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Abstract

The coupling of sensors with mobile phones, which are
ubiquitously available and location aware, opens the door
to the creation of applications for pervasive sensing and
detailed spatial modeling of environmental phenomena. In
order to ensure widespread participation of mobile users,
these applications must have limited per-device resource re-
quirements, must place no expectations on individual user
behaviors, and must be sensitive to user privacy concerns.

In this work, we introduce Environmental Tomography,
a novel approach to environmental sensing and spatial data
modeling that meets the challenges of the mobile network.
Environmental Tomography consists of two phases, a data
collection phase in which the network of mobile devices
computes aggregate values of sensor readings along roads
and sidewalks, and a reconstruction phase in which the ag-
gregates are used to generate an estimate of the distribution
of the sensed phenomenon. The data collection process is
robust to the dynamics of the mobile network and protects
the location privacy of the participating device users. The
reconstruction phase can be posed as a convex optimization
problem with an objective function that takes the physics of
the underlying phenomenon into account to produce accu-
rate estimates from the limited available data. We verify
the validity of our approach through extensive simulations
using physically accurate models of environmental phenom-
ena.

1. Introduction

The coupling of sensors with mobile phones, which are
ubiquitously available and location aware, presents an op-
portunity for the creation of large-scale sensing applica-
tions. Since modern mobile phones are GPS-enabled, it is
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possible to record not only the concentration of the sensed
phenomenon, but also the exact location of the sensor read-
ing. This location information opens the door for the cre-
ation of detailed spatial models of the physical data distri-
bution.

However, the mobile computing platform also presents
several challenges. Mobile devices have limited power and
storage capacities, and users may only be willing to con-
tribute a small fraction of these resources to a sensing appli-
cation. Users move in independent, unpredictable patterns,
and a sensing application cannot expect that a device take
sensor readings in predefined locations, nor can it expect
that sensor readings can be taken at every point in a region.
Finally, by reporting location information along with sensor
readings, users are forced to reveal their locations. Users
may not be willing to participate in a program that requires
them to divulge this private location information.

In this work, we introduceEnvironmental Tomogra-
phy, a novel approach to environmental sensing and spatial
data modeling that meets the challenges of the mobile net-
work. Tomography and tomographic reconstruction have
long been used in medical imaging techniques such as Com-
puted Tomography (CT) and Magnetic Resonance Imaging
(MRI) [9]. For example, in a CT scan, two dimensional
X-rays are taken in multiple directions, and these two di-
mensional projections are combined to reconstruct a three-
dimensional image. Similarly, Environmental Tomography
consists of two phases, a data collection phase in which the
network of mobile devices computes aggregate values, or
projections, of sensor readings along roads and sidewalks,
and a reconstruction phase in which the aggregates are used
to generate an estimate of the distribution of the sensed phe-
nomenon.

We utilize a data collection approach that is designed
to exploit the global characteristics of the mobile network.
We assert that, while individual user mobility patterns are
not necessarily predictable, it is possible to predict the pat-
terns of the network as a whole. Specifically, during certain
times of the day, namely rush hour, there is a high density



of users, and therefore of mobile devices, along roads and
sidewalks. Aggregates sensor readings can be collected by
routing a query message from device to device along these
roads via the local communication channels using bluetooth
or 802.11. Each participating device only takes a few sen-
sor readings, and the data collection process does not re-
quire any of the device’s permanent storage. Therefore the
individual device resource requirements are low. Addition-
ally, since sensor readings are aggregated, there is no need
to report the location of any individual participating device.
Thus, the privacy of user locations is preserved.

To generate an estimate of the underlying phenomenon
from the projections, we develop a tomographic recon-
struction technique that can be posed as a convex opti-
mization problem with an objective function that takes the
physics of the underlying phenomenon into account. This
approach enables us to efficiently generate accurate esti-
mates of the phenomenon using the limited number of ag-
gregates that are available. We verify the validity of our ap-
proach through extensive simulations using physically ac-
curate models of environmental phenomena.

The remainder of this paper is organized as follows. In
Section 2, we present our system model and architecture.
Section 3 describes the data collection process. In Sec-
tion 4, we present our tomographic recontruction technique,
formalize the tomographic reconstruction problem, and de-
scribe the solution method. In Section 5, we give exper-
imental results. Finally, we conclude in Section 6 with a
discussion of related work and future research directions.

