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Abstract—Structured overlay networks can greatly simplify
data storage and management for a variety of distributed appli-
cations. Despite their attractive features, these overlays remain
vulnerable to the Identity attack, where malicious nodes assume
control of application components by intercepting and hijacking
key-based routing (KBR) requests. Attackers can assume arbi-
trary application roles such as storage node for a given file,or
return falsified contents of an online shopper’s shopping cart. In
this paper, we define a generalized form of the Identity attack,
and propose a light-weight detection and tracking system that
protects applications by redirecting traffic away from attackers.
We describe how this attack can be amplified by a Sybil or Eclipse
attack, and analyze the costs of performing such an attack.
Finally, we present measurements of a deployed overlay thatshow
our techniques to be significantly more light-weight than prior
techniques, and highly effective at detecting and avoidingboth
single node and colluding attacks under a variety of conditions.

I. I NTRODUCTION

As the demand for Internet and web-based services con-
tinues to grow, so does the scale of the computing infras-
tructure they are deployed on. Recent literature shows that
structured peer-to-peer (P2P) overlays such as Chord [26],
Pastry [21], and Tapestry [31] can greatly simplify data
storage and management for a variety of large-scale dis-
tributed applications [17], [22], [33]. Finally, the usefulness
of these infrastructures has been validated by recent studies
of real world deployments of structured overlay applications,
including Amazon’s distributed key-value storage system Dy-
namo [9], and the popular BitTorrent client Azureus [12].

Despite the success of new application deployments, these
application infrastructures remain vulnerable to severalcritical
malicious attacks. One such attack, the Identity attack [13],
would allow a malicious peer in the network to hijack
application-level requests and assume the responsibilityof any
application component. For example, Amazon uses Dynamo
servers to store information about user shopping carts, which
is read and converted to html for user consumption. While
Dynamo servers are accessed only by internal servers, a
compromised host can potentially hijack read operations on
a user’s shopping cart, and return to requesting web serversa
modified shopping cart.

At their core, structured overlays scale to large networks
because each node stores routing state that scalessub-linearly
with the network size. Using this limited state, peers coop-
eratively mapkeysto physical network nodes using a multi-
hop lookup mechanism calledkey-based routing(KBR) [7].
KBR maps a given key to a specific live node called its

root. Overlay applications then use KBR to “choose” nodes
for specific application components,e.g. the root node of a
file’s content hash is the file’s storage server [6], and the root
of a multicast session key becomes the root of the multicast
tree [22]. By using KBR to choose application components,
these applications expose themselves to hijacking attempts
by malicious peers, similar in principle to BGP hijacking
attacks [2].

In our preliminary work [13], we first described a limited
version of the Identity attack and a basic framework for
its detection in the Tapestry [31] and Pastry [21] protocols.
In this work, we greatly expand our study in several key
dimensions. First, we present a generalized form of the Identity
attack defense, and demonstrate its applicability to 16 of
the most popular structured overlay protocols. Second, we
propose a novel tracking mechanism that allows the network
to accumulate statistics on prior attacks through self-verifying
evidence. By routing evidence to current and potential victims,
we effectively protect application traffic by redirecting KBR
requests away from attackers. Not only does this render
attackers harmless, but it also does not unfairly penalize the
few nodes who are falsely accused due to network instability.
Third, we describe how Identity attacks can be amplified using
the Eclipse attack [24], and perform analysis to quantify its
required cost in terms of node identifiers requested. Finally,
we measure the effectiveness of our solution on a deployed
structured overlay network. In addition to experiments on
the overlay, we implement a version of the Cooperative
File System [6], and show how our techniques effectively
reduce forged data blocks while requiring order of magnitude
lower overheads than an alternative approach using redundant
routing entries.

The paper is organized as follows: Section II summarizes
background and related work. Section III summarizes the
Identity attack, and describes our comprehensive framework
for light-weight detection and countermeasures. Next, in Sec-
tion IV, we examine Identity attacks enhanced by collusion
via the Eclipse attack, and analyze the costs of collusion.
We present detailed evaluation of our defense framework in
Section V, and measurements of application-level impact via
a study of CFS in Section VI.

II. BACKGROUND AND RELATED WORK

We begin with a background discussion of structured over-
lays and their use of key-based routing. We then summarize
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Fig. 1. Prefix routing.Top: node1023 sends a message to key3222 in a
structured overlay using prefix routing. Bottom right: routing table for node
1023. The node itself fills one entry in each column. Entries that no nodes
match are crossed out. Names are represented in base 4.

work on security for structured overlays and related topics.

Structured Overlays and KBR. A structured overlay is an
application-level network connecting any number of nodes,
each representing an instance of an overlay participant. Nodes
are assigned nodeIds uniformly at random from a large identi-
fier space. To enhance overlay security, we assume that nodes
register with a centralized certificate authority (CA) for a
public/private key pair, and the CA binds the node’s random
nodeId with its public key using a public key certificate.
Application-specific objects are assigned unique identifiers
called keys from the same space.

The overlay dynamically maps each key to a unique live
node, called itsroot node. While a key’s root can change
with network membership, at any given time in a consistent
network, a single node is responsible for each key. The root is
usually defined as the peer with nodeId closest to the key. Our
detection mechanisms verify this overlayinvariant to detect
identity attacks. To deliver a message based on a key to its
root node (key-based routing[7]), each node forwards the
message using a locally maintained routing table of overlay
links. P2P applications use this to deterministically choose
peers to perform specific functions.

