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ABSTRACT 

 

Integrating Condor and Queue Bounds Estimation from Time Series 

(QBETS) into the UCLA Grid Portal 

 

By 

 

Kerby Obadiah Johnson 

 

 Grid Computing facilitates the sharing of distributed, heterogeneous 

resources owned by different organizations, each with their own goals, policies, 

and security requirements.  One of the challenges facing Grid Computing is 

finding an optimal way for users to interact with Grid resources without needing 

to know the underlying details of the Grid.  Grid Portals have been proposed as a 

means to address this challenge by providing transparent access to the Grid 

through a Web Portal interface.   

 The UCLA Grid Portal is being developed to create Grids for the UC 

Campuses.  The Portal provides cluster scheduler information, data management 

and job management to the user.  It supports clusters running PBS, SGE and LSF 

as cluster schedulers.  To increase the resources available in the UCLA Grid 

Portal and to provide better support for some types of jobs, this thesis adds 

support for Condor, a prominent cluster scheduler, into the UCLA Grid Portal.  
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Condor was added by using a Condor job manager (provided by Globus) and by 

adding scripts for collecting cluster status information. 

 The UCLA Grid Portal provides limited feedback to its users; in particular, 

it is difficult for users to know where they should submit jobs for fastest 

execution.  This thesis enhances the UCLA Grid Portal by adding QBETS (Queue 

Bounds Estimation from Time Series) as a standalone portlet to the Portal.  

QBETS provides an upper-bound prediction of the queue delay a job will 

experience at a cluster or the probability that a job will start at a cluster by a 

deadline.  This thesis integrates QBETS into the UCLA Grid Portal by adding 

monitors that communicate job accounting information to the QBETS backend 

database and a standalone portlet in the Portal that uses a web service query to 

retrieve predictions for the clusters available to a user.    
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1. Introduction 

1.1.  Grid Computing 

 Computational Grids (1) (2) (3) (4) have become popular due to their ability 

to solve large-scale problems by harnessing the power of massive distributed 

systems.  The term Computational Grids refers to the infrastructure that enables the 

increases in shared resources such as computer cycles, storage, sensors, etc.  Grid 

Computing is an important research area because of the challenges of enabling the 

sharing of heterogeneous resources from multiple organizations, each with its own 

goals, policies and security requirements.   

 

1.2.  The Grid Problem:  Management and Organization 

 The access to shared resources does not come without its challenges.  

Specifically, a main challenge of Grid Computing is how to manage a variety of 

heterogeneous Grid resources from different organizations with interfaces that do 

not provide a customized problem solving environment (PSE) (3).  “A primary 

barrier in the widespread acceptance of monolithic client side tools is the 

deployment and configuration of specialized software.  Scientists and researchers 

are often required to download and install specialized software libraries and 

packages” (3).  The resources shared by these organizations and the policies 

governing access to the resources are optimized for the specific organization’s 
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goals, policies and security requirements.  Each resource follows its own policies 

about who can access the resource, what kind of jobs can be run on the resource, 

how long jobs can be run, and many other requirements that vary widely among 

resources.  An additional complication arises because the allocation allotment of 

some organizations might be insufficient to meet a user’s job requirements.  Thus, 

it becomes hard for the user to manage jobs and resources in the face of differing 

policies, heterogeneous clusters, and non-customizable interfaces.  Users need to 

keep track of where their executables are stored, which jobs were submitted to 

specific resources and what the output of the jobs was.  We believe that a primary 

goal of Grid interfaces is to allow the user to focus on their problem by making the 

Grid transparent to the user.   

 

1.3.  A Grid Solution: Web Portals 

Web-based portals provide a possible solution to the Grid management problem 

by providing a web portal interface to Grids and allowing users to manage the Grid 

resources from a single user-friendly interface.  A Web Portal is a website that 

provides a variety of resources and services to users inside a Portal framework, 

such as the Yahoo.com Web Portal (5) (6).  With a web portal interface, users can 

quickly find the clusters and resources most suited for their specific requirements, 

without having to login or look at each resource individually.  Web portals are 

made up of smaller parts, called portlets, which provide the information for a 
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section of the total page.  For example, in an email portal page there might be a 

portlet for sending email, one for viewing email, and a portlet that actually does the 

technical details of sending and receiving mail.  

 A Grid Portal is a Web Portal that provides access to Grid Services.  These 

services include: security services, remote file management, remote job 

management, access to information services, application interfaces, and access to 

collaboration (7).  The advantage of Grid Portals is that they provide a “natural way 

to incorporate ‘user-facing’ Grid services into the Portal environment” (7).  

“Although client tools are capable of providing the most direct and specialized 

access to Grid enabled resources, we consider the web browser itself to be a widely 

available and generic problem solving environment when used in conjunction with 

a Grid Portal” (3).  Grid Portals hide the specific details of the Grid from the user 

and present an interface where the Grid is transparent to the user.    

 The UCLA (University of California, Los Angeles) Grid Portal (8) is a Grid 

Portal developed for the UC Campuses.  The UCLA Grid Portal hardware consists 

of a portal machine and one or more appliance machines.  The portal machine 

hosts the website through which the Grid Portal is accessed.  The appliance 

machines are each connected to a cluster and to the portal machine.  The portal is 

therefore able to submit jobs and manage data on each cluster.  The UCLA Grid 

Portal supports PBS (9), LSF (10) and SGE (11) as cluster schedulers, which will 

be described in Chapter 2.  The UCLA Grid Portal provides data management, job 
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submission, and basic load and job information about each cluster.  The UCLA 

Grid Portal further provides the user with access to all of their shared clusters and 

jobs in a single location so they can better manage files and jobs. However, the 

UCLA Grid Portal suffers from two limitations, which leads to our thesis questions.   

 

1.4.  Thesis Questions 

This thesis addresses the following two research questions: 1) How should we 

extend the UCLA Grid Portal in order to provide more resources and better support 

independent jobs, and 2) How should we enhance the feedback that the UCLA Grid 

Portal provides to users?   