2. System Model and Architecture

The goal of Environmental Tomography is to generate an
estimate of the distribution of a physical phenomenon over
a finite two-dimensional region, thesensing region. For ex-
ample, if an accident in a factory results in a hydrogen chlo-
ride leak, Environmental Tomography can be used to de-
termine the amount of the gas that is present throughout a
city and identify dangerous areas. In this initial work, we
consider phenomena that are heavier than air. Specifically,
we assume that as the substance of interest diffuses into the
region, it remains concentrated close to the ground. There-
fore, the distribution can be modeled by considering ground
level concentration only. We also restrict our study to phe-
nomena that diffuse slowly with respect to the data collec-
tion process, i.e. we assume that the distribution is relatively
static for the duration of the execution of the queries used in
an instance of tomographic reconstruction. These assump-
tions accurately describe many substances including carbon
monoxide, carbon dioxide, sulfur dioxide, hydrogen chol-
ride, and ammonia.

A high level view of the system architecture is shown
in Fig. 1. The system consists of the mobile devices in

Figure 1. System Architecture

the region to be modeled. We assume that these devices
are equipped with environmental sensors as well as GPS
capabilities, and that the devices have bluetooth or 802.11
radios that allow them to communicate with other nearby
devices. We place no requirements on the movement pat-
tern or availability of any individual device, and the set of
devices that participates in the system can change over time.
While we make no assumptions about individual behavoir,
we do make use of an observation about the global behavior
of the mobile network. Specifically, we assume that the net-
work of mobile devices is dense along roads and sidewalks,
as is observed in urban areas during rush hour traffic, so
that the local communication channels in the devices form
a connected network along these paths.

In addition to the mobile devices, our system contains
several infrastructure devices. Gateway machines are in-
stalled throughout the region. These gateways have blue-
tooth or 802.11 radios so that they can communicate with
mobile devices that are within range. They also have reli-
able communication channels to the processing center. The
processing center is the control center of the system. It ini-
tiates communication with the gateways to request sensor
information from the mobile network, it collects the query
results, and it performs tomographic reconstruction to gen-
erate the estimate of the sensed phenomenon.

The data collection process is described in detail in the
next section. Tomographic reconstruction is explained in
Section 4.

3. Data Collection

As in medical imaging, our data collection process con-
sists of computing projections of the phenomena along
paths through the sensing region. We call these pathsquery
paths. In medical imaging this projection is the integral
of a continuous function along the path. In Environmen-
tal Tomography, the projection is the sum of sensor read-
ings taken at specifiedsampling points along the query path.



Field Description
start coordinates of starting point of the query path
end coordinates of end point of the query path
delta distance between sensor readings along the path
sum sum of collected sensor readings

Table 1. Query Message

For simplicity, we illustrate the data collection approachfor
straight line paths, though it is possible to use any arbitrary
path shape so long as the processing center can determine
the points at which the sensor readings in a given aggregate
were taken.

The data collection process is shown by the arrows in
Fig. 1. To initiate a projection, orquery, the processing
center creates a query message. This message fully specifies
the query path and the location of the sampling points. For
example, the query message specification for a straight line
path is given in Table 1. The path is defined bystart andend
GPS coordinates. Thedelta field gives the distance between
sensor readings that should be taken along the path. These
three values completely define the location of all sampling
points for the path. More complex query path trajectories
can be defined using multiple line segments or a parametric
representation. In addition to the path definition, the query
message has asum field that is updated as the readings are
taken.

The processing center sends the query message to a gate-
way that is close to the query starting coordinates, and the
gateway introduces the message into the wireless network
by sending it to a nearby mobile device as shown in Step
1 in Fig. 1. To route messages within the mobile network,
we rely upon two well-established geographic routing tech-
niques for ad-hoc networks, greedy routing and trajectory-
based forwarding. In geographic or position-based routing
[22, 8], rather than establishing routes in the network, each
device keeps track of its location and the locations of its
neighbors, and it uses this location information to make
all routing decisions. A greedy routing protocol, such as
Greedy Perimeter Stateless Routing (GPSR) [11] can be
used to send a message to a destination that is specified by
a set of coordinates. Each device forwards the message to
the neighbor that is closest to the destination. Since these
are greedy algorithms, the protocols also provide fallback
mechanisms to route around holes and avoid local min-
ima. In trajectory-based forwarding protocols [16, 3, 24],
the message does not have a destination, but rather has a
specified trajectory or path. Each device selects the next-
hop so as to keep the message as close to the trajectory as
possible.

