
UNIVERSITY OF CALIFORNIA
Santa Barbara

DIOMEDES: An integrated automotive

diagnostics system that is customizable,

low-cost, and non-intrusive built on a wireless

sensor network

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Masters of Science

in

Computer Science

by

Erik Olin Peterson

Committee in Charge:

Professor Rich Wolski, Chair

Professor Chandra Krintz

Professor Ben Zhao

June 2007

This work was supported by a grant from the National Science Foundation num-
bered CNS-0627183.

The Thesis of
Erik Olin Peterson is approved:

Professor Chandra Krintz

Professor Ben Zhao

Professor Rich Wolski, Committee Chairperson

May 2007

DIOMEDES: An integrated automotive diagnostics system that is

customizable, low-cost, and non-intrusive built on a wireless sensor network

Copyright c© 2007

by

Erik Olin Peterson

iii

Acknowledgements

Thanks to Rich for getting me excited in the project and then getting me

through it.

Thanks to Ben for his honest critique of this work’s earliest form, as well as

his and Chandra’s invaluable assistance in getting it buttoned up and signed off.

Thanks to Ye and Wei for help with motes.

Thanks to James and Brian for the crash course in analog design.

Thanks to Julie for being supportive and for wasting all of that precious

gasoline driving up to Santa Barbara.

This document was written in a variety of places. Thanks to the Goleta

Camino Real Starbucks, Corner House Coffee in Los Olivos, Mayhem Lab 1.0,

Mayhem Lab 2.0, and Jalama House for giving me a place to sit and drink

caffeinated beverages and work.

This document was prepared in LATEXusing version 3.1 of the ucthesis

class by Daniel Gildea, improved for UCSB usage by Mathias Kölsch. The

LATEXCompanion by Mittelbach and Goossens was infinitely helpful. The java-

doc appendix was generated using the TeXDoclet javadoc doclet, originally

written by Gregg Wonderly, revised by XO Software, and then revised, into the

form which I used, by Stefan Marx. The nesdoc documentation was created by

a tool of my own sinister design from the XML produced by nesdoc.

iv

Diagrams were produced in Omnigraffle.

Oh, and thanks to my MINI Cooper, Bertram, for putting up with all of the

poking and prodding with minimal complaint.

v

Abstract

DIOMEDES: An integrated automotive diagnostics system

that is customizable, low-cost, and non-intrusive built on a

wireless sensor network

Erik Olin Peterson

All persons who interact with a vehicle (e.g. drivers, mechanics) require a

unique set of data about its operation; diagnostics data. Drivers, for example,

need to know that their cars are healthy and that they are not currently break-

ing any traffic laws; mechanics, on the other hand, need to know the current

operational state of numerous components in the car, as well as a history of the

car’s performance, in order to do their jobs. Although the automotive indus-

try has fully embraced the need for the ”mass customization” of their vehicles,

this trend does not extend to diagnostics displays. This leaves an open niche

for third-party solutions. Unfortunately, the third-party solutions tend to be

targeted at specific subsets of the problem and do not work in all cases. Our

solution employs a wireless sensor network which results in a system which is

integrated, customizable, low-cost, and non-intrusive. Wireless sensing nodes

are small and are located close to the signals they are measuring. A base station

aggregates the readings from the sensing nodes and then logs and displays them.

vi

We describe the design and implementation of the system and evaluate it, show-

ing that ultimately it is a feasible solution for low-rate, non-critical automotive

diagnostics.

vii

Contents

Acknowledgements iv

Abstract vi

List of Figures xi

List of Tables xii

1 Introduction 1

2 The State of the Art 6
2.1 Background . 6
2.2 The Problem . 7

3 A Solution 10
3.1 Architecture . 10

3.1.1 Overview . 10
3.1.2 Justification . 11

3.2 Challenges . 13
3.3 Requirements . 15

4 A Prototype 17
4.1 Introduction . 17
4.2 Design . 20

4.2.1 Sensor Package . 20
4.2.2 Mote Software . 24
4.2.3 User Interface Software 25

4.3 Implementation . 29

viii

4.3.1 Introduction . 29
4.3.2 Sensor Board . 30
4.3.3 Mote Software . 33
4.3.4 User Interface . 35

5 System Evaluation 37
5.1 Criteria for Evaluation . 37
5.2 Evaluation Methodology . 38

5.2.1 Calibration . 38
5.2.2 Data Collection . 40
5.2.3 Data Processing and Evaluation 43
5.2.4 Qualitative Evaluation 44

5.3 Results . 45
5.3.1 Effective Throughput . 45
5.3.2 Reception Rate . 47
5.3.3 Measurement Resolution 49
5.3.4 Integration . 50
5.3.5 Customizability . 51
5.3.6 Cost . 52
5.3.7 Non-intrusiveness . 53

5.4 Analysis . 53
5.4.1 What worked? . 53
5.4.2 What didn’t work? . 54
5.4.3 Generalization . 56

6 Related Work 58
6.1 Overview . 58
6.2 Existing Diagnostics Solutions 58
6.3 Related Research . 61

7 Conclusion and Potential Elaboration 64
7.1 Conclusion . 64
7.2 Potential Elaboration . 66

Bibliography 68

Appendices 72

A javadoc 73

ix

A.1 Package org.ucsb.mayhem.diomedes 73

B nesdoc 122
B.1 Diomedes Application . 122
B.2 Diomedes Sensorboard . 123

x

List of Figures

3.1 Solution Architecture . 11

4.1 DIOMEDES Prototype Architecture 18
4.2 ADC2 signal conditioning . 20
4.3 ADC2 signal conditioning - w/ Voltage Divider 22
4.4 ADC2 signal conditioning - w/ Filter 24
4.5 ADC2 signal conditioning - w/ Protection Diode 25
4.6 Mote Software Architecture . 26
4.7 Sequence Diagram of the mote software 27
4.8 Class Diagram for Sample Handler children 28
4.9 Sensor network message handling Sequence Diagram 29
4.10 Mica2 and sensor board block diagram 32
4.11 Sensor Board Implementation 33
4.12 User Interface . 36

5.1 Data Collection Photos . 41
5.2 Effective Throughput CDF . 46
5.3 Reception Rate CDF . 48

B.1 DiomedesAppC Dependencies 122
B.2 DiomedesSB Dependencies . 123

xi

List of Tables

4.1 Sizing R1 of the ADC front end circuit 22
4.2 Sizing R1 of the ADC front end circuit, actual values 30

5.1 Measurement ranges and resolutions 50

xii

Chapter 1

Introduction

. . . tu cum olfacies, deos rogabis
totum ut te faciant, Fabulle, nasum.1

G. Valerius Catullus, carmen tredecim

All people who interact with a vehicle require custom indicators of the vehi-

cle’s performance; custom diagnostics data. Drivers need to see that the vehicle

has sufficient fuel and that the engine is not overheating; whereas mechanics

require detailed readouts of all operational parameters. Though the automotive

industry has recognized the need for options and customization in other aspects

of their vehicles, such as paint colors and wheel designs; customizable diagnos-

tics displays are seldom offered. When an original equipment manufacturer does

provide diagnostics read-outs, they are typically insufficient for general uses, and

are always limited in scope. Temperature gauges only read engine coolant tem-

perature, when other engine temperatures, for example, the air temperature at

the throttle intake, would also be valuable.

1. . . when you smell it, Fabullus, you will beg the gods to make you all nose.

1

Chapter 1. Introduction

This leaves a niche to be filled by third-party developers. Unfortunately,

though third-party solutions greatly increase the flexibility of automotive diag-

nostics systems, they typically fail to provide all desired aspects: integration,

customizability, low cost, and non-intrusiveness.

The system must be integrated into the car to such a degree that it can

operate effectively whether the car is stationary or moving. Clearly, the goal is

not to have the driver actively interacting with the system, but rather to allow

data collection and display at all times. For troubleshooting, some conditions

may only occur when the car is operating.

The system must be customizable in order to support the full range of ex-

pected, and unexpected uses. It must be able to collect and display data from

any of the car’s on-board sensors and it must additionally be capable of intro-

ducing additional sensors to measure previously unplanned parameters.

The system must be low-cost so that it is feasible to collect a large number

of parameters from the operating vehicle while maintaining affordability. This

system must support the needs of all users, from the home user interested in

a little more feedback from his or her vehicle, to the well-established auto me-

chanic. While the mechanic may be able to afford another piece of expensive

diagnostics equipment, the home user would likely not be able to.

2

Chapter 1. Introduction

Finally, the system must be non-intrusive. The system must not affect the

operation of the car to which it is attached, and after it has been removed it

must leave minimal evidence of its presence.

Taking these requirements into account, the question then becomes:

Can integrated diagnostics systems be built that are customizable, low-

cost, and non-intrusive?

We provide a solution to the problem, and probe the answer to this question,

using the nodes of a wireless sensor network to read and relate diagnostics data

to a central base station. The base station, either a notebook computer for a

temporary system, or an integrated carputer for a more permanent solution,

logs and displays the data in a coherent manner. By removing the wires which

characterize traditional automotive diagnostics systems, we enable the system to

be much more integrated, customizable, and non-intrusive. By utilizing sensor

network nodes, which are projected to be inexpensive and ubiquitous in the

future, we make the system low-cost.

After detailing the solution and giving its justification in relation to alter-

nate approaches, we enumerate a series of requirements which an implementation

must meet. Then we present the design and implementation of our prototype

solution, which uses Crossbow Mica2 motes as the remote sensor nodes for the

system and an Apple notebook computer as the base station. The Mica2 motes

3

Chapter 1. Introduction

are fitted with Crossbow MDA100CB prototyping boards, which include tem-

perature and light sensors and provide a space to construct a signal conditioning

circuit. The motes run a custom application built on top of TinyOS which han-

dles the timing of all data acquisition and networking operations. The notebook

computer has another Mica2 mote attached to it via RS-232 serial, which acts

as a packet forwarder. It also runs a Java application which provides graphical

displays of the data, as well as data logging capabilities.

The prototype is built and exercised in a real-world scenario. The data

logs are reduced to statistics which are then evaluated. We also analyze the

qualitative aspects of the system. Finally, we discuss which aspects of the system

meet specifications, such as its integration and non-intrusiveness, and give ideas

for how to improve other aspects, such as the overall packet reception rate and

the customizability. We also review a body of related work, including other

commercial diagnostics systems, wireless networking in cars, and general work

on sensor networks.

The rest of this thesis is structured as follows. Chapter 2 states the prob-

lem being solved and gives some background on existing commercial solutions.

Chapter 3 presents a solution to the problem, its justification, the challenges

inherent in solving the problem, and then the requirements for any implementa-

tion of the solution to meet. Chapter 4 describes the design and implementation

4

Chapter 1. Introduction

of the prototype used to show the feasibility of this solution. Chapter 5 gives an

evaluation of the prototype with respect to the problem. Chapter 6 reviews a

body of related work. Finally, conclusions and potential elaboration are covered

in Chapter 7.

5

Chapter 2

The State of the Art

2.1 Background

All people who interact with vehicles need feedback from the vehicles about

how they are performing. Car owners lean towards increasingly elaborate dis-

plays of their vehicles’ operational parameters (e.g. any ad-hoc survey of Toyota

Prius owners will reveal how much their cars’ advanced dashboard readouts in-

fluenced their purchase); car tuners need data on the parameters that they are

tuning, during tuning operations in the shop and later during road testing; me-

chanics need to be able to measure a host of operational parameters for a car in

the shop, and could benefit from historical ’debug’ information about the state

of the car when a problem occurred. All of these people have different needs for

this feedback, or diagnostics, data.

6

Chapter 2. The State of the Art

The automobile industry is well aware of the need to cater to the diverse

needs of its customers. Embracing the notion of mass customization[27, 37],

companies offer hundreds of options in each of their models. Some manufac-

turers, notably MINI[22] and Scion[32], center their marketing campaigns on

the customizability of their cars; they make statements that ”over 10,000,000

possible configurations”[22] are available, or that no two cars are exactly alike.

Everything can be customized, from engine sizes and transmissions to interior

trim and wheel colors.

2.2 The Problem

Despite the displayed need for customized vehicle diagnostics displays, and

the auto industry’s espousal of mass customization in nearly every other facet of

its production, the development of factory customization of diagnostics data is

not keeping pace. It is left up to the third-party automotive test and modification

industries to fill this need. For a third-party solution to completely fill the

needs of all interested parties, it must achieve several high-level requirements:

integration, customizability, low cost, and non-intrusiveness.

It must be integrated, offering diagnostics data as easily on the road as it

does in the garage, with minimal modification. This is a requirement which is

7

Chapter 2. The State of the Art

not often seen in general-purpose diagnostics systems because most systems are

built specifically for installation on static vehicles. For a system to be truly

integrated it must require that its wiring be routed carefully around the vehicle

or it must be wireless.

It must be customizable, allowing the collection of data from a variety of

existing data sources on-board, as well as permitting the addition of data sources

not previously envisioned by the original equipment manufacturer. Thus, it

should be able to read the voltage from a temperature sensor already built into

the engine of a vehicle, but it should also be able to read temperature in a region

of the car which does not already have a temperature sensor in it. Typically

systems either allow connection to existing signals or measurement of conditions

(e.g. temperature) at arbitrary locations; to do both will require a more general

measurement platform than is currently available. It should also be able to work

on a variety of vehicle models and model years.

It must be low-cost, making it appropriate for home users as well as skilled

mechanics. This requirement may seem at odds with the others, but it is essential

that the system provide some utility to home users if it is to be truly general in

scope.

Perhaps most importantly, it must be non-intrusive. The system should be

capable of being attached to a vehicle, of taking data, and then of being removed

8

Chapter 2. The State of the Art

from the vehicle. During data collection the operation of the vehicle should

not be negatively impacted, and afterwards there should be minimal evidence

that the diagnostics system was ever installed. This is easy to achieve with a

system which does not directly interface with the vehicle, but it becomes more

difficult once electrical connections are made. This also implies that the system’s

components are small enough to fit in spaces existing in the vehicle, allowing all

panels and doors to be left unmodified and safely closed during operation.

The range of existing diagnostics solutions is discussed in Section 6.2. Chap-

ter 3 discusses our solution to this problem.

9

Chapter 3

A Solution

3.1 Architecture

3.1.1 Overview

The basic notion of this solution is to build an automotive diagnostics system

utilizing a collection of wireless sensor nodes collecting data from the car. The

sensor network is arranged in a static star topology surrounding a central base

station which aggregates the data. The base station also provides display and

logging functionality.