 

1.5.  UCLA Grid Portal:  Limited Resources 

 The UCLA Grid Portal is a great start towards providing Grid Computing to 

the UC Campuses, but the resources it supports is limited.  The UCLA Grid Portal 

supports some cluster schedulers, e.g. PBS, SGE and LSF, but support for other 

cluster schedulers is currently missing.  One prominent cluster scheduler not 

supported is Condor (12).  Condor clusters, also called Condor Pools, can grow to 

manage thousands of machines.  This is primarily because a user can join a Condor 

Pool and the machine will be available in the Pool only when it is not in use.  The 
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UCLA Grid Portal could substantially enhance the resources it has available by 

adding support for Condor as a cluster scheduler.   

 Additionally, there are some types of jobs that Condor manages better than 

other schedulers, namely mutually independent serializable jobs.  Condor is capable 

of transparently check-pointing jobs for failure recovery or migration, supports 

more types of resources than other schedulers (desktops, clusters, etc), and has a 

dynamic resource pool that grows and shrinks transparently.  Therefore, adding 

Condor clusters to the UCLA Grid Portal would both increase the amount of 

resources available in the Portal and enhance its functionality.  Furthermore, 

Condor has many users that are currently using Condor, have executables optimized 

for Condor, and want to continue using Condor in the UCLA Grid Portal.  Without 

Condor available in the Portal, these users would be limited in their ability to 

benefit from the UCLA Grid Portal.   

Our first goal was to extend the UCLA Grid Portal by increasing the resources 

available in the Portal and adding functionality to the UCLA Grid Portal by 

providing support for Condor as a cluster scheduler. 

 

1.6.  UCLA Grid Portal:  Limited Feedback 

 The UCLA Grid Portal enables users to submit jobs to many clusters, each 

with its own scheduling policy and current load on the cluster.  The user faces the 

question: how do I decide where to submit my jobs?   
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Currently, the user would look at the Resources section of the Portal to find out 

the cluster load, number of jobs running, and number of jobs queued on each 

cluster.  From there, the user would take his or her best guess about which cluster to 

submit jobs to.  This is not a good solution because the user has to make job 

scheduling decisions with insufficient information, limited feedback from the 

UCLA Grid Portal, and no way to know which cluster is best for the job. Because 

users can not adequately decide where to submit jobs, this can also lead to load 

imbalances among the clusters connected to the UCLA Grid Portal.   Finally, users 

have no way of knowing when their job will begin running other than to 

periodically check the Web Portal to see if the job has started.  On many resources, 

jobs from different users are placed in a queue until scheduled.   

 The Queue Bounds Estimation from Time Series (QBETS) system, a 

member of the Network Weather Service (NWS), provides job monitoring and 

queue delay prediction capability to clusters.  QBETS is capable of returning either 

an upper bound on the time a job will wait in a queue before running (queue delay) 

or the probability that a job will be scheduled before a deadline.  Adding QBETS to 

the UCLA Grid Portal provides the user with an upper bound regarding when their 

job will start, which the user can use for job scheduling decisions and submit jobs 

to the clusters that will start their jobs the soonest.   

 Our second goal was to extend the UCLA Grid Portal by integrating 

QBETS into the Portal in order to provide queue delay predictions to users to help 

them decide where they should submit jobs based on current load conditions.   



7 

 

 

1.7.  Approach To Integrating Condor with the UCLA Grid Portal 

 In this thesis we will show that it is possible to support clusters using 

Condor as a cluster scheduler in the UCLA Grid Portal.  Our approach to 

integrating Condor as a cluster scheduler for the UCLA Grid Portal is the 

following.  We first investigated an approach based on using a standalone Condor 

portlet that would create a Condor specification file (called a description file), 

transfer the description file via GridFTP to the appliance and then submit the job to 

the Condor scheduler from the appliance.  The primary advantage of this approach 

was that the user had complete control over the Condor description file, so 

advanced Condor users would find the interface and control over their jobs to be 

similar to how they were currently creating Condor description files.  However, the 

UCLA Grid Portal is based around using job managers provided through Globus 

(13), a Grid development toolkit.  Using a Globus-based job manager to submit 

Condor jobs meant sacrificing some of the flexibility of Condor in the Portal in 

exchange for consistency with the rest of the Portal and ease of development.  This 

was the approach we ultimately chose. 

 Cluster load, job, queue and machine information is provided by the 

appliance to the portal for all job schedulers.  It was necessary to write index scripts 

in the appliance to report this information from Condor to the portal.  We wanted 

the Condor integration to be transparent to the user, so the resource and job 

information from the index scripts must provide the same information to the portal 
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as the scripts for the other cluster scheduler index scripts.  Finally, we modified 

portal code to support Condor as a cluster scheduler. 

 

1.8.  Approach to Integrating QBETS into the UCLA Grid Portal 

 In this thesis we will show that it is possible to integrate QBETS into the UCLA 

Grid Portal.  Our approach to integrating QBETS into the UCLA Grid Portal is 

separated into two distinct parts: what was necessary to integrate QBETS on the 

appliance machines and what was necessary on the portal machine.  On the 

appliance, we find any new job information and send it to the QBETS backend 

prediction system.  In the portal, we create a QBETS portlet.  A portlet is a small 

part of the total portal with limited HTML capabilities.  The QBETS portlet gets the 

list of clusters that the user has access to, intersects those clusters with the clusters 

known in the QBETS database, and gets a prediction from each matching cluster 

through a web service call to the Batch Queue Prediction Web service.  The portlet 

then partitions the clusters into clusters that are currently alive in the portal (and 

clusters not alive) and then sorts the resulting sections by the prediction result.   

 

1.9.  Outline 

 Chapter 1 of this thesis introduces and motivates Grid Computing, what it is 

and why it is important.  It discusses current Grid problems and how Web portals 

are helping to solve some of the Grid challenges.  Next, we introduce the UCLA 
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Grid Portal, outline the approach of our work in this thesis, and explain how our 

work will enhance the UCLA Grid Portal. 

 Chapter 2 presents the background and related work in Grid Computing.  