In the data collection process, after the query has entered
the mobile network, a greedy routing protocol is used to
route the message to the start coordinates. The query is

routed along the query path using trajectory-based forward-
ing, as illustrated by Step 2 in Fig. 1. While a device has
the query message, if it is on (or near enough to) a speci-
fied sampling point, it takes a sensor reading and adds this
value to the sum field in the message. When the message
reaches the query path end coordinates, it is routed to the
nearest gateway using greedy routing, as shown in Step 3.
The query message containing the sum is then sent back to
the processing center.

In order to participate in the data collection process, mo-
bile devices need only to know the location of the gateways.
The devices do not need anya priori information about the
queries, and they do not need to store anything after they
are done processing the query message. A participating de-
vices can store list of gateway locations that is periodically
updated by the application software, or the device can use a
secure location based service [14] to retrieve the locationof
the nearest gateway without revealing its location to the ser-
vice. Each device will mostly only participate in one query,
requiring it to take only a few sensor readings. Therefore,
the per device resource requirements are very low

With respect to the location privacy of the mobile de-
vices, there are two aspects to consider, the processing cen-
ter and the other devices in the mobile network. The pro-
cessing center does not need to know anything about the de-
vice locations. The query results are completely decoupled
from the devices that participate in the queries. However,
in order to route messages within the mobile network, de-
vices must reveal their locations to neighboring devices as
well as to the gateways. One could argue that this poses
no additional risk to privacy because neighboring devices
in the wireless network are physically near each other, and
therefore locations are not secret. If stronger privacy guar-
antees are desired, the data collection process can also em-
ploy techniques that preserve the anonymity of the partici-
pants in location based-routing schemes [18].

Once the processing center has received the query results
from the gateways, it uses tomographic reconstruction to
generate an estimate of the distribution of the sensed phe-
nomenon from the aggregate measurements. We explain
this process in the next section.

4. Tomographic Reconstruction

In this section, we formally define the tomographic re-
construction problem as a convex optimization problem.
We then show how the problem can be converted to a form
that can be easily and efficiently solved with readily avail-
able convex optimization software.



4.1. Problem Formulation

We begin by formalizing the data collection process. Let
S ⊂ R

2 be the two-dimensional region over which we want
to generate an estimate sensed phenomenon. Letf : S → R

be the underlying physical distribution, i.e. for every point
(x, y) ∈ S, f(x, y) is the value of the phenomenon at that
point. We assume that the sensor readings are accurate, so if
(x, y) is a sampling point,f(x, y) is also the value recorded
by the sensor at that sampling point.

Let (xi
j , y

i
j) denote thejth sampling point along theith

query path. The data collection process can be expressed as
a linear operatorA on the linear space of functionsf : S →
R. Given any density distributionf , the vector of aggregate
measurements along theP specified query paths is

A(f) :=







∑

j f(x1
j , y

1
j )

...
∑

j f(xP
j , yP

j )






. (1)

Tomographic reconstruction involves solving the inverse
problem; given a vector of measurementsm, find an esti-
mate of the underlying distribution̂f , that is consistent with
the query results

A(f̂ ) = m. (2)

Note thatm is the vector of query results whose compo-
nents,mi are each the sum of the sensor readings at the
points along theith query path.

SinceA is a linear operator, solving for the estimatef̂
in (2) amounts to solving a system of linear equations after
using some appropriate discretization scheme. In Environ-
mental Tomography, there are severe restrictions in both the
choice and number of paths due to location of roads and
sidewalks. Thus, there is not enough information to yield a
unique solution to Equation 2. In fact, there are infinitely
many distributions that satisfy the equation. Such a system
is calledunderdetermined.

In the case of an underdetermined system, one must de-
fine some criterion that identifies the optimal solution from
the set of feasible solutions. A standard least squares solu-
tion finds the solution with minimum norm [13], where the
L2 norm of the estimate||f̂ || is minimized. However, in the
case of a physical phenomenon such as a plume of of sulfur
dioxide or a cloud of gaseous ammonia, there is no com-
pelling argument for minimizing theL2 norm. We instead
propose to minimize a quadratic form that better captures
some of the underlying physical phenomenon.