Figure 3.1 shows the architecture. The diagram illustrates a couple of im-

portant aspects of the system. First, the wireless sensing nodes are scattered

around the car as close as possible to the signals which they are measuring, re-

sulting in no wires more than a few inches long. Also, the base station is shown

outside of the car to emphasize the flexibility of the architecture. Depending

10

Chapter 3. A Solution

Legend

Wireless sensing node

Base Station

Figure 3.1: Solution Architecture

upon the need for the system, the base station could be a built-in carputer (i.e.

a computer built into an automobile) for a permanent installation, or it could

be a ruggedized laptop for a more temporary diagnostics system.

3.1.2 Justification

When approaching the architecture for a diagnostics system, an initial ques-

tion is how to collect readings from disparate signals into a central place. Tra-

ditionally, this was done with long cables all connected to a central comput-

ing device. Wires either had to be routed through barriers, limiting the non-

intrusiveness of the system, or routed externally to the car, limiting the system’s

integration. Making the system wireless adds significant flexibility.

11

Chapter 3. A Solution

Once wireless has been chosen as the medium of communication, we must

examine the available protocols. Two prime choices are Bluetooth or low-power

radio protocols such as ZigBee. Low power radios have numerous advantages

over Bluetooth for large, customizable deployments. ZigBee networks can con-

tain more nodes, they are typically more resilient and reliable, and consume

much less power[3, 40]. Automotive applications of these protocols have been

suggested[24], even as a complete data cable replacement[8], but only in a specu-

lative fashion, and with a fair amount of trepidation with respect to using them

in safety-critical instances. The nodes are also projected to be inexpensive and

tools exist to make them easier to program, and less platform-specific, than if

they were programmed directly in C or assembly.

The system can be expected to receive sufficient battery life for any reason-

able temporary application, and more permanent applications could make use

of the on-board, switched 12V available in a car. Also, the ’indoor’ interfer-

ence characteristics of Zigbee[9, 13], and other sensor network-specific low power

radio standards, make it an excellent choice for the cluttered and potentially

electromagnetically-noisy environment around a car’s engine.

The system also aims to be non-intrusive, meaning that for a temporary

application, it must be possible to clamp it onto a car, take measurements,

remove the system, and have little in the way of evidence that it had ever been

12

Chapter 3. A Solution

present; the car should continue to perform as if the system is not, and has never

been, attached. Sensor nodes are small and light and fulfill this aim well. Also,

since they are wireless there is no need to carefully route wires between areas of

the car. Ultimately, it is the wires, characteristic to most automotive diagnostics

systems, that limit the non-intrusiveness of these systems.

We discuss related research in Section 6.3.

3.2 Challenges

Although inter-vehicular networking has been studied[12, 31], and intra-

vehicular networking has been examined using Bluetooth[24, 10, 28, 17], there

has been little empirical work with ZigBee and other low-power wireless radios

in automotive applications. Because of this, there are expected to be several

challenges to evaluate and overcome.

For one, the environment in a car is electromagnetically noisy, due in part

to the presence of high voltage, high frequency signals (such as those running

through the plug wires). Moreover, line-of-sight between wireless sensor nodes

in a typical application is often broken by large sheets of steel. More than in

other applications of low-power radios, it is expected that this application will

experience significant interference and, consequently, packet loss. Thus, reliabil-

13

Chapter 3. A Solution

ity mechanisms will need to be employed to reach acceptable packet reception

rate.

The environment is also inhospitable in other ways. Both vibration and high

temperatures could cause problems for the system. Luckily, there is a history of

sensor network solutions in far more extreme environments[20, 36], often achieved

by insulating the sensor nodes, either physically, from vibrations, or thermally,

from high temperatures.

Another source of challenge, common to any networking system, is coordi-

nation of network traffic. With a large number of wireless sensor nodes asyn-

chronously transmitting samples to the base station, likely at different frequen-

cies of transmission, the base station must be able to attribute the samples to

the proper data source on the proper sensor node, order them relative to other

messages sent from the same node, and determine which, if any, of the samples

were corrupted. This will require an additional application-level protocol on top

of any existing network-level protocols.

Finally, sensor node hardware is not well-suited to automotive signals. Signal

voltage ranges are potentially wide and varied, voltage spikes can potentially

damage analog to digital converters, and there can be significant noise. To

handle all of these issues, the sensor nodes will require some signal conditioning

in front of the analog to digital converter.

14

Chapter 3. A Solution

3.3 Requirements

At the high level, the solution must meet the requirements from Section 2.2;

it must be integrated, customizable, low-cost, and non-intrusive. Beyond these

high level requirements, however, lie the requirements on this particular solution

in order to make it a viable system. These requirements can be divided by the

component to which they pertain; they are either requirements for the wireless

sensing nodes or for the base station.

The wireless sensing nodes need to collect data samples and forward them

to the base station. The nodes should have a sensor package which allows them

to measure environmental parameters without the support of existing sensors.

They must also be able to clip onto existing wires in the vehicle, reading the

voltage present without damaging themselves or the car. In order to be non-

intrusive, they must also be small and light, and ought to be battery-powered

with a reasonable battery life. Finally, they must be capable of completing all

of their tasks while inside a vehicle.

The base station needs to receive samples from all of the wireless sensing

nodes in the car, and then either display those samples in real-time or log them

to secondary storage for post-processing. In the case where samples are being

displayed, the base station would need a display device and a visual represen-

15

Chapter 3. A Solution

tation of each of the data sources, either as simple digital display or some more

complex graphical representation. In the case where samples are being logged,

the base station would require an interface to configure a logging session, and

then a means to extract the completed log data.

Chapter 4 discusses a prototype implementation of this solution, then Chap-

ter 5 evaluates the prototype against these requirements.

16

Chapter 4

A Prototype

4.1 Introduction

This chapter describes the prototype which we built to determine the feasi-

bility of the solution. The prototype system is called DIOMEDES, which stands

for: Diagnostics Implemented On Motes Expressly Designed for Engine Sens-

ing1. It is built using Crossbow Mica2 motes for the sensor nodes, which are

comprised of an Atmel ATMega128L microcontroller (with built-in 10bit analog

to digital converter) and a Chipcon CC1000 900MHz low-power radio. Another

Crossbow Mica2 mote is used as wireless interface for the base station, and an

Apple notebook computer is the user interface to the system, connected to the

base station mote with RS-232 serial. The architecture for the prototype is

shown in Figure 4.1.

1Also a Greek hero from Homer’s Iliad.

17

Chapter 4. A Prototype

Legend

mote

User Interface Laptop

$

$

$

$

rs-232

$

Figure 4.1: Prototype Architecture, DIOMEDES (Image of car courtesy of
MINI USA[22]; image of motes courtesy of Crossbow[7])

The Mica2 motes were a good choice for wireless sensor nodes for a num-

ber of reasons. First, we had a number of them from previous experiments, so

finding three sensors and a base station mote was not a problem. They also

have sufficient on-board memory and processing capability to collect samples

and transmit them via their built-in radios in a light, compact package. Also,

Crossbow makes a prototyping board (MDA100) that connects to the Mica2’s

expansion port. This made it easy to experiment with our analog signal condi-

tioning. The motes are battery-powered, as well, making them better suited for

a testing environment.

18

Chapter 4. A Prototype

The Mica2 motes were not without their downsides. The Mica2 uses a

900MHz radio, instead of the aforementioned 2.4GHz ZigBee radios. In this

sense we sacrifice some accuracy in our prototype. With ZigBee’s additional

protocol features and its wideband radio, it is expected that replacing our pro-

totypes with ones using ZigBee radios would have yielded better results in terms

of reception rate, but slightly worse results in terms of range[29].

The software for the prototype system consists of three main components:

software running on the sensor modes, software running on the base station

mote, and software running on the user interface laptop. All of the sensor node

software is written on top of TinyOS[11], a lightweight, event-driven operating

system specifically designed for use with sensor networks. Components are writ-

ten in a domain-specific version of the C programming language called NesC and

compiled with TinyOS to create the device images. The base station software

is the BaseStation module provided with TinyOS, while two components on the

sensor nodes were written custom. There is a Java language package to interface

between the network and the graphical user interface, which is also written in

Java.

The rest of this chapter deals with the design, and then the implementation,

of the DIOMEDES prototype.

19

Chapter 4. A Prototype

4.2 Design

4.2.1 Sensor Package

Considering that we want to read an external signal with the mote, we need

to interface with the Mica2’s on-board analog-to-digital converter (ADC). The

Mica2’s Atmel ATMega128L has 8 ADC inputs. Since the first ADC input,

ADC1, is already taken up by the built-in temperature and light sensors, we

have to use ADC2. This is accomplished by connecting a probe wire directly

to pin ADC2 on the Mica2 expansion connector (Figure 4.2), as in Figure 4.2,

broken out on the prototyping board.

ADC2
Test Point

Sensor Node Ground
Car Ground

Figure 4.2: ADC2 signal conditioning

This simplistic design does not account for the variety of voltage ranges

which could be present in the car. Because the ADC on the microcontroller

only supports voltages in the range of 0-3V, it is necessary to add a voltage

divider to the front end of the ADC, dividing the actual input voltage such that

the maximum voltage that the sensor could ’see’ does not exceed 3V. This is

20

Chapter 4. A Prototype

accomplished with the circuit shown in Figure 4.3. The ratio of R1 and R2

determine the amount that the voltage is divided, according to the following

formula:

V2 =
VTP · R2

R1 + R2

(4.1)

Where VTP is the voltage at the test point and V2 is the voltage across R2

(and, thus, the voltage that ADC2 ’sees’). Because the effect of the measurement

circuit on the car’s electronics must be minimal, the total resistance, R1 + R2

should be as large as possible. At the same time, the total resistance should be

several orders of magnitude lower than the input resistance of the ADC, which is

10MΩ. Thus, the value of R2 was fixed at 50KΩ, and R1 is subsequently sized

according to the desired maximum test point voltage as follows, solving Eqn 4.1

for R1:

R1 = R2 ·
VTP

V2

− R2 (4.2)

And inserting our known quantities for R2 and the maximum V2:

R1 = 50, 000Ω ·
VTP

3.0V
− 50, 000Ω (4.3)

Which means that, given a desired maximum test point voltage, VTP , we can

size R1 using Table 4.1.

21

Chapter 4. A Prototype

maximum VTP R1

3.0V 0Ω
5.0V 33, 333.33Ω
6.0V 50, 000Ω
10.0V 116, 666.67Ω
12.0V 150, 000Ω
15.0V 200, 000Ω
.

Table 4.1: Sizing R1 of the ADC front end circuit

ADC2

Test Point

R1

R2

Sensor Node Ground

Car Ground

Figure 4.3: ADC2 signal conditioning - w/ Voltage Divider

In order to filter out spikes and noise from the input signal, this circuit needs

a capacitor across the lower resistor (Figure 4.4). This creates a simple RC filter.

Now we must properly size C1 in order that our low-pass filter’s cutoff frequency

can be properly adjusted. The Nyquist frequency of our 10Hz sample rate is

5Hz. Thus, we want to size the filter such that the cutoff frequency is less than

or equal to 5Hz. This ensures that we are able to sample the highest frequencies

22

Chapter 4. A Prototype

which pass through our filter. So, given the relation of cutoff frequency in terms

of R and C:

f =
1

2πRC
< 5Hz (4.4)

We can solve for C:

C >
1

10πR
(4.5)

In this case, R is equal to the equivalent resistance of R1 parallel to R2, which

is 20, 000Ω, assuming R1 = 33, 333Ω for a voltage range of 0 − 5V across VTP .

So,

C >
1

10π · 20, 000Ω
(4.6)

C > 1.59µF (4.7)

Finally, we must protect the mote from unexpectedly-large voltages. Al-

though the resistors are large enough that reasonably large voltages would not

pull sufficient current to damage the microcontroller, as an added protective

measure a 3.0V Zener diode is placed across R2 (Figure 4.5)2.

2Analog design tips from electronics-minded colleagues James and Brian were instrumental
in getting to this point in the sensor package design

23

Chapter 4. A Prototype

ADC2

Test Point

R1

R2

Sensor Node Ground

Car Ground

C1

Figure 4.4: ADC2 signal conditioning - w/ Filter

4.2.2 Mote Software

The mote software consists of two custom components and several unmodi-

fied TinyOS components. One of the custom components is the abstraction of

the sensor board, which provides management of the ADCs, as well as any asso-

ciated hardware I/O necessary. The other is the main application, DiomedesApp,

which must manage the timer, coordinate ADC reads, and initiate the sending

of messages via the radio. Both components run on top of the TinyOS operat-

ing system, making use of its ADC and Radio abstractions, among others. The

whole mote software architecture is shown in Figure 4.6.

A sequence diagram of the basic operation of the mote software is shown in

Figure 4.7. Essentially, during operation the mote need only wait on a timer

event and then kick off an ADC read from whichever of the three available

24

Chapter 4. A Prototype

ADC2

Test Point

R1

R2

Sensor Node Ground

Car Ground

C1
��

Figure 4.5: ADC2 signal conditioning - w/ Protection Diode

channels is chosen. When the ADC read completes it needs to format the data

into a message and pass the message to the Mote Radio for transmission.

Additional reliability mechanics are not shown. These involve an ’ACK’

mechanism for each packet sent, checked at the sensor node before another packet

is sent, and a CRC check for each packet, checked at the base station.

4.2.3 User Interface Software

The operation of the user interface software is based upon the receipt and

processing of messages from the distributed sensors. For this reason, most of

the classes in the design of the software implement a simple interface called

SampleHander, which defines a method called handleSample(...), as shown in

25

Chapter 4. A Prototype

DiomedesApp

DiomedesSB

ADC

Radio

Figure 4.6: Mote Software Architecture

the high-level Class Diagram (Figure 4.8). This diagram also elucidates the ”has

a” relationships present in the system, which will be discussed shortly.

The unmodified TinyOS class MoteIF handles all of the communication with

the base station mote. To abstract the concept of the network and its compo-

nents, we introduce classes WirelessSensorNetwork, Mote, and Channel. The

user interface also uses classes SampleLogger and Gauge.

Class WirelessSensorNetwork receives the incoming DiomedesTLMMsg mes-

sages from MoteIF. Its job is threefold. First, it must decode the packet into

a Sample of the appropriate type, based upon what kind of data it contains.

Next, it must dispatch the Sample to the proper Mote class. Finally, it must

pass the Sample to any other registered handlers, typically implementers of the

SampleLogger interface which can log the samples to file, among other projected

uses.

26

Chapter 4. A Prototype

DiomedesApp

Timer Fired

DiomedesSB

start ADC read

ADC

start conversion

MoteRadio

conversion
complete

ADC read done

send message

Figure 4.7: Sequence Diagram of the mote software

Class Mote accepts objects of type Sample from the WirelessSensorNetwork

class and must dispatch them to the proper registered Channel class.

