

UNIVERSITY OF CALIFORNIA

Santa Barbara

Integrating Condor and Queue Bounds Estimation

from Time Series (QBETS) Into the UCLA Grid Portal

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Computer Science

by

Kerby Obadiah Johnson

Committee in charge:

Professor Rich Wolski, Chair

Professor Chandra Krintz

Professor Amr El Abbadi

June 2007

The thesis of Kerby Obadiah Johnson is approved.

 __

 Amr El Abbadi

 __

 Chandra Krintz

 __

 Rich Wolski, Committee Chair

May 2007

iii

ACKNOWLEDGEMENTS

 This thesis would not have been possible without the support,

encouragement and collaboration of my family, friends, colleagues, and mentors.

Throughout the entire work I have been surrounded by people encouraging,

teaching and challenging me to go deeper and learn more, while also providing

laughter, joy, and a multitude of enjoyable and necessary distractions.

 My family has always both supported me and provided a necessary outlet

to discuss interesting topics. The daily phone calls to discuss the stock market,

investments and who is currently winning in any number of competitions among

family members have provided that lighthearted spark of competition and

necessary breaks. Thank you.

 My friends and housemates have also been extremely helpful in my efforts

throughout this thesis. Coming home to good home-cooked meals and being able

to eat and then go upstairs and work has proven a tremendous boon, both to my

health by being able to avoid fast-food and the time that it saved me. And who

could forget the Smash Brothers sessions that always seemed to last longer than

anticipated but were endlessly enjoyable. Thank you Megan, Chris, and Eric for

everything.

 I also want to thank my girlfriend of over three years, Lizzie, for all the

love, support and encouragement you have shown me throughout this process. I

know it has been hard on you with how busy we have both been, but you have

iv

always been supportive and understanding and more than willing to take me out to

dinner when I need a break or politely hint that it would be a good idea for me to

take you out. Thank you for everything.

 My colleagues and lab mates, it has been an incredible experience and you

guys have always made the lab an enjoyable, fun and yet somehow productive

work environment. The multitude of coffee breaks, shared experiences and

random, irrelevant and delightful conversation has truly been a lifesaver

throughout this process. Thank you everyone.

 Finally, I want to thank my mentors Dmitrii Zagorodnov and Rich Wolski.

Thank you both for teaching me how to conduct research, ask the right questions

and investigate matters critically. This has been a learning and growing

experience in my life and your support and guidance have definitely helped me

make the transition from interested college student to productive researcher and

developer. Not only have you taught me how to conduct interesting research, but

you have also guided my ability to critically express ideas in writing. Learning

how to organize, present, and explain detailed scientific content from both of you

has been both a challenge and a blessing. I know that the skills I have learned

while writing this thesis will benefit me throughout my life and I appreciate the

effort and patience you both have shown throughout the process. Thank you my

mentors, and my friends.

This work was supported by a grant from the National Science Foundation

numbered 0093166.

v

ABSTRACT

Integrating Condor and Queue Bounds Estimation from Time Series

(QBETS) into the UCLA Grid Portal

By

Kerby Obadiah Johnson

 Grid Computing facilitates the sharing of distributed, heterogeneous

resources owned by different organizations, each with their own goals, policies,

and security requirements. One of the challenges facing Grid Computing is

finding an optimal way for users to interact with Grid resources without needing

to know the underlying details of the Grid. Grid Portals have been proposed as a

means to address this challenge by providing transparent access to the Grid

through a Web Portal interface.

 The UCLA Grid Portal is being developed to create Grids for the UC

Campuses. The Portal provides cluster scheduler information, data management

and job management to the user. It supports clusters running PBS, SGE and LSF

as cluster schedulers. To increase the resources available in the UCLA Grid

Portal and to provide better support for some types of jobs, this thesis adds

support for Condor, a prominent cluster scheduler, into the UCLA Grid Portal.

vi

Condor was added by using a Condor job manager (provided by Globus) and by

adding scripts for collecting cluster status information.

 The UCLA Grid Portal provides limited feedback to its users; in particular,

it is difficult for users to know where they should submit jobs for fastest

execution. This thesis enhances the UCLA Grid Portal by adding QBETS (Queue

Bounds Estimation from Time Series) as a standalone portlet to the Portal.

QBETS provides an upper-bound prediction of the queue delay a job will

experience at a cluster or the probability that a job will start at a cluster by a

deadline. This thesis integrates QBETS into the UCLA Grid Portal by adding

monitors that communicate job accounting information to the QBETS backend

database and a standalone portlet in the Portal that uses a web service query to

retrieve predictions for the clusters available to a user.

vii

Table of Contents

1. Introduction ……………………………………………………………………… 1

1.1. Grid Computing... 1

1.2. The Grid Problem: Management and Organization ... 1

1.3. A Grid Solution: Web Portals ... 2

1.4. Thesis Questions ... 4

1.5. UCLA Grid Portal: Limited Resources .. 4

1.6. UCLA Grid Portal: Limited Feedback ... 5

1.7. Approach To Integrating Condor with the UCLA Grid Portal 7

1.8. Approach to Integrating QBETS into the UCLA Grid Portal 8

1.9. Outline ... 8

2. Background and Related Work ... 11

2.1. Grid Computing... 11

2.2. Globus ... 13

2.3. Web Portals ... 15

2.4. Grid Computing Projects ... 19

2.5. UCLA Grid Portal ... 21

2.6. Condor ... 28

2.7. Queue Bounds Estimation from Time Series (QBETS) 33

3. Challenges ……………………………..………………………………………… 35

3.1. Research Questions and Motivation .. 35

3.2. Experimental Apparatus .. 36

3.3. Extending the UCLA Grid Portal to Provide More Resources 37

3.4. Extending the UCLA Grid Portal to Provide More Feedback 39

4. Approach ………………………………………………………………….. 42

4.1. Overcoming Condor Challenges ... 42

4.2. Overcoming QBETS Challenges... 50

5. Results ……………………………...……...…………………………………….. 56

5.1. Home Page .. 56

5.2. Resources Page .. 57

5.3. Job Services Page .. 63

viii

5.4. NWS Page ... 66

6. Lessons Learned and Future Work ………………………………………… 72

6.1. Lessons Learned .. 72

6.2. Unexpected Difficulties ... 74

6.3. Future Work .. 76

7. Conclusions ……………………………………………………………………... 78

Works Cited …………………………………………………………………………... 79

1

1. Introduction

1.1. Grid Computing

 Computational Grids (1) (2) (3) (4) have become popular due to their ability

to solve large-scale problems by harnessing the power of massive distributed

systems. The term Computational Grids refers to the infrastructure that enables the

increases in shared resources such as computer cycles, storage, sensors, etc. Grid

Computing is an important research area because of the challenges of enabling the

sharing of heterogeneous resources from multiple organizations, each with its own

goals, policies and security requirements.

1.2. The Grid Problem: Management and Organization

 The access to shared resources does not come without its challenges.

Specifically, a main challenge of Grid Computing is how to manage a variety of

heterogeneous Grid resources from different organizations with interfaces that do

not provide a customized problem solving environment (PSE) (3). “A primary

barrier in the widespread acceptance of monolithic client side tools is the

deployment and configuration of specialized software. Scientists and researchers

are often required to download and install specialized software libraries and

packages” (3). The resources shared by these organizations and the policies

governing access to the resources are optimized for the specific organization’s

2

goals, policies and security requirements. Each resource follows its own policies

about who can access the resource, what kind of jobs can be run on the resource,

how long jobs can be run, and many other requirements that vary widely among

resources. An additional complication arises because the allocation allotment of

some organizations might be insufficient to meet a user’s job requirements. Thus,

it becomes hard for the user to manage jobs and resources in the face of differing

policies, heterogeneous clusters, and non-customizable interfaces. Users need to

keep track of where their executables are stored, which jobs were submitted to

specific resources and what the output of the jobs was. We believe that a primary

goal of Grid interfaces is to allow the user to focus on their problem by making the

Grid transparent to the user.

1.3. A Grid Solution: Web Portals

Web-based portals provide a possible solution to the Grid management problem

by providing a web portal interface to Grids and allowing users to manage the Grid

resources from a single user-friendly interface. A Web Portal is a website that

provides a variety of resources and services to users inside a Portal framework,

such as the Yahoo.com Web Portal (5) (6). With a web portal interface, users can

quickly find the clusters and resources most suited for their specific requirements,

without having to login or look at each resource individually. Web portals are

made up of smaller parts, called portlets, which provide the information for a

3

section of the total page. For example, in an email portal page there might be a

portlet for sending email, one for viewing email, and a portlet that actually does the

technical details of sending and receiving mail.

 A Grid Portal is a Web Portal that provides access to Grid Services. These

services include: security services, remote file management, remote job

management, access to information services, application interfaces, and access to

collaboration (7). The advantage of Grid Portals is that they provide a “natural way

to incorporate ‘user-facing’ Grid services into the Portal environment” (7).

“Although client tools are capable of providing the most direct and specialized

access to Grid enabled resources, we consider the web browser itself to be a widely

available and generic problem solving environment when used in conjunction with

a Grid Portal” (3). Grid Portals hide the specific details of the Grid from the user

and present an interface where the Grid is transparent to the user.

 The UCLA (University of California, Los Angeles) Grid Portal (8) is a Grid

Portal developed for the UC Campuses. The UCLA Grid Portal hardware consists

of a portal machine and one or more appliance machines. The portal machine

hosts the website through which the Grid Portal is accessed. The appliance

machines are each connected to a cluster and to the portal machine. The portal is

therefore able to submit jobs and manage data on each cluster. The UCLA Grid

Portal supports PBS (9), LSF (10) and SGE (11) as cluster schedulers, which will

be described in Chapter 2. The UCLA Grid Portal provides data management, job

4

submission, and basic load and job information about each cluster. The UCLA

Grid Portal further provides the user with access to all of their shared clusters and

jobs in a single location so they can better manage files and jobs. However, the

UCLA Grid Portal suffers from two limitations, which leads to our thesis questions.

1.4. Thesis Questions

This thesis addresses the following two research questions: 1) How should we

extend the UCLA Grid Portal in order to provide more resources and better support

independent jobs, and 2) How should we enhance the feedback that the UCLA Grid

Portal provides to users?

1.5. UCLA Grid Portal: Limited Resources

 The UCLA Grid Portal is a great start towards providing Grid Computing to

the UC Campuses, but the resources it supports is limited. The UCLA Grid Portal

supports some cluster schedulers, e.g. PBS, SGE and LSF, but support for other

cluster schedulers is currently missing. One prominent cluster scheduler not

supported is Condor (12). Condor clusters, also called Condor Pools, can grow to

manage thousands of machines. This is primarily because a user can join a Condor

Pool and the machine will be available in the Pool only when it is not in use. The

5

UCLA Grid Portal could substantially enhance the resources it has available by

adding support for Condor as a cluster scheduler.