Our proposed optimization criterion is motivated by the
observation that distributions of gases and pollutants typi-
cally follow diffusive dynamics. Any diffusive process in
two dimensions satisfies the diffusion equation [7]

∂

∂t
f(t, x, y) =

(

∂2

∂x2
+

∂2

∂y2

)

f(x, y, t),

where
(

∂2

∂x2 + ∂2

∂y2

)

is the two-dimensional Laplace op-

erator which we denote by∆. Assuming approximately
steady-state conditions,i.e. the distributionf is quasi-static,
the time variation term∂f/∂t is then expected to be small.
This assumption consequently implies that△f should be
small. We measure the “size” of△f using itsL2 norm

|| △ f ||2 :=< △f,△f >=< f,△2f > . (3)

This is a non-negative quadratic form on the space of all
functionsf : S → R, and we set up the tomographic recon-
struction problem so as to minimize this form.

Note that the optimization of Equation 3 subject to the
constraints in Equation 2 is actually a weighted least squares
problem whose solution is well understood. However, such
solutions may not necessarily satisfy the physical constraint
that the solutionf̂ is non-negative at every point in space.
To remedy this problem, we add these non-negativty con-
straints explicitly into the optimization problem. Experi-
mentally, the addition of the non-negativity constraint re-
sults in large improvements in the accuracy of the estimates.
Examples of this improvement are given in Section 5.

We now summarize the above discussion by formally
stating the Environmental Tomography problem as a con-
vex optimization problem over the space of functionsf :
S → R

minimize || △ f ||

subject to

A(f) = m

∀(x, y) ∈ S, f(x, y) ≥ 0,

where∆ is the 2 dimensional Laplacian, andA is the linear
measurement operator given by Equation 1.

Since ∆ is a linear operator and‖.‖ is a norm, then
f 7→ ‖∆f‖ is a convex function [2]. The linear constraints
A(f) = m, and the positive cone constraint∀(x, y) ∈
S, f(x, y) ≥ 0 both yield convex constraint sets. The net
constraint set, the intersection of the two, is thus a convex
set. The overall problem is therefore a convex optimization
problem which implies the existence of a global minimium
solution [2].

There are many readily available convex optimization
solvers, but in order to make use of these tools, we must
convert the problem to a discrete representation. We explain
this process in the next section.

4.2. Discrete Representation

To convert the convex optimization problem to a form
that can be solved using a conventional tool such as MAT-
LAB, we must define a discrete representation of the distri-
butionf , and discrete approximations of the objective func-
tion and constraints.



Figure 2. Discretization of Estimation Region

We consider the tomographic reconstruction problem
over a regionS, which is shown by the shaded rectangle in
Figure 2. The region can be represented in discrete form by
anM ×N grid, as illustrated in the figure. Let(i, j) denote
the point inS corresponding to theith row andjth column
of the grid. We represent the distributionf asM×N matrix
F = [fi,j ], with fi,j equal to the value of the phenomenonf
at the grid point(i, j). The goal of tomographic reconstruc-
tion is then to find a matrix̂F that estimatesF .

In order to discretize the system of constraints given by
Equation 2, we require a discrete linear operator that ap-
proximatesA. For simplicity, we assume that the sampling
points are a subset of the grid points. In practice, if a sam-
pling point does not correspond exactly to a grid point, we
represent the sampling point by the closest grid point.

Let f be the vector form of the matrixF that is formed
by concatenating the rows. We define the(0, 1) matrix A
that approximates theA operator as follows. Each row inA
corresponds to a query path. Each column corresponds to
a grid point. For each row, the value in thekth column is
1 if the kth component off is included in the query result.
Otherwise the value is 0. For example, if the circled points
in Fig. 2 represent sampling points in a query path, the
corresponding row in theA matrix is given by

[

1 0 1 0 1 0 1 0 0 · · · 0
]

.

The result of the query along the path is the sum of the val-
ues from components 1, 3, 5, and 7 of thef vector. Using
this A matrix, the system of linear constraints is approxi-
mated by the equation

Af = m.

For the objective function, we need a discretization of the
Laplace operator∆. We use a standard second order finite
difference approximation which is defined over the grid as

follows

∆f(i, j) ≈ (fi,j−1 − 2fi,j + fi,j+1)

+ (fi−1,j − 2fi,j + fi+1,j) .