We expand on Grid Computing and Web Portals and discuss the current state of the 

art in Grids and Web Portals.  We review some necessary background for this 

thesis, including Globus, the UCLA Grid Portal, Condor and QBETS. 

 In Chapter 3 we cover the specifics of the thesis, with an in-depth 

discussion of the experimental appartus and the challenges that we faced integrating 

Condor and QBETS into the UCLA Grid Portal. 

 Chapter 4 describes our approach to integrating Condor and QBETS into the 

UCLA Grid Portal.  We explain in detail how the integration works and how we 

overcame the challenges raised in Chapter 3.    

 Chapter 5 presents the results of this thesis, complete with screenshots of 

the UCLA Grid Portal in action and an explanation of what the main pages of the 

UCLA Grid Portal do and how to use each one.   

 In Chapter 6, we discuss the lessons learned from this thesis and future 

work.  We cover a few of the behind-the-scenes technical problems that we faced 

and how we solved them and discuss the possibility of introducing Condor glide-in 

into the UCLA Grid Portal and enhancements to QBETS. 
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 In Chapter 7, we conclude the work we have done in this thesis and review 

how our work enhances the UCLA Grid Portal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

2. Background and Related Work 

 In Chapter 2 we present the necessary background information and related 

work for this thesis.  In 2.1 we discuss Grid Computing and in Section 2.2 we 

present a tool for building Grids, the Globus Toolkit.  In 2.3 we cover Web Portals 

as a way to provide web interfaces for Grids.  In section 2.4 we look at related work 

in Grid Computing.  Section 2.5 introduces the UCLA Grid Portal.  In 2.6 we 

present the details of Condor.  And in section 2.7 we discuss the QBETS system. 

 

2.1. Grid Computing 

 Large-scale computational Grids facilitate the sharing of resources by 

connecting clusters, supercomputers, storage and other resources together through 

the Internet.  These resources are typically heterogeneous and are provided by 

different organizations.  The term computational Grids refers to the infrastructure 

that enables the increases in shared resources such as computer cycles, data, 

sensors, etc.  The important features of computational Grids are the Grid 

infrastructure, dependable service, consistency of service, pervasive access, and 

inexpensive access to the Grid.  Together these features will “cause computational 

Grids to have a transforming effect on how computation is performed and used” 

(1).  Computational Grids have the potential to dramatically increase the amount of 

storage and computational capability available to their users. 
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 The architecture of a Grid is illustrated in Figure 1.  The Grid in Figure 1 

consists of three organizations connected together by the Internet.  Each 

organization has its own resources shared on the Grid.  The shared resources are 

optimized for each organization’s goals, policies and security requirements and 

access to those resources is through the Internet.   

N
etw

ork
N
et
w
or
k

 

Figure 1: Architecture of a Grid  

 

 Computational Grids will be more useful and in higher demand in the future 

due to innovations in five key areas: technological improvements, increase in 

demand-driven access to computational power, increased utilization of idle 

capacity, greater sharing of computational results, and new problem solving 

techniques and tools (1).  Behind each of these technical advances are the 
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“synergistic use of high performance networking, computing, and advanced 

software to provide access to advanced computational capabilities, regardless of the 

location of users and resources” (1)  Based on experiences in gigabit testbeds, the 

five major application classes that will be popular for computational Grids are: 

Distributed Supercomputing, High-Throughput Computing, On-Demand 

Computing, Data-Intensive Computing, and Collaborative Computing (1). 

 Computational problem solving has already proven effective for a wide 

variety of interesting problems: from modeling and simulations to chemistry, 

biology and medicine.  However, scientists continually need access to more 

computational facilities to solve newer and bigger problems.  Many projects get 

scaled down from the original design due to a lack of available computing power or 

resources (1).  Grid computing provides a means for organizations to share 

resources without giving up autonomy over the resources.   

 

2.2.  Globus 

 Globus is a standardized Grid development toolkit that is used “as a 

fundamental enabling technology for the Grid.  This allows people to share 

computing power, databases, and other tools through a secure online mechanism 

without sacrificing local autonomy” (14).  The Globus Toolkit was first released in 

1998 and was initially developed at Argonne National Laboratory, University of 

Sourthern Califronia’s Information Sciences Institute and the University of 
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Chicago.  The Globus Toolkit provides a set of libraries and programs that address 

problems that occur when building distributed system services and applications 

(15).  

 Globus provides three broad features to the Grid developer.  The first 

feature is a set of service implementations.  These services address execution 

management, data access and movement (GridFTP, RFT), monitoring and 

discovery, and credential management.  GridFTP is a File Transfer Program (FTP) 

designed specifically for Grids.  The credential management feature of Globus 

provides support for storing, managing, transferring, and verifying security 

certificates.  The notion of GSI (Grid Security Infrastructure) certificates in Globus 

is important, because every user and service is identified via a certificate.  The 

motivations behind GSI certificates are a need for secure communication 

(authenticated and confidential) among elements of a computational Grid, a need to 

support security across organizational boundaries (prohibiting a centrally-managed 

security system), and the need to support “single sign-on” for users of Grid, 

including delegation of credentials for actions that involve multiple resources 

and/or sites (16).  GSI provides four pieces of information: subject name to identify 

the person or object the certificate represents, the public key of the subject, the 

identity of the Certificate Authority (CA) that has signed the certificate to certify 

that the public key and the identity both belong to the subject, and the digital 

signature of the named CA.   Certificates provide identity management and allow 

services to accept users in groups instead of having to individually accept users.  



15 

 

For example, a resource could choose to grant access to all users that have their 

certificates signed by a specific CA instead of having to individually grant access to 

each user that fit specific qualifications.    

 The second feature Globus provides is containers to host user-developed 

services written in Java, Python, or C.  “These containers provide implementations 

of security, management, discovery, state management, and other mechanisms 

frequently required when building services” (15).  The third feature Globus 

provides is a “set of client libraries [that] allow client programs in Java, C, and 

Python to invoke operations on both GT4 and user-developed services” (15).  