 Additionally, there are some types of jobs that Condor manages better than

other schedulers, namely mutually independent serializable jobs. Condor is capable

of transparently check-pointing jobs for failure recovery or migration, supports

more types of resources than other schedulers (desktops, clusters, etc), and has a

dynamic resource pool that grows and shrinks transparently. Therefore, adding

Condor clusters to the UCLA Grid Portal would both increase the amount of

resources available in the Portal and enhance its functionality. Furthermore,

Condor has many users that are currently using Condor, have executables optimized

for Condor, and want to continue using Condor in the UCLA Grid Portal. Without

Condor available in the Portal, these users would be limited in their ability to

benefit from the UCLA Grid Portal.

Our first goal was to extend the UCLA Grid Portal by increasing the resources

available in the Portal and adding functionality to the UCLA Grid Portal by

providing support for Condor as a cluster scheduler.

1.6. UCLA Grid Portal: Limited Feedback

 The UCLA Grid Portal enables users to submit jobs to many clusters, each

with its own scheduling policy and current load on the cluster. The user faces the

question: how do I decide where to submit my jobs?

6

Currently, the user would look at the Resources section of the Portal to find out

the cluster load, number of jobs running, and number of jobs queued on each

cluster. From there, the user would take his or her best guess about which cluster to

submit jobs to. This is not a good solution because the user has to make job

scheduling decisions with insufficient information, limited feedback from the

UCLA Grid Portal, and no way to know which cluster is best for the job. Because

users can not adequately decide where to submit jobs, this can also lead to load

imbalances among the clusters connected to the UCLA Grid Portal. Finally, users

have no way of knowing when their job will begin running other than to

periodically check the Web Portal to see if the job has started. On many resources,

jobs from different users are placed in a queue until scheduled.

 The Queue Bounds Estimation from Time Series (QBETS) system, a

member of the Network Weather Service (NWS), provides job monitoring and

queue delay prediction capability to clusters. QBETS is capable of returning either

an upper bound on the time a job will wait in a queue before running (queue delay)

or the probability that a job will be scheduled before a deadline. Adding QBETS to

the UCLA Grid Portal provides the user with an upper bound regarding when their

job will start, which the user can use for job scheduling decisions and submit jobs

to the clusters that will start their jobs the soonest.

 Our second goal was to extend the UCLA Grid Portal by integrating

QBETS into the Portal in order to provide queue delay predictions to users to help

them decide where they should submit jobs based on current load conditions.

7

1.7. Approach To Integrating Condor with the UCLA Grid Portal

 In this thesis we will show that it is possible to support clusters using

Condor as a cluster scheduler in the UCLA Grid Portal. Our approach to

integrating Condor as a cluster scheduler for the UCLA Grid Portal is the

following. We first investigated an approach based on using a standalone Condor

portlet that would create a Condor specification file (called a description file),

transfer the description file via GridFTP to the appliance and then submit the job to

the Condor scheduler from the appliance. The primary advantage of this approach

was that the user had complete control over the Condor description file, so

advanced Condor users would find the interface and control over their jobs to be

similar to how they were currently creating Condor description files. However, the

UCLA Grid Portal is based around using job managers provided through Globus

(13), a Grid development toolkit. Using a Globus-based job manager to submit

Condor jobs meant sacrificing some of the flexibility of Condor in the Portal in

exchange for consistency with the rest of the Portal and ease of development. This

was the approach we ultimately chose.

 Cluster load, job, queue and machine information is provided by the

appliance to the portal for all job schedulers. It was necessary to write index scripts

in the appliance to report this information from Condor to the portal. We wanted

the Condor integration to be transparent to the user, so the resource and job

information from the index scripts must provide the same information to the portal

8

as the scripts for the other cluster scheduler index scripts. Finally, we modified

portal code to support Condor as a cluster scheduler.

1.8. Approach to Integrating QBETS into the UCLA Grid Portal

 In this thesis we will show that it is possible to integrate QBETS into the UCLA

Grid Portal. Our approach to integrating QBETS into the UCLA Grid Portal is

separated into two distinct parts: what was necessary to integrate QBETS on the

appliance machines and what was necessary on the portal machine. On the

appliance, we find any new job information and send it to the QBETS backend

prediction system. In the portal, we create a QBETS portlet. A portlet is a small

part of the total portal with limited HTML capabilities. The QBETS portlet gets the

list of clusters that the user has access to, intersects those clusters with the clusters

known in the QBETS database, and gets a prediction from each matching cluster

through a web service call to the Batch Queue Prediction Web service. The portlet

then partitions the clusters into clusters that are currently alive in the portal (and

clusters not alive) and then sorts the resulting sections by the prediction result.

1.9. Outline

 Chapter 1 of this thesis introduces and motivates Grid Computing, what it is

and why it is important. It discusses current Grid problems and how Web portals

are helping to solve some of the Grid challenges. Next, we introduce the UCLA

9

Grid Portal, outline the approach of our work in this thesis, and explain how our

work will enhance the UCLA Grid Portal.

 Chapter 2 presents the background and related work in Grid Computing.

We expand on Grid Computing and Web Portals and discuss the current state of the

art in Grids and Web Portals. We review some necessary background for this

thesis, including Globus, the UCLA Grid Portal, Condor and QBETS.

 In Chapter 3 we cover the specifics of the thesis, with an in-depth

discussion of the experimental appartus and the challenges that we faced integrating

Condor and QBETS into the UCLA Grid Portal.

 Chapter 4 describes our approach to integrating Condor and QBETS into the

UCLA Grid Portal. We explain in detail how the integration works and how we

overcame the challenges raised in Chapter 3.

 Chapter 5 presents the results of this thesis, complete with screenshots of

the UCLA Grid Portal in action and an explanation of what the main pages of the

UCLA Grid Portal do and how to use each one.

 In Chapter 6, we discuss the lessons learned from this thesis and future

work. We cover a few of the behind-the-scenes technical problems that we faced

and how we solved them and discuss the possibility of introducing Condor glide-in

into the UCLA Grid Portal and enhancements to QBETS.

10

 In Chapter 7, we conclude the work we have done in this thesis and review

how our work enhances the UCLA Grid Portal.

11

2. Background and Related Work

 In Chapter 2 we present the necessary background information and related

work for this thesis. In 2.1 we discuss Grid Computing and in Section 2.2 we

present a tool for building Grids, the Globus Toolkit. In 2.3 we cover Web Portals

as a way to provide web interfaces for Grids. In section 2.4 we look at related work

in Grid Computing. Section 2.5 introduces the UCLA Grid Portal. In 2.6 we

present the details of Condor. And in section 2.7 we discuss the QBETS system.

2.1. Grid Computing

 Large-scale computational Grids facilitate the sharing of resources by

connecting clusters, supercomputers, storage and other resources together through

the Internet. These resources are typically heterogeneous and are provided by

different organizations. The term computational Grids refers to the infrastructure

that enables the increases in shared resources such as computer cycles, data,

sensors, etc. The important features of computational Grids are the Grid

infrastructure, dependable service, consistency of service, pervasive access, and

inexpensive access to the Grid. Together these features will “cause computational

Grids to have a transforming effect on how computation is performed and used”

(1). Computational Grids have the potential to dramatically increase the amount of

storage and computational capability available to their users.

12

 The architecture of a Grid is illustrated in Figure 1. The Grid in Figure 1

consists of three organizations connected together by the Internet. Each

organization has its own resources shared on the Grid. The shared resources are

optimized for each organization’s goals, policies and security requirements and

access to those resources is through the Internet.

N
etw

ork
N
et
w
or
k

Figure 1: Architecture of a Grid

 Computational Grids will be more useful and in higher demand in the future

due to innovations in five key areas: technological improvements, increase in

demand-driven access to computational power, increased utilization of idle

capacity, greater sharing of computational results, and new problem solving

techniques and tools (1). Behind each of these technical advances are the

13

“synergistic use of high performance networking, computing, and advanced

software to provide access to advanced computational capabilities, regardless of the

location of users and resources” (1) Based on experiences in gigabit testbeds, the

five major application classes that will be popular for computational Grids are:

Distributed Supercomputing, High-Throughput Computing, On-Demand

Computing, Data-Intensive Computing, and Collaborative Computing (1).

 Computational problem solving has already proven effective for a wide

variety of interesting problems: from modeling and simulations to chemistry,

biology and medicine. However, scientists continually need access to more

computational facilities to solve newer and bigger problems. Many projects get

scaled down from the original design due to a lack of available computing power or

resources (1). Grid computing provides a means for organizations to share

resources without giving up autonomy over the resources.

2.2. Globus

 Globus is a standardized Grid development toolkit that is used “as a

fundamental enabling technology for the Grid. This allows people to share

computing power, databases, and other tools through a secure online mechanism

without sacrificing local autonomy” (14). The Globus Toolkit was first released in

1998 and was initially developed at Argonne National Laboratory, University of

Sourthern Califronia’s Information Sciences Institute and the University of

14

Chicago. The Globus Toolkit provides a set of libraries and programs that address

problems that occur when building distributed system services and applications

(15).

 Globus provides three broad features to the Grid developer. The first

feature is a set of service implementations. These services address execution

management, data access and movement (GridFTP, RFT), monitoring and

discovery, and credential management. GridFTP is a File Transfer Program (FTP)

designed specifically for Grids. The credential management feature of Globus

provides support for storing, managing, transferring, and verifying security

certificates. The notion of GSI (Grid Security Infrastructure) certificates in Globus

is important, because every user and service is identified via a certificate. The

motivations behind GSI certificates are a need for secure communication

(authenticated and confidential) among elements of a computational Grid, a need to

support security across organizational boundaries (prohibiting a centrally-managed

security system), and the need to support “single sign-on” for users of Grid,

including delegation of credentials for actions that involve multiple resources

and/or sites (16). GSI provides four pieces of information: subject name to identify

the person or object the certificate represents, the public key of the subject, the

identity of the Certificate Authority (CA) that has signed the certificate to certify

that the public key and the identity both belong to the subject, and the digital

signature of the named CA. Certificates provide identity management and allow

services to accept users in groups instead of having to individually accept users.

15

For example, a resource could choose to grant access to all users that have their

certificates signed by a specific CA instead of having to individually grant access to

each user that fit specific qualifications.

 The second feature Globus provides is containers to host user-developed

services written in Java, Python, or C. “These containers provide implementations

of security, management, discovery, state management, and other mechanisms

frequently required when building services” (15). The third feature Globus

provides is a “set of client libraries [that] allow client programs in Java, C, and

Python to invoke operations on both GT4 and user-developed services” (15).