We denote byL be the matrix representation of this approx-
imate operator that acts on the vectorized gridf, i.e.

∆f ≈ Lf.

TheL2 norm on∆f is approximated by the standard Eu-
clidean norm on the vectorLf.

The discrete version of the convex optimization problem
is then given by the following.

minimize ||Lf||

subject to

A f = m

fk ≥ 0 for k = 1 to (MN)

This is a convex optimization problem withMN variables,
one for each grid point,P linear equality constraints, one
for each query path, andMN inequaility constraints. Us-
ing this form, we can efficiently perform our tomographic
reconstruction with any convex optimization solver.

In the limit of an infinitely fine grid, the solution to the
discrete problem is equivalent to the solution to the contin-
uous problem. Therefore, one should use as fine a grid as
the available computing system can support.

5. Experimental Results

In this section, we present experimental results of En-
vironmental Tomography. We use two models of environ-
mental phenomena, a one-time emission that represents a
scenario such as a chemical leak, and a continuos emission
scenario that models phenomena such as factory emissions.
For each model, we assume that diffusion is the sole pro-
cess responsible for the change of the distribution. We also
assume that the substances diffuse very slowly with respect
to the data collection process, and therefore the distribu-
tion is static during throughout the query execution. As a
future research direction, we plan to expand our work to
include environmental models that incorporate dispersion,
buoyancy, and reactivity, and to enhance the tomographic
reconstruction process to account for the time variation of
the distribution of the phenomena during data collection.

We explore data collection and tomographic reconstruc-
tion using a network of evenly spaced horizontal and verti-
cal query paths so that we can study the effect of the number
of paths and sampling points on the accuracy of the recon-
struction. In all of these experiments, the sensing region is
discretized by a400 × 400 grid. We also include results



using real-world road networks from Midtown Manhattan,
New York City and downtown San Francisco. In these ex-
periments, the region is discretized by a200 × 200 grid.

We calculate the error of an estimatef̂ using the follow-
ing metric

Err(̂f) :=
||f − f̂||2
||f||2

,

where||f||is the vectorized version of the discrete represen-
tation of the physical phenomenon, as described in Section
4.2.

To solve the convex optimization problems, we use CVX
[5], a Matlab-based modeling system for convex program-
ming, and we use the SDPT3 solver [19].

5.1. One-Time Emission

We first model the one-time emission of a contaminant
as it diffuses over time. The ground level concentration
(g/m2) of the substance at the coordinates(x, y) at time
t is given by the following equation

C(x, y, t) =
s0

4πDt
e

−(x2+y2)
4Dt .

s0 is the quantity emitted at time 0 in grams, andD is
the diffusion coefficient which defines how quickly the sub-
stance diffuses in a given medium [7].

For the one-time emission scenario, we consider an an-
hydrous ammonia leak. Ammonia is used as a refrigerant
in large-scale industrial processes, and exposure to ammo-
nia can cause eye and lung damage and even death. In the
following experiments, we model a leak of 500 kg of am-
monia. The diffusion coefficient of ammonia in air is

D = 1.96 · 10−5 m2/s.

We use a sensing region of1000 square meters; the source
of the emission is in the center of the region. We perform
Environmental Tomography on the phenomenon at three
different times,108. 109, and1010 seconds after the emis-
sion. The physical distributions are shown in Fig. 3. The
diffusive behavior is evident in the change of the distribu-
tion over time.

To investigate the role that the number of paths and sam-
pling points play in the accuracy of the tomographic re-
construction, we experiment with three different query path
configurations. Each configuration consists of an equal
number of horizontal and vertical query paths evenly spaced
over the sensing region. In the first case, we use 10 horizon-
tal and 10 vertical paths with 10 sampling points on each
path. There are 100 sampling points in total and each sam-
pling point belongs to two query paths. In the second con-
figuration, we use 20 horizontal and 20 vertical paths with
20 sample points per path, totaling 400 sampling points.

The third configuration uses 40 horizontal and 40 vertical
paths with 40 sampling points per path for a total of 1600
sampling points.

The estimation error for each configuration at each of
the three times is shown in Table 2. Overall, the error is
low, and our technique appears to be most accurate for the
distribution at109 seconds. Interestingly, the 20 path con-
figuration results in estimates that are nearly as accurate as
the 40 path configuration for the distribution at108 seconds,
and the 20 path configuration is slightly more accurate than
the 40 path configuration for109 seconds. These results
suggest an a non-obvious relationship between the amount
of information available and the quality of the reconstruc-
tion estimate.