 The Globus Toolkit is useful because it provides a standardized set of Grid 

development tools to Grid developers.  This means that different Grids will tend to 

have a similar underlying infrastructure which will allow Grids to be interconnected 

easier and expedite Grid development.  Because of the advantages Globus presents, 

many Grids utilize the Globus Toolkit. 

 

2.3.  Web Portals 

 A Web Portal is a web site that offers a variety of resources and services 

such as email, search engines, online shopping, or news articles.  More specifically, 

a Web Portal is a “Web application that provides every user their own 

individualized and personalized single place to access the information, applications 

and processes of an organization” (6).  Examples of well known Web Portals are 
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Yahoo.com, Usa.gov and Amazon.com.  Web Portals are “characterized visually by 

the dynamic arrangement of one or more windows of information and functionality 

on a single Web page” (6).   

 Web Portals are made up of individual parts, called portlets, which provide 

visual and functional support for the Portal.  Portlets often consist of Java Server 

Pages (jsp) that typically handle the visual presentation of the portlet information 

and Java Classes that provide portlet functionality.  Each portlet handles a small 

section of the Web Portal.  The term Portal generally refers to the Portal Server or 

Engine which is responsible for “aggregating and laying out content from portlets 

on a page” (5).  Portlets process requests and generate dynamic content on web 

pages and are collectively managed by a Portlet Container.  Portlets generate 

“Markup Fragments” for display within the encompassing Portal page.   

 

Figure 2: Creation of a Portal Page 

 

 Figure 2 presents the steps required for the creation of a page within a Portal 

framework.  The content generated by the portlets is sent to the Portlet Container.  
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The Portlet Container then sends the merged content to the Portal Server.  The 

Portal Server generates the page on the website, which is what the client sees.  In 

Figure 2, each portlet provides the content for a small portion of the entire page. 

 Web Portals are designed to simplify access to diverse resources.  Portals 

are readily extensible, easy to develop for, and easy to modify or change.  

Individual portlets can be developed and tested in isolation and then added to the 

overall Portal.  In the commercial space, the Yahoo.com and Amazon.com Portals 

have proven successful at providing a variety of information to their users.   

 We have seen that Grids provide access to additional resources for their 

users.  The following question should then be raised: Why are there not more Grids 

in production or development?  A main problem facing Grid Computing is resource 

management and this is a problem that Web Portals can provide a solution for. 

 Grids are hard to manage because they are a conglomeration of 

heterogeneous resources provided by many different organizations, each of which 

has their own organizational policies, requirements and goals.  Additionally, the 

interfaces provided to manage Grid resources provide specialized and direct access 

to complicated tools within a non-customizable interface.  Thus, it becomes 

difficult for the user to have adequate job and resource management in the face of 

these difficulties (3).   

 Web Portals have the potential to solve Grid Management problems because 

they can provide users with an easy-to-use interface that can hide Grid-specific 
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details and present information about the entire Grid in a single page accessible 

from the Internet.  “The Grid has not yet become a disruptive technology in its own 

right.  However, with the use of Web-based portals for the delivery of scientific, 

informational, experimental and computational services using a Grid infrastructure 

it may have the potential to be one” (5).  A Web Portal that is used for Grid 

Services is known as a Grid Portal.  “A Grid Portal is a problem solving 

environment that allows scientists to program, access and execute distributed ‘Grid’ 

applications from a conventional Web Browser and other desktop tools…The goal 

is to allow the scientist to focus completely on the science problem at hand by 

making the Grid a transparent extension of their desktop computing environment” 

(7).   

 Grid Portals provide the functionality of Grid Computing without the 

management and organizational difficulties common to Grids.  Grid Portals make 

distributed, heterogeneous Grid environments more accessible to users by utilizing 

common Web and UI conventions and provide users with the capabilities to 

customize the content and presentation (e.g. page layout, level of detail) for the set 

of tools and services provided in the portal (7).   Due to their advantages, Grid 

Portals have become a popular way to present Grid resources to users in a single, 

comfortable interface.  Some of the contemporary Grid projects will be discussed 

next. 
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2.4.  Grid Computing Projects 

 The most ambitious and well known Grid in the United States is the 

TeraGrid  (17), which includes resources from Indiana University, Oak Ridge 

National Laboratory, National Center for Supercomputing Applications, Pittsburgh 

Supercomputing Center, Purdue University, San Diego Supercomputer Center, 

Texas Advanced Computing Center, University of Chicago/Argonne National 

Laboratory, and the National Center for Atmospheric Research.  The TeraGrid joins 

resources at nine sites through an “ultra-fast optical network, unified policies and 

security procedures and a sophisticated distributed computing software 

environment” (18).  “The TeraGrid provides more than 102 teraflops of computing 

capability and more than 15 petabytes (quadrillions of bytes) of online and archival 

data storage” (19).  The TeraGrid was designed according to the following core 

policies: users should have a single identity even with multiple computer accounts, 

a single accounting currency, the “TeraGrid Service Unit”, a unified support team, 

a unified infrastructure, and a unified documentation and training “programme” 

(18).  The single identity per user is provided by the use of the certificates that were 

discussed with Globus in 2.2.  The TeraGrid uses a “coordinated set of Grid 

middleware, including the Globus Toolkit, OpenSSH, SRB, Myproxy, and Condor-

G” (18).  The TeraGrid is a large and successful Grid, however it requires a unified 

architecture and a single currency.  The TeraGrid is appropriate for large 

supercomputing sites, but its model is not feasible for a diverse group of 
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heterogeneous clusters that each want to keep cluster architecture and scheduling 

the same, but also share resources on the Grid. 