 The Globus Toolkit is useful because it provides a standardized set of Grid

development tools to Grid developers. This means that different Grids will tend to

have a similar underlying infrastructure which will allow Grids to be interconnected

easier and expedite Grid development. Because of the advantages Globus presents,

many Grids utilize the Globus Toolkit.

2.3. Web Portals

 A Web Portal is a web site that offers a variety of resources and services

such as email, search engines, online shopping, or news articles. More specifically,

a Web Portal is a “Web application that provides every user their own

individualized and personalized single place to access the information, applications

and processes of an organization” (6). Examples of well known Web Portals are

16

Yahoo.com, Usa.gov and Amazon.com. Web Portals are “characterized visually by

the dynamic arrangement of one or more windows of information and functionality

on a single Web page” (6).

 Web Portals are made up of individual parts, called portlets, which provide

visual and functional support for the Portal. Portlets often consist of Java Server

Pages (jsp) that typically handle the visual presentation of the portlet information

and Java Classes that provide portlet functionality. Each portlet handles a small

section of the Web Portal. The term Portal generally refers to the Portal Server or

Engine which is responsible for “aggregating and laying out content from portlets

on a page” (5). Portlets process requests and generate dynamic content on web

pages and are collectively managed by a Portlet Container. Portlets generate

“Markup Fragments” for display within the encompassing Portal page.

Figure 2: Creation of a Portal Page

 Figure 2 presents the steps required for the creation of a page within a Portal

framework. The content generated by the portlets is sent to the Portlet Container.

17

The Portlet Container then sends the merged content to the Portal Server. The

Portal Server generates the page on the website, which is what the client sees. In

Figure 2, each portlet provides the content for a small portion of the entire page.

 Web Portals are designed to simplify access to diverse resources. Portals

are readily extensible, easy to develop for, and easy to modify or change.

Individual portlets can be developed and tested in isolation and then added to the

overall Portal. In the commercial space, the Yahoo.com and Amazon.com Portals

have proven successful at providing a variety of information to their users.

 We have seen that Grids provide access to additional resources for their

users. The following question should then be raised: Why are there not more Grids

in production or development? A main problem facing Grid Computing is resource

management and this is a problem that Web Portals can provide a solution for.

 Grids are hard to manage because they are a conglomeration of

heterogeneous resources provided by many different organizations, each of which

has their own organizational policies, requirements and goals. Additionally, the

interfaces provided to manage Grid resources provide specialized and direct access

to complicated tools within a non-customizable interface. Thus, it becomes

difficult for the user to have adequate job and resource management in the face of

these difficulties (3).

 Web Portals have the potential to solve Grid Management problems because

they can provide users with an easy-to-use interface that can hide Grid-specific

18

details and present information about the entire Grid in a single page accessible

from the Internet. “The Grid has not yet become a disruptive technology in its own

right. However, with the use of Web-based portals for the delivery of scientific,

informational, experimental and computational services using a Grid infrastructure

it may have the potential to be one” (5). A Web Portal that is used for Grid

Services is known as a Grid Portal. “A Grid Portal is a problem solving

environment that allows scientists to program, access and execute distributed ‘Grid’

applications from a conventional Web Browser and other desktop tools…The goal

is to allow the scientist to focus completely on the science problem at hand by

making the Grid a transparent extension of their desktop computing environment”

(7).

 Grid Portals provide the functionality of Grid Computing without the

management and organizational difficulties common to Grids. Grid Portals make

distributed, heterogeneous Grid environments more accessible to users by utilizing

common Web and UI conventions and provide users with the capabilities to

customize the content and presentation (e.g. page layout, level of detail) for the set

of tools and services provided in the portal (7). Due to their advantages, Grid

Portals have become a popular way to present Grid resources to users in a single,

comfortable interface. Some of the contemporary Grid projects will be discussed

next.

19

2.4. Grid Computing Projects

 The most ambitious and well known Grid in the United States is the

TeraGrid (17), which includes resources from Indiana University, Oak Ridge

National Laboratory, National Center for Supercomputing Applications, Pittsburgh

Supercomputing Center, Purdue University, San Diego Supercomputer Center,

Texas Advanced Computing Center, University of Chicago/Argonne National

Laboratory, and the National Center for Atmospheric Research. The TeraGrid joins

resources at nine sites through an “ultra-fast optical network, unified policies and

security procedures and a sophisticated distributed computing software

environment” (18). “The TeraGrid provides more than 102 teraflops of computing

capability and more than 15 petabytes (quadrillions of bytes) of online and archival

data storage” (19). The TeraGrid was designed according to the following core

policies: users should have a single identity even with multiple computer accounts,

a single accounting currency, the “TeraGrid Service Unit”, a unified support team,

a unified infrastructure, and a unified documentation and training “programme”

(18). The single identity per user is provided by the use of the certificates that were

discussed with Globus in 2.2. The TeraGrid uses a “coordinated set of Grid

middleware, including the Globus Toolkit, OpenSSH, SRB, Myproxy, and Condor-

G” (18). The TeraGrid is a large and successful Grid, however it requires a unified

architecture and a single currency. The TeraGrid is appropriate for large

supercomputing sites, but its model is not feasible for a diverse group of

20

heterogeneous clusters that each want to keep cluster architecture and scheduling

the same, but also share resources on the Grid.

 The Java CoG kit (20) is a project to help develop Commodity Grids (CoGs)

with “twin goals of (a) enabling developers of Grid applications to exploit

commodity technologies wherever possible and (b) exporting Grid technologies to

commodity computing (or, equivalently, identifying modifications or extensions to

commodity technologies that can render them more useful for Grid applications)”

(20). The Java CoG kit is a Grid Toolkit that “defines and implements a set of

general components that map Grid functionality into a commodity

environment/framework” (20). The mappings provided by the Java CoG Kit are:

Low-Level Grid Interface Components such as resource management services and

data access services, Low-Level Utility Components such as information service

functions or the Globus Job submission language, Common Low-Level GUI

Components such as editors, browsers and search components, and Application-

specific GUI components to simplify the “bridge between applications and basic

CoG kit components, examples of which are a stockmarket monitor, a graphical

climate data display component, or a specialized search engine for climate data”

(20). The Java CoG kit is similar to the Globus Toolkit in purpose, however it is

developed to bring the commodity environment onto the Grid instead of connecting

Grids together.

 Legion (21) (22) is an object-based metasystem developed at the University

of Virginia. Legion provides software infrastructure to allow a system of

21

heterogeneous, geographically distributed, high performance machines to interact

seamlessly. Legion attempts to provide users with a single coherent virtual

machine at their workstation. The Legion Grid Portal (23) depends on the Legion

infrastructure for managing a Grid. It presents the entire Grid as a single virtual

machine to users and presents a “truly distributed file system” (23). A unique

feature of Legion is that every “first-class entity” in Legion, such as files,

directories, machines, disks, users, consoles, programs, etc. is an object. Legion is

an interesting Grid Portal, however we believe that it is desirable for the user to

know where their jobs are running and details about the underlying architecture.

We present Legion here as an example of one of many Grid Portals in development

and discuss the Grid Portal we chose to work with, the UCLA Grid Portal, next.

2.5. UCLA Grid Portal

 The UCLA Grid Portal is a Web Portal interface to a Grid that will be set up

on each UC Campus. Additionally, there will be a UC-Wide Grid that will be

shared with each campus Grid. The UCLA Grid Portal is being developed for the

UC System by the UCLA Grid Team with Academic Technology Services at

UCLA.

 The UCLA Grid Portal increases the amount of shared resources available

to students and faculty members by allowing convenient access to a variety of

different resources with a single login and from an easy-to-manage website. The

22

UCLA Grid Portal will allow departmental clusters to be shared to a specific

department, UC campus, or UC wide through security certificates. The department

can specify which certificates they want to give access to and only users with those

certificates may access the resource. The UCLA Grid Portal allows users to access

shared clusters, create, transfer, upload and delete files, move files between

clusters, submit and check the status of jobs, check the load and status of clusters,

and otherwise manage job submission and data among a variety of different

clusters.

 The UCLA Grid Portal architecture consists of a single portal machine and

one appliance machine for each cluster that is connected to the UCLA Grid Portal.

Figure 3 shows this architecture. The users communicate directly with the portal

machine, which communicates with each appliance machine. Each appliance is

connected to its respective cluster headnode to access the cluster scheduler and the

users’ home directories. A cluster headnode is the “entry point into the cluster

[which] receives all jobs submitted to the compute cluster. The headnode hosts the

cluster’s scheduler service, whose role is to match the resources requested by the

submitted jobs to resources available across the cluster” (24). To add another

cluster to the UCLA Grid Portal requires connecting an appliance machine to the

portal machine and cluster headnode.

23

Figure 3: Architecture of UCLA Grid Portal

The communication between the portal machine and appliance machines is

accomplished through the Globus, which runs on both the portal and the appliance

machines and provides communication through GridFTP. New clusters are added

to the Portal in the Web Portal interface by providing the Web Portal with the

appliance node, name of the cluster, cluster headnode, and scheduler used by the

cluster.

We see the unique contribution of the UCLA Grid Portal as its ability to

hide the complexity of the Globus installation from the user and the cluster

administrator through its portal and appliance architecture. If a cluster wants to join

the UCLA Grid Portal, it only needs to setup an appliance machine, connect it to

the cluster headnode, and then add the cluster to the UCLA Grid Portal. Moving

the Grid software off the cluster headnode and onto the appliance machine allows

the UCLA Grid Portal to provide a “plug-n-play” installation. Outside the UCLA

24

Grid Portal, to install a Grid Portal or other Grid often requires installing Globus on

the cluster headnode, a time consuming and often undesirable task, in addition to

installing the Grid software itself.

The difficulty with installing Globus on a cluster headnode is due to the fact

that it is usually not a “fresh” install and the headnode could be using many

possible hardware configurations. The cluster headnode is also hosting the cluster

scheduler, storing scheduler log files and managing job submission. Therefore, it is

not desirable to remove all files from the cluster headnode and setup Globus and the

headnode on a fresh machine. Because of this, trying to install Grid software into a

cluster headnode involves trying to merge the Grid requirements with the pre-

existing cluster scheduler installation. Additionally, some secure clusters do not

want to expose the cluster headnode to potentially unsafe code and would not want

the Grid software to run on the headnode. With the UCLA Grid Portal this

requirement does not present a problem; the cluster only has to give the appliance

limited access to the cluster headnode. Furthermore, in the UCLA Grid Portal, the

appliance-style installation comes with Globus already installed on the portal and

appliance machines and it is relatively easy to add clusters to the UCLA Grid

Portal. Now that we have seen that it is easy to install the UCLA Grid Portal and

add clusters to the Portal, we present the details of how the portal and appliance

relationship in the UCLA Grid Portal works for communication, job submission,

and what functionality is provided by cluster schedulers.