The large set of existing structured overlay protocols differ
in the specifics of their routing algorithms. In order to support
a network of sizeN , most protocols require per-node routing
state that scales asO(log N) and provide worst caseO(log N)
overlay hops between any two nodes. Routing proceeds by
forwarding the message incrementally closer in the namespace
to the desired key. Figure 1 shows an example of overlay
routing in Chimera [1], a structured overlay using prefix
routing similar to Tapestry [31] and Pastry [21]. Finally, while
each system defines a function that maps keys to nodes, the
exact function may vary slightly. For example, keys can be
mapped to the live node with the closest nodeId as in Pastry,
or the closest nodeId clockwise from the key as in Chord [26].

Attacks on P2P Systems. Previous work describes two
attacks on structured overlays, the Sybil attack [11] and the
Eclipse attack [3], [24]. Attackers with significant resources
perform a Sybil attack by generating arbitrarily large number
of identities in the overlay network. In the Eclipse attack,
attackers collude to increase their influence on a target by
introducing each other as performance optimizing alternative

entries into the victim’s routing table. Both attacks focuson
using multiple identities to gain influence and control in the
overlay routing layer.

Some prior work limits the Eclipse attack by putting addi-
tional constraints such as low in-degree count or geographic
proximity on how nodes choose their neighbors in the over-
lay [3], [18], [24]. While these limit attackers from attracting
more than their share of normal traffic, they cannot prevent
them from harming their portion of the overlay traffic. In
contrast, our work seeks to identify and actively eliminatethe
influence of attackers on all traffic. Condie et al. proposed
using periodic routing table resets (induced churn) to limit the
impact of Eclipse attacks. Sit and Morris [25] also alluded to
a variant of the identity attack in their initial study.

The structured overlay security work by Castro et al. [3] is
highly relevant to this work. The authors propose a number of
techniques to secure routing through the use of redundancy.
A number of significant differences distinguish our work.
First, mechanisms proposed in prior work require proper
tuning of system parameters, and comes at a significant
cost in network bandwidth overhead. More specifically, the
constrained routing table approach doubles the amount of
neighbor maintenance traffic, and significantly reduces the
overlay’s ability to perform locality-aware optimizations such
as proximity neighbor selection [15]. In contrast, we focus
primarily on identifying the active attackers through a light-
weight detection and evasion system (less than 1500 lines ofC,
including our implementation of a simple Certificate Author-
ity). Our mechanisms do not limit routing optimizations, and
add minimal per-node state. We provide a detailed comparison
of the two approaches in Section VI.

Reputation systems have been explored as application-level
security mechanisms for peer-to-peer systems. They can be
used to quantify reliability of resources [8], [29] or individual
peers [19], and have been applied to peer-to-peer network com-
munities [27]. Finally, the PeerReview project [16] proposed
secure message logs to improve accountability in distributed
systems.

III. D EFENDING THE IDENTITY ATTACK

Structured peer-to-peer applications use Key-based routing
(KBR) [7] as a way to assign application components such
as traffic indirection points, storage servers or measurement
sensors to live nodes in the network. For example, distributed
storage systems using the Distributed Hash Table (DHT)
interface [6], [17] choose the storage server for each file or
block as the root node of the file’s content hash key. ThusPut
and Get operations are KBR requests that terminate at the
storage node. Data streaming applications such as Scribe [22]
hash session names to generate keys, and use KBR to choose
the root of the multicast tree. While application peers can
communicate directly via IP, they must first use KBR requests
to locate each other.

An attacker can hijack and claim KBR messages as their
own, by exploiting the fact that each nodes only sees a small
subset of the overlay members. We call this anidentity attack.
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Fig. 2. The Identity attack.1023 sends a message towards key3222. Before
the message reaches the root (3223), an attacker intercepts it and responds
as the root.

Any malicious peer on the path of a KBR message can respond
to the source node and claim to be the request’s destination.
Undetected, the attacker claims control over a particular key
and its associated application data. Intuitively, this abuse of
limited per-node state is similar to prefix-hijacking attacks in
BGP routing [2]. Multiple attackers can collude and perform
stronger attacks such as isolating a node from the network,
effectively performing a manual partitioning of the overlay.

In this section, we quickly summarize the basic identity
attack described in our preliminary work [13], then define
a generalized lightweight detection framework for structured
overlays, and introduce techniques to mark attackers and redi-
rect traffic away from their influence. We will delay discussion
of advanced attacks involving multiple identities to Section IV.

A. The Single-node Identity Attack

In the single-peer attack [13], attackerA intercepts a key-
based routing request from source peerS for key K, and
responds toS that it is K ’s root node by virtue of being
closer toK than any other peer in the network. Without local
knowledge of peers closer toK thanA, S then interacts withA
as required by the application. Thus,A has effectively hijacked
the overlay connection betweenS andK ’s root node at setup
time. Figure 2 illustrates the attack.