 The Java CoG kit (20) is a project to help develop Commodity Grids (CoGs) 

with “twin goals of (a) enabling developers of Grid applications to exploit 

commodity technologies wherever possible and (b) exporting Grid technologies to 

commodity computing (or, equivalently, identifying modifications or extensions to 

commodity technologies that can render them more useful for Grid applications)” 

(20).  The Java CoG kit is a Grid Toolkit that “defines and implements a set of 

general components that map Grid functionality into a commodity 

environment/framework” (20).  The mappings provided by the Java CoG Kit are: 

Low-Level Grid Interface Components such as resource management services and 

data access services, Low-Level Utility Components such as information service 

functions or the Globus Job submission language, Common Low-Level GUI 

Components such as editors, browsers and search components, and Application-

specific GUI components to simplify the “bridge between applications and basic 

CoG kit components,  examples of which are a stockmarket monitor, a graphical 

climate data display component, or a specialized search engine for climate data” 

(20).   The Java CoG kit is similar to the Globus Toolkit in purpose, however it is 

developed to bring the commodity environment onto the Grid instead of connecting 

Grids together.   

 Legion (21) (22) is an object-based metasystem developed at the University 

of Virginia.  Legion provides software infrastructure to allow a system of 
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heterogeneous, geographically distributed, high performance machines to interact 

seamlessly.  Legion attempts to provide users with a single coherent virtual 

machine at their workstation.  The Legion Grid Portal (23) depends on the Legion 

infrastructure for managing a Grid.  It presents the entire Grid as a single virtual 

machine to users and presents a “truly distributed file system” (23).  A unique 

feature of Legion is that every “first-class entity” in Legion, such as files, 

directories, machines, disks, users, consoles, programs, etc. is an object.  Legion is 

an interesting Grid Portal, however we believe that it is desirable for the user to 

know where their jobs are running and details about the underlying architecture.  

We present Legion here as an example of one of many Grid Portals in development 

and discuss the Grid Portal we chose to work with, the UCLA Grid Portal, next.  

 

2.5.  UCLA Grid Portal 

 The UCLA Grid Portal is a Web Portal interface to a Grid that will be set up 

on each UC Campus.  Additionally, there will be a UC-Wide Grid that will be 

shared with each campus Grid.  The UCLA Grid Portal is being developed for the 

UC System by the UCLA Grid Team with Academic Technology Services at 

UCLA.   

 The UCLA Grid Portal increases the amount of shared resources available 

to students and faculty members by allowing convenient access to a variety of 

different resources with a single login and from an easy-to-manage website.  The 
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UCLA Grid Portal will allow departmental clusters to be shared to a specific 

department, UC campus, or UC wide through security certificates.  The department 

can specify which certificates they want to give access to and only users with those 

certificates may access the resource.  The UCLA Grid Portal allows users to access 

shared clusters, create, transfer, upload and delete files, move files between 

clusters, submit and check the status of jobs, check the load and status of clusters, 

and otherwise manage job submission and data among a variety of different 

clusters. 

 The UCLA Grid Portal architecture consists of a single portal machine and 

one appliance machine for each cluster that is connected to the UCLA Grid Portal.  

Figure 3 shows this architecture.  The users communicate directly with the portal 

machine, which communicates with each appliance machine.  Each appliance is 

connected to its respective cluster headnode to access the cluster scheduler and the 

users’ home directories.  A cluster headnode is the “entry point into the cluster 

[which] receives all jobs submitted to the compute cluster.  The headnode hosts the 

cluster’s scheduler service, whose role is to match the resources requested by the 

submitted jobs to resources available across the cluster” (24).  To add another 

cluster to the UCLA Grid Portal requires connecting an appliance machine to the 

portal machine and cluster headnode. 
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Figure 3: Architecture of UCLA Grid Portal 

 

The communication between the portal machine and appliance machines is 

accomplished through the Globus, which runs on both the portal and the appliance 

machines and provides communication through GridFTP.  New clusters are added 

to the Portal in the Web Portal interface by providing the Web Portal with the 

appliance node, name of the cluster, cluster headnode, and scheduler used by the 

cluster.  

We see the unique contribution of the UCLA Grid Portal as its ability to 

hide the complexity of the Globus installation from the user and the cluster 

administrator through its portal and appliance architecture.  If a cluster wants to join 

the UCLA Grid Portal, it only needs to setup an appliance machine, connect it to 

the cluster headnode, and then add the cluster to the UCLA Grid Portal.  Moving 

the Grid software off the cluster headnode and onto the appliance machine allows 

the UCLA Grid Portal to provide a “plug-n-play” installation.  Outside the UCLA 
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Grid Portal, to install a Grid Portal or other Grid often requires installing Globus on 

the cluster headnode, a time consuming and often undesirable task, in addition to 

installing the Grid software itself.   

The difficulty with installing Globus on a cluster headnode is due to the fact 

that it is usually not a “fresh” install and the headnode could be using many 

possible hardware configurations.  The cluster headnode is also hosting the cluster 

scheduler, storing scheduler log files and managing job submission.  Therefore, it is 

not desirable to remove all files from the cluster headnode and setup Globus and the 

headnode on a fresh machine.  Because of this, trying to install Grid software into a 

cluster headnode involves trying to merge the Grid requirements with the pre-

existing cluster scheduler installation.  Additionally, some secure clusters do not 

want to expose the cluster headnode to potentially unsafe code and would not want 

the Grid software to run on the headnode.  With the UCLA Grid Portal this 

requirement does not present a problem; the cluster only has to give the appliance 

limited access to the cluster headnode.  Furthermore, in the UCLA Grid Portal, the 

appliance-style installation comes with Globus already installed on the portal and 

appliance machines and it is relatively easy to add clusters to the UCLA Grid 

Portal.  Now that we have seen that it is easy to install the UCLA Grid Portal and 

add clusters to the Portal, we present the details of how the portal and appliance 

relationship in the UCLA Grid Portal works for communication, job submission, 

and what functionality is provided by cluster schedulers.   
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For communication, the portal machine finds out cluster information from 

the appliance that is connected to each cluster.  The appliance runs index provider 

scripts (background processes) that publish cluster-specific information to a 

Globus-provided URL that the portal machine periodically queries for updates.  The 

index provider scripts are customized for each supported cluster scheduler, 

currently SGE, LSF, and PBS.  The index provider scripts expose scheduler 

information to the user in the portal machine.  Some specific information that is 

exposed is: cluster load, total nodes, number of free nodes, number of jobs running, 

number of jobs queued, machines in the cluster and their characteristics, any 

specific job requirements of the cluster, and other cluster specific information.   