25

For communication, the portal machine finds out cluster information from

the appliance that is connected to each cluster. The appliance runs index provider

scripts (background processes) that publish cluster-specific information to a

Globus-provided URL that the portal machine periodically queries for updates. The

index provider scripts are customized for each supported cluster scheduler,

currently SGE, LSF, and PBS. The index provider scripts expose scheduler

information to the user in the portal machine. Some specific information that is

exposed is: cluster load, total nodes, number of free nodes, number of jobs running,

number of jobs queued, machines in the cluster and their characteristics, any

specific job requirements of the cluster, and other cluster specific information.

For job submission, the UCLA Grid Portal enables users to submit jobs to

clusters through the Web Portal interface. From the user’s perspective, the user

selects a cluster to submit a job to and specifies the various job parameters. When

the UCLA Grid Portal processes a job submission the following steps happen, as

shown in Figure 4. The user creates a GRAM (Grid Resource Allocation and

Management) file with the various job parameters. The portal machine passes the

GRAM file through GridFTP to the appliance machine connected to the cluster

where the job is submitted to. Globus, running on the appliance, takes the file and

looks at the field specifying the cluster scheduler and determines which job

manager to use (Condor, PBS, LSF, SGE). The respective job manager generates a

scheduler submit file, called a description file, with the job details in the specific

form the cluster scheduler requires and submits the description file to the scheduler.

26

The scheduler then schedules and runs the job according to its scheduling policies

and reports the job’s stdout or stderr back to the Portal. One requirement of this

implementation is that the executable file has to be present on the cluster where the

job is submitted to. The Data Manager inside the UCLA Grid Portal allows users

to move files between clusters to satisfy this requirement. The Data Manager also

provides a way for the user to create file files, delete files, upload files from the

current computer, and otherwise provides file management among the clusters that

a user has access to in the UCLA Grid Portal.

Figure 4: Job Submission in the UCLA Grid Portal

The UCLA Grid Portal supports three cluster schedulers: PBS (Portable

Batch System), SGE (Sun Grid Engine), and LSF (Load Sharing Facility). All

three cluster schedulers, also called batch schedulers, are similar. We will describe

27

the functionality provided by PBS, but these features are also found in SGE and

LSF.

 PBS is a batch job and resource management system. By batch, we mean

jobs that can be executed on a computer without human interaction. It will “accept

batch jobs (shell scripts with control attributes), preserve and protect the job until it

is run, run the job, and deliver output back to the submitter” (25). PBS provides the

following features: automatic load-leveling, file staging, job interdependency

(execution order, conditioned execution, synchronization), security and

authorization, username mapping, parallel jobs support, job accounting, and a

comprehensive API to write new commands, integrate PBS with applications, and

implement scheduler policies (25). PBS is primarily used to manage parallel jobs

run on large clusters but it is equally capable of managing serial jobs.

PBS provides two main commands to get cluster information: qstat and

pbsnodes. Qstat provides queue and job information about the PBS cluster and

can be used to find out about queue load and the jobs that are either executing or

waiting to execute. Pbsnodes provides machine specific information about each

machine in the cluster and can be used to see the status and architecture of specific

machines.

In short, PBS allows the user to submit batch jobs to a scheduler and PBS

will schedule the jobs on the machines it manages and return the output of the jobs

to the user. PBS is typically used in a run-jobs-for-specified-time scheduler

28

paradigm, where the user requests a PBS timeslot for a certain time, and at the end

of the timeslot the job is killed if it has not finished. In contrast to PBS, the

functionality provided by Condor is discussed next.

2.6. Condor

 Condor is a specialized cluster scheduler and job manager that is optimized

for multiple independent serializable jobs and compute-intensive jobs. Condor was

developed by the University of Wisconsin-Madison and the first Condor production

system was deployed in the late 1980s. Currently, in the UW-Madison Computer

Science Department, Condor manages more than 1000 workstations (26) and has

been installed on thousands of machines elsewhere.

 Condor is different from other schedulers such as PBS, LSF, and SGE

because it was originally developed to utilize CPU cycles from idle workstations,

whereas the other schedulers are primarily batch schedulers for parallel jobs that

run on clusters. “Like other full-featured batch systems, Condor provides a job

queuing mechanism, scheduling policy, priority scheme, resource monitoring, and

resource management” (26). Condor operates under a run-when-free paradigm

versus the run-for-a-specific-time paradigm that other batch schedulers follow.

This means that when a job is submitted to a Condor Pool it will run whenever

there are free resources, and wait when all resources are in use. Condor jobs

running in the Condor Standard universe, a universe that requires executables to be

29

compiled by the condor_compile command, can transparently checkpoint jobs

when resources are no longer available and restart the job from the checkpoint as

resources become free.

Condor submits jobs to a group of machines that are connected together by

Condor, called a Condor Pool. A Condor Pool consists of a central manager and

any number of other machines that have joined the pool. Conceptually, a Condor

Pool can be viewed as a collection of resources (machines) and resource requests

(jobs) (26). There are three roles that a machine can have in a Condor Pool: central

manager, execute node, and submit node. Machines (nodes) can possess multiple

roles, i.e. many machines will probably be both execute and submit machines. The

first role is the Central Manager, of which there is only one in the Pool. The

Central Manager is the collector of job and node information and the negotiator

between resources and resource requests. The second role is execute machine,

which are the machines that are configured to accept and execute Condor jobs.

There must be at least one execute machine in a Condor Pool in order for jobs to

run. The third role is submit machine, which are the machines where Condor jobs

can be submitted from.

For job submission, a user submits a job at a submit machine. The submit

machine sends the job information to the Central Manager, which then acts as a

matchmaker between jobs and free nodes. When it finds a match it tells the

submission node and the free node about each other and then those two nodes

30

communicate to execute the job. The user submits a job specification file at the

submit machine, called a Condor Description file. The description file specifies the

job name, location of the executable, where the stdout and stderr should be written,

job arguments, the number of times the job should be run, and other job submission

parameters. The job then runs on the Condor Pool as long as resources are

available.

 Condor Pools are typically large because machines can be added to a

Condor Pool without degrading the user’s performance. Additionally, any machine

capable of running Condor can be part of the Condor Pool. Thus even personal

desktop computers and laptops can be members of the Condor Pool and provide

resources whenever they are not in use. The user is willing to share their

workstation because they experience no degradation of performance by joining a

Condor Pool. Condor facilitates cycle stealing in the following manner: when a

machine is not in use then it is considered free and available to be used by Condor

and Condor will schedule jobs on the machine as long as it remains free. When the

computer is considered used again (the mouse or keyboard is touched), Condor will

checkpoint the job if possible or kill the job if necessary and the job will be sent

back to the Condor scheduler to be rescheduled. This design for cycle stealing

encourages users to share their machines with Condor because users can benefit

from a Condor Pool when they need additional resources, and share their own

machines in the Pool without experiencing any performance loss.

31

 Even though Condor Pools are large, users might still require access to more

resources. In this case, Condor has a feature called Flocking that enables jobs to

“flock” between multiple Condor Pools. Flocking allows a Condor master node to

send jobs to other Condor Pools when the current Pool is busy. Flocking

effectively merges Condor Pools together and increases the resources available to

all merged Pools.

Like other cluster schedulers, Condor provides status commands to

determine the state of the Pool, the individual machines on the Pool, and jobs

submitted to the Condor Pool. These commands are used by Condor and its users

to evaluate the load on the Pool and determine if flocking is necessary. Condor_q

loosely compares to the qstat command provided by other cluster schedulers and

condor_status loosely compares with pbsnodes. Condor provides the

condor_q command to view the status of all jobs running, scheduled, and held on

the cluster, the name of each job, when the job was submitted, the current state of

the job, and other relevant job information. The other main Condor command,

condor_status, provides information about the machines in the Condor Pool.

Specifically, condor_status returns how many machines are free, used, or are

running jobs and the architecture of each machine in the Condor Pool. The

information reported by condor_status is used by Condor to find matches

between the requirements of jobs and the requirements of machines.

32

Figure 5 shows how the Condor Matchmaking Process works. Jobs and

machines advertise with the Condor Matchmaker (part of the Condor Master node)

and the matchmaker finds a match based on a negotiation algorithm and sends a

notification to both jobs and machines. The jobs and machines claim each other

and communicate directly while running the job. If the owner of a machine

claimed by a job returns, the job gets check-pointed, advertises its status with the

Matchmaker, and waits to be scheduled with a new machine that matches the job’s

requirements.

Figure 5: Condor Matchmaking Process

Machines and jobs advertise with the Condor Matchmaker through

“Classified Advertisements” (ClassAds), which are reported by condor_status.

ClassAds are used for describing jobs, workstations, and other resources,

exchanged by Condor processes to schedule jobs, logged to files for statistical and

debugging purposes, and to enquire about the current state of the system (27).

ClassAd matching is used by the Condor central manager to determine the

33

compatibility of jobs and nodes where they may be run (27). ClassAds are to be

considered the “lingua franca of Condor” (27), a language that is used to

communicate with others, who speak a different, unknown language.

2.7. Queue Bounds Estimation from Time Series (QBETS)

 The Queue Bounds Estimation from Time Series (QBETS) system (28), a

part of the Network Weather Service, consists of two parts: a monitoring system

deployed on clusters and a backend prediction system that processes the data

recorded from the monitors to generate predictions. The monitoring system

consists of sensors and monitors that collect the job accounting information, e.g. by

parsing log files of the job scheduling system, and send the information to the

backend prediction system. The prediction system is constantly processing the

accounting information for each cluster queue pair and updating predictions.

QBETs makes queue delay predictions for jobs submitted to specific clusters and a

queue for that cluster based on both past and current queue delays that similar jobs

have experienced. QBETS provides two types of predictions: wait time prediction

and deadline prediction. In wait time, given a job’s characteristics, QBETS will

return an upper bound on the time a job will spend in the queue before execution at

the specified confidence level, either 95, 75, or 50 percent. In deadline, given a

job’s characteristics and a deadline, QBETS will return the probability that the job

will start by the deadline.

34

Due to the architecture of Condor and the way nodes become free and used,

jobs are scheduled, check-pointed, moved among machines, and priority given to

individual users, QBETS cannot currently make predictions on queuing delays for

Condor Pools as a whole. QBETS is currently deployed in the Teragrid, and

several other Grids to provide predictions for PBS, LSF and SGE schedulers.

35

3. Challenges

 In Chapter 3 we present the main problems addressed by this thesis and the

challenges that came up in the course of the work. Section 3.1 presents and

motivates the thesis questions and the high-level approach to those questions. In

3.2 we discuss the experimental apparatus used in this thesis. Section 3.3 presents

the challenges involved with adding Condor as a cluster scheduler to the UCLA

Grid Portal. In 3.4 we cover the challenges of integrating QBETS into the UCLA

Grid Portal.