Channels in this case represent potential sources of data from the mote; in

the current prototype, these are TempChannel, LightChannel, and ADCChannel,

for temperature, light, and general voltage data, respectively. The channels en-

capsulate the type of data coming in from a particular mote, and must therefore

also provide conversion from raw ADC readings into the appropriate engineering

units. When a Sample is passed to a Channel, the Channel must register itself

with the Sample so that, later, the Sample’s engineering units can be expediently

27

Chapter 4. A Prototype

id : int
Mote

convertUnits() : float
function : int

Channel

handleSample(Sample)
SampleHandler

setScale()
setTitle()
paintComponent()

Gauge

SampleLogger

WirelessSensor
Network

TempChannel

LightChannel

ADCChannel

AcceleratorPedalChannel

EngineCoolantChannel

FuelPumpLevelChannel

FuelGauge

DialGauge

TempGauge

Figure 4.8: Class Diagram for Sample Handler children

extracted. The final job of the Channel is to pass the Sample to any registered

handlers, typically subclasses of the abstract class Gauge.

A Gauge represents a UI element which displays the readings from a particular

Channel. It could be as simple as a text box showing the rapidly changing

values or as complex as a graph of the previous data history or a graphical

representation of a car’s gauge.

The typical sequence of operations when a message is received from the sensor

network is showing in Figure 4.9. If at any point in this sequence the sample is

28

Chapter 4. A Prototype

: MoteIF : WirelessSensorNetwork

messageReceived

: Mote

handleSample()

: Channel

handleSample()

: Gauge

handleSample()

: SampleLogger

handleSample()

Figure 4.9: Sensor network message handling Sequence Diagram

found to be invalid (e.g. impossible readings, nonexistent channels or motes),

an exception is thrown and all processing on that sample is halted.

4.3 Implementation

4.3.1 Introduction

This section describes the physical construction of the custom software and

hardware, focusing especially on the places where the ideal assumptions of the

design diverged from the reality of implementation.

29

Chapter 4. A Prototype

4.3.2 Sensor Board

The reality of hardware implementation typically provides a disconnect from

the ideals of hardware design. Where, in design, it is possible to pick any resistor

value desired and have it be exact, in reality there are only very particular resistor

values available, and those with tolerances upwards of 10-20%. The closest

resistor value available to the ideal 50KΩ R2 resistor is a 49.9KΩ resistor. To

compensate, R1 had to be sized as in Table 4.2 in order to achieve the desired

voltage division.

maximum VTP R1

3.0V 0Ω
5.0V 34KΩ
6.0V 49.9KΩ
12.0V 150KΩ
20.0V 280KΩ

Table 4.2: Sizing R1 of the ADC front end circuit, actual values

All of these resistances take into account the tolerance of 1% in the resistance

of metal film resistors, since we would prefer to have the maximum voltage across

R2 be less than 3.0V, as opposed to greater than 3.0V. This translates into larger

resistances than would ideally be required.

The Zener diodes also proved to be a problem. They were sized to have a

3.0V breakdown voltage, but they appeared to be flowing too much current at

lower voltages, affecting the ADC reading. It was determined that the Zener

30

Chapter 4. A Prototype

diodes had leakage current at lower voltages which rivaled the typical current

flowing through the circuit. This resulted in hugely affected readings. The only

solution was to remove the Zener diodes and rely on the current limiting of the

resistors to protect the microcontroller. There was no reason to believe that this

would not be sufficient. It would be possible, in the future, to purchase Zener

diodes with more agreeable leakage characteristics.

The capacitors also caused issues. The original construction of the sensor

board used 3.3µF electrolytic capacitors, assuming a sampling rate of 10Hz. As

will be shown in the Section 5.3.1, the target sampling rate of 10Hz was not

always met, making this capacitor slightly undersized. The 3.3µF electrolytic

capacitors were replaced with 22µF tantalum capacitors. The change in capac-

itor type was necessary because larger electrolytic capacitors would not have fit

easily on the board; tantalum capacitors are significantly smaller in footprint.

The circuit was constructed on top of a Crossbow MDA100 prototyping sen-

sor board. The board provides built-in temperature and light sensors, both

connected to the ADC1 pin on the microcontroller. Each of these built-in sen-

sors has a general-purpose digital input/output (GPIO) pin used to enable and

disable it. The MDA100 also gives a break-out panel giving solder points corre-

sponding to most of the pins on the expansion module interface, including the

needed ADC2 pin, where we connect our signal conditioning and arbitrary volt-

31

Chapter 4. A Prototype

Mica2MDA100 Sensor Board

Thermistor

Photocell

Signal
Conditioning

ADC1

PE.5
PC.0

ADC2

Atmel ATMega128L

Legend

digital control signal

analog signal

signal
probe

signal
ground

Figure 4.10: Mica2 and sensor board block diagram

age probe wires. The voltage probe wires are connected to the signals of interest

in the car. A block diagram of the Mica2 with the sensor board is shown in

Figure 4.10.

The final result, with green wires forming jumpers, is shown in Figure 4.11.

The resistors are 1% metal film and the capacitor is a 6.3V tantalum. The

leads for the sensor board are a pair of 18AWG wires with 0.250” insulated male

disconnects crimped onto the ends, with their other ends soldered to the sensor

board and strain-relieved with 50lb. nylon monofilament. Connecting the sensor

board to a signal wire becomes a matter of crimping a Female T-Tap disconnect

onto the wire and slipping on the sensor board leads.

32

Chapter 4. A Prototype

Figure 4.11: Sensor Board Implementation

4.3.3 Mote Software

The software for the motes was written in NesC for the TinyOS operating

system. The details of the code can be found in Appendix B, which is the

nesdoc output. There are two main components, the Diomedes Sensorboard

and the Diomedes Application.

Diomedes Sensorboard

The Diomedes Sensorboard was based, at least philosophically, on the stan-

dard SensorMts300 sensor board provided with TinyOS. The component provides

three Read<uint16 t> interfaces called Light, Temp, and ADC2. Depending on

which read() command is called, the software enables the appropriate sensor,

33

Chapter 4. A Prototype

waits for it to warm up, starts the conversion, and then, when the conversion is

done, it posts the result in an event.

For ADC2, the act of enabling the sensor is trivial; it basically ensures that the

other sensors are disabled. Temp and Light share the same ADC channel, so it is

necessary to enable the proper sensor. This is done by setting the corresponding

digital output pin on the microcontroller (Port E pin 5 for the Light sensor,

Port C pin 0 for the Temp sensor).

Diomedes Application

The Diomedes Application uses three Read<uint16 t> interfaces (those cor-

responding to the interfaces provided by the Diomedes Sensorboard), the AMSend

interface, the Timer<TMilli> interface, and the PacketAcknowledgements in-

terface.

Once the software has initialized it starts a periodic timer (10Hz, typical),

and goes to sleep. When it receives a timer event, if the previous packet has not

been acknowledged, it is retransmitted and the software goes to sleep. Otherwise

it calls read() on the appropriate Read interface and goes to sleep.

When the software receives a readdone() event, it builds a message contain-

ing the data sample, the mote’s ID, packet number (an ever-increasing counter),

and the type of data being sent. Then an acknowledge for the message is re-

34

Chapter 4. A Prototype

quested and it is sent. If the send ever fails or the message is not ACK’d before

the following timer event, then the same message is sent again until it succeeds.

4.3.4 User Interface

The user interface software is built in Java, making use of the existing java

packages (net.tinyos.*) for connecting to the base station mote through a

serial port and getting its messages. The graphical user interface code is written

using Java Swing. The details of the code can be found in Appendix A, the

javadoc of the code.

The classes in the application directly mirror those laid out in Section 4.2.3.

Every message received from the MoteIF is converted to a Sample and passed

through the hierarchy of SampleHandlers. If at any time the Sample object is

deemed to be invalid, a WSNException is thrown and its handling is stopped.

The UI of the application provides gauges and controls, as shown in Fig-

ure 4.12.

The gauges are subclasses of the class Gauge, which extend the standard

Swing class javax.swing.JPanel. Most of them are images with transparent

portions wherein simple vector art can be drawn to indicate the current value of

the mote’s channel. Gauges which look like thermometers, car dial gauges, car

fuel gauges, simple digital readouts, and stripcharts have been constructed.

35

Chapter 4. A Prototype

The controls on the application serve a few additional functions. They allow

logging to be started and stopped. When logging is started a standard Java file

dialog asks the user to choose a location for the logfile. After that, until the Stop

Logging button is pressed, every reading which comes from the MoteIF, and is

not deemed to be invalid, is logged to that file. There is also a Quit button, to

do the obvious.

Figure 4.12: User Interface

36

Chapter 5

System Evaluation

5.1 Criteria for Evaluation

Because the goal of this project is to build a system which is integrated,

customizable, low-cost, and non-intrusive clearly it must be shown that this

solution meets these overarching criteria. Also inherent in the construction of

an automotive diagnostics system is showing that the device can, indeed, be

used as an automotive diagnostics system. It must be capable of reading a

variety of signals with sufficient resolution, and presenting them to the user

in a sane way. This implies a reasonable minimum update rate per type of

channel. For example, temperatures need not be read as often as throttle pedal

position, because temperatures change slowly and throttle pedal position can

change quickly. This partly depends on the rate of collection at the motes,

themselves, and partly on the networking.

37

Chapter 5. System Evaluation

For a wireless application, update rate translates into a few parameters. Most

important are the ultimate packet throughput and the reception rate. Also

important is what is happening to the packets that do not make it to the front-

end application intact. Are they lost? Are they corrupted? Packets which are

lost might be able to be resent whereas corruption of packets might be hard to

detect without more sophisticated packet integrity check mechanisms.

5.2 Evaluation Methodology

5.2.1 Calibration

Before data in engineering units could be collected from the sensors, each

sensor had to be calibrated. When the calibration was complete, the conversions

between raw ADC readings (DN) to engineering units (EU) were placed in the

user interface classes corresponding to each sensor.

The two built-in sensors on the MDA100 have generic calibration profiles

packaged with them. For the thermistor temperature sensor, Equation 5.1 con-

verts from a raw ADC reading (DN) to Temperature in Kelvins. This is taken

directly from the datasheet[23].

38

Chapter 5. System Evaluation

EU =
1

0.001010024 + 0.000242127 · ln (Rthr) + 0.000000146 · [ln (Rthr)]3
(5.1)

where Rthr = 10,000·(1023−DN)
DN

.

The light sensor measures a simple intensity, 0-100, and the conversion is

shown in Equation 5.2.

EU =
100 · DN

1023
(5.2)

The engine coolant sensor was calibrated by recording raw readings from

startup until the engine reached operating temperature (mid-way on the car’s

temperature gauge). The raw data were then scaled so that they corresponded

to the appropriate gauge readings, with the bottom of the gauge being 0 and

the top of the gauge being 100. The final conversion is shown in Equation 5.3.

EU = 65.820313 − 0.09765625 · DN (5.3)

The throttle pedal position sensor was calibrated by taking a reading with

the pedal untouched and then taking a reading with the pedal on the floor.

These values were scaled to read 0% to 100%, with the conversion shown in

Equation 5.4.

39

Chapter 5. System Evaluation

EU = 0.30864198 · DN − 22.839506 (5.4)

Finally, the fuel level sensor was calibrated by taking a reading at full gas

tank and then taking a reading at half gas tank, scaling these values to read

from 0% fuel to 100% fuel. The final conversion is shown in Equation 5.5.

EU = 0.01082908 · DN (5.5)

While the units of throttle pedal position calibration are percents (%), which

is appropriate for a throttle value, the other two sensors could only be decoded

into units of some arbitrary range (0 - 100 was chosen), not their true engineering

units (i.e. gallons for fuel, degrees Fahrenheit for coolant temperature). This is

ultimately acceptable since the goal is to mirror the physical gauges, and they

are unit-less.

5.2.2 Data Collection

Once the system was complete, it had to be tested in a real data collec-

tion scenario. A typical data collection experiment involves clamping three of

the motes into the test car, a 2004 MINI Cooper S, at interesting test points,

strapping a laptop into the passenger seat (Figure 5.1), and then driving around

Santa Barbara for an hour.

40

Chapter 5. System Evaluation

(a) (b)

Figure 5.1: Data Collection Photos
(a) Sensorboard closeup affixed to the engine (b) Laptop strapped (safely) into

the car

Three sensors were chosen for the experiment: Engine Coolant Temperature,

Throttle Pedal Position, and Fuel Level. The location of the sensors and the

correct signal wires were collected from the Bentley Publishing MINI Cooper

Service Manual[21].

Engine Coolant should mirror exactly the readout on the dashboard ’tem-

perature’ gauge. This signal from this sensor is accessible where it meets the

Electronics Control Module (ECM) under the car’s bonnet.

Throttle Pedal Position is also available under the bonnet at the ECM. For

a drive-by-wire vehicle, this is the desired throttle position, transferred from a

sensor the gas pedal in the passenger compartment. This is an attractive sensor

41

Chapter 5. System Evaluation

to monitor because it is easy for the experimenter (i.e. the driver) to interactively

affect.

Finally, the Fuel Level sensor was chosen as it differs from the other two

sensors in several ways. First, this signal is not available in the engine compart-

ment with the other two. The only way to access this signal is to remove the

rear seats and place the sensor node directly on the fuel pump enclosure; this

varied the relative locations of the motes. Second, while the other two sensors

are well described in the service manual, this signal was poorly documented.

The output could be a simple voltage level proportional to the amount of fuel

in the tank–which was the preferred outcome–or it could be something entirely

different. The MINI has a two-lobed gas tank, equalized with a syphon pump

between the two lobes[21], with two independent fuel level sensors. It was as-

sumed that one of the sensors would, typically, read half of the total fuel in the

vehicle.

So, with two motes secured under the hood, a mote sitting on the fuel pump

under the rear seats, and a laptop strapped securely into the passenger seat,

the car was driven and data was collected. There were also data collection

sessions wherein the motes were laid out at a workstation. These typically

provided baseline information, giving an idea of what to expect from the in-car

experiments.

42

Chapter 5. System Evaluation

The particular data collection session used in the following evaluation took

place over an hour of a variety of driving conditions. It began at UC Santa

Barbara, went out to Cathedral Oaks Road, east to Old San Marcos Road, back

down highway 154 to 101, and then back to campus. This provided slow city

traffic, rough and twisty hills, and relatively quick highway driving. All three

motes were programmed to collect and transmit data at a maximum rate of

20Hz.