For job submission, the UCLA Grid Portal enables users to submit jobs to 

clusters through the Web Portal interface.  From the user’s perspective, the user 

selects a cluster to submit a job to and specifies the various job parameters.  When 

the UCLA Grid Portal processes a job submission the following steps happen, as 

shown in Figure 4.  The user creates a GRAM (Grid Resource Allocation and 

Management) file with the various job parameters.  The portal machine passes the 

GRAM file through GridFTP to the appliance machine connected to the cluster 

where the job is submitted to.  Globus, running on the appliance, takes the file and 

looks at the field specifying the cluster scheduler and determines which job 

manager to use (Condor, PBS, LSF, SGE).  The respective job manager generates a 

scheduler submit file, called a description file, with the job details in the specific 

form the cluster scheduler requires and submits the description file to the scheduler.  
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The scheduler then schedules and runs the job according to its scheduling policies 

and reports the job’s stdout or stderr back to the Portal.  One requirement of this 

implementation is that the executable file has to be present on the cluster where the 

job is submitted to.  The Data Manager inside the UCLA Grid Portal allows users 

to move files between clusters to satisfy this requirement.  The Data Manager also 

provides a way for the user to create file files, delete files, upload files from the 

current computer, and otherwise provides file management among the clusters that 

a user has access to in the UCLA Grid Portal. 

 
Figure 4: Job Submission in the UCLA Grid Portal 

 

The UCLA Grid Portal supports three cluster schedulers: PBS (Portable 

Batch System), SGE (Sun Grid Engine), and LSF (Load Sharing Facility).  All 

three cluster schedulers, also called batch schedulers, are similar. We will describe 
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the functionality provided by PBS, but these features are also found in SGE and 

LSF.   

 PBS is a batch job and resource management system.  By batch, we mean 

jobs that can be executed on a computer without human interaction.  It will “accept 

batch jobs (shell scripts with control attributes), preserve and protect the job until it 

is run, run the job, and deliver output back to the submitter” (25).  PBS provides the 

following features: automatic load-leveling, file staging, job interdependency 

(execution order, conditioned execution, synchronization), security and 

authorization, username mapping, parallel jobs support, job accounting, and a 

comprehensive API to write new commands, integrate PBS with applications, and 

implement scheduler policies (25).  PBS is primarily used to manage parallel jobs 

run on large clusters but it is equally capable of managing serial jobs.  

PBS provides two main commands to get cluster information: qstat and 

pbsnodes.  Qstat provides queue and job information about the PBS cluster and 

can be used to find out about queue load and the jobs that are either executing or 

waiting to execute.  Pbsnodes provides machine specific information about each 

machine in the cluster and can be used to see the status and architecture of specific 

machines.   

In short, PBS allows the user to submit batch jobs to a scheduler and PBS 

will schedule the jobs on the machines it manages and return the output of the jobs 

to the user.  PBS is typically used in a run-jobs-for-specified-time scheduler 
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paradigm, where the user requests a PBS timeslot for a certain time, and at the end 

of the timeslot the job is killed if it has not finished.  In contrast to PBS, the 

functionality provided by Condor is discussed next. 

 

2.6.  Condor  

 Condor is a specialized cluster scheduler and job manager that is optimized 

for multiple independent serializable jobs and compute-intensive jobs.  Condor was 

developed by the University of Wisconsin-Madison and the first Condor production 

system was deployed in the late 1980s.  Currently, in the UW-Madison Computer 

Science Department, Condor manages more than 1000 workstations (26) and has 

been installed on thousands of machines elsewhere. 

 Condor is different from other schedulers such as PBS, LSF, and SGE 

because it was originally developed to utilize CPU cycles from idle workstations, 

whereas the other schedulers are primarily batch schedulers for parallel jobs that 

run on clusters.  “Like other full-featured batch systems, Condor provides a job 

queuing mechanism, scheduling policy, priority scheme, resource monitoring, and 

resource management” (26).  Condor operates under a run-when-free paradigm 

versus the run-for-a-specific-time paradigm that other batch schedulers follow.  

This means that when a job is submitted to a Condor Pool it will run whenever 

there are free resources, and wait when all resources are in use.  Condor jobs 

running in the Condor Standard universe, a universe that requires executables to be 
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compiled by the condor_compile command, can transparently checkpoint jobs 

when resources are no longer available and restart the job from the checkpoint as 

resources become free.   

Condor submits jobs to a group of machines that are connected together by 

Condor, called a Condor Pool.  A Condor Pool consists of a central manager and 

any number of other machines that have joined the pool.  Conceptually, a Condor 

Pool can be viewed as a collection of resources (machines) and resource requests 

(jobs) (26).  There are three roles that a machine can have in a Condor Pool: central 

manager, execute node, and submit node.  Machines (nodes) can possess multiple 

roles, i.e. many machines will probably be both execute and submit machines.  The 

first role is the Central Manager, of which there is only one in the Pool.  The 

Central Manager is the collector of job and node information and the negotiator 

between resources and resource requests.  The second role is execute machine, 

which are the machines that are configured to accept and execute Condor jobs.  

There must be at least one execute machine in a Condor Pool in order for jobs to 

run.  The third role is submit machine, which are the machines where Condor jobs 

can be submitted from.   

For job submission, a user submits a job at a submit machine.  The submit 

machine sends the job information to the Central Manager, which then acts as a 

matchmaker between jobs and free nodes.  When it finds a match it tells the 

submission node and the free node about each other and then those two nodes 
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communicate to execute the job.  The user submits a job specification file at the 

submit machine, called a Condor Description file.  The description file specifies the 

job name, location of the executable, where the stdout and stderr should be written, 

job arguments, the number of times the job should be run, and other job submission 

parameters.  The job then runs on the Condor Pool as long as resources are 

available. 