3.1. Research Questions and Motivation

 This thesis addresses the following research questions: 1) How should we

extend the UCLA Grid Portal in order to provide more resources and better support

independent jobs, and 2) How should we enhance the feedback that the UCLA Grid

Portal provides to users? First, we will consider the motivation for our research

questions. Second, we will explain how we chose to address the research questions

raised.

 The UCLA Grid Portal currently provides support for PBS, LSF, and SGE

as cluster schedulers, adding the resources managed by those schedulers into the

UCLA Grid Portal. It would be ideal for the UCLA Grid Portal to support as many

schedulers as possible in order to maximize the amount of resources available.

36

However, it is not feasible to support all possible cluster schedulers, but it is

feasible to add support for additional cluster schedulers. We chose to add support

for Condor both because it is a popular scheduler, because it better supports some

job types than the current facilities of the UCLA Grid Portal, and because it

operates under a different model than the supported schedulers, as discussed in

Section 2.6. The challenges of supporting Condor as a cluster scheduler will be

discussed in section 3.3.

 The UCLA Grid Portal currently provides limited feedback to users

regarding cluster conditions. It provides basic feedback to users trying to decide

where they should submit their jobs, specifically, cluster load, running jobs, and

waiting jobs at each cluster. This feedback is helpful, but limited in its

effectiveness for making scheduling decisions. It would be ideal if the UCLA Grid

Portal could provide users with a statistical prediction concerning which cluster is

most likely to start their job the soonest. As discussed in Section 2.7, QBETS

provides an upper bound on the queue delay a job will have at a specific cluster. As

far as we know, QBETS is the only system available that is able to predict queuing

delays based on current and past cluster conditions with a high degree of accuracy.

The challenges of integrating QBETS into the UCLA Grid Portal will be discussed

in section 3.4.

3.2. Experimental Apparatus

37

 The December 2006 version of the UCLA Grid Portal was installed on two

machines: one portal machine and one appliance machine. The portal machine is a

2.4GHz Pentium 4 with 1024Mb of physical memory. The appliance machine is a

2.4GHz Pentium 4 with 256Mb of physical memory. The operating system on both

machines is Fedora Core 4.0 and the database is mySQL version 14.7. The UCLA

Grid Portal provided Globus 4.0, Apache-tomcat-5.5.17 as a servlet container,

apache-ant-1.6.2 as a compilation tool, Gridsphere (29) as a portal framework

(Gridsphere is a free Portal framework similar to IBM’s WebSphere), and JDK-

1.50_05. We tested Condor with a cluster running Condor version 6.7.14 on the

cluster machines.

3.3. Extending the UCLA Grid Portal to Provide More Resources

 There were three kinds of challenges we faced while adding Condor to the

UCLA Grid Portal. First, we had to decide on a general approach for adding

Condor clusters to the UCLA Grid Portal. Second, we faced challenges to support

Condor in the appliance. Third, we faced challenges adding Condor to the portal

machine.

 The first challenge we faced integrating Condor into the UCLA Grid Portal

was deciding on the general approach to take. We saw two feasible approaches:

using a standalone portlet or using the Condor job manager provided by Globus.

 A standalone portlet would allow the user to directly create Condor

38

description files and directly access Condor commands concerning the status of the

Condor Pool, such as condor_q and condor_status. Using the Condor job

manager provided by Globus would allow the user to access a Condor Pool without

needing to know anything about Condor or how to submit Condor jobs. Globus

would provide the tools to translate job specifications into a Condor description file

and submit the job to the Condor Pool. We ultimately chose to use the Condor job

manager within Globus for reasons discussed in 4.1 and then faced the challenges

of supporting the Condor job manager in both the appliance and the portal.

 The main challenge we faced in the appliance to integrate Condor into the

UCLA Grid Portal was the creation of index provider scripts that provide cluster

scheduler information to the portal machine, as discussed in Section 2.5. These

scripts are customized for each cluster scheduler. The UCLA Grid Portal had

created scripts for PBS, LSF and SGE, but we had to create the index provider

scripts for Condor.

 While creating index provider scripts for Condor, we encountered several

complications. First, the scripts need to report the same information in same format

as other cluster schedulers for the portal to parse the information and display it on

the Web Portal. Condor_q and condor_status loosely compare to

commands provided by other cluster schedulers, however, both the information and

format is significantly different from the other cluster schedulers. Some

information, such as the notion of queues, is not directly relevant in Condor

39

because Condor supports Pools that dynamically, and transparently, grow and

shrink as resources join and leave the Pool. The challenges creating Condor index

scripts that are compatible with the portal machine was finding out what the

provider scripts should report to the portal, getting the relevant information from

Condor and putting the information in a form that the portal machine understands.

The index scripts provide the means for information to pass from the appliance to

the portal; next we discuss the challenges faced passing information from the portal

to the appliance for job submission.

 The main challenge for integrating Condor into the portal section of the

UCLA Grid Portal is in finding the most natural way to present Condor in the

Portal interface and tying the presentation logic to the back-end logic on the

appliance. The answer to this question depended on the general approach chosen to

integrate Condor into the UCLA Grid Portal. If a standalone portlet approach had

been used, then Condor job submission would have been different than other cluster

schedulers and would require a Condor portlet to be developed that could be used

for job submission and running Condor commands. Because we used the Condor

job manager within Globus, the challenge was providing support for the

requirements of the Condor job manager that are not already handled by the UCLA

Grid Portal, specifically Condor and multiple job types.

3.4. Extending the UCLA Grid Portal to Provide More Feedback

40

 There were two kinds of challenges we faced integrating QBETS into the

UCLA Grid Portal in order to provide more feedback to users. The first challenge

was installing and enabling the monitors that QBETS uses on the appliance

machine. The second challenge was building a QBETS portlet on the portal

machine that gets predictions from the QBETS backend database and outputs those

results to the user in a clear and understandable manner.

 In the appliance, QBETS gets job accounting information from the cluster

scheduler and sends the information to the QBETS backend database. The main

challenge with the appliance integration is that we do not want QBETS to require

any additional information over what is already needed to set up the appliance.

This requirement came from the desire to seamlessly add QBETS into the UCLA

Grid Portal and minimize the additional work required by the system administrator

to support QBETS. In order to integrate QBETS in the appliance without needing

more information we had to find out what cluster scheduler is used on the

appliance, find the log files for the jobs submitted to the cluster scheduler even

though the root location of the scheduler is controlled by the user, parse job

information efficiently from the log files, and send job information to the QBETS

backend database.

 After the job information is sent to the QBETS backend database, QBETS

generates predictions based off the job accounting information and the predictions

are displayed to the user in the Web Portal. The main challenge integrating QBETS

41

in the portal machine was building a User Interface (UI) that is fast, consistent

visually with the Portal, and returns comprehensive prediction information with a

single query.

42

4. Approach

 In Chapter 4 we present our approach to solving the challenges brought up

in Chapter 3. Section 4.1 discusses our approach to adding Condor to the UCLA

Grid Portal and in section 4.2 we cover our approach to integrating QBETS into the

UCLA Grid Portal.

4.1. Overcoming Condor Challenges

 There were three kinds of challenges we faced adding Condor to the UCLA

Grid Portal: the challenging of choosing the general approach, challenges in the

appliance with index provider scripts, and challenges in the portal machine with job

submission.

 When considering our general approach to adding Condor to the UCLA

Grid Portal, we saw two viable options: creating a Condor standalone portlet in the

UCLA Grid Portal or using the Condor job manager in Globus. We initially built a

prototype Condor standalone portlet before we had access to the UCLA Grid Portal,

and planned on adding the portlet directly into the UCLA Grid Portal. Figure 6

shows how job submission works with a Condor standalone portlet. The user

submits a job in the Portal, which creates a Condor Job Description file, and the

Description file gets sent from the Portal to the appliance through Globus’ GridFTP

43

service. Once the Condor Job Description File is on the appliance, it is sent to the

cluster headnode, which then submits the cluster scheduler.

Figure 6: Job Submission using Condor Standalone Portlet

 In contrast, Figure 7 shows how job submission would work using the

Condor Job Manager in Globus. The user submits the job in the Web Portal and the

Portal creates a GRAM file, as discussed in Section 2.2 regarding how the UCLA

Grid Portal handles job submission for all cluster schedulers. The Portal sends the

GRAM file to the appliance through GridFTP and Globus passes the GRAM file to

the job manager specified in the GRAM, which uses the GRAM to create a Condor

Description file. The Condor Description file is then submitted to the cluster

scheduler for execution.

44

Figure 7: Job Submission using Condor Job Manager

 Using the Condor job manager provided by Globus sacrificed some of the

flexibility of allowing the user to create their own Condor description files, but

enables Condor job submission to be consistent with other cluster schedulers and is

easier for the novice user to use. As a result of using the Condor job manager, it

turned out that a lot of the work done to build a prototype standalone Condor portlet

was not needed to integrate Condor into the UCLA Grid Portal because the Condor

job manager and the preexisting Portal code provided many of the necessary

features for integration. In the appliance, the only changes needed to support the

Condor job manager, other than the actual installation of the Condor job manager

within Globus, was the creation of Condor index provider scripts to communicate

cluster scheduler information from the appliance machine to the portal machine.

45

 The Web Portal displays cluster information, provided by the appliance

machines, in the Web Portal interface. Figure 8 shows how the Portal gets

information about shared clusters. The index scripts running in the background on

each appliance get cluster information from the cluster headnodes and then publish

the information to a URL. The Portal periodically queries the URL for each

appliance and displays the information to the user.

Figure 8: How the Portal Gets Information about each Cluster

 The information that the index scripts publish to URLs is formatted with

XML tags. This method of using XML tags enables the UCLA Grid Portal to

ignore formatting differences among cluster schedulers and focus on providing the

correct information to the Portal through index provider scripts.

46

 There are seven index provider scripts that we needed to create for Condor:

globus-info-provider, globus-load-provider, globus-job-

provider, globus-jobdetail-provider, globus-local-provider,

and globus-queue provider. For each script, we used a corresponding PBS

script as a template. The PBS commands pbsnodes and qstat roughly match

up with condor_status and condor_q. Condor_status returns

information about the machines in a Condor Pool and condor_q returns

information about jobs scheduled in the Pool. Each script provides information for

a specific part of the UCLA Grid Portal Resource Page, thus there is some overlap

between index scripts.

Globus-info-provider returns the CPU load on a cluster, total nodes,

free nodes, downnodes, running jobs, pending jobs, and peak performance. In

order to get this information, we used Condor_status to get the total nodes,

free nodes, and cluster load. One difficulty with using condor_status was that

it returns an entry for each CPU in the pool, and we only want the number of nodes

in the Pool. To account for this we hash each new machine to a hash table and

check to see if the machine has already been seen. If it has, then we skip to the next

entry. Any nodes that are down are not returned by condor_status, so the

down nodes field is always of value 0. Running and pending jobs are found

directly from condor_q. Peak performance, measured in peak Gflops, is

statically set in the PBS provider script so we also statically set peak performance

with the Condor version of globus-info-provider.

