mobile lightweight devices in manets.
interesting to investigate when and if the skyline operator In Proc. of ICDE 2006.

should be pushed into other operators while generating ef-
ficient query plans. Reference [6] would be a good startind16] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars

[14] G. Hjaltason and H. Samet. Distance browsing in spa-
tial databasesACM TODS 24(2), 1999.

point for studying query optimization issues related to the in the sky: an online algorithm for skyline queries. In
skyline operator. Proc. of VLDB 2002.
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