 Condor Pools are typically large because machines can be added to a 

Condor Pool without degrading the user’s performance.  Additionally, any machine 

capable of running Condor can be part of the Condor Pool.  Thus even personal 

desktop computers and laptops can be members of the Condor Pool and provide 

resources whenever they are not in use.  The user is willing to share their 

workstation because they experience no degradation of performance by joining a 

Condor Pool.  Condor facilitates cycle stealing in the following manner: when a 

machine is not in use then it is considered free and available to be used by Condor 

and Condor will schedule jobs on the machine as long as it remains free.  When the 

computer is considered used again (the mouse or keyboard is touched), Condor will 

checkpoint the job if possible or kill the job if necessary and the job will be sent 

back to the Condor scheduler to be rescheduled.  This design for cycle stealing 

encourages users to share their machines with Condor because users can benefit 

from a Condor Pool when they need additional resources, and share their own 

machines in the Pool without experiencing any performance loss.   
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 Even though Condor Pools are large, users might still require access to more 

resources.  In this case, Condor has a feature called Flocking that enables jobs to 

“flock” between multiple Condor Pools.  Flocking allows a Condor master node to 

send jobs to other Condor Pools when the current Pool is busy.  Flocking 

effectively merges Condor Pools together and increases the resources available to 

all merged Pools.   

Like other cluster schedulers, Condor provides status commands to 

determine the state of the Pool, the individual machines on the Pool, and jobs 

submitted to the Condor Pool.  These commands are used by Condor and its users 

to evaluate the load on the Pool and determine if flocking is necessary.  Condor_q 

loosely compares to the qstat command provided by other cluster schedulers and 

condor_status loosely compares with pbsnodes.  Condor provides the 

condor_q command to view the status of all jobs running, scheduled, and held on 

the cluster, the name of each job, when the job was submitted, the current state of 

the job, and other relevant job information.  The other main Condor command, 

condor_status, provides information about the machines in the Condor Pool.  

Specifically, condor_status returns how many machines are free, used, or are 

running jobs and the architecture of each machine in the Condor Pool.  The 

information reported by condor_status is used by Condor to find matches 

between the requirements of jobs and the requirements of machines.   
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Figure 5 shows how the Condor Matchmaking Process works.  Jobs and 

machines advertise with the Condor Matchmaker (part of the Condor Master node) 

and the matchmaker finds a match based on a negotiation algorithm and sends a 

notification to both jobs and machines.  The jobs and machines claim each other 

and communicate directly while running the job.  If the owner of a machine 

claimed by a job returns, the job gets check-pointed, advertises its status with the 

Matchmaker, and waits to be scheduled with a new machine that matches the job’s 

requirements.  

 

Figure 5: Condor Matchmaking Process 

 

Machines and jobs advertise with the Condor Matchmaker through 

“Classified Advertisements” (ClassAds), which are reported by condor_status.  

ClassAds are used for describing jobs, workstations, and other resources, 

exchanged by Condor processes to schedule jobs, logged to files for statistical and 

debugging purposes, and to enquire about the current state of the system (27).  

ClassAd matching is used by the Condor central manager to determine the 
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compatibility of jobs and nodes where they may be run (27).  ClassAds are to be 

considered the “lingua franca of Condor” (27), a language that is used to 

communicate with others, who speak a different, unknown language.   

 

2.7.  Queue Bounds Estimation from Time Series (QBETS) 

 The Queue Bounds Estimation from Time Series (QBETS) system (28), a 

part of the Network Weather Service, consists of two parts: a monitoring system 

deployed on clusters and a backend prediction system that processes the data 

recorded from the monitors to generate predictions.  The monitoring system 

consists of sensors and monitors that collect the job accounting information, e.g. by 

parsing log files of the job scheduling system, and send the information to the 

backend prediction system.  The prediction system is constantly processing the 

accounting information for each cluster queue pair and updating predictions.  

QBETs makes queue delay predictions for jobs submitted to specific clusters and a 

queue for that cluster based on both past and current queue delays that similar jobs 

have experienced.  QBETS provides two types of predictions: wait time prediction 

and deadline prediction.  In wait time, given a job’s characteristics, QBETS will 

return an upper bound on the time a job will spend in the queue before execution at 

the specified confidence level, either 95, 75, or 50 percent.  In deadline, given a 

job’s characteristics and a deadline, QBETS will return the probability that the job 

will start by the deadline. 
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Due to the architecture of Condor and the way nodes become free and used, 

jobs are scheduled, check-pointed, moved among machines, and priority given to 

individual users, QBETS cannot currently make predictions on queuing delays for 

Condor Pools as a whole.  QBETS is currently deployed in the Teragrid, and 

several other Grids to provide predictions for PBS, LSF and SGE schedulers.     
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3. Challenges 

 In Chapter 3 we present the main problems addressed by this thesis and the 

challenges that came up in the course of the work. Section 3.1 presents and 

motivates the thesis questions and the high-level approach to those questions.  In 

3.2 we discuss the experimental apparatus used in this thesis.  Section 3.3 presents 

the challenges involved with adding Condor as a cluster scheduler to the UCLA 

Grid Portal.  In 3.4 we cover the challenges of integrating QBETS into the UCLA 

Grid Portal. 

 

3.1.  Research Questions and Motivation  

 This thesis addresses the following research questions: 1) How should we 

extend the UCLA Grid Portal in order to provide more resources and better support 

independent jobs, and 2) How should we enhance the feedback that the UCLA Grid 

Portal provides to users?  First, we will consider the motivation for our research 

questions.  Second, we will explain how we chose to address the research questions 

raised.  

 The UCLA Grid Portal currently provides support for PBS, LSF, and SGE 

as cluster schedulers, adding the resources managed by those schedulers into the 

UCLA Grid Portal.  It would be ideal for the UCLA Grid Portal to support as many 

schedulers as possible in order to maximize the amount of resources available.  
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However, it is not feasible to support all possible cluster schedulers, but it is 

feasible to add support for additional cluster schedulers.  We chose to add support 

for Condor both because it is a popular scheduler, because it better supports some 

job types than the current facilities of the UCLA Grid Portal, and because it 

operates under a different model than the supported schedulers, as discussed in 

Section 2.6.  The challenges of supporting Condor as a cluster scheduler will be 

discussed in section 3.3. 