5.2.3 Data Processing and Evaluation

The datafiles collected with the front-end’s logging facility were fed through

a series of bash and awk scripts which rendered them down to statistics and

graphs. Parameters extracted from the data, second-by-second, are:

• number of packets received - count of the number of seconds with the same

timestamp, to the precision of the second

• number of packets lost - count of packets missing during a particular sec-

ond, as determined by missing ’packet numbers’

• total packets - sum of packets received and packets lost

• reception rate - ratio of packets received to total packets, expressed as a

percent

43

Chapter 5. System Evaluation

If a particular second of the experiment is found to not have packets associ-

ated with it, it is recorded appropriately to show instances of 0 packet reception.

The scripts also extract the data samples themselves as per-second averages.

This made it possible to generate graphs of the fuel level, engine coolant tem-

perature, and throttle position throughout the experiment. Sanity checks were

performed on these data to see if they properly reflect the operation of the car.

Another helpful form of sanity check is to look at the laptop while the car is op-

erating to compare the digital gauges with the physical ones. Ultimately, they

should match. Clearly this is dangerous if performed by the driver, so these

kinds of evaluations were limited to instances in controlled driving conditions or

with copilots.

The evaluation of these data rests on two parameters, the effective throughput

(Section 5.3.1), or the number of packets per second, and the reception rate

(Section 5.3.2). Another parameter of the system which is worth evaluating

is the resolution of the measurements. This can be calculated directly and is

covered in Section 5.3.3.

5.2.4 Qualitative Evaluation

Other criteria cannot be quantitatively evaluated. The integration, for ex-

ample, is a purely qualitative measurement. It can be described and compared

44

Chapter 5. System Evaluation

with alternatives, but the decision must be left up to the reader as to whether

these criteria are met.

We must qualitatively examine the parameters set forth in the thesis question:

• integration - can the system be used in the service bay as easily as it can

be used in the field or even on the road?

• customizability - are a diverse range of modes of operation supported which

can support conceivable automotive applications?

• cost - is the final system relatively inexpensive?

• non-intrusiveness - does the presence of the system affect operation of the

vehicle or does the system leave any evidence of its installation?

5.3 Results

5.3.1 Effective Throughput

The CDF of the effective throughput for an hour-long run of the system

is shown in Figure 5.2. Each line represents a single mote in the system. The

graph is fairly straightforward. For example, for the Coolant Temperature mote,

10% of the time the system achieves 6 or less readings per second. In contrast,

the Fuel Level mote achieves roughly 10 or less readings per second 10% of

45

Chapter 5. System Evaluation

the time and the Accelerator Pedal mote achieves 8 or less readings per second

10% of the time. Another way of looking at this is that 90% of the time, the

Coolant Temperature mote achieves rates higher than 6 readings per second,

the Fuel Level mote achieves rates of higher than 10 packets per second, and the

Accelerator Pedal mote achieves more than 8 readings per second.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

C
D

F

Throughput (samples/second)

Coolant Temperature
Throttle Pedal Position

Fuel Level

Figure 5.2: Effective Throughput CDF

Since all three motes are running the same software and all had new batteries

installed prior to the test, the variation in rates must be explained by something

environmental, by either the relative positioning of the motes to the base station,

46

Chapter 5. System Evaluation

by the amount of occluding material, or simply by the activity of the motes’ radio

protocol. We can rule out the simple explanation of the amount of occluding

material because the Temperature and Pedal motes were collocated; yet they

showed different throughputs. Physical orientation could have been a factor.

Previous studies have shown that sensor network mote radios are very sensitive

to placement and orientation[39].

5.3.2 Reception Rate

The CDF for reception rate for an hour-long run of the system is shown

in Figure 5.3. Each line represents a single mote in the system. Again, like

Figure 5.2, the graph is pretty straightforward. For both the fuel level and

throttle pedal motes, 90% of the time each had 90% or better reception rate.

This is in marked contrast to the coolant temperature mote which achieves 90%

or better reception rate only 60% of the time.

Again, the motes were all running the same software, so the variation between

the reception rates must be something more environmental. The mote connected

to the fuel pump was fully surrounded in the metal of the car’s body with what

can only be described as a metal blast shield screwed down on top of it. It was in

cramped quarters, squeezed down next to the fuel pump, and its antenna was in

a peculiar orientation. This almost certainly negatively impacted its reception

47

Chapter 5. System Evaluation

rate. And yet, it is the coolant temperature mote, sitting physically next to

the throttle pedal mote, which achieves the worst performance. It is doubtful

that electrical and physical interference alone are to blame since, again, the

throttle pedal position mote was directly next to the poorly-performing coolant

temperature mote. This may be a case where the previously documented mis-

calibrations of Mica2 radios comes into play[34]. It may be that the coolant

temperature mote inherently performs worse than the other two motes.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F

Reception Rate (%)

Coolant Temperature
Throttle Pedal Position

Fuel Level

Figure 5.3: Reception Rate CDF

48

Chapter 5. System Evaluation

5.3.3 Measurement Resolution

The key to understanding the resolution of our measurements is that the

ADCs on the Mica2 mote have 10 bits of resolution. For a voltage connected

directly to the ADC input, with its 0-3V range, this equates to a resolution of

about 3mV, as shown in Equation 5.6. In other words, the difference between

a measurement and the next highest measurement is 3mV, due to the discrete

nature of ADCs.

3.0V

210
= 0.00293V (5.6)

With linear relationships in hand which convert raw ADC readings into rea-

sonable units for the light sensor (Equation 5.2), engine coolant temperature

(Equation 5.3), throttle pedal position (Equation 5.4), and fuel level (Equa-

tion 5.5), it is a simple matter to determine the resolution of each measurement.

Unfortunately, with all of these readings being unit-less the resultant resolution

is also unit-less. Nevertheless, Table 5.1 shows the resolution of each of the

measurements; all sensors but the temperature sensor have a unit-less range of

0-100.

The only measurement which has real engineering units is the built-in temper-

ature sensor on the MDA100 board. The default calibration curve (Equation 5.1)

for this thermistor is not linear, so it is impossible to give a single resolution for

49

Chapter 5. System Evaluation

measurement range resolution
temperature sensor 0-50◦C ∼ 0.1◦C
light sensor 0-100 0.0978
engine coolant temperature sensor 0-100 0.0977
throttle pedal position sensor 0-100% 0.309%
fuel level sensor 0-100 0.0108

Table 5.1: Measurement ranges and resolutions

the measurement. Rather, since the curve is nominally valid over the range 0◦C

to 50◦C, it is possible to calculate the average resolution by determining the

ADC reading corresponding to 0◦C and 50◦C and calculating the slope of the

linear fit between those points. The result is also shown in Table 5.1.

5.3.4 Integration

When examining the criterion of integration, it is necessary to consider how

easily the system translates from operation in a static deployment (e.g. in a

garage) to another location, or even on the road in-between. Many existing

systems fail this criterion because they are designed specifically to be used on

an immobile vehicle. This system was designed with integration in mind and

proves successful in this regard. Because all of the components of the system

are modular and relatively decoupled, it proved simple to take the instrumented

car on the road. The only additional work required was to secure the motes to

their locations (using, in this case, 50 lb. test fishing line) and the laptop to the

50

Chapter 5. System Evaluation

passenger seat. Beyond those minor fixes, the system operated identically in the

garage as it did on the road.

5.3.5 Customizability

Another important criterion for this system was customizability. The system

needs to be capable of not only reading a variety of signals in the electrical

system of the car, but it needs to be capable of reading additional channels of

data which the user might want to see. Like any similar diagnostics system, this

one works well for connecting to existing signals. The front-end to the ADC can

be configured, through a minor hardware change (sizing a resistor), to read a

variety of voltage ranges. The series resistance of the front-end also limits the

current to the ADC input, thus protecting the micro-controller from out-of-range

voltages. The front-end software can also be modified to perform conversions of

these data into appropriate engineering units.

What this system also enables is the ability to read additional channels.

Currently, the software of the motes can be configured to read from the built-

in temperature and light sensors; all of the infrastructure exists to make these

measurements. In future revisions of the sensor board, additional built-in sensors

could be added to further expand its customizability.

51

Chapter 5. System Evaluation

Without the wires of traditional diagnostics systems, installing the motes

becomes a simple prospect. The most difficult aspect is finding the signal wire

which is to be read. This wire is then tapped with a t-tap, a small, ubiquitous

connector requiring only a pair of pliers. Once the wire is tapped the mote can

be connected to the tap and secured in-place. Because the motes are small, they

can easily be placed anywhere on the car. With no wires to route, the mote is

now turned-on and the data immediately stream to the laptop, whether it be

outside of the car or, in our test case, on the passenger seat.

Right now the customization of the system requires changing the source code

in several places, but it has been abstracted to be straightforward. The infras-

tructure also exists for the front-end software to detect new motes in the system

and to automatically allow the user to customize its data channel(s).

5.3.6 Cost

Much of the work on sensor networks does so with the assumption that, in

the future, the sensor nodes will be ubiquitous and inexpensive[40, 30]. Although

each node in this prototype cost about $250 in materials per unit, it is projected

that sensor nodes could cost less than $1 per node. In this future, this whole

system will be very inexpensive to build. The motes are off-the-shelf with min-

imal analog front-ends consisting of a few passive components. Combine this

52

Chapter 5. System Evaluation

inexpensive mote hardware with an equally inexpensive serial packet-forwarding

base station, already a mainstay of sensor network design, and the total hardware

cost is projected to be minimal.

5.3.7 Non-intrusiveness

There are two aspects of non-intrusiveness worth evaluating: physical and

electrical. Physically, the motes are small and light and easily fit wherever they

needed to fit. Also, the probes were connected with t-taps, which remove easily,

leaving behind almost no trace of their previous installation. Electrically, the

total resistance of the whole sensor package is very high, which allows very

little current to flow. Consequently, the motes are nearly invisible to the car’s

electronics.

5.4 Analysis

5.4.1 What worked?

Ultimately, the system works to its requirements. Even with packet losses,

the rates are reasonable for monitoring and some post-processing. All the read-

ings have sufficient resolution, and could conceivably be made even better with a

better knowledge of the signals being read. The system is integrated, customiz-

53

Chapter 5. System Evaluation

able, and relatively cheap. Certain mechanisms proved especially useful in the

system’s construction.

Filtering, in both hardware and software, did much to clean up the signals

received from the motes. The addition of the hardware filter (Figure 4.4) in

front of the analog to digital converter cleaned up most of the huge, periodic

voltage spikes common to automotive applications. Basic filtering in software,

by throwing out corrupted messages, as detected by a CRC check at the base

station, removes many of the packets which we can only assume are damaged

during transmission.

Also, making use of the built-in packet acknowledgment system in TinyOS

active messaging also did much to increase packet reception rates.

Of the three sensor positions chosen for this study, the throttle position and

temperature proved to be good choices. Both gave deterministic readings.

5.4.2 What didn’t work?

Not everything went perfectly in the system’s development. Some of the

more notable problems and less-conclusive results are described below.

For one, the protection diode was unusable due to its leakage current. One

of the assumptions is that the current leaking through the zener diode before its

breakdown voltage is minimal, at least compared with the total current flowing

54

Chapter 5. System Evaluation

through the circuit. Because the circuit was designed with large resistors, the

nominal current flow was already very small. With the zener diodes that we

chose, the leakage current was sufficient to negatively impact the voltage read-

ings. Luckily we were able to rely on the total resistance of the circuit to protect

the microcontroller. Still, it would be worthwhile to investigate zener diodes

with less leakage current.

Also, the default active message protocol in TinyOS needs to be bolstered

with additional mechanisms in order to guarantee more reliable communication.

Retransmissions and CRC checks were not able to protect the system from packet

loss; there was inevitably at least one node in the system which experienced

noticeable packet loss.

While the packet reception rates may be sufficient for monitoring, they are

not sufficient for higher-rate data or for critical parameters. For example, under

normal operation, the throttle pedal position sensor proves difficult to analyze at

8Hz. The standard rule of thumb says that sampling ought to be done at twice

the frequency of the signal being sampled. Parameters such as temperature

change very slowly, so a couple of samples per second would be sufficient, but

one could imagine that the position of a pedal under one’s foot could have much

higher-frequency components to its position. An order of magnitude faster sam-

55

Chapter 5. System Evaluation

pling, infeasible with this system’s sample-and-send scheme, would be required

to better understand signals like this, with higher frequency components.

Finally, the fuel level sensor proved to be something of a mystery. When the

car started up, our measured value could be transformed into a reliable reflection

of the true fuel level gauge. However, several minutes into running the system the

readings from the fuel level sensor grew erratic and difficult to fathom. Again,

higher-rate sampling may reveal the problem with our readings, but for now this

sensor is only useful for the packet reception statistics, not as a reflection of the

fuel level.

5.4.3 Generalization

Now that this particular prototype has been evaluated, how will these results

generalize into other instantiations? We expect that, with the use of commodity

components and expandable technologies, this solution could work in numerous

situations; harsher conditions might require modification.

First, the hardware is off-the-shelf with only minor additions. The Crossbow

Mica series of motes are a standard in wireless sensor networking research. The

only modifications made were to add a few inexpensive passive components. This

design could be easily duplicated elsewhere.

56

Chapter 5. System Evaluation

Second, the software systems are all largely cross-platform. The user interface

is written in Java and the mote software is written in cross-platform NesC code,

with the exception of the digital I/O controls used to enable and disable the

on-board sensors.

Finally, the technologies employed would make it simple to expand the system

into tens or even hundreds of nodes. Changing from the Mica2 base to one using

ZigBee radios would allow for 64k addressable nodes. Also, while the particular

vehicle used with this prototype is arguably smaller than the average, there

would be nothing stopping the introduction of multi-hop networking into the

system. This would allow the sensor nodes to communicate across much larger

vehicles.

One situation which might require a redesign for the system is a more extreme

environment. Currently, the sensor nodes would not be able to operate exposed

to the elements. Encasing the nodes in weatherproof casings would enable them

to work as well outside of the vehicle as inside. There is also a history of running

sensor networks in much more extreme environments (e.g. volcanos)[36], so we

do not anticipate this being a problem.

57

Chapter 6

Related Work

6.1 Overview

This chapter discusses work related to this thesis in several fields. Related

to the thesis question are current commercial automotive diagnostics systems,

as well as research in the realms of wireless sensor networks, wireless networking

in vehicles, and wireless automotive diagnostics systems.

6.2 Existing Diagnostics Solutions

Numerous products have been developed to fill the need for diagnostics data.

They can be broken into the rough categories of: OEM offerings, on-board di-

agnostics readers, wired clamp-on devices, and after-market gauges. As we will

show, the offerings tend to be targeted towards a particular need and no indi-

vidual solution fills all needs.