By claiming to beK ’s root node, the attacker can intercept
application requests and return data of its own choosing.
The extent of control granted to the attacker varies across
different applications. In distributed storage systems that use
the Distributed Hash Table (DHT) interface [6], [17], the
attacker can prevent blocks from being written and provide
forged data to peers by hijackingput and get operations
respectively. For directory services relying on decentralized
object location and routing (DOLR) [20], an attacker can
prevent the publication of resources, and redirect requests to
malicious nodes hosting forged data. In multicast and anycast
systems that relying on KBR for peer rendezvous [4], [22],
clients can be redirected to join sessions run by malicious
hosts.

Note that while applications can verify content integrity
using mechanisms such as block checksums, the distribution
of these mechanisms often rely on KBR and are themselves
vulnerable to these attacks. Detecting the identity attackis
difficult without an out-of-band peer-rendezvous and commu-
nication mechanism.

B. Detecting Identity Attacks

We now describe a generalized, light-weight detection
mechanism suitable for most if not all of the structured
overlays in current literature. We begin by stating several
reasonable assumptions about the overlay network.

• During registration, a Certificate Authority (CA) assigns
each node a unique nodeId, along with a public/private
key pair [11]. The two are embedded in a public key
certificate. This limits the impact of Sybil attacks, but is
not a requirement for our mechanisms to work well.

• Local clocks at overlay nodes are loosely synchronized
using the Network Time Protocol [10].

• Nodes digitally sign all of their responses to KBR mes-
sages with their public key.

Nodes detect identity attacks through the generation and
timely dissemination of self-verifying “existence proofs.”
Overlay nodes periodically sign and distribute these proofs on
behalf of well-defined regions of the namespace they reside in.
For each region, a small number of randomly selected “proof
managers” store these proofs and provide them on request.

Existence proofs are digitally signed certificates that prove
at some timet, at least one live node existed whose nodeId
resides inside a particular region of the overlay namespace.
A node periodically constructs existence proofs for each
namespace region it belongs to, and sends them to the set of
proof managersfor that region. An existence proof includes
the signer’s nodeId and a timestamp signed by the sender,
and is valid for some time period after its issue. The use of
the local timestamps prevents malicious nodes from replaying
existence proofs and falsely accusing well-behaved nodes.

After receiving a signed reply to a KBR request for keyK,
a nodeS examines its local routing table to find the longest
prefix column for which it has all entries filled. This threshold
T is an approximate measure of the number of nodes in the
network. A legitimate response should match the desired key
K with at leastT prefix digits. If not,S becomes suspicious,
and attempts to verify the existence of nodes matching longer
prefixes of keyK. S computes addresses of proof managers
by applying a secure one-way hash (SHA-1) to the region
identifier and several small natural numbers (1, 2, 3). Proof
managers are the “root nodes” of the resulting keys.S queries
the relevant proof managers matchingK ’s first T prefix digits
for any existence proofs. If successful, the proof provides
indisputable evidence of an attempted identity attack. Figure 3
shows node1023 seeking proofs of nodes with prefix322
by contacting three proof managers.

Optimizing Detection for Scalability and Robustness.We
summarize several techniques that improve the scalabilityand
robustness of the detection system. We refer the reader to [13]
for additional details.

1) Limiting Prefix Groups– Certifying every possible prefix
group in the network would result in a large number of
existence proofs. However, given a rough estimate of the
network size, each node needs to only certify a small constant
number of namespace ranges. Each node can estimate the



Overlay Protocol(s) How Regions are Named Region Naming Example

Tapestry [31], Kademlia [IPTPS’02],
Numeric range

[123*] (prefix lengthL = 3)Pastry [21], Bamboo [Usenix’04],
(Prefix-based Routing)

LAND [SODA’04], Z-Ring [ICNP’05]
Chord [26], Symphony [Usenix’03],

Numeric range [1235, 9] (center, size)
Viceroy [PODC’02], Accordion [NSDI’05]

Koorde [IPTPS’03] Numeric (de Bruijn Routing) [1235, 9] (center, size)
SkipNet [USITS’03] 2 Ranges: numeric & alphabet[abc*] and [123*]

CAN [SIGCOMM’01] D-dimensional: Numeric [1235, 9], [5675, 9] ...
Ulysses [ICNP’03] Numeric range and Level [1235, 9],L

Kelips [IPTPS’03], Tulip [IPTPS’05] Gossip-based: no ranges Name of affinity group

TABLE I
THE NAMESPACE REGION CERTIFICATION TECHNIQUE IS APPLICABLETO MOST KNOWN STRUCTURED OVERLAYS. THIS SHOWS HOW DIFFERENT SIZED

REGIONS ARE SPECIFIED IN16 POPULAR PROTOCOLS. GOSSIP PROTOCOLS CAN ONLY CERTIFY REGIONS OF A FIXED SIZE.
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Fig. 3. Identity Attack Detection.Nodes3220 and 3223 provide signed
existence proofs for prefix322 to three proof managers. Node1023 seeks
proof of a322* node.

number of active nodesn by examining the density of its local
routing table, and need to certify at mostLog2n prefix groups
or namespace ranges. Application of prior measurement and
analysis results [32] show that certificate proofs ofthreeprefix
groups are sufficient to provide coverage of attacked nodes for
different network sizes.