In Figure 4, we show the a graphical representation of
the results of Environmental Tomography using 20 horizon-
tal and vertical paths. For all three distribution times, the
estimate closely resembles the original distribution. How-
ever, the estimate for1010 seconds has large inaccuracies at
the boundary of the region. Boundary conditions often play
a significant part in the quality of tomographic reconstruc-
tion estimates, and it may be possible incorporate additional
boundary constraints to improve the estimate accuracy.

Table 2 also gives the error estimates for tomographic
reconstruction without the non-negativity constraint. For
this experiment, we again used the path configuration with
20 horizontal and vertical paths. The error is significantly
larger when the constraint is omitted, and this effect is seen
for all three distribution times. The importance of the non-
negativity constraint is even more evident in the graph of
the estimate distribution. In Figure 5, we show the estimate
for 108 seconds using the 20 horizontal and vertical paths
without the non-negativity constraint. This result is clearly
not an accurate estimate of the distribution in Figure 3(a).

5.2. Continuous Emission

The second model of environmental phenomena that we
consider is a continuous emission scenario. This model can
be used to describe a factory or processing plant that con-
stantly emits a byproduct into the atmosphere. The ground
level concentration of the substance at the point(x, y) at
time t is given by

C(x, y, t) =

∫ t

0

s(τ)

4πD(t − τ)
e

−(x2+y2)
4D(t−τ) dτ,

wheres(t) is a function that describes the amount released
per unit time [7].

In the following experiments, we use an emission of sul-
fur dioxide (SO2) at a rate of 1 gram per second, equivalent
to approximately 35 tons per year. SO2 is produced by the
combustion of petroleum and coal and is the primary cause



(a) 10
8 seconds

(b) 10
9 seconds

(c) 10
10 seconds

Figure 3. Physical distribution of one-time emis-
sion of 500 kg of anhydrous ammonia

(a) 10
8 seconds

(b) 10
9 seconds

(c) 10
10 seconds

Figure 4. Estimate of one-time emission of 500
kg of anhydrous ammonia



Table 2. Estimation error for one-time emission of 500 kg of anhydrous ammonia
Number of Horiz./Vert. Paths 108 seconds 109 seconds 1010 seconds

10 0.1602 0.0842 0.7686
20 0.0980 0.0777 0.3184
40 0.0946 0.0789 0.1428

20 (with negative values) 1.5062 0.2732 0.6141

of acid rain. The diffusion coefficient of SO2 in air is

D = 1.22 · 10−5 m2/s.

We again use a sensing region of 1000 square meters, and
the source of the emission is in the center of the region.

Table 3 gives the estimation error for the distribution at
107, 108, and109 seconds. We use the same query path
configurations as used in the one-time emission scenario.
The estimation errors are larger than the errors of the es-
timates of the one-time emission, and unlike in the one-
time emission, increasing the number of paths and sampling
points improves accuracy in all cases. In Figure 6, we show
the original distribution at108 seconds as well as the es-
timate generated from the 20 horizontal and vertical query
paths. While the shape of the estimate is similar to the orig-
inal, the peak of the estimate distribution is not as sharp
as in the original distribution. Our intuition is that we can
improve the estimation process by incorporating additional
constraints into the optimization problem.

Figure 7 shows the estimate of the continuous emission
distribution using 40 horizontal and vertical paths, where
the non-negativity constraint is not used. As in the single
emission scenario, the removal of this constraint yields an
obviously inaccurate estimate.

5.3. Real-World Road Networks

In this section, we give preliminary results of Enviro-
mental Tomography over real world road networks. We use
two different city maps, a map of Midtown Manhattan, New
York City and a map of downtown San Francisco, Califor-
nia. The query paths are shown in Figures 8(a) and 9(a). For
each road map, the units of measure are degrees of latitude
and longitude relative to the source of the emission, which
is in the center of the region. The size of each sensing re-
gion is about 5000 square meters. The roads are modeled
by line segments, with 17 query paths in the Manhattan road
network and 30 query paths in the San Francisco road net-
work. For Manhattan, the sampling delta is just under one
meter, which results in 1174 sampling points. For San Fran-
cisco, the sampling delta is about five meters, resulting in
222 sampling points. In order to form discrete representa-
tions of the road networks, we approximate each region by
a200× 200 grid, and for each sampling point, we represent

it by the closest grid point. The discretized approximation
of the sampling points for each map are shown in Figures
8(b) and 9(b).