58

Chapter 6. Related Work

Original equipment manufacturers have made initial strides towards cus-

tomizable diagnostics for car owners. Aside from the standard cluster of gauges

available on most cars, manufacturers typically offer additional on-board read-

outs. These can range from simple offerings, like additional gauge clusters and

single, multifunction LED displays, to the elaborate systems employed in models

like the aforementioned Toyota Prius[35]. These options are very integrated, in

that they are permanent components in the car, and they are very easy to use as

they blend into the standard user interface of the vehicle. Unfortunately, options

such as these are typically expensive for the end-user. They also fail to meet the

full customizability requirement, restricting the user to a small set of predefined

data sources, often only displaying one at a time.

Another class of diagnostics solutions involves the standard On-board Di-

agnostics II (OBD II) port, installed on all production automobiles since the

mid-1990’s [25]. The OBD II port gives access to a selection of data sources, a

standard set of fault codes, and the standard on-board data busses. These data

busses, such as the Controller Area Network Bus (CANbus or ISO 11898-1[15])

or the K-bus (ISO 9141[14]), provide digital interfaces between peripherals and

the central computer of a car. Companies such as AutoTap[25] and Snap-On[33]

market products which connect to the OBD II port and provide a display of

engine parameters and fault codes. These devices are very easy to use and can

59

Chapter 6. Related Work

often operate while the vehicle is driving, making them well integrated. Their

prices are reasonable. They are also completely non-intrusive since they plug into

existing ports on the vehicles made expressly for this purpose. Again, though,

they fail to meet the customizability requirement in that they can only read data

sources which have been predetermined. They can read engine coolant tempera-

ture, for example, but not the temperature in the undercarriage next to the fuel

tank. They are also not available on vehicles older than 1994, so a mechanic or

tuner looking to operate on an older-model car must find a different solution.

The third class of diagnostics options are wired clamp-on devices. These are

general purpose diagnostics systems employing collections of cables that can be

attached to arbitrary test points within the vehicle. They come from companies

such as Pico Technology[26] and Snap-On[33] and are targeted mainly at auto

mechanics. These systems are relatively easy to use, though they require more

knowledge of the operation of the vehicle than other options. They fail to meet

the integration and non-intrusive requirements as bundles of wires must be run

to each test point, a complicated and potentially impossible prospect. They are

also the most expensive of these options. Last, the customizability requirement

is still not completely fulfilled. Although these systems can read a large number

of existing voltages within the car, they cannot introduce new sensors out-of-

the-box.

60

Chapter 6. Related Work

Finally, there are aftermarket gauges and gauge clusters, perhaps most no-

tably those made by Auto Meter[2]. These are additional gauges which are

installed in the passenger compartment to monitor small numbers of parameters

and are targeted at tuners. These gauges are extremely customizable, capable of

measuring any conceivable signal in a car, as well as adding additional sensors

where appropriate. They are also very inexpensive. Like the original equipment

manufacturer gauge clusters, these gauges install permanently in the vehicle,

making integration a given. Still, they too have their downside. The installation

of these gauges can be a difficult undertaking, requiring the routing of wires

through inaccessible paths. They also often require modification of the vehicle,

whether by perforating the firewall or installing mounting hardware, and thus

are not non-intrusive.

None of these solutions fully solves the problem stated in Section 2.2.

6.3 Related Research

Recent research in wireless sensor networks covers significant breadth[1], from

the early discussions of TinyOS[11] to discussions of habitat monitoring[18, 19]

and acoustic target tracking[38]. Still, there is little to find about the empiri-

61

Chapter 6. Related Work

cal application of these low-power, wirelessly networked devices in automotive

applications.

This is not the first paper to make a case for using wireless networking in

automotive applications, with many applications involving inter-vehicular com-

munications. One such application is Internet connectivity[6, 4]. Also, the idea

of vehicular sensor networks is not new. Still, work on the subject has often fo-

cussed on the large-scale, inter-vehicle sensor networks[12, 31], without applica-

tion of wireless sensor networks within the vehicle. Even connecting diagnostics

data to the wide area has been proposed, but its data source was the factory

OBD-II port[16].

There have been some discussions of entirely intra-vehicle wireless networks

and often the subject of the discussion is Bluetooth (802.15.1)[24, 10]. It has

been suggested as a choice for a partial replacement for cable bundles[5], with

the bluetooth nodes acting as wireless bridges between disparate on-board wired

networks, such as CANbus; the large number of bluetooth radio units required

for a complete replacement is cited as cause for only partial replacement[10].

At Unicamp, Brazil, Bluetooth modules were used as the sensor nodes with the

Bluetooth module acting as the central host[28]. Centralized wireless systems,

where all data are taken directly from the car’s electrical control module have

been built[17]. Wireless sensor networks have even been recommended as a

62

Chapter 6. Related Work

complete data cable replacement[8], but only in a speculative fashion, and with a

fair amount of trepidation with respect to using them in safety-critical instances.

63

Chapter 7

Conclusion and Potential
Elaboration

If there’s no one around
when the tour runs aground
and if you’re still around
then we’ll meet at the end of the tour

They Might Be Giants, End of the Tour

7.1 Conclusion

In this thesis we identified a problem in the automotive industry. Though

users of automobiles require customized diagnostics data about their operating

vehicles, and though the automotive manufacturers have fully embraced the idea

of mass customization in other facets of their production, factory customized di-

agnostics displays are not forthcoming. This creates a niche for third-party

manufacturers to fill. Unfortunately, third-party diagnostics systems fail to

64

Chapter 7. Conclusion and Potential Elaboration

meet all of the requirements of integration, customization, low-cost, and non-

intrusiveness. Notably, they tend to trade off integration for customization.

As a solution to this problem we introduced a system architecture wherein

the automobile is instrumented with a wireless sensor network. The nodes in

the wireless sensor network transmit their readings to a central base station,

which displays the samples in real-time, and logs them for later analysis. We

then detailed a prototype implementation of the system using Crossbow Mica2

motes for the wireless sensor nodes and an Apple notebook as the base station

and user interface. We described the hardware signal conditioning and software

components which had to be designed and implemented.

Finally, we described the steps taken to test the system and evaluate its

performance. We showed that the resulting prototype successfully meets our re-

quirements. Although packet loss was not negligible, we argued that for an appli-

cation such as low-rate real-time monitoring, where the data are not being used

to make critical decisions, some packet loss is completely acceptable. Ultimately,

the solution and its prototype make strides towards filling the general-purpose

automotive diagnostics niche.

While this prototype represents an acceptable proof of concept, there are

certainly aspects which could be improved or elaborated upon. In the next, and

final, section, we outline some of these aspects.

65

Chapter 7. Conclusion and Potential Elaboration

7.2 Potential Elaboration

There are many facets of this system which, given additional resources, would

have been interesting to investigate. These items would make for potential elab-

oration on the system.

Already mentioned, additional work could be done in minimizing packet

loss. The addition of trivial retransmissions already greatly improved the per-

formance, and more sophisticated retransmission mechanisms could do much to

increase message reception rate, at the expense of overall throughput. Building

the system using ZigBee radios should also yield better reception rates.

Also, taking the system to its logical conclusion by allowing customization at

run-time would be a valuable exercise. At present, the code must be recompiled

to support different data sources than the three experimental sensors. Allowing

a single mote to be used as a light, temperature, or voltage sensor, with a

fully-customizable front-end display, would be a matter of taking advantage of

mechanisms already available in the system framework, but not exposed to the

user.

Another often discussed addition to the system would be driving physical

gauges with readings from the wireless sensors. The idea would be to have a

general-purpose gauge mounted on the car’s dashboard, but to have its input

66

Chapter 7. Conclusion and Potential Elaboration

connected to the output of a computer-based voltage output card (digital-to-

analog board). This would have the advantage of being able integrate the system

more cleanly into a car while still supporting the full customization of the totally

software display system.

A common question when pitching this system as a valid on-the-road data

collection scheme is how security is handled. There are currently no measures

taken to segregate packets from two nearby instances of the system. There is also

no protection against sniffers collecting data about the system while it operates.

In the future, sensor nodes should be paired with base stations so that base

stations are able to filter out messages destined for them.

Finally, the hardware could be made more robust. Adding an external ADC

could yield significantly higher measurement resolution, and having the readings

referenced to a precision voltage reference instead of the (variable) battery volt-

age would increase repeatability of measurements. The quality of the passive

components could also be increased, which would yield less effects from temper-

ature swings and varying signal frequencies. All of these efforts would help to

increase trust in the measurements.

67

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks (Amsterdam, Netherlands:
1999), 38(4):393–422, 2002.

[2] Auto Meter. http://www.autometer.com.

[3] N. Baker. ZigBee and Bluetooth strengths and weaknesses for industrial
applications. Computing & Control Engineering Journal, pages 20–25, 2005.

[4] V. Bychkovsky, B. Hull, A. K. Miu, H. Balakrishnan, and S. Madden. A
Measurement Study of Vehicular Internet Access Using In Situ Wi-Fi Net-
works. In 12th ACM MOBICOM Conf., Los Angeles, CA, September 2006.

[5] Y. Chen and L. Chen. Using Bluetooth wireless technology in vehicles. In
IEEE International Conference on Vehicular Electronics and Safety, pages
344–347, October 2005.

[6] M. Cilia, P. Hasselmeyer, and A. Buchmann. Profiling and internet connec-
tivity in automotive environments. In Proceedings of VLDB, pages 1071–
1074, 2002.

[7] Crossbow technology inc. http://www.xbow.com.

[8] T. ElBatt, C. Saraydar, M. Ames, and T. Talty. Potential for intra-vehicle
wireless automotive sensor networks. In 2006 IEEE Sarnoff Symposium,
2006.

[9] G. Ferrari, P. Medagliani, S. Di Piazza, and M. Martal. Wireless sensor
networks: Performance analysis in indoor scenarios. EURASIP Journal on
Wireless Communications and Networking, 2007:Article ID 81864, 14 pages,
2007. doi:10.1155/2007/81864.

[10] L.-B. Fredriksson. Bluetooth in automotive applications. In Bluetooth ’99,
London, UK, June 1999.

68

Bibliography

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pis-
ter. System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–104,
2000.

[12] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu,
E. Shih, H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile
Sensor Computing System. In 4th ACM SenSys, Boulder, CO, November
2006.

[13] O. Hyncica, P. Kacz, P. Fiedler, Z. Bradac, P. Kucera, and R. Vrba. The
ZigBee Experience. In Proceedings of the 2nd International Symposium on
Communications, Control, and Signal Processing, March 2006.

[14] ISO 9141:1989, 1989. Road vehicles – Diagnostic systems – Requirements
for interchange of digital information.

[15] ISO 11898-1:2003, 2003. Road vehicles – Controller area network (CAN) –
Part 1: Data link layer and physical signalling.

[16] W. Jenkins, R. Lewis, G. Y. Lazarou, J. Picone, and Z. Rowland. Real-time
vehicle performance monitoring using wireless networking. In Communica-
tions, Internet, and Information Technology, pages 375–380, 2004.

[17] D. La Clair. Auto analyzer a mobile based automotive diagnostics tool
utilizing wireless communications and embedded Java technology. Master’s
thesis, Arizona State University East, December 2002.

[18] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Implementing software
on resource-constrained mobile sensors: experiences with impala and ze-
branet. In MobiSys ’04: Proceedings of the 2nd international conference on
Mobile systems, applications, and services, pages 256–269, New York, NY,
USA, 2004. ACM Press.

[19] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In ACM International Work-
shop on Wireless Sensor Networks and Applications (WSNA’02), Atlanta,
GA, Sept. 2002.

[20] K. Martinez, P. Padhy, A. Elsaify, G. Zou, A. Riddoch, J. K. Hart, and
H. L. R. Ong. Deploying a sensor network in an extreme environment.

69

Bibliography

In SUTC ’06: Proceedings of the IEEE International Conference on Sen-
sor Networks, Ubiquitous, and Trustworthy Computing -Vol 1 (SUTC’06),
pages 186–193, Washington, DC, USA, 2006. IEEE Computer Society.

[21] MINI Cooper Service Manual. Bentley Publishers, 2004.

[22] MINI USA. http://www.miniusa.com.

[23] MTS/MDA Sensor Board User’s Manual. Crossbow Doc. # 7430-0020-04
Rev. B.

[24] T. Nolte, H. Hansson, and L. L. Bello. Automotive communications - past,
current and future. In 10th IEEE Conference on Emerging Technologies
and Factory Automation, 2005.

[25] OBD II. http://www.obdii.com.

[26] Pico Technology. http://www.picotech.com/auto/.

[27] B. J. Pine. Mass Customization: The New Frontier in Business Competi-
tion. Harvard Business School Press, 1993.

[28] J. Polar, D. Silva, A. Fortunato, L. Almeida, and C. Dos Reis Filho. Blue-
tooth sensor network for remote diagnostics in vehicles. In 2003 IEEE In-
ternational Symposium on Industrial Electronics, volume 1, pages 481–484,
June 2003.

[29] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN ’05: Proceedings of the 4th international sym-
posium on Information processing in sensor networks, page 48, Piscataway,
NJ, USA, 2005. IEEE Press.

[30] J. Rabaey, J. Ammer, J. L. da Silva Jr., and D. Patel. Picoradio: Ad-
hoc wireless networking of ubiquitous low-energy sensor/monitor nodes. In
WVLSI ’00: Proceedings of the IEEE Computer Society Annual Workshop
on VLSI (WVLSI’00), page 9, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[31] H. Sawant, J. Tan, and Q. Yang. A sensor networked approach for intelli-
gent transportation systems. In (IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2004., pages
1796–1801 vol.2, October 2004.

[32] Scion. http://www.scion.com.

70

Bibliography

[33] Snap-on. http://www.snapondiag.com/.

[34] K. Srinivasan and P. Levis. Rssi is under appreciated. In Proceedings of the
Third Workshop on Embedded Networked Sensors (EmNets), 2006., 2006.

[35] Toyota prius. http://www.toyota.com/prius/.

[36] Volcano sensorweb. http://sensorwebs.jpl.nasa.gov/.

[37] F. von Corswant and P. Fredriksson. Sourcing trends in the car industry:
A survey of car manufacturers’ and suppliers’ strategies and relations. In-
ternational Journal of Operations & Production Management, 22:741–758,
2002.

[38] Q. Wang, W.-P. Chen, R. Zheng, K. Lee, and L. Sha. Acoustic target
tracking using tiny wireless sensor devices. In Proc. of the 2nd International
Workshop on Information Processing in Sensor Networks (IPSN’03), 2003.