47

Globus-load-provider returns the CPU load, architecture, number of

processors, physical memory, memory-in-use, total swap space and free swap space

for each machine in the cluster. We used condor_status to get this

information from the Condor scheduler. However, Condor does not report actual

memory-in-use so we looked at the memory that was used on the machines with the

unix free command and in almost all cases the memory-in-use was close to all

physical memory available. Additionally, by default, Condor considers all physical

memory of a machine as available to be used even though some memory is used for

the operating system and background processes. We decided to report the used

physical memory as being equal to all available physical memory as reported by

free, as this was the most common case when evaluating the memory usage of

machines on our experimental cluster. This memory usage information is only used

when the user looks at the load link in the Resource Page of the UCLA Grid Portal.

Globus-job-provider returns information about each job submitted

to the cluster, specifically the job ID, job name, queue name, requested memory,

requested time, status of the job, start time, and elapsed time. This information can

be readily obtained from condor_q.

Globus-jobdetail-provider returns all information from

condor_q with the command –long option on a specific jobID to the user. It is

used to get detailed information about a specific job. We return all information

reported by condor_q –long directly to the user.

48

Globus-local-provider returns the hostname of the appliance

machine, the home directory of the cluster scheduler and the binary directory of the

scheduler. The information is found from the Linux commands: hostname,

which, dirname, and the Globus user’s environment.

Globus-queue-provider returns information about the queues that

are available in a cluster. Because Condor does not have queues, there were two

available options of simulating queues in Condor. One is to treat a Condor Pool as

a queue; the other is to treat each individual machine as a queue (because you can

specify which machine to submit jobs to). We decided that we should represent

each Condor Pool as a queue to stay consistent with what was represented for other

schedulers and because the average user is more concerned with information about

the Condor Pool as a whole than individual machines. We believe it would not be

as helpful to provide a list of individual machines as queues to the user and instead

believe the user is more interested in knowing what machines and processors are

available to a Condor Pool as a whole. We report the queue name, max CPU time,

max wall clock, max required CPUs, max total memory, max single memory, total

and free cpus, total nodes, running jobs and waiting jobs. We set the max required

CPUs to one because the Condor job manager with Globus 4.0 does not support

parallel jobs. We set the various job requirements (Max WallClockTime, Max

Total Memory, etc) to be unlimited (the default values) because those parameters

are specified on a per machine basis and not as one setting for the entire Pool. We

49

get the queue name from the Condor config file and use the Condor Pool name.

We get the other parameters directly from condor_q and condor_status.

 Now that the UCLA Grid Portal is capable of providing cluster scheduler

information from the appliance to the Portal, we need a way to submit jobs to

Condor clusters from the Web Portal interface. Because we used the Condor job

manager provided by Globus, we are able to use the same interface for Condor job

submission that the Portal uses for other cluster schedulers. Additionally, the

majority of the code to support a Condor job manager is already provided in the

Portal because specifying the cluster scheduler a job should use is a parameter in

the GRAM file that is sent from the Portal to the appliance.

 There are four types of jobs supported by the UCLA Grid Portal: single,

multiple, MPI parallel, and Condor. The Condor job manager initially worked with

single and multiple job types with no modifications needed in the Portal. MPI

parallel jobs are not supported by the Condor job manager in Globus 4.0. The

Condor job type was not previously supported in the Portal, so it was necessary to

discover why it was not working.

 The Condor job type initially reported two types of errors, a ProcessDied

error and an InvalidPathType error, depending on what executable was used while

testing the Condor job type. The UCLA Grid Team had used the Condor job type

in the past with a SGE job manager, so we initially assumed that we were mis-

configuring the Condor job manager in Globus. However, we eventually

discovered that the single and multiple job types run in the Condor Vanilla

50

Universe and the Condor job type runs in the Condor Standard Universe. The

Condor Vanilla Universe does not require any changes to executables in order to

run them; the Condor Standard Universe requires executables to be compiled

specifically for Condor (condor_compile is a command that Condor provides)

in order to be run. Our test process was dying because it was not compiled for

Condor and after using condor_compile on our test process, the Condor job

type worked. The InvalidPathType error came from the way that the Condor

Standard Universe deals with executable paths, which requires paths to be absolute

and not relative. We documented the requirements for Condor job types in the

Portal in the help page of the job submission portlet and modified the job

submission portlet to automatically provide an absolute path to the executable for

any Condor job types submitted to a Condor job manager and our integration of

Condor into the UCLA Grid Portal was complete.

4.2. Overcoming QBETS Challenges

 There were two kinds of challenges we faced adding QBETS to the UCLA

Grid Portal: challenges with the monitors in the appliance, and challenges adding

the standalone portlet into the Portal.

 The main challenge in the appliance was modifying the QBETS monitors to

get job accounting information and send that information to the QBETS prediction

database. Our approach can be broken up into several smaller steps, specifically:

51

finding out which scheduler is used on the cluster, finding the cluster scheduler log

files, efficiently parsing the log files for new jobs, and sending the results to the

QBETS database. We created a file called sitescript that is used by the QBETS

monitors to get job accounting information. The QBETS installation comes with a

background sensor that runs the sitescript file periodically, at an interval

configurable by the user. The background sensor then sends any new job

information to the QBETS prediction system. The appliance machine initiates

communication with the QBETS prediction system to avoid possible firewall issues

setup on the appliance because most firewall settings restrict incoming traffic, not

outgoing traffic.

 We did not want to require any additional information over what is required

in the appliance because QBETS should be fully integrated with the UCLA Grid

Portal and should not require any additional work by the cluster administrator to

support QBETS. We checked what is required inside Globus to set up a job

manager and what Globus does when a new job manager is added in order to see

what information we had available to use.

 Globus requires the environment variable GLOBUS_LOCATION to be set in

order to run and Globus creates a job manager folder inside

Globus_Location/etc/gram-service-<job manager> when

installing a new job manager. Inside sitescript, we identify the job manager folders

that have been created. When Globus adds a new job manager, it requires an

environment variable pointing to the home directory of the scheduler to be set. The

52

LSF scheduler is a special case and Globus expects LSF_ENVDIR to point to the

LSF configuration file. We use the cluster scheduler environment variable to find

the root directory of the scheduler and then search inside the home directory to find

the job accounting files. In the case of LSF we use the unix grep command to

search inside the configuration file for the root directory. The job accounting

information that QBETS sends to the backend database is: jobID, start timestamp,

wait time, nodes, walltime, and queue. In order to efficiently get job information

from the cluster accounting files, we only want to parse jobs that we have not seen

before. In order to do this, we modified code that was already in deployment for

QBETS and added the modifications to sitescript. We save all previously seen

jobIDs into a cache_db file and all previously parsed files (LSF and PBS) to

logcache_db file; SGE stores all job accounting information in a single file and a

logcache_db file is therefore unneeded. We store all relevant accounting

information to a waittime_log_db file, which gets periodically sent to the QBETS

backend database. Each time sitescript runs and attempts to parse new jobs, we

hash the contents of cache_db and logcache_db and then hash each new file or

jobid to see if it is in our hash of previously seen ids. If the file or jobid has been

seen we advance to the next entry, if not, we parse the id or file normally. The

monitors allow QBETS to send job accounting information from the appliance to

the QBETS backend prediction system, which can then be used to give predictions

in the Web Portal interface.

53

 QBETS is implemented as a standalone portlet in the UCLA Grid Portal

infrastructure and relies on the UCLA Grid Portal to provide a list of clusters

accessible by the logged-in user. Other than needing a list of accessible clusters

and their current status, QBETS has little reliance on the UCLA Grid Portal and

could be integrated into other Grid Portals with minimal effort. The QBETS portlet

was integrated as a standalone portlet in its own “tab” of the Portal because the

information provided by QBETS did not fit into the existing UI structure of the

Portal. The UI of the separate tab matches the general UI scheme of the Portal and

is consistent with the information provided by the Resource Page of the UCLA

Grid Portal. We separated the portlet into the frontend UI and the backend

information that populates the UI. The frontend UI, or presentation logic, is

handled by JavaServer Pages (JSP) and the backend information, or content logic,

is handled by Java classes. We used JavaBeans to pass information between the

JSP client code and the Java server code.

 The goal of the UI is to make QBETS easy to use, comprehensive (a single

prediction for all resources), and consistent with the rest of the UCLA Grid Portal.

The QBETS portlet is easy to use because only a few pieces of readily available

information is needed about each job: the prediction method desired (wait time or

deadline), number of nodes, runtime, and either deadline or quantile depending on

the prediction method. The user only needs one prediction per job because the

portlet gets a prediction for all cluster queue pairs that are accessible to the user for

the specified job. After the QBETS portlet gets all predictions, it first sorts the

54

prediction results into clusters that the Portal knows are alive and clusters that the

Portal does not know are alive and then sorts each category, alive and not alive,

according to the results of the predictions. Thus, the cluster queue pair at the top of

the output will have the highest prediction results for clusters that the Portal knows

are currently alive. The rest of the cluster queue pairs will be shown in sorted order

for each category of clusters alive and not alive. The last prediction category is

made of clusters that QBETS can never make a prediction for, specifically clusters

running Condor as a scheduler and, as mentioned in Section 2.7, QBETS can not

make predictions for Condor Pools as a whole. Finally, all prediction results are

color coordinated for easier viewing.

 With the QBETS portlet getting a prediction for every cluster queue pair

available to a user and checking the aliveness of each cluster, it became necessary

to find a way to get all predictions within a reasonable time. We made several

optimizations to speed up prediction requests. First, the portlet gets and saves an

XML document from QBETS web service that lists all available clusters when the

portlet is initialized and the portlet creates a list of the clusters it cannot make a

prediction for at that time. When a prediction is requested, the portlet intersects the

clusters that a user can access with all clusters known by QBETS and when an

intersection is found, the portlet gets predictions for all cluster queue pairs

involving the cluster and saves them to a list. After all predictions have been made,

the portlet gets the aliveness status of each cluster/queue pair by checking a Cluster

Service in the Portal. The Cluster Service is periodically updated when the Portal

55

queries the index scripts published by appliances. Therefore, the aliveness reported

in the Portal could be delayed by the interval that the Portal waits to check the

appliance index scripts, but in return the QBETS portlet is able to immediately

discover the aliveness of each cluster. The QBETS portlet gets the predictions from

the QBETS database through a web service query and uses a SOAP (Service

Oriented Architecture Protocol) client to perform the web service request. As a

result of our approach, the user is able to get fast and comprehensive predictions

from the QBETS portlet to use when making job scheduling decisions.