2) Replicating Proof Managers– Several factors can limit
the success of proof managers. Node churn limits their avail-
ability; attackers between a client and proof manager can
drop verification requests; and proof managers themselves
can be malicious and deny any knowledge of requested
existence proofs. We make detection more robust by using
multiple proof managers for each namespace region. This
“replication” increases the probability that one or more non-
malicious managers will be online despite network churn.
Replicating the proof managers also addresses the problem that
our verification mechanism is dependent on overlay routing.
Multiple independent proof managers increase the number of
verification requests that avoid interception by maliciouspeers,
providing more reliable routing without any complex tech-
niques. We quantify the benefits of proof manager replication
through detailed experiments in Section V.

3) Caching Existence Proofs– An overlay node can cache
existence proofs it observes in the network. Since proofs are
self-certifying, any node can observe and cache them as they
are sent on their way to proof managers. Locally cached
unexpired proofs can be referenced as an alternative to sending
verification requests.
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Fig. 4. Tracking the attacker.Node1023 detects an attack by node3203,
and sends an alert towards the attacker.3203’s predecessor3011 receives
the alert, increments3203’s local blacklist counter and switches its traffic to
an alternate route.

Defining Namespace Regions. Our defense against identity
attacks relies on certifying that nodes exist in different regions
of varying sizes. This mechanism generalizes to any structured
overlay with a notion of continuous namespaces. Only the
mechanism for specifying a region needs to be customized
for each protocol. For example, prefix-routing protocols like
Tapestry [31] and Pastry [21] define regions as all nodes whose
nodeId share a matching prefix,e.g. prefix{123}. The length
of the prefix defines the region size. In contrast, protocols
like Chord [26] that use pure numerical closeness for routing
can define the same region using a center identifier and a
region size,e.g. [1230–1239] isrange{1235,9}. To illustrate
the generality of our mechanism, we show in Table I how
it applies to 16 protocols described in literature. We describe
how each protocol defines ranges in its namespace, and give an
example to show how to define regions of varying sizes. Note
that for protocols like Tulip and Kelips, namespace regions
can only be divided into fixed affinity groups.

C. Tracking and Avoiding Attackers

Merely detecting an attack is insufficient. Nodes must
reliably perform key-based routing despite the presence of
malicious peers. In this section, we describe novel mechanisms
that use self-certifying evidence of the attack to track down
and mark attackers, allowing overlay peers to locate and avoid
attacker nodes in favor of more reliable alternative routes.

Self-verifying Evidence of an Attack. For overlay nodes to
take action after an attack byA on keyK, nodes must observe
unforgeable evidence ofA’s malicious behavior. This evidence



comes in the form of two components, the original reply to
the KBR message signed byA, and an existence proof signed
by a node who is a better root node forK. Since both the
reply and proof contain signed timestamps, a third party can
observe whether the KBR reply was sent while the existence
proof was still valid. Assuming peers are loosely synchronized
via the NTP protocol, peer timestamps should be synchronized
within 200ms [10]. Since we expect existence proofs to be
valid on the order of minutes (30 sec to 2 min), errors in time
synchronization should not prevent validation of the evidence
from an attack.

Tracking Attackers via Blacklists. After detecting an attack,
the message sourceS can forward evidence of the attack to
interested third parties in the network. If nodeA attacks a KBR
message for keyK, S prepares analert message including
K, A’s signed reply, and the existence proof from a proof
manager, and sends the alert as a special message to attacker
A. Each node forwards it towardsA, and checks to see if its
next-hop is nodeA. If so, the node is a predecessor ofA,
verifies the evidence is valid, and addsA to a localblacklist.
Each node on the blacklist has an associated counter that
is incremented each time a new alert is presented showing
that node performed an attack. Figure 4 shows this tracking
mechanism in detail.

Blacklists are not foolproof. First, nodes in a dynamic
network can observe a small number of false positives in attack
detection due to network churn. Over time, nodes blacklist
values slowly decay using an exponentially weighted mov-
ing average, thus preventing long-term accumulation of false
positives. Second, multiple attackers can collude where one
attacker forwards traffic to other attackers, and acts as a shield
by dropping alert messages. We are actively investigating an
effective approach to identify and avoid these collusion groups.

Evading Attackers via Malice-aware Routing. Once attack-
ers have been identified with blacklists, nodes can actively
avoid them when routing KBR requests. The blacklist counter
for a routing entry acts as a simplistic reputation value that
indicates a likelihood of malicious behavior. Routing policies
can consider blacklist values in conjunction with a node’s
link quality and network latency when choosing between
multiple routes. This proactive avoidance approach to routing
increases application reliability without unfairly punishing
nodes involved in false positives. Finally, malice-aware routing
policies allow nodes to dissociate from attackers over time,
thus reducing attackers’ network in-degree and future attacks.

IV. COLLUSION-ENHANCED IDENTITY ATTACKS

Peer-to-peer systems that provide zero-cost identities suffer
from the Sybil attack [11], where a single user can obtain large
numbers of virtual identities. These virtual nodes can collude
to infiltrate the routing table of a single target and performa
collusion-enhanced Identity attack (or the Eclipse attack). In
this section, we describe this attack in more detail, analyze its
cost in virtual identities, and outline defense mechanisms.
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Eclipse Attacks and User Collusion. In the Eclipse at-
tack [3], [5], [24], malicious peers exploit overlay optimization
algorithms such as Proximity Neighbor Selection [15] to intro-
duce colluding peers into a target’s routing table. An example
is shown in Figure 5. If successful, a group of peers control the
majority of outgoing traffic from the target, and can then be
used as a platform to launch powerful attacks. First, colluding
peers can perform a colluding Identity attack by hijacking all
KBR requests from a peer, effectivelyisolating it from the
network, surrounding it with a self-consistent virtual network
where all exchanges are controlled by a colluder. Second,
colluding peers can drop all outgoing verification requests,
making it extremely difficult to detect ongoing attacks.