[39] M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and
A. Mainwaring. Real-world experiences with an interactive ad hoc sensor
network. In International Conference on Parallel Processing, pages 143–
151, 2002.

[40] ZigBee Alliance. www.zigbee.org.

71

Appendices

72

Appendix A

javadoc

A.1 Package org.ucsb.mayhem.diomedes

Package Contents Page

Interfaces
SampleHandler . 75

Sample Handler.

SampleLogger . 76
Sample Logger.

Classes
AcceleratorPedalChannel. .76

Accelerator Pedal Channel.
ADCChannel . 77

ADC Channel.
ADCSample . 79

ADC Sample.

Channel . 79
Channel.

ConsoleSampleLogger. .83
Console Sample Logger.

consoletest . 83
Console Test.

Constants . 84

DialGauge . 86
Dial Gauge.

73

Appendix A. javadoc

DigitalGauge . 87
Digital Gauge.

DiomedesTLMMsg .88

DummyMote . 96
Dummy Mote.

DummyWirelessSensorNetwork . 97
Dummy Wireless Sensor Network.

EngineCoolantTempChannel . 98
Engine Coolant Temp Channel.

FileSampleLogger . 99
File Sample Logger.

FuelGauge . 101
Fuel Gauge.

FuelPumpLevelChannel . 102
Fuel Pump Level Channel.

Gauge . 103
Gauge.

GraphGauge . 106
Graph Gauge.

LightChannel . 107
Light Channel.

LightSample . 108
Light Sample.

LogfileFilter . 108

Mote . 109
Mote.

RealWirelessSensorNetwork . 111
Real Wireless Sensor Network.

Sample . 112
Sample.

TempChannel . 116
Temperature Channel.

TempGauge .117
Temperature Gauge.

TempSample .118
TempSample.

74

Appendix A. javadoc

WirelessSensorNetwork . 119
Wireless Sensor Network.

Exceptions
WSNException . 121

Wireless Sensor Network Exception.

A.1.1 Interface SampleHandler

Sample Handler. Interface for any class capable of receiving samples.

Declaration

public interface SampleHandler

All known subinterfaces

TempGauge (in A.1.28, page 117), TempChannel (in A.1.27, page 116), Sam-

pleLogger (in A.1.2, page 76), Mote (in A.1.24, page 109), LightChannel (in A.1.21,

page 107), GraphGauge (in A.1.20, page 106), Gauge (in A.1.19, page 103), Fu-

elPumpLevelChannel (in A.1.18, page 102), FuelGauge (in A.1.17, page 101), File-

SampleLogger (in A.1.16, page 99), EngineCoolantTempChannel (in A.1.15, page 98),

DigitalGauge (in A.1.11, page 87), DialGauge (in A.1.10, page 86), ConsoleSampleL-

ogger (in A.1.7, page 83), Channel (in A.1.6, page 79), ADCChannel (in A.1.4, page

77), AcceleratorPedalChannel (in A.1.3, page 76)

All classes known to implement interface

Mote (in A.1.24, page 109), Gauge (in A.1.19, page 103), Channel (in A.1.6, page

79)

Method summary

handleSample(Sample)

Methods

• handleSample
void handleSample(Sample s) throws

org.ucsb.mayhem.diomedes.WSNException

75

Appendix A. javadoc

A.1.2 Interface SampleLogger

Sample Logger. Parent interface for all logger classes.

Declaration

public interface SampleLogger

extends SampleHandler

All known subinterfaces

FileSampleLogger (in A.1.16, page 99), ConsoleSampleLogger (in A.1.7, page 83)

All classes known to implement interface

FileSampleLogger (in A.1.16, page 99), ConsoleSampleLogger (in A.1.7, page 83)

A.1.3 Class AcceleratorPedalChannel

Accelerator Pedal Channel. Represents the data coming from the ’requested
throttle position’ signal in a MINI Cooper S.

Declaration

public class AcceleratorPedalChannel

extends org.ucsb.mayhem.diomedes.ADCChannel (in A.1.4, page 77)

Constructor summary

AcceleratorPedalChannel() Default Constructor.

Method summary

convertUnits(Sample) Convert Units.

Constructors

• AcceleratorPedalChannel
public AcceleratorPedalChannel()

76

Appendix A. javadoc

– Description

Default Constructor. Constructs the channel with known R1 and R2
values, as measured on the existing system.

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Converts from a raw sample to the position of the
accelerator pedal.

– Parameters

∗ samp – Sample to convert.

– Returns – Pedal Position (0-100, w/ 100 = pedal to the metal)

A.1.4 Class ADCChannel

ADC Channel. Handles samples from ADC channels, converting them to
Volts based on the values of R1 and R2 (resistor values in the circuit).

Declaration

public class ADCChannel

extends org.ucsb.mayhem.diomedes.Channel (in A.1.6, page 79)

All known subclasses

FuelPumpLevelChannel (in A.1.18, page 102), EngineCoolantTempChannel (in

A.1.15, page 98), AcceleratorPedalChannel (in A.1.3, page 76)

Constructor summary

ADCChannel(int) Constructor.

77

Appendix A. javadoc

Method summary

convertUnits(Sample) Convert Units.
getMaxV() Get Maximum Voltage.
setR1(long) Set Resistor 1.
setR2(long) Set Resistor 2.

Constructors

• ADCChannel
public ADCChannel(int ch)

– Description

Constructor. Creates an ADC Channel handling the given ADC chan-
nel number.

– Parameters

∗ ch – ADC channel to handle (currently only FUNCTION ADC2)

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Converts the reading into volts, based on the value of
the sample and the resistors in the divider network.

– Parameters

∗ samp – Sample to convert

• getMaxV
public double getMaxV()

– Description

Get Maximum Voltage. Returns the maximum voltage reading, based
upon the resistors in the voltage divider circuit.

– Returns – max voltage

• setR1
public void setR1(long newR1)

78

Appendix A. javadoc

– Description

Set Resistor 1. Set the value of R1.

– Parameters

∗ newR1 – new value of R1

• setR2
public void setR2(long newR2)

– Description

Set Resistor 2. Set the value of R2.

– Parameters

∗ newR2 – new value of R2

A.1.5 Class ADCSample

ADC Sample. Represents a sample from an ADC channel.

Declaration

public class ADCSample

extends org.ucsb.mayhem.diomedes.Sample (in A.1.26, page 112)

Constructor summary

ADCSample(DiomedesTLMMsg)

Constructors

• ADCSample
public ADCSample(DiomedesTLMMsg m)

A.1.6 Class Channel

Channel. Abstracts the concept of a data stream from a single mote.

Declaration

public abstract class Channel

extends java.lang.Object

implements SampleHandler

79

Appendix A. javadoc

All known subclasses

TempChannel (in A.1.27, page 116), LightChannel (in A.1.21, page 107),

FuelPumpLevelChannel (in A.1.18, page 102), EngineCoolantTempChannel (in A.1.15,

page 98), ADCChannel (in A.1.4, page 77), AcceleratorPedalChannel (in A.1.3, page

76)

Field summary

function
handlers
units
unitsName

Constructor summary

Channel(int) Constructor.

Method summary

addHandler(SampleHandler) Add Handler.
convertUnits(Sample) Convert Units.
getFunction() Get Function.
getUnits() Get Units.
getUnitsName() Get Units Name.
handleSample(Sample) Handle Sample.
setUnits(String) Set Units.
setUnitsName(String) Set Units Name.

Fields

• protected int function

• protected java.util.Vector handlers

• protected java.lang.String units

• protected java.lang.String unitsName

80

Appendix A. javadoc

Constructors

• Channel
public Channel(int newfunc)

– Description

Constructor. Creates a new Channel with the given function.

– Parameters

∗ newfunc – The function that this Channel should handle.

Methods

• addHandler
public void addHandler(SampleHandler hand)

– Description

Add Handler. Registers a Handler with the Channel. Typically used
with Gauges.

– Parameters

∗ hand – Handler to register.

• convertUnits
public abstract double convertUnits(Sample samp)

– Description

Convert Units. Method which all children must implement that con-
verts from a raw ADC sample into engineering units.

– Parameters

∗ samp – sample to convert to EU.

• getFunction
public int getFunction()

– Description

Get Function. Returns the function of the Channel

– Returns – The function of the Channel

• getUnits
public java.lang.String getUnits()

81

Appendix A. javadoc

– Description

Get Units. Returns the abbreviation of the Channel’s units.

– Returns – The abbreviation of the units of the Channel (e.g. V for
Volts)

• getUnitsName
public java.lang.String getUnitsName()

– Description

Get Units Name. Gets the full name of the units of the Channel.

– Returns – The full name of the units of the Channel. (e.g. ”Volts”
for Volts).

• handleSample
public void handleSample(Sample samp) throws

org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Pass the sample to all registered handlers.

– Parameters

∗ samp – Sample to handle.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException – Sample is not
handled within Channel.

• setUnits
public void setUnits(java.lang.String newunits)

– Description

Set Units. Sets the abbreviation of the Channel’s units.

– Parameters

∗ newunits – The new abbreviation of the Channel’s units (e.g.
”V” for Volts)

• setUnitsName
public void setUnitsName(java.lang.String newname)

– Description

Set Units Name. Sets the full name of the units of the Channel.

82

Appendix A. javadoc

– Parameters

∗ newname – The full name of the units of the Channel (e.g. ”Volts”
for Volts)

A.1.7 Class ConsoleSampleLogger

Console Sample Logger. Logs all samples to stdout, instead of a file.

Declaration

public class ConsoleSampleLogger

extends java.lang.Object

implements SampleLogger

Constructor summary

ConsoleSampleLogger()

Method summary

handleSample(Sample)

Constructors

• ConsoleSampleLogger
public ConsoleSampleLogger()

Methods

• handleSample
public synchronized void handleSample(Sample s) throws

org.ucsb.mayhem.diomedes.WSNException

A.1.8 Class consoletest

Console Test. Jumping-off point for Diomedes. Accepts command line argu-
ments and constructs the system.

83

Appendix A. javadoc

Declaration

public class consoletest

extends java.lang.Object

Constructor summary

consoletest()

Method summary

main(String[]) Main.

Constructors

• consoletest
public consoletest()

Methods

• main
public static void main(java.lang.String[] args)

– Description

Main. Console entry point. Parses the command line, constructs the
network, and builds the GUI.

– Parameters

∗ args – Command line arguments.

A.1.9 Class Constants

Declaration

public class Constants

extends java.lang.Object

Field summary

AM DIOMEDESTLMMSG
FUNCTION ADC0
FUNCTION ADC1

84

Appendix A. javadoc

FUNCTION ADC2
FUNCTION ADC3
FUNCTION ADC4
FUNCTION ADC5
FUNCTION ADC6
FUNCTION ADC7
FUNCTION LIGHT
FUNCTION TEMP

Constructor summary

Constants()

Fields

• public static final byte FUNCTION ADC2

• public static final byte FUNCTION ADC5

• public static final short FUNCTION LIGHT

• public static final short FUNCTION ADC7

• public static final byte AM DIOMEDESTLMMSG

• public static final byte FUNCTION ADC6

• public static final short FUNCTION TEMP

• public static final byte FUNCTION ADC3

• public static final byte FUNCTION ADC4

• public static final byte FUNCTION ADC1

• public static final byte FUNCTION ADC0

Constructors

• Constants
public Constants()

85

Appendix A. javadoc

A.1.10 Class DialGauge

Dial Gauge. Creates a generic Dial Gauge.

Declaration

public class DialGauge

extends org.ucsb.mayhem.diomedes.Gauge (in A.1.19, page 103)

Constructor summary

DialGauge(boolean) Constructor.

Method summary

handleSample(Sample) Handle Sample.
paintComponent(Graphics) Paint Component.

Constructors

• DialGauge
public DialGauge(boolean floating)

– Description

Constructor. Construct a Dial Gauge and detatch it if requested.

– Parameters

∗ floating – Whether or not to detatch the frame.

Methods

• handleSample
public void handleSample(Sample samp) throws

org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Stores the sample and calls repaint().

– Parameters

∗ samp – Sample to handle.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException –

86

Appendix A. javadoc

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Place the gauge image and render a needle in the
correct direction.

A.1.11 Class DigitalGauge

Digital Gauge. A digital readout which displays the readings as text in a
textbox.

Declaration

public class DigitalGauge

extends org.ucsb.mayhem.diomedes.Gauge (in A.1.19, page 103)

Constructor summary

DigitalGauge(boolean) Constructor.

Method summary

handleSample(Sample) Handle Sample.
paintComponent(Graphics) Paint Component.

Constructors

• DigitalGauge
public DigitalGauge(boolean floating)

– Description

Constructor. Constructs a Digital gauge, detatching it if requested.

– Parameters

∗ floating – Whether or not to detatch the frame.

87

Appendix A. javadoc

Methods

• handleSample
public void handleSample(Sample samp) throws

org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Store the value of the sample and call repaint()

– Parameters

∗ samp – The sample to handle.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException –

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Write the sample to the text box.

A.1.12 Class DiomedesTLMMsg

Declaration

public class DiomedesTLMMsg

extends net.tinyos.message.Message

Field summary

AM TYPE The Active Message type associated with this message.
DEFAULT MESSAGE SIZE The default size of this message

type in bytes.

Constructor summary

DiomedesTLMMsg() Create a new DiomedesTLMMsg of size 7.
DiomedesTLMMsg(byte[]) Create a new DiomedesTLMMsg us-

ing the given byte array as backing store.
DiomedesTLMMsg(byte[], int) Create a new DiomedesTLMMsg

using the given byte array as backing store, with the given base
offset.

88

Appendix A. javadoc

DiomedesTLMMsg(byte[], int, int) Create a new DiomedesTLMMsg
using the given byte array as backing store, with the given base
offset and data length.

DiomedesTLMMsg(int) Create a new DiomedesTLMMsg of the
given data length.

DiomedesTLMMsg(int, int) Create a new DiomedesTLMMsg
with the given data length and base offset.

DiomedesTLMMsg(Message, int) Create a new DiomedesTLMMsg
embedded in the given message at the given base offset.

DiomedesTLMMsg(Message, int, int) Create a new Diomedes-
TLMMsg embedded in the given message at the given base offset
and length.