56

5. Results

 In Chapter 5 we present our results in the context of the overall UCLA Grid

Portal. In Section 5.1 we present the Home Page of the Portal. In Section 5.2 we

cover the Resource Page and the index provider scripts that were written for

Condor. Section 5.3 demonstrates the Job Services page and how to submit jobs to

the Condor scheduler and in 5.4 we look at the NWS Page with the QBETS portlet.

Figure 9: Home Page

5.1. Home Page

 Figure 9 presents the home page of the UCLA Grid Portal. This is the first

page the user sees when he or she logs into the Portal. The name of the Portal is in

the top left corner of the page, the current username and logout button is in the top

57

right corner of the page. Underneath the Portal name are the seven main tabs in the

Portal: My Home, Resources, Data Manager, Job Services, Other Grids, Advanced,

and NWS. Each tab handles a specific area of the Portal and presents portal pages

for those sections. Underneath the main tabs are the subtabs for the currently

selected main tab, in this case the subtabs for My Home are My Home, Add A

Cluster, and Feedback. The subtabs navigate to specific pages within the maintab

area. The subtab currently selected is My Home, which informs the current user the

status of the clusters they can access on the left side of the page and the status of

their most recent jobs on the right. The clusters on the left side are links that can be

clicked to see more information about each cluster and the jobs provide current

information about recently submitted jobs. The My Home page is provided by the

UCLA Grid Portal and our work did not affect this page.

5.2. Resources Page

 The Resources Page provides status information about each cluster

accessible by the current user. The Resources Page uses the information that the

index provider scripts written for cluster schedulers on the appliance publish to a

URL. We did not write the code for generating the UI for the Resources Page, but

our Condor index scripts provide the information in the Resources Page for clusters

running Condor, in this case the mayhem cluster.

58

Figure 10: Portal Resources Page: Main Page

 Figure 10 shows the Resources Page of the UCLA Grid Portal. The page

presents a table with information about each cluster that the user can access and the

information for each row of the table is provided by the globus-info-

provider script. The first column of the table has the cluster name link, second is

the cluster status, third is a link to cluster [CPU] load, then comes total nodes, free

nodes, down nodes, running [jobs], queued [jobs], and Peak Performance. Last, are

links to queues supported by the cluster and jobs running on the cluster. In this

screenshot, the mayhem cluster is currently alive with 12.9% load, 31 total nodes,

27 free nodes and 0 running jobs. The clusters IUTeragrid, BigBen and

DatastarP690 are currently down, which means the appliance running on the

cluster is either down or not communicating correctly with the cluster headnode.

59

The mayhem cluster in the table is using a Condor cluster scheduler, and the

information provided by mayhem is from the index provider scripts that we wrote

during this work.

Figure 11: Resources Page Cluster Information

 First we present the cluster information provided by the Resources Page

after the mayhem cluster link has been clicked. Figure 11 shows that the user is

provided with cluster information and specific information about the machines in

the cluster. This information is from the index script globus-clusterinfo-

60

provider, the only index script we did not need to modify because it only

provides statically set text to the user.

Figure 12: Resources Page Load Information

 After viewing cluster information, we look at the information that the

Resources Page provides after the “load” link of the mayhem cluster has been

clicked. At the top of Figure 12 we see a graph showing the load on each machine

in the cluster and below the graph is a table with detailed information about each

machine in the cluster, in particular the machine name, operating system, number of

processors, load on each machine, physical memory, memory used, swap space and

61

swap space used. This information is provided by the globus-load-

provider index script we wrote for the Condor scheduler.

Figure 13: Resources Page Queue Information

 Figure 13 shows the Resources Page after the “Queues” link on the mayhem

cluster has been clicked and presents the output of the globus-queue-

provider script we wrote for Condor. In the case of Condor, Figure 13 provides

information about a Condor Pool instead of a queue in a cluster. The “Queues” link

is less useful for a Condor scheduler because there is only one “queue” in Condor,

the Condor Pool. With other batch schedulers the “Queues” link can show the user

what resources are available in each queue and the requirements and running jobs

of each queue.

62

Figure 14: Resources Page Job Information

 In Figure 14, we see the Resources Page after the “Jobs” link of the mayhem

cluster has been clicked. Globus-job-provider provides the information

used in the “Jobs” link of the Portal, which ink provides details about all jobs

currently running or queued on the cluster and the resources that each job requests,

when the job was submitted and how long it has been running. On the left side of

Figure 14, we see a “Scheduler ID” link for each job that is running or scheduler in the

Portal. The “Scheduler ID” link creates a popup window that provides detailed information

about individual jobs, as shown in Figure 15. This information is provided by

63

globus-jobdetail-provider and uses the command condor_q –long

<jobid> to provide detailed information about jobs.

Figure 15: Resources Page Job Details

5.3. Job Services Page

 The Job Services page is where the user submits jobs and checks the status

of jobs. The user submits jobs through the Generic Jobs subtab, views jobs through

the Job Status subtab, and can use the Applications and User Applications subtabs

to quickly submit standardized job formats.

64

Figure 16: Job Submission Page

 Figure 16 shows the Generic Jobs subtab of the Job Services maintab, which

is the page used for job submission in the UCLA Grid Portal. The interface in

Figure 16 is used for submitting jobs to any cluster scheduler supported by the

UCLA Grid Portal, including Condor and the only interface change we made was to

add the job types “Condor” and “multiple” to the Job Type drop down box. In

Figure 16, the user is submitting a job called “DateTest” to the mayhem cluster.

The job is the executable /bin/date and is a “Serial” job with no arguments or

environment variables. The job has the default requirements of 1 processor, a

maximum memory requirement of 400Mb and a maximum time of 60 minutes. We

submit the job in the Portal and go to the “Job Status” subtab to see the status of the

65

job, as shown in Figure 17. The job status page presents a table with the program

name, time the job was submitted, time the job started, time the job ended, target

cluster, stdout, stderr, and job status. The “testCondorMultiple” job does not

have a start time because it was a “multiple” job type and started several jobs at

once.

Figure 17: Job Status Page

The DateTest job we submitted is currently pending, so we press the “Refresh”

button and the Portal updates the Job Status page. Figure 18 shows the Job Status

page after the “DateTest” job has finished on mayhem and the Stdout link has

been clicked. The Portal displays the output, in this case the current date, in the

rectangular window in the middle of the page. This interface is convenient because

66

it is easy to view the output of all finished jobs across all clusters from the Web

Portal interface. In the case of a “multiple” job type submission, it shows the

standard output of all job runs in the Stdout link. We did not make any changes

to this interface in the course of our work.

Figure 18: Job Status Page with Job Info

5.4. NWS Page

 The NWS Page is a new top-level tab we created in order to integrate

QBETS into the UCLA Grid Portal; Figure 19 shows the user interface for the

QBETS portlet. The user selects the prediction method desired, deadline or

waittime, the number of nodes, the runtime of the job and either the deadline for the

job to start by (for deadline prediction), or the quantile level of accuracy desired

67

(for waittime prediction) and then requests a prediction. In the following examples,

we had the QBETS portlet think that IUTeragrid and DataStarP690 clusters were

alive and the BigBen cluster was not alive. We did this to show how the QBETS

UI would work with some alive and not alive clusters

Figure 19: QBETS Deadline Prediction

. In Figure 19, the Deadline prediction method is chosen for a job that requires 5

nodes, has a runtime of 60 minutes, and a deadline of 120 minutes. We then request

the prediction, with the results shown in Figure 20.

68

Figure 20: QBETS Deadline Prediction Results

 The IUTeragrid Dque queue has the highest chance to start the job by the

120-minute deadline, followed by the DataStarP690 Normal32 queue and

DatastarP690 High32 queue. Finally the IUTeragrid Workq has a 0% chance of

starting the job by the deadline. The two queues on the BigBen cluster have a

higher probability than the DataStarP690 queues, but because BigBen is not

currently alive in the Portal it is reported after all alive queues. The green up arrow

or red X next to clusters clarify whether the cluster is alive or not and all clusters in

the Resources Page will show up in QBETS results. The last section reported by

QBETS lists all clusters for which no predictions are possible, currently the

69

mayhem cluster is alive and cannot be predicted for because it is using a Condor

scheduler, and QBETS does not currently provide predictions for Condor Pools as a

whole as discussed in section 2.7.

Figure 21: BQP Wait Time Prediction

 Next, we look at the QBETS interface when the Wait Time prediction

method is chosen, as shown in Figure 21. The job still needs 5 nodes and runs for

60 minutes, but instead of a deadline there is a quantile field, which is specifies the

level of accuracy desired from QBETS. QBETS supports 95%, 75% and 50% as

options for quantile.

70

Figure 22: BQP Wait Time Prediction Results

 We request a prediction from QBETS and see the results in Figure 22. The

IUTeragrid Dque has a 95% percent chance to start before 7.39 hours, then the

DataStarP690 Normal32 and High32 queues have a 95% chance to start in 20.12

and 20.55 hours, respectively, and QBETS does not have enough information about

IUTeragrid WorkQ to make a prediction for when it would start with 95%

probability. The BigBen queues Batch and Debug would start within 7.89 and 9.68

hours respectively, but the BigBen cluster is currently not alive in the Portal. As

before, the mayhem cluster is shown in the no predictions possible section.

71

 Using both the Deadline prediction results and the Wait Time prediction

results, we can see that our job has a 91% chance to start within 2 hours (120

minutes) and there is a 95% chance to start within 7.39 hours if we submit it to the

IUTeragrid Dque queue. If the user prefers not to submit their job to the

IUTeragrid dque, they can also submit to other available clusters and queues and

know the probability that the job will start by a deadline or the upper bound on

when the job will start.

72

6. Lessons Learned and Future Work

 In Chapter 6 we present the lessons we have learned, unexpected difficulties

encountered and future work desired. In section 6.1 we discuss the lessons learned

over the course of this work. In section 6.2 we mention some of the unexpected

difficulties that came up and in 6.3 we discuss adding Condor glide-in as future

work.

6.1. Lessons Learned

 We have learned many lessons over the course of this work. First and

foremost, we learned that doing Web Portal development is hard primarily because

none of the code in Java Server Pages (JSP) is checked at compile time and there is

a conflict between what the client-side code knows and what the server-side code

knows. A minor typo in a JSP causes a stack trace exception in the Portal, which

can be difficult to track down when the information from stack traces is sometimes

cumbersome and unhelpful.