Estimating the Cost of Eclipse Attacks. To perform a
successful Eclipse attack, an attacker must have control over
specific nodeIds that satisfy routing constraints in the target
node’s routing table. Because nodeIds are assigned at random,
an attacker must obtain a large number of nodeIds in order to
obtain the requisite nodeIds that infiltrate a particular target.
Thus, we quantify the “cost” of launching an Eclipse attack
as the average number of nodeIds must an attacker request to
attack a targetT . Since the network is likely to be sparse, a
node’s routing table will contain valid entries (other thanthe
local node) only for the first few levels. Therefore, the cost
depends on what levels of the routing table would the attacker
have full control over.

For our analysis, the relevant parameters areb, the base of
the nodeId,N , the size of the namespace,L = LogbN , the
total number of levels in the routing table, andm(1 ≤ m ≤ L),
the number of levels in the routing table that the attacker would
have full control over.

Mathematically, we can reduce this problem into a variant
of The General Coupon Collector’s Problem[30]. In each
level of the routing table, the local node fills one entry, leaving
b−1 entries to be filled (recall from Figure 1). Each randomly
obtained nodeId will have probability ofb−l to fill one of the
b − 1 entries at levell (1 ≤ l ≤ L). Hence, the attacker
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needs to obtain nodeIds to fillm(b − 1) routing entries (m
levels andb − 1 entries per level). Finally, we introduce an
artificial “catch-all” entry that represents all the remaining
routing entries that the attacker doesn’t need to have control
over (shown in Figure 6). The probability of any nodeId falls
into this entry is1 −

∑m

l=1
(b − 1)b−l.

By mapping each of them(b − 1) routing entries and the
catch-all entry into an object, we form the corresponding
General Coupon Collector’s Problem as:LetK = m(b−1)+1
objects to be picked repeatedly and randomly; with proba-
bility pi that the ith object is picked on a given try, and∑K

i=1
pi = 1; the expected number of triesTE required after

which all K objects have been picked at least one is[28]:

TE =
∑

1≤i1≤K

1

pi1

−
∑

1≤i1<i2≤K

1

pi1 + pi2

+ . . .

+ (−1)K−1
1

p1 + p2 + . . . + pK

. (1)

Since the probability of filling the catch-all entry is signifi-
cantly higher than that of them(b − 1) routing entries,TE

can accurately represent the cost of Eclipse attack,i.e. the
number of nodeId randomly acquired in order to fill the first
m levels of the routing table.

We apply our analytical result to prefix-routing networks
using digit bases ofb=4, 8, and 16. Figure 7 shows the cost
of filling the first m levels of the routing tables. Note that the
number of nodeIds required increases exponentially with each
additional level. Using base16, the cost of filling the first
2 levels of the routing table is only 100–1000 nodeIds, but
jumps sharply to 100,000 at the4th level and 1000,000 at the
5th level. The results clearly show that the cost of the attack
increases exponentially with each level, and quickly becomes
prohibitively expensive past a few levels. We now examine
how to leverage this result to evade the Eclipse attack.

Evading the Eclipse Attack. Our goal is to limit the impact,
and to allow successful detection of Eclipse attacks. We adopt
two complementary approaches in Chimera. First, nodes peri-
odically induce artificial “churn,” resulting in periodic refresh
of routing table state [5]. This limits the overall proportion
of malicious peers in a node’s routing table. Second, nodes
use one-hop indirection for verification requests, forwarding
them through one or more random members of its leafset
peers. These leafset entries represent entries at the highest
levels of the routing table. Therefore, they share long prefixes
with the target and are difficult to compromise using randomly

assigned nodeIds. In addition, leafset nodes are likely to be
geographically distributed across the physical network, making
them more resistant to Eclipse attacks exploiting physical
proximity optimizations. They serve a similar function as
constrained routing entriesin secure Pastry [3]. We evaluate
the effectiveness of these mechanisms in Section VI.

V. SYSTEM EVALUATION

We use detailed measurements of a deployed prototype to
evaluate the effectiveness of our mechanisms for detectingand
avoiding single-node and collusion-enhanced Identity attacks.
We examine the effectiveness of attack detection under multi-
ple attack environments and churn models, and also quantify
the overhead of our mechanisms.

A. Measurement Methodology

We implemented our protection framework on Chimera, a
lightweight structured peer-to-peer overlay implementedas a
C library [1]. Since Chimera uses prefix routing similar to
Tapestry [31] and Pastry [21], we implemented a version of
our detection framework customized for prefix routing. We
deployed a network of 1500 Chimera peers on a 32 ma-
chine server cluster connected via switched Gigabit Ethernet.
NodeIds are 160 bits long, generated from SHA-1 hashes of
public keys, and represented as 40 hexadecimal digits. Unless
otherwise specified, each prefix group stores existence proofs
at three proof managers, nodes sign and distribute proofs every
15 seconds, and each proof expires after 30 seconds.