In Fig. 10, we show the physical distribution and the
results of Environmental Tomography for a one-time emis-
sion of 500 kg of anhydrous ammonia at109 seconds after
the emmission. For both networks, the estimates closely re-
semble the physical distribution. Even though the Manhat-
tan estimate was generated from a much larger number of
sampling points, the estimation errors for both networks are
similar. The error for Manhattan is approximately 0.3305,
and for San Francisco, the error is approximately 0.3618.
These results suggest that the layout of the roads plays a
more significant role in the accuracy of the estimation pro-
cess than the choice of sampling delta. In future work, we
will further explore the relationship between the layout of
the roads and the accuracy of the estimates.

6. Discussion and Future Work

In this work, we have introduced Environmental Tomog-
raphy, an approach to ubiquitous sensing and environmental
modeling. Our approach is unique in that it is designed to
exploit the global properties of the mobile network while
also being conscious of individual user requirements. We
have shown that tomographic reconstruction can be formu-
lated as a convex optimization problem with an objective
and constraints that are based on the physical properties of
the underlying phenomenon. Finally, we have demonstrated
the feasibility of our approach through experiments using
various road networks and two realistic models of environ-
mental phenomena.

6.1. Related Work

Tomography and tomographic reconstruction have been
applied in several computing disciplines. Network tomog-
raphy has been proposed to estimate individual network link
delays from end-to-end delay measurements [4, 12]. Since
the end-to-end measurement of a path varies, the system is
overdetermined. The authors therefore employ tomographic
reconstruction techniques that minimize the error due to the
measurement variation. Similarly, tomographic reconstruc-



Table 3. Estimation error for continuos emission of 1 g/s of SO2

Number of Horiz./Vert. Paths 107 seconds 108 seconds 109 seconds
10 7.0897 2.7524 4.1993
20 3.1262 0.9171 2.7422
40 1.0985 0.3553 0.3560

tion has been used for hardware [15] and software [1] anal-
ysis from end-to-end measurements

The notion of using cell phones to build large-scale sen-
sor network has been the subject of much attention. The
recent work by Kansal et al. [10] suggests using cell phone
microphones and cameras as sensors and proposes an in-
frastructure for collecting this sensor data. There are also
several ongoing research projects that focus on urban sens-
ing and participatory sensing by using ubiquitous entities
such as mobile phones and vehicles to develop pervasive
sensor networks. These projects include Urban Sensing
[23], Participatory Urbanism [17], SenseWeb [20], and Sen-
sor Planet [21] and the Equator Project [6]. Our work can
be seen as complimentary to these projects. It can be built
upon the infrastructure provided by them, and it provides
novel benefits that these projects do not address. Specifi-
cally, to our knowledge, we are the first work to propose a
data collection and modeling approach that is sensitive to
user privacy concerns and specifically designed for urban
mobile networks.

6.2. Future Work

We have demonstrated the feasibility of Environmental
Tomography using a simple diffusion model of the physical
phenomena. In future work, we will expand our approach to
more complex environmental models that incorporate wind
dispersion, buoyancy, atmospheric conditions, and reactiv-
ity. It is our belief that it is possible to define optimization
criteria that take all of these factors into consideration in or-
der to generate accurate estimates. We will also investigate
tomographic reconstruction techniques that can be used to
model dynamic distributions. Other topics of interest in-
clude optimal query path selection, the role of mobile net-
work density, and the effects of noisy sensor readings and
GPS inaccuracies.
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Figure 5. Estimate of ammonia leak at 108

seconds using 40 query paths with 20 sam-
pling points per path, without non-negativity
constraint

(a) Physical distribution

(b) Estimate with 20 horiz./vert. paths

Figure 6. Continous emission of 1 g/s of SO 2
at 108 seconds

Figure 7. Continous emission of 1 g/s of SO 2
at 108 seconds. Estimate with 20 horiz./vert.
paths, without non-negativity constraints
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Figure 8. Road map and sampling points for
Midtown Manhattan, New York City
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Figure 9. Road map and sampling points for
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Figure 10. One-time emission of 500 kg of an-
hydrous ammonia at 109 seconds
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