 Debugging of JSP itself is cumbersome because each minor change requires

the Portal to be redeployed, which takes 10-30 seconds. Furthermore, when the

Portal is redeployed and Apache is restarted, we sometimes needed to log out and

log back in again instead of just refreshing the web browser because the changed

code would use data that gets set when the user initially logs in. If we tried to just

73

refresh the Portal, then we would be trying to use uninitialized data and cause an

exception and throw a stack trace. This caused difficulties because when we would

forget to perform a full restart, code that was well tested would mysteriously stop

working and need to be debugged.

 A final development challenge with Web Portals was discovering that

things we thought were easy could turn out to be really hard, and some things that

we thought would be hard turned out to be easy. An example of something that we

thought was easy turning out to be hard is dynamic modification of the user

interface presented from JSP pages, particularly mutually dependent dynamic

dropdown boxes. It seemed like a simple if-statement would provide a solution to

this problem where if a specific value is in the first drop box, the JSP looks up what

should be in the second dropdown box and displays it. The difficulty in this “easy”

fix is that the overlap in state shared between the client and server is problematic in

development and the server cannot look up the values in the first dropdown box

because that is known by the client code and not the server code. Thus, in order to

accomplish dynamic modification of the user interface, the developer typically

either needs submit the page to the backend logic and refresh the page, or for some

limited problems, the use of Javascript in the JSP is enough to solve the problem.

 Throughout this thesis, we have learned how to do Web programming, and

programming in JSP and Java classes using Java Beans. We have alos learned

about Web and Grid Portals, Web Services, batch schedulers, and the details of how

74

Condor works. We feel that this thesis has improved our general programming and

problem solving skills and taught us specific techniques about programming in a

Web environment. We also feel that writing this thesis has greatly improved our

ability to communicate the details of complex technical projects in an

understandable manner. Writing this thesis has specifically taught us how to

organize and present information in a written medium, and the importance of

precision and clarity in writing. We feel that the skills we have learned while

writing this thesis will prove to be very valuable in the future.

6.2. Unexpected Difficulties

 In this section we discuss some of the unexpected difficulties that we

encountered in our work. The first and foremost difficulty we encountered was that

setting up the ULCA Grid Portal was very time consuming. It required a fresh

install of two separate machines with Fedora Core 4, and getting the

communication set up correctly between the portal machine and appliance machine.

The installation instructions were eight pages long and some installation issues we

encountered were hardware dependant. The UCLA Grid Portal is still under

development, and as a result, installing the UCLA Grid Portal was error-prone and

required reinstalling the portal and the appliance several times. An additional delay

arose when we made our initial installation unusable during development and

needed to reinstall. After reinstalling, we spent a lot of time figuring out why the

75

appliance was not visible in the Portal, like it had been before. It turned out that

when you add a cluster to the Portal it asks for ClusterName, True Name, Head

Node and scheduler and we entered the ClusterName (mayhem) instead of what the

Portal actually wanted, the ClusterNode or ApplianceNode

(bottlenose.cs.ucsb.edu). The UCLA Grid Portal has since developed an

installation package that will help with setting up the UCLA Grid Portal.

 Another difficulty came up while using Web Services to communicate

between the QBETS portlet and the QBETS prediction system in order to get

predictions. There are two primary methods of web service communication, using

a WSDL (Web Service Definition Language) or using SOAP (Service Oriented

Architecture Protocol) for communication. The QBETS prediction system provides

a WSDL schema that can be used to automatically generate the necessary WSDL

files which will provide Web Service communication between the Portal and the

QBETS database. The generated WSDL files worked outside of the Portal in

testing, but when we tried to use them inside the Portal we got a

“MalformedURIException: Cannot call function with empty parameters” error.

According to the WSDL standards, the function calls in question were allowed to

be called with empty parameters, but, it turned out that our implementation

disallowed that functionality. The QBETS Web Service is also used in deployment

at the University of Texas User Portal. After consulting with the University of

Texas, we learned that they did not use the WSDL schema because they found the

generated files to be cumbersome and hard to use. Just as they did, we built a

76

standalone SOAP client of about 70 lines of code to solve this problem and the

SOAP client successfully communicated with the QBETS Web Service.

6.3. Future Work

 Our work adds functionality and enhances the user’s experience with the

UCLA Grid Portal but there is still improvements that could be made to our work,

which we discuss in this section. One of the most helpful additions to the UCLA

Grid Portal would be the addition of Condor “glide-in”, which is a method to

temporarily install Condor onto machines in a cluster this running another batch

scheduler. Figure 23 demonstrates how Condor glide-in would work. The user

submits a Condor startup job in the Portal that is just like any other job and the job

gets executed on the cluster and installs Condor on the number of nodes requested

by the batch job, creating a temporary Condor Pool. Now that Condor is installed

on the cluster, Condor jobs can be submitted to the Condor Pool or the Pool can be

added to a pre-existing Condor Pool, adding more resources to the Pool. When the

Condor startup job is terminated, Condor “glides” out of the cluster and is no longer

running on any machines.

 Condor glide-in provides a way to create a Condor Pool and execute Condor

jobs on a cluster that does not have Condor as a cluster scheduler. Condor glide-in

is used to add more resources to a Condor Pool or to provide a way to submit

executables that are optimized for Condor in a cluster that is not running Condor.

The main technical challenges with implementing Condor glide-in are in submitting

77

jobs to the created Condor Pool from the Web Portal interface, creating a Condor

glide-in job type that will also check whether a cluster has the required inter-cluster

communication necessary for Condor glide-in to function. The current UCLA Grid

Portal interface only provides a mechanism to submit jobs to a cluster and does not

support a way to specify what job manager on the cluster a job should use. In order

to add Condor glide-in to the UCLA Grid Portal, it would be necessary to both add

the Condor glide-in job type to the Portal as a predefined application, setup Condor

on the machines in the cluster, and provide ways to submit to a newly created Pool

in the Portal and merge the newly created Pool with other Condor Pools.

Grid Portal Appliance

Globus Globus

Sends GRAM

File

Transfers

GRAM file via

GridFTP

Sends

Condor

Description

File

Submits Job

Headnode

Portal

Machine

Appliance

Machine

Submits

Job

Cluster

with PBS,

SGE, LSF

Cluster Job

Manager

Cluster Now

Running Condor

Starts up

Condor

Figure 23: Condor Glide-In

78

7. Conclusions

 In this work we have enriched the functionality of the UCLA Grid Portal by

increasing the resources available in the UCLA Grid Portal and providing better

support for computationally intensive jobs and by providing additional feedback

concerning queue delay to the user. We have added this functionality by supporting

Condor as a cluster scheduler in the UCLA Grid Portal and integrating QBETS, a

prediction system that provides statistical bounds on queue delay based on current

cluster conditions, into the Portal.

 Furthermore, we believe that the UCLA Grid Portal will be enhance the

research efforts of students and faculty at the UC Campuses by providing access to

resources and convenient resource and job management through a Web Portal

interface and the QBETS prediction system. We look forward to seeing the effect

the UCLA Grid Portal will have on research at the various UC Campuses.

79

Works Cited

[1] I. Foster and C. Kesselman. Computational Grids. The Grid: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann Publishers, 1998, pp. 3-

37.

 [2] G. von. Laszewski. The Grid-Idea and Its Evolution. Journal of Information

Technology, Volume 47, Issue 6, pp. 319-329, 2005. doi:

10.1524/itit.2005.47.6.319.

 [3] F. Berman, G. C. Fox, and A. Hey. The Grid: past, present, future. Grid

Computing: Making the Global Infrastructure a Reality. Chichester : John

Wiley & Sons Ltd, 2003, pp. 9-50.

 [4] I. Foster and C. Kesselman (eds). The Grid: Blueprint for a New Computing

Infrastructure. San Francisco, CA : Morgan Kaufmann, 1998.

 [5] R. Allan, C. Awre, M. Baker, A. Fish. Portals and Portlets 2003. In

Proceedings of the NeSC Workshop. Edinburgh, 2004.

 [6] C. Combar and C. Doremus. Portals 101. Mainejug.org. 2003.

http://www.mainejug.org/jug/meetings/2004/may/Portals101_FINAL.pdf.

 [7] D. Gannon, et al. Grid Portals: A Scientist's Access Point for Grid Services.

Draft from: GCE-WG. 2003. Global Grid Forum.

 [8] University of California Grid. UC Grid Portals. http://www.ucgrid.org.

 [9] Portable Batch System. http://www.openpbs.org/.

[10] Platform LSF Family of Products.

http:/www.platform.com/Products/Platform.LSF.Family.

[11] Sun Grid Engine. http://www.sun.com/software/gridware/.

[12] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle

Workstations. In Proceedings of the 8th International Conference of

Distributed Computing Systems, San Jose, CA, 1988.

80

[13] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

In Proceedings of the Workshop on Environments and Tools for Parallel

Scientific Computing, Lyon, France, 1996.

[14] The Globus Project. http://www.globus.org.

[15] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

In IFIP: International Conference on Network and Parallel Computing,

2006.

[16] GT 4.0 Security: Key Concepts. Globus.

http://www.unix.globus.org/toolkit/docs/4.0/security/key-index.html.

[17] The TeraGrid Project. Teragrid project. http://www.teragrid.org.

[18] P. H. Beckman. Building the TeraGrid. In Philosophical Transactions of

Royal Society, 2005.

[19] About Page. Teragrid. http://www.teragrid.org/about.

[20] G. von Laszewski, et al. CoG kits: A Bridge between Commodity Distributed

Computing and High-Performance Grids. In ACM Java Grande 2000

Conference, San Francisco, CA, 2000.

[21] Legion. http://legion.virginia.edu.

[22] A. Grimshaw, W. Wulf, et al. The Legion Vision of a Worldwide Virtual

Computer. In Communications of the ACM, January 1997, Vol. 40(1) pp. 39-

45.

[23] A. Natrajan, et al. The Legion Grid Portal. In Grid Computing Environments

2001, Concurrency and Computation: Practice and Experience, 2001.

[24] R. Ciapala. Develop Turbocharged Apps for Windows Compute Cluster

Server. MSDN Magazine, April 2006.

[25] M. Corbatto. An Introduction to PORTABLE BATCH SYSTEM (PBS).

2000. http://hpc.sissa.it/pbs/pbs.html.

[26] What is Condor? Condor: High Throughput Computing.

http://www.cs.wisc.edu/condor/description.html.

81

[27] Classified Advertisements. Condor: High Throughput Computing.

http://www.cs.wisc.edu/condor/classad.

[28] J. Brevik, D. Nurmi, and R. Wolski. Predicting Bounds on Queuing Delay for

Batch-scheduled Parallel Machines. In Proceedings of ACM Principles and

Practices of Parallel Programming (PPoPP), New York, NY, 2006.

[29] J. Novotny, M. Russel, and O. Wehrens. Gridsphere: A Portal Framework for

Building Collaborations. In Proceedings of the 1st International Workshop on

Middleware in Grid Computing, Rio de Janeiro, Brazil, 2003.