We implemented a simple centralized Certification Author-
ity (CA) that runs at a well-known address. Each new node
entering the network obtains a public-private key pair and
certificate from the CA. We assume that peers communicate
with the CA through a secure channel, and the CA can verify
each peer’s identity.

Attack Models. We first evaluate our defenses against two
different attack models:

• Verification Denials: Type 1.Malicious peers hijack
all KBR messages including application messages (e.g.
put/get for a DHT), but route verification proto-
col messages (e.g. existence proofs, verification re-
quest/responses) correctly. Malicious peers also deny ac-
cess to any existence proofs it stores as a proof manager.
We refer to this model as Attack Type 1.

• Denials and Existence Proof Drops: Type 2.Malicious
peers hijack all KBR messages, deny existence proofs as
proof managers, and collude by dropping any existence
proofs en route to proof managers.

Each experiment includes results from at least 3 runs. For
each experimental run, we choose a random subset of the
network nodes to be attackers. All attackers exhibit the same
behavior and remain malicious throughout the experiment.
Malicious source peers still forward their KBR requests cor-
rectly. Malicious destination peers also behave correctly, since
they do not need to hijack traffic destined for them. We use
Chimera’s built-in reliable transmission mechanisms to ensure
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no messages are lost and all KBR messages are responded to
by its destination or a hijacker.

Note that the percentage of messages hijacked can be
significantly higher than the percentage of malicious nodes
in the network. A message is attacked if any of the nodes
in its path are malicious. Ifp is the fraction of attackers in
the network, the probability a message is attacked on a path
with h hops is1 − (1 − p)h. Our experiments confirm this
expectation. Finally, in the absence of prior studies on level
of malice in P2P networks, we assume a default 20% rate of
malicious peers unless otherwise specified.

B. Measurement Results

In our tests, each peer in the network sends a predefined
number of KBR messages to random destinations. Malicious
peers attack messages they receive according to the exper-
iment’s attack model. After all messages are sent, replies
received and processed by our framework, we use detailed
per-message logs to compute the total number of attacks and
detections.

1) Basic Detection and Analysis:Our first experiment mea-
sures the effectiveness of our detection mechanisms against
Identity attack with Verification Denials (Type 1), assuming
20% of all network peers are malicious attackers. The results
plotted in Figure 8 show that basic detection rate is very high
(average of 95% or higher). Through careful analysis of the
logs, we can attribute all detection failures to one of three
scenarios. While we discuss our observations on Chimera,
similar scenarios exist for other protocols such as Chord.

The few detection failures we observe can be attributed to
three scenarios. First, because our certification mechanism has
fixed namespace regions centered around a fixed point, keys
near the edge of each region are more vulnerable. For example,
key5999’s root node might be6001, but an attacker at5900
matches the namespace region forprefix{5} despite being
further away in the namespace. We refer to this as theEdge
of Region Effect.Second, since existence proofs each cover a
namespace region, their precision is limited to the granularity
of the smallest region. If the real root and the attacker reside
in the same region, they cannot be distinguished from each
other. We refer to this as theLimits of Precision.Finally, since
existence proofs are self-certifying, a valid response from a
single proof manager is sufficient to detect an attack. However,
attackers can compromise all proof managers and complete
deny access to the proofs (Unavailable Proofs). This accounts

for ≈ 1% of all attacks going undetected. This is exactly as
we expected, given that we use 3 proof managers per group in
a network with 20% attackers:0.23 ≈ 1%. Our experiments
show that these scenarios are responsible for all undetected
attacks under attack model 1. Figure 8 shows the undetected
attacked accounted for by the Edge of Region effect.

2) Attacks and Proof Manager Replication:Figure 8 shows
the detection rate for attack Type 2, which allows all malicious
nodes to collude by dropping all existence proofs en route to
their proof managers. There is a visible drop in detection rate
compared to Type 1, since the chance of an existence proof
routing through and being dropped by a malicious node is
significant. Detection rates remain high (90%) because of the
redundancy provided by multiple nodes providing existence
proofs for each shared namespace region. Since this is the
most powerful single node attack model, we use this as the
default attack model for the remainder of our single-node
attack measurements.

Proof Manager Replication. To understand the impact
of replicating proof managers, we vary the proof manager
“replication factor” (RF) and plot the detection rate with
increasing malice in Figure 9. Results show that increasing
the replication factor from 2 to 4 provides the greatest gain,
with diminishing returns at RF 6 and 8. They also show that
that higher replication (RF 6 or 8) can provide robust detection
rates (70%) even when a large majority (70%) of the network
is malicious.

3) Detection Under Network Churn:Realistic evaluation of
overlay networks must include tests under network dynamics
(network churn). We evaluate our implementation using a
range of artificial churn models that follow exponential peer
lifetime distributions. This exponential distribution produces
even more extreme network churn compared to recent churn
measurements on Skype [14] and Gnutella [23]. Our exper-
iments maintain a near-constant network size by introducing
new peers into the network as others leave. Our experiments
using those churn models produced very high detection rates,
which we omit here for brevity.