Method summary

get function() Return the value (as a int) of the field ’function’
get packetnum() Return the value (as a int) of the field ’packet-

num’
get sample() Return the value (as a int) of the field ’sample’
get source() Return the value (as a short) of the field ’source’
isArray function() Return whether the field ’function’ is an array

(false).
isArray packetnum() Return whether the field ’packetnum’ is an

array (false).
isArray sample() Return whether the field ’sample’ is an array

(false).
isArray source() Return whether the field ’source’ is an array (false).
isSigned function() Return whether the field ’function’ is signed

(false).
isSigned packetnum() Return whether the field ’packetnum’ is

signed (false).
isSigned sample() Return whether the field ’sample’ is signed (false).
isSigned source() Return whether the field ’source’ is signed (false).
offset function() Return the offset (in bytes) of the field ’function’
offset packetnum() Return the offset (in bytes) of the field ’packet-

num’
offset sample() Return the offset (in bytes) of the field ’sample’
offset source() Return the offset (in bytes) of the field ’source’
offsetBits function() Return the offset (in bits) of the field ’func-

tion’

89

Appendix A. javadoc

offsetBits packetnum() Return the offset (in bits) of the field
’packetnum’

offsetBits sample() Return the offset (in bits) of the field ’sample’
offsetBits source() Return the offset (in bits) of the field ’source’
set function(int) Set the value of the field ’function’
set packetnum(int) Set the value of the field ’packetnum’
set sample(int) Set the value of the field ’sample’
set source(short) Set the value of the field ’source’
size function() Return the size, in bytes, of the field ’function’
size packetnum() Return the size, in bytes, of the field ’packetnum’
size sample() Return the size, in bytes, of the field ’sample’
size source() Return the size, in bytes, of the field ’source’
sizeBits function() Return the size, in bits, of the field ’function’
sizeBits packetnum() Return the size, in bits, of the field ’packet-

num’
sizeBits sample() Return the size, in bits, of the field ’sample’
sizeBits source() Return the size, in bits, of the field ’source’
toString()

Fields

• public static final int DEFAULT MESSAGE SIZE

– The default size of this message type in bytes.

• public static final int AM TYPE

– The Active Message type associated with this message.

Constructors

• DiomedesTLMMsg
public DiomedesTLMMsg()

– Description

Create a new DiomedesTLMMsg of size 7.

• DiomedesTLMMsg
public DiomedesTLMMsg(byte[] data)

– Description

Create a new DiomedesTLMMsg using the given byte array as backing
store.

90

Appendix A. javadoc

• DiomedesTLMMsg
public DiomedesTLMMsg(byte[] data, int base offset)

– Description

Create a new DiomedesTLMMsg using the given byte array as backing
store, with the given base offset.

• DiomedesTLMMsg
public DiomedesTLMMsg(byte[] data, int base offset,
int data length)

– Description

Create a new DiomedesTLMMsg using the given byte array as backing
store, with the given base offset and data length.

• DiomedesTLMMsg
public DiomedesTLMMsg(int data length)

– Description

Create a new DiomedesTLMMsg of the given data length.

• DiomedesTLMMsg
public DiomedesTLMMsg(int data length, int base offset)

– Description

Create a new DiomedesTLMMsg with the given data length and base
offset.

• DiomedesTLMMsg
public DiomedesTLMMsg(net.tinyos.message.Message msg,
int base offset)

– Description

Create a new DiomedesTLMMsg embedded in the given message at
the given base offset.

• DiomedesTLMMsg
public DiomedesTLMMsg(net.tinyos.message.Message msg,
int base offset, int data length)

– Description

Create a new DiomedesTLMMsg embedded in the given message at
the given base offset and length.

91

Appendix A. javadoc

Methods

• get function
public int get function()

– Description

Return the value (as a int) of the field ’function’

• get packetnum
public int get packetnum()

– Description

Return the value (as a int) of the field ’packetnum’

• get sample
public int get sample()

– Description

Return the value (as a int) of the field ’sample’

• get source
public short get source()

– Description

Return the value (as a short) of the field ’source’

• isArray function
public static boolean isArray function()

– Description

Return whether the field ’function’ is an array (false).

• isArray packetnum
public static boolean isArray packetnum()

– Description

Return whether the field ’packetnum’ is an array (false).

• isArray sample
public static boolean isArray sample()

– Description

Return whether the field ’sample’ is an array (false).

92

Appendix A. javadoc

• isArray source
public static boolean isArray source()

– Description

Return whether the field ’source’ is an array (false).

• isSigned function
public static boolean isSigned function()

– Description

Return whether the field ’function’ is signed (false).

• isSigned packetnum
public static boolean isSigned packetnum()

– Description

Return whether the field ’packetnum’ is signed (false).

• isSigned sample
public static boolean isSigned sample()

– Description

Return whether the field ’sample’ is signed (false).

• isSigned source
public static boolean isSigned source()

– Description

Return whether the field ’source’ is signed (false).

• offset function
public static int offset function()

– Description

Return the offset (in bytes) of the field ’function’

• offset packetnum
public static int offset packetnum()

– Description

Return the offset (in bytes) of the field ’packetnum’

93

Appendix A. javadoc

• offset sample
public static int offset sample()

– Description

Return the offset (in bytes) of the field ’sample’

• offset source
public static int offset source()

– Description

Return the offset (in bytes) of the field ’source’

• offsetBits function
public static int offsetBits function()

– Description

Return the offset (in bits) of the field ’function’

• offsetBits packetnum
public static int offsetBits packetnum()

– Description

Return the offset (in bits) of the field ’packetnum’

• offsetBits sample
public static int offsetBits sample()

– Description

Return the offset (in bits) of the field ’sample’

• offsetBits source
public static int offsetBits source()

– Description

Return the offset (in bits) of the field ’source’

• set function
public void set function(int value)

– Description

Set the value of the field ’function’

94

Appendix A. javadoc

• set packetnum
public void set packetnum(int value)

– Description

Set the value of the field ’packetnum’

• set sample
public void set sample(int value)

– Description

Set the value of the field ’sample’

• set source
public void set source(short value)

– Description

Set the value of the field ’source’

• size function
public static int size function()

– Description

Return the size, in bytes, of the field ’function’

• size packetnum
public static int size packetnum()

– Description

Return the size, in bytes, of the field ’packetnum’

• size sample
public static int size sample()

– Description

Return the size, in bytes, of the field ’sample’

• size source
public static int size source()

– Description

Return the size, in bytes, of the field ’source’

95

Appendix A. javadoc

• sizeBits function
public static int sizeBits function()

– Description

Return the size, in bits, of the field ’function’

• sizeBits packetnum
public static int sizeBits packetnum()

– Description

Return the size, in bits, of the field ’packetnum’

• sizeBits sample
public static int sizeBits sample()

– Description

Return the size, in bits, of the field ’sample’

• sizeBits source
public static int sizeBits source()

– Description

Return the size, in bits, of the field ’source’

• toString
public java.lang.String toString()

– Description

A.1.13 Class DummyMote

Dummy Mote. Runnable class to simulate the operation of a single mote in
the system, for development.

Declaration

public class DummyMote

extends java.lang.Object

implements java.lang.Runnable

96

Appendix A. javadoc

Constructor summary

DummyMote(short, short, double, WirelessSensorNetwork)
Constructor.

Method summary

run() Run.

Constructors

• DummyMote
public DummyMote(short newid, short newfunction,
double freq, WirelessSensorNetwork wsn)

– Description

Constructor. Creates a dummy mote with the given ID, function,
data generation frequency, and network.

– Parameters

∗ newid – The ID of the mote.

∗ newfunction – The function of the data to generate.

∗ freq – The frequency to generate the data.

∗ wsn – The associated WSN.

Methods

• run
public void run()

– Description

Run. Sleep based on the frequency and then wake up and generate
some data.

A.1.14 Class DummyWirelessSensorNetwork

Dummy Wireless Sensor Network. A ’dummy’ wsn which consists of three
dummy motes generating data.

97

Appendix A. javadoc

Declaration

public class DummyWirelessSensorNetwork

extends org.ucsb.mayhem.diomedes.WirelessSensorNetwork (in A.1.30, page 119)

Constructor summary

DummyWirelessSensorNetwork() Default Constructor.

Constructors

• DummyWirelessSensorNetwork
public DummyWirelessSensorNetwork()

– Description

Default Constructor. Create three dummy motes (1, 2, 3), all running
at 10Hz.

A.1.15 Class EngineCoolantTempChannel

Engine Coolant Temp Channel. Channel which mirrors the operation of the
MINI Cooper S engine coolant temperature gauge.

Declaration

public class EngineCoolantTempChannel

extends org.ucsb.mayhem.diomedes.ADCChannel (in A.1.4, page 77)

Constructor summary

EngineCoolantTempChannel() Default Constructor.

Method summary

convertUnits(Sample) Convert Units.

Constructors

• EngineCoolantTempChannel
public EngineCoolantTempChannel()

98

Appendix A. javadoc

– Description

Default Constructor. Constructs an Engine Coolant Temperature
Channel using the R1 and R2 values measured from the existing sys-
tem.

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Converts raw sample into 0-100 value suitable for
display.

– Parameters

∗ samp – The sample to convert

– Returns – temp gauge reading (0-100(

A.1.16 Class FileSampleLogger

File Sample Logger. Writes samples to file for later analysis. Also presents
appropriate GUI elements.

Declaration

public class FileSampleLogger

extends javax.swing.JPanel

implements SampleLogger, java.awt.event.ActionListener

Constructor summary

FileSampleLogger() Default Constructor.

Method summary

actionPerformed(ActionEvent) ActionPerformed.
handleSample(Sample) Handle Sample.
startLogging(String) Start Logging.
stopLogging() Stop Logging.
writeFileHeader() Write File Header.

99

Appendix A. javadoc

Constructors

• FileSampleLogger
public FileSampleLogger()

– Description

Default Constructor. Construct a File Sample Logger, registering all
button actions.

Methods

• actionPerformed
public void actionPerformed(java.awt.event.ActionEvent e)

– Description

ActionPerformed. Handles Start and Stop button presses.

• handleSample
public synchronized void handleSample(Sample samp)

throws org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. If there is a valid file, write to it!

– Parameters

∗ samp – Sample to convert to a logfile line.

• startLogging
public void startLogging(java.lang.String fname)

– Description

Start Logging. Starts logging to the filename given, if the file exists.

– Parameters

∗ fname – File to log to.

• stopLogging
public void stopLogging()

– Description

Stop Logging. Close the current logfile.

• writeFileHeader
public void writeFileHeader()

100

Appendix A. javadoc

– Description

Write File Header. Start the logfile with the file header.

A.1.17 Class FuelGauge

Fuel Gauge. Gauge meant to mirror the MINI Cooper S’s fuel gauge.

Declaration

public class FuelGauge

extends org.ucsb.mayhem.diomedes.Gauge (in A.1.19, page 103)

Constructor summary

FuelGauge(boolean) Constructor.

Method summary

handleSample(Sample) Handle Sample.
paintComponent(Graphics) Paint Component.

Constructors

• FuelGauge
public FuelGauge(boolean floating)

– Description

Constructor. Constructs a Fuel Gauge, either integrated or floating.

– Parameters

∗ floating – Whether or not to detach the frame.

Methods

• handleSample
public void handleSample(Sample samp)

throws org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Stores the value of the sample and calls repaint().

– Parameters

101

Appendix A. javadoc

∗ samp – Sample to handle.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException –

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Draws the gauge and renders a needle pointing to
the appropriate place on the gauge.

A.1.18 Class FuelPumpLevelChannel

Fuel Pump Level Channel. Channel which converts the raw samples into a
reading of fuel level on a MINI Cooper S.

Declaration

public class FuelPumpLevelChannel

extends org.ucsb.mayhem.diomedes.ADCChannel (in A.1.4, page 77)

Constructor summary

FuelPumpLevelChannel() Default Constructor.

Method summary

convertUnits(Sample) Convert Units.

Constructors

• FuelPumpLevelChannel
public FuelPumpLevelChannel()

– Description

Default Constructor. Constructs a fuel level channel assuming R1
and R2 values consistent measurements in the current system.

102

Appendix A. javadoc

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Convert from raw samples to a 0-100 value meant to
mirror the operation of the car’s on-board fuel gauge.

– Parameters

∗ samp – Sample to convert.

– Returns – fuel gauge reading (0-100)

A.1.19 Class Gauge

Gauge. Abstraction of a gauge, which embodies a sample-handling object
and a GUI display.

Declaration

public abstract class Gauge

extends javax.swing.JPanel

implements SampleHandler

All known subclasses

TempGauge (in A.1.28, page 117), GraphGauge (in A.1.20, page 106), FuelGauge

(in A.1.17, page 101), DigitalGauge (in A.1.11, page 87), DialGauge (in A.1.10, page

86)

Field summary

scaleMax Max and min displayed scale.
scaleMin Max and min displayed scale.
title Gauge title.
XOFFSET Internal graphical placement offsets.
YOFFSET Internal graphical placement offsets.

Constructor summary

Gauge() Default constructor.

103

Appendix A. javadoc

Method summary

isScaleVisible() Is Scale Visible.
paintComponent(Graphics) Paint Component.
setScale(double, double) Set Scale.
setScaleVisible(boolean) Set Scale Visible.
setTitle(String) Set Title.
toFloat() To Float.

Fields

• protected double scaleMax

– Max and min displayed scale.

• protected double scaleMin

– Max and min displayed scale.

• protected java.lang.String title

– Gauge title.

• protected static final int XOFFSET

– Internal graphical placement offsets.

• protected static final int YOFFSET

– Internal graphical placement offsets.

Constructors

• Gauge
public Gauge()

– Description

Default constructor. Constructs a Gauge with Arial as its title font.

Methods

• isScaleVisible
public boolean isScaleVisible()

– Description

Is Scale Visible. Checks the visibility of the scale.

104

Appendix A. javadoc

– Returns – Whether he scale numbering is visible (true: visible)

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Draws the title. Called by subclasses.

– Parameters

∗ g – Graphics context

• setScale
public void setScale(double min, double max)

– Description

Set Scale. Adjusts the visible scale.

– Parameters

∗ min – Minimum value of the scale

∗ max – Maximum value of the scale

• setScaleVisible
public void setScaleVisible(boolean val)

– Description

Set Scale Visible. Changes whether the scale numbering is visible on
the gauge.

– Parameters

∗ val – true: make visible; false: make invisible

• setTitle
public void setTitle(java.lang.String newTitle)

– Description

Set Title. Sets the String title for the gauge.

– Parameters

∗ newTitle – The new value for the title.

• toFloat
protected void toFloat()

– Description

To Float. Causes the gauge to be rendered in a separate window,
instead of the default mode as a child container.

105

Appendix A. javadoc

A.1.20 Class GraphGauge

Graph Gauge. A gauge which graphs the data arriving at a Channel.

Declaration

public class GraphGauge

extends org.ucsb.mayhem.diomedes.Gauge (in A.1.19, page 103)

implements java.awt.event.ActionListener

Constructor summary

GraphGauge(boolean) Constructor.