We observe that the main impact of churn is messages lost
en route or being processed by a node leaving the network.
By default, messages in Chimera are sent via UDP and
acknowledged per overlay hop. If no ack is received, a message
is retransmitted up to three times. Chimera also measures
overlay links for loss, and performs route switching based
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Proof Expiration Time (s) 30 60 90 120
% of False Positives 6.0 11.9 12.8 14.6

TABLE II
% OF FALSE POSITIVES AND PROOFEXPIRATION T IMES

on loss rates. Figure 10 shows the same experiment (1000
nodes, 20% malicious nodes, attack Type 2) with and without
one-hop retransmissions. Clearly, local retransmissionsmade
transmission of proofs and requests reliable, thus dramatically
improving detection under churn,e.g. from 26% to 80% for
networks with node life time distributions around 300 seconds.

Figure 11 shows that detection rates drop significantly for
high churn rates (lifetime = 300 sec). With higher churn, new
proof managers might not have received existence proofs and
those with proofs might have left the network, making proofs
unavailable and lowering detection rates. We also plot the
impact of increasing number of proof managers under churn
in Figure 12. The results are consistent with our non-churn
experiment, and show less incremental improvement for more
than 4 managers.

4) False Positives:Churn can produce temporary incon-
sistencies in peer’s routing state. In some cases, peers might
be unaware of better root nodes for a given KBR request,
resulting in an observed Identity attack. Note that our tracking
and avoidance mechanisms do not adversely impact falsely
accused nodes. While very few instances are actually observed
in our experiments, false positives for our system can occur
under two rare scenarios:

Unexpired Existence Proofs:a node sends an existence
proof to its proof managers just before leaving. Its proofs
are valid for some time after it has left (expiration time of
30 seconds in our tests). Requests for keys controlled by the
departed node can cause false positives. Reducing the proof
expiration period reduces false positives but increases system
overhead. Table II shows a clear correlation between our false
positive rate (out of all detected attacks) and shorter existence
proof expiration periods.New Roots:a node between the KBR
key and its root enters the network as a KBR message reaches
its root. Existence proofs from the new node arrive before any
verification requests, leading to a false positive.

5) System Bandwidth Overhead:Figure 13 summarizes
our detailed bandwidth measurement results from a 1000

Cert. Overhead (bytes per second per node)102.86
CRT Overhead (bytes per second per node)196.11

TABLE III
COMPARISON OFCERTIFICATION OVERHEAD WITH CRT OVERHEAD,

NETWORK HAS 1000NODES.

Node network with attack Type 11. Certification overhead
per second per node remains constant as rate of malicious
attackers increases. The low number of verification requests
per actual attack means our system is issuing few spurious
verifications. The decrease in verification attempts per attack
can be attributed to the additional attacks actually decreasing
the number of spurious verifications attempted.

We also compare the overhead of our approach to the
previously proposed constrained routing tables solution [3].
We implemented constrained routing tables on Chimera and
maintained entries in the routing table with the same heartbeat
period as Chimera routing entries: 20 seconds. Measurements
from this implementation for a 1000-node Chimera network
are shown in in Table III. Note that while certification overhead
of our proposal stays constant across different network sizes,
we expect the constrained routing table maintenance overhead
to increase for larger networks as the number of routing entries
increases, showing that the routing table maintenance overhead
of our proposal is lower than that of earlier proposal. We
quantify the overhead of routing failure test and the redundant
routing overhead in the later section.

6) Blacklists and Avoiding Malicious Nodes:We measure
the effectiveness of alerts to track down attackers by their
predecessors. We run a Chimera network of 1000 nodes,
and randomly mark 20% of nodes as malicious attackers.
Each node sends 50 KBR messages to randomly chosen key
destinations; malicious nodes attack all messages; and peers
send alerts for each detected attack.

In Figure 14, the X-axis sorts each predecessor-attacker
combination by the number of attacks performed across the
link, and the Y-axis plots the corresponding blacklist value.
We introduce a random variance of 0.15 on Y-values to
distinguish multiple points. As the results show, blacklist
values are closely correlated to the actual number of attacks,
meaning alert messages are locating the attacker’s predecessor.
Predecessors whose traffic the attacker hijacks will accruehigh

1We performed bandwidth measurements for all attack types, and found
that Type 1 incurs the highest overhead since fewer messagesare dropped
and more replies are made to verification requests.
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blacklist values for the attacker.
To examine the impact of our countermeasures, we im-

plemented a routing policy in Chimera to prioritize attacker-
avoidance over other metrics such as reliability or link latency
when performing route selection. By default, Chimera main-
tains three routes per entry in the routing table.

We take snapshots of the “in-degree” of each attacker
at ten second intervals in an experiment that totals 10,000
seconds, where in-degree is the number of predecessors for
which the node is the preferred route for some path. We
plot each attacker’s in-degree at each snapshot as a dot in
Figure 15. As malicious nodes attack, they are detected and
blacklisted, causing their in-degree counts to drop quickly.
Malicious attackers with a high in-degree at the beginning
of the experiment quickly drop as their many predecessors
receive alerts of their attacks. The results confirm that the
malice-aware routing policy is highly effective in markingand
redirecting traffic away from attackers.

VI. COOPERATIVE FILE SYSTEM MEASUREMENTS

Ultimately, our detection and avoidance framework should
effectively protect applications from the Identity attack. To
quantify the impact of our system on a real application,
we implemented a version of the Cooperative File System
(CFS) [6] on Chimera, which supports thePUT, GET block
operations and block replication. To measure just the effect
on lookup, we ensured that onlyGET messages are hijacked
by malicious nodes. Upon detecting aGET hijack, nodes retry
the operation. To contrast our approach against existing work,
we implemented the secure constrained routing approach pro-
posed by Castro et al. [3], and compare the two systems side-
by-side on effectiveness and overheads.