Method summary

actionPerformed(ActionEvent) Action Performed.
handleSample(Sample) Handle Sample.
paintComponent(Graphics) Paint Component.

Constructors

• GraphGauge
public GraphGauge(boolean floating)

– Description

Constructor. Constructs a Graph Gauge, displays buttons, and de-
tatches the frame, if desired.

– Parameters

∗ floating – Whether or not to construct the frame detatched.

Methods

• actionPerformed
public void actionPerformed(java.awt.event.ActionEvent e)

– Description

Action Performed. Handles the ’clear graph’ button.

• handleSample
public void handleSample(Sample samp)

throws org.ucsb.mayhem.diomedes.WSNException

106

Appendix A. javadoc

– Description

Handle Sample. Adds the sample to the history array and fires off a
repaint()

– Parameters

∗ samp – The sample to add to the graph.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException –

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Draw the graph based on the history array and
the running max and min times.

A.1.21 Class LightChannel

Light Channel. Channel which handles onboard light sensor data.

Declaration

public class LightChannel

extends org.ucsb.mayhem.diomedes.Channel (in A.1.6, page 79)

Constructor summary

LightChannel()

Method summary

convertUnits(Sample) Convert Units.

Constructors

• LightChannel
public LightChannel()

107

Appendix A. javadoc

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Converts the raw binary reading into an ’intensity’,
that is percenta of full scale.

– Parameters

∗ samp – The sample to convert.

– Returns – light sensor reading (0-100)

A.1.22 Class LightSample

Light Sample. A sample taken from an onboard light sensor.

Declaration

public class LightSample

extends org.ucsb.mayhem.diomedes.Sample (in A.1.26, page 112)

Constructor summary

LightSample(DiomedesTLMMsg)

Constructors

• LightSample
public LightSample(DiomedesTLMMsg m)

A.1.23 Class LogfileFilter

Declaration

public class LogfileFilter

extends javax.swing.filechooser.FileFilter

Constructor summary

LogfileFilter()

108

Appendix A. javadoc

Method summary

accept(File)
getDescription()
getExtension(File)

Constructors

• LogfileFilter
public LogfileFilter()

Methods

• accept
public abstract boolean accept(java.io.File arg0)

• getDescription
public abstract java.lang.String getDescription()

• getExtension
public java.lang.String getExtension(java.io.File f)

A.1.24 Class Mote

Mote. Abstracts the concept of a mote from the sensor network. Mainly
used to organize channels and to funnel samples to them.

Declaration

public class Mote

extends java.lang.Object

implements SampleHandler

Constructor summary

Mote(int) Constructor, ID only.
Mote(int, String) Constructor, ID and Name.

109

Appendix A. javadoc

Method summary

addHandler(int, SampleHandler) Add Handler.
getID() Get ID.
getName() Get Name.
handleSample(Sample) Handle Sample.

Constructors

• Mote
public Mote(int newid)

– Description

Constructor, ID only. Constructs a Mote using only the ID. The name
of the mote defaults to the modeID.

– Parameters

∗ newid – The ID of the Mote to construct

• Mote
public Mote(int newid, java.lang.String newname)

– Description

Constructor, ID and Name. Constructs a Mote using both the supplied
ID and name.

– Parameters

∗ newid – The ID of the Mote to construct

∗ newname – The explicit name to assign to the Mote

Methods

• addHandler
public void addHandler(int function, SampleHandler hand)

– Description

Add Handler. Registers a handler to this Mote on the given function.
Typically for a Channel.

– Parameters

∗ function – The channel to register the handler to (defined in
Constants.java).

110

Appendix A. javadoc

∗ hand – The handler to register.

– See also

∗ Constants.java

• getID
public int getID()

– Description

Get ID. Returns the ID of this Mote.

– Returns – The ID of this Mote.

• getName
public java.lang.String getName()

– Description

Get Name. Returns the name of this Mote.

– Returns – The name of this Mote.

• handleSample
public void handleSample(Sample s)

throws org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Routes the Sample to the appropriate, registered
Channel.

– Parameters

∗ s – The Sample to handle.

– Throws

∗ org.ucsb.mayhem.diomedes.WSNException – If the channel cor-
responding to the Sample is not found.

A.1.25 Class RealWirelessSensorNetwork

Real Wireless Sensor Network. Wireless Sensor Network which listens on the
serial port for active messages from the TinyOS Basestation node.

Declaration

public class RealWirelessSensorNetwork

extends org.ucsb.mayhem.diomedes.WirelessSensorNetwork (in A.1.30, page 119)

111

Appendix A. javadoc

Constructor summary

RealWirelessSensorNetwork()

Constructors

• RealWirelessSensorNetwork
public RealWirelessSensorNetwork()

A.1.26 Class Sample

Sample. Encapsulates message data, receive timestamp, and the information
necessary to convert the message’s sample to engineering units.

Declaration

public abstract class Sample

extends java.lang.Object

All known subclasses

TempSample (in A.1.29, page 118), LightSample (in A.1.22, page 108), ADCSam-

ple (in A.1.5, page 79)

Field summary

chan The associate Channel, for the purposes of EU conversion.
m The original Message object.
timestamp Time of sample receipt at the computer.

Constructor summary

Sample(DiomedesTLMMsg) Constructor.

Method summary

getFileHeader() Get File Header.
getFunction() Get Function.
getPacketNumber() Get Packet Number.
getRawSample() Get Raw Sample.
getSource() Get Source.

112

Appendix A. javadoc

getTimestamp() Get Timestamp.
getTimestampInMillis() Get Timestamp in Milliseconds.
getTimestampInS() Get Timestamp in Seconds.
getUnits() Get Units.
getUnitsName() Get Units Name.
getValue() Get Value.
setChannel(Channel) Set Channel.
toLog() To Log.

Fields

• protected java.util.Calendar timestamp

– Time of sample receipt at the computer.

• protected DiomedesTLMMsg m

– The original Message object.

• protected Channel chan

– The associate Channel, for the purposes of EU conversion.

Constructors

• Sample
public Sample(DiomedesTLMMsg newm)

– Description

Constructor. Stores the message, timestamps, and returns.

– Parameters

∗ newm – Message to convert to a Sample

Methods

• getFileHeader
public static java.lang.String getFileHeader()

– Description

Get File Header.

– Returns – The standard logfile header, in String format.

113

Appendix A. javadoc

• getFunction
public int getFunction()

– Description

Get Function.

– Returns – The function from the Message

• getPacketNumber
public int getPacketNumber()

– Description

Get Packet Number.

– Returns – The packet number from the Message

• getRawSample
public int getRawSample()

– Description

Get Raw Sample.

– Returns – The raw sample from the Message

• getSource
public int getSource()

– Description

Get Source.

– Returns – The source mote from the Message

• getTimestamp
public java.lang.String getTimestamp()

– Description

Get Timestamp.

– Returns – The timestamp of the receipt, in String format.

• getTimestampInMillis
public long getTimestampInMillis()

– Description

Get Timestamp in Milliseconds.

114

Appendix A. javadoc

– Returns – The timestamp of the receipt, in milliseconds since the
epoch.

• getTimestampInS
public long getTimestampInS()

– Description

Get Timestamp in Seconds.

– Returns – The timestamp of the receipt, in seconds since the epoch.

• getUnits
public java.lang.String getUnits()

– Description

Get Units. Returns a String containing the units of the value, suitable
for concatenation to the end of the value in a display.

– Returns – The abbreviation of the value’s engineering units (e.g. V,
km).

• getUnitsName
public java.lang.String getUnitsName()

– Description

Get Units Name. Returns the full name of the units of the value.

– Returns – The full name of the value’s engineering units (e.g. Volts,
Kilometers).

• getValue
public double getValue()

– Description

Get Value. Converts the raw sample value into Engineering Units
with the help of the associated Channel.

– Returns – The value of the sample, in engineering units.

• setChannel
public void setChannel(Channel c)

– Description

Set Channel. Associates a Channel with the Sample, allowing EU
conversions.

115

Appendix A. javadoc

– Parameters

∗ c – The Channel to associate.

• toLog
public java.lang.String toLog()

– Description

To Log.

– Returns – The Sample as a logfile line.

A.1.27 Class TempChannel

Temperature Channel. Converts raw binary readings from on-board temper-
ature sensor into degrees Celcius.

Declaration

public class TempChannel

extends org.ucsb.mayhem.diomedes.Channel (in A.1.6, page 79)

Constructor summary

TempChannel() Default Constructor.

Method summary

convertUnits(Sample) Convert Units.

Constructors

• TempChannel
public TempChannel()

– Description

Default Constructor.

116

Appendix A. javadoc

Methods

• convertUnits
public double convertUnits(Sample samp)

– Description

Convert Units. Converts a sample into Celcius, based on the conver-
sion curve found in the Crossbow documentation.

– Parameters

∗ samp – Sample to convert

– Returns – sample in degrees Celcius

A.1.28 Class TempGauge

Temperature Gauge. Temperature gauge, consisting of a thermometer which
displays the value with the level of a red indication ’fluid’.

Declaration

public class TempGauge

extends org.ucsb.mayhem.diomedes.Gauge (in A.1.19, page 103)

Constructor summary

TempGauge(boolean) Constructor.

Method summary

handleSample(Sample) Handle Sample.
paintComponent(Graphics) Paint Component.

Constructors

• TempGauge
public TempGauge(boolean floating)

– Description

Constructor. Sets the size, loads the overlay image, initializes the
container, and then spawns the floating frame, if desired.

– Parameters

117

Appendix A. javadoc

∗ floating – Whether to launch the gauge as floating.

Methods

• handleSample
public void handleSample(Sample samp)

throws org.ucsb.mayhem.diomedes.WSNException

– Description

Handle Sample. Saves the sample value and units and repaints.

• paintComponent
protected void paintComponent(java.awt.Graphics g)

– Description

Paint Component. Draws the temperature gauge with the appropriate
level.

– Parameters

∗ g – Graphics context.

A.1.29 Class TempSample

TempSample. Sample from a temperature sensor.

Declaration

public class TempSample

extends org.ucsb.mayhem.diomedes.Sample (in A.1.26, page 112)

Constructor summary

TempSample(DiomedesTLMMsg)

Constructors

• TempSample
public TempSample(DiomedesTLMMsg msg)

118

Appendix A. javadoc

A.1.30 Class WirelessSensorNetwork

Wireless Sensor Network. Encapsulates the first layer of packet handling
from a WSN.

Declaration

public abstract class WirelessSensorNetwork

extends java.lang.Object

implements net.tinyos.message.MessageListener

All known subclasses

RealWirelessSensorNetwork (in A.1.25, page 111), DummyWirelessSensorNet-

work (in A.1.14, page 97)

Field summary

handlers All first-level packet handlers (i.e.
motes Known motes in the network.

Constructor summary

WirelessSensorNetwork() Default constructor.

Method summary

addGlobalHandler(SampleHandler) Add Global Handler.
addHandler(int, int, SampleHandler) Add Handler.
messageReceived(int, Message) Message Received.

Fields

• protected java.util.Vector handlers

– All first-level packet handlers (i.e. loggers).

• protected java.util.Vector motes

– Known motes in the network.

119

Appendix A. javadoc

Constructors

• WirelessSensorNetwork
public WirelessSensorNetwork()

– Description

Default constructor. Creates the wireless sensor network with three
motes: 1, 2, 3.

Methods

• addGlobalHandler
public void addGlobalHandler(SampleHandler hand)

– Description

Add Global Handler. Registers a handler which is called on all mes-
sages. This is typically a logging object.

– Parameters

∗ hand – The handler object to register.

• addHandler
public void addHandler(int moteID, int function,
SampleHandler hand)

– Description

Add Handler. Registers a SamplerHandler with the appropriate mote
and on the proper channel.

– Parameters

∗ moteID – The id of the mote with which to register the handler

∗ function – The function, or channel, of data to handle

∗ hand – The handler object to register.

• messageReceived
public void messageReceived(int dest addr,
net.tinyos.message.Message msg)

– Description

Message Received. Converts the message to a Sample and then passes
it to the appropriate Mote and to any registered SampleHandlers.

– Parameters

120

Appendix A. javadoc

∗ dest addr – The destination address of the packet (should always
be ’10’)

∗ msg – The actual contents of the message

A.1.31 Exception WSNException

Wireless Sensor Network Exception. Thrown when errors are found in a
packet received from the packetforwarder. Ceases all further processing of the
packet.

Declaration

public class WSNException

extends java.lang.Exception

Constructor summary

WSNException(String)

Constructors

• WSNException
public WSNException(java.lang.String message)

121

Appendix B

nesdoc

B.1 Diomedes Application

Figure B.1: DiomedesAppC Dependencies

B.1.1 DiomedesAppC

Configuration for the Diomedes Application.

Author: Erik Peterson

B.1.2 DiomedesC

Implementation for the Diomedes Application.

Author: Erik Peterson

122

Appendix B. nesdoc

Uses

• interface PacketAcknowledgements as Acks

• interface Leds

• interface Read<uint16 t> as ADC2

• interface Timer<TMilli> as MilliTimer

• interface SplitControl as RadioControl

• interface Read<uint16 t> as Light

• interface Packet

• interface Read<uint16 t> as Temp

• interface AMSend

• interface Boot

B.2 Diomedes Sensorboard

Figure B.2: DiomedesSB Dependencies

B.2.1 tos.sensorboards.diomedessb.DiomedesSBP

Implementation of the Diomedes Sensorboard software.

Author: Erik Peterson (wombatty@alumni.cs.ucsb.edu)

123

Appendix B. nesdoc

Uses

• interface Timer<TMilli> as WarmUpTimer

• interface Read<uint16 t> as GeneralADC

• interface GeneralIO as TempPin

• interface GeneralIO as LightPin

• interface TaskBasic as getSample

• interface Read<uint16 t> as SensorADC

Provides

• interface ResourceConfigure as ADC2ResourceConfig

• interface ResourceConfigure as SensorADCResourceConfig

• interface Atm128AdcConfig as SensorADCAtm128AdcConfig

• interface Atm128AdcConfig as ADC2Atm128AdcConfig

• interface Read<uint16 t> as ADC2

• interface Read<uint16 t> as Light

• interface Read<uint16 t> as Temp

• interface Init

B.2.2 tos.sensorboards.diomedessb.DiomedesSBC

Modified to work with the temp sensor on an MTS series board.

Author: Erik Peterson

Provides

• interface Read<uint16 t> as Temp

• interface Init

• interface Read<uint16 t> as ADC2

• interface Read<uint16 t> as Light

124