For these experiments, we use an even stronger attack model
than before (Type 3), where each malicious peer denies access
to existence proofs and hijacksall messages routing through
it, including verification request messages. This simulates the
effect of a complete Eclipse attack, when attackers are trying
to effectively partition the target from the network.

A. Effectiveness of Malice-aware Routing

To improve the lookup success of CFS under attack, we
implemented the malice-aware routing policy described earlier
in CFS. Nodes favor routes with lower blacklist counters, and

use backup routes or a leafset entry to evade attackers unless
the blacklisted entry is itself the root of the blockId.

We run a 1000 node Chimera network with Type 2 malice.
Each node performs aPUT and GET on 25 unique blocks,
resulting in read and write operations on a total of 25,000
blocks. Figure 16 shows that malice-aware routing mechanism
significantly improves the lookup success of CFS compared
to CFS with normal routing. Results also show that malice-
aware routing performs better than constrained routing with
redundancy factors of four and eight. These values represent
the number of parallel outgoing requests following an attack,
and are set high to maximize the effectiveness of constrained
routing.

The next step is to understand the overheads incurred by
the defense mechanisms. We measured the overhead of our
proposal as the number of all request, proof and verification
messages exchanged. To measure the overhead of constrained
routing, we measured the number of routing failure tests
triggered, the number of test successes, and the number of
replica messages sent in the block lookup tests. Combining
these values and certificate and hash sizes and equations
from [3], we compute the total overhead. We optimized our
implementation of the constrained routing approach to use the
best parameters that minimize errors in the routing failuretest.
Where appropriate, we used identical parameter values from
our implementation (e.g.leafset size = 8, IdSize=40 bytes). All
other parameters used in the implementation and calculations
are taken directly from [3]. Results in Figure 17 show that our
proposal incurs more than an order of magnitude less overhead
compared to constrained routing.

B. Effectiveness of Defense against Collusion-based Attacks.

We now evaluate our solution for evading collusion-
enhanced eclipse attacks from the perspective of a single target
node. As discussed in Section IV, we use a combination of
periodic induced churn [5] and one-hop redirection through
other nodes.

We model the Eclipse attack by initializing the network
with 20% randomly chosen malicious nodes. We assume a
node’s routing table starts with the same rate, and introduce
more malicious peers into the routing table at a constant rate,
updated every 20 seconds. The target resets its routing table
every 100 seconds, reducing the percentage of attackers back
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down to the same level as the rest of the network (20%).
All verification requests are routed using one-hop indirection
through four nodes chosen from our leafset or routing entries.
We run the experiment for 1200 seconds, and measure the
portion of messages attacked, and the portion of all attacks
detected. These results are plotted against infiltration rate (per
20s) in Figure 18.

We plot two separate results in Figure 18. First, we look
at the scenario where the attackers have sufficient resources
to request enough nodeIds to attack all routing levels of the
target node. Therefore, we introduce malicious peers uniformly
at random across all routing levels (and leafset) of the target
node. We use indirection across the leafset (LS) nodes, and
plot the results as “indirection using LS.” While indirection
results in high detection at low infiltration rates, as infiltration
rates increase, leafset nodes are also affected, and indirection
is less successful. In the second scenario, we assume the
attacker has limited resources, and only has enough nodeIds
to attack the lower half of the routing table. In this case, we
can use indirection across both leafset nodes and higher level
routing entries. The result is detection rates similar to those
of single node attacks. Note that we are effectively using
leafset entries and higher level routing entries as “hard-to-
compromise” nodes, similar to constrained routing tables.

The second scenario described above is more practical and
follows directly from our analytical results. Our results show
that our proposal works well in this practical case, and is
generally able to detect around 90% of all attacks in the
stronger attacker model (Type 3).

We implemented various proposals from Castro et al. and
Condie et al. to evade collusion-based Eclipse attacks in CFS.
We ran the CFS block lookup experiments under the strongest
attack model (type 3), and plotted the results in Figure 19.
Our proposal performs the best, and works well even under
extremely high rates of node compromise. More than 80%
of lookups using our proposal succeed even when all lower
level neighbor entries are malicious, while alternative solutions
provide lookup success rates around 50%.

VII. C ONCLUSION

In summary, we have proposed a general defense for the
Identity attack on structured overlays. Using existence proofs,
blacklists, and malice-aware routing, our system effectively
detects, marks and redirects traffic away from attackers. We

showed that our techniques are easily applied to and highly
effective on real applications such as CFS. Measurements
on CFS show that they perform at least as well as other
proposed approaches in detection and recovery, but require
an order or magnitude lower costs in bandwidth overhead.
Finally, our analysis shows that performing a basic Eclipse
attack and corrupting the lower-levels of a victim’s routing
table is practical, but can be successfully defended using our
mechanisms. The vulnerabilities of KBR we described here are
common to all structured overlay protocols. As more critical
applications are deployed on structured overlays, application
designers must be aware of these attacks, and integrate defense
mechanisms into their protocols and applications.
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