 The UCLA Grid Portal currently provides limited feedback to users 

regarding cluster conditions.  It provides basic feedback to users trying to decide 

where they should submit their jobs, specifically, cluster load, running jobs, and 

waiting jobs at each cluster.  This feedback is helpful, but limited in its 

effectiveness for making scheduling decisions.  It would be ideal if the UCLA Grid 

Portal could provide users with a statistical prediction concerning which cluster is 

most likely to start their job the soonest.  As discussed in Section 2.7, QBETS 

provides an upper bound on the queue delay a job will have at a specific cluster.  As 

far as we know, QBETS is the only system available that is able to predict queuing 

delays based on current and past cluster conditions with a high degree of accuracy.  

The challenges of integrating QBETS into the UCLA Grid Portal will be discussed 

in section 3.4. 

 

3.2.  Experimental Apparatus 
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 The December 2006 version of the UCLA Grid Portal was installed on two 

machines: one portal machine and one appliance machine.  The portal machine is a 

2.4GHz Pentium 4 with 1024Mb of physical memory.  The appliance machine is a 

2.4GHz Pentium 4 with 256Mb of physical memory.  The operating system on both 

machines is Fedora Core 4.0 and the database is mySQL version 14.7.  The UCLA 

Grid Portal provided Globus 4.0, Apache-tomcat-5.5.17 as a servlet container, 

apache-ant-1.6.2 as a compilation tool, Gridsphere (29) as a portal framework 

(Gridsphere is a free Portal framework similar to IBM’s WebSphere), and JDK-

1.50_05.  We tested Condor with a cluster running Condor version 6.7.14 on the 

cluster machines. 

   

3.3.  Extending the UCLA Grid Portal to Provide More Resources 

 There were three kinds of challenges we faced while adding Condor to the 

UCLA Grid Portal.  First, we had to decide on a general approach for adding 

Condor clusters to the UCLA Grid Portal.  Second, we faced challenges to support 

Condor in the appliance.  Third, we faced challenges adding Condor to the portal 

machine. 

 The first challenge we faced integrating Condor into the UCLA Grid Portal 

was deciding on the general approach to take.  We saw two feasible approaches: 

using a standalone portlet or using the Condor job manager provided by Globus.

 A standalone portlet would allow the user to directly create Condor 
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description files and directly access Condor commands concerning the status of the 

Condor Pool, such as condor_q and condor_status.  Using the Condor job 

manager provided by Globus would allow the user to access a Condor Pool without 

needing to know anything about Condor or how to submit Condor jobs.  Globus 

would provide the tools to translate job specifications into a Condor description file 

and submit the job to the Condor Pool.  We ultimately chose to use the Condor job 

manager within Globus for reasons discussed in 4.1 and then faced the challenges 

of supporting the Condor job manager in both the appliance and the portal.   

 The main challenge we faced in the appliance to integrate Condor into the 

UCLA Grid Portal was the creation of index provider scripts that provide cluster 

scheduler information to the portal machine, as discussed in Section 2.5.  These 

scripts are customized for each cluster scheduler.  The UCLA Grid Portal had 

created scripts for PBS, LSF and SGE, but we had to create the index provider 

scripts for Condor.   

 While creating index provider scripts for Condor, we encountered several 

complications.  First, the scripts need to report the same information in same format 

as other cluster schedulers for the portal to parse the information and display it on 

the Web Portal.  Condor_q and condor_status loosely compare to 

commands provided by other cluster schedulers, however, both the information and 

format is significantly different from the other cluster schedulers.  Some 

information, such as the notion of queues, is not directly relevant in Condor 



39 

 

because Condor supports Pools that dynamically, and transparently, grow and 

shrink as resources join and leave the Pool.  The challenges creating Condor index 

scripts that are compatible with the portal machine was finding out what the 

provider scripts should report to the portal, getting the relevant information from 

Condor and putting the information in a form that the portal machine understands.  

The index scripts provide the means for information to pass from the appliance to 

the portal; next we discuss the challenges faced passing information from the portal 

to the appliance for job submission. 

 The main challenge for integrating Condor into the portal section of the 

UCLA Grid Portal is in finding the most natural way to present Condor in the 

Portal interface and tying the presentation logic to the back-end logic on the 

appliance.  The answer to this question depended on the general approach chosen to 

integrate Condor into the UCLA Grid Portal.  If a standalone portlet approach had 

been used, then Condor job submission would have been different than other cluster 

schedulers and would require a Condor portlet to be developed that could be used 

for job submission and running Condor commands.  Because we used the Condor 

job manager within Globus, the challenge was providing support for the 

requirements of the Condor job manager that are not already handled by the UCLA 

Grid Portal, specifically Condor and multiple job types.   

 

3.4.  Extending the UCLA Grid Portal to Provide More Feedback 
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 There were two kinds of challenges we faced integrating QBETS into the 

UCLA Grid Portal in order to provide more feedback to users.  The first challenge 

was installing and enabling the monitors that QBETS uses on the appliance 

machine.  The second challenge was building a QBETS portlet on the portal 

machine that gets predictions from the QBETS backend database and outputs those 

results to the user in a clear and understandable manner.   

 In the appliance, QBETS gets job accounting information from the cluster 

scheduler and sends the information to the QBETS backend database.  The main 

challenge with the appliance integration is that we do not want QBETS to require 

any additional information over what is already needed to set up the appliance.  

This requirement came from the desire to seamlessly add QBETS into the UCLA 

Grid Portal and minimize the additional work required by the system administrator 

to support QBETS.  In order to integrate QBETS in the appliance without needing 

more information we had to find out what cluster scheduler is used on the 

appliance, find the log files for the jobs submitted to the cluster scheduler even 

though the root location of the scheduler is controlled by the user, parse job 

information efficiently from the log files, and send job information to the QBETS 

backend database.   

 After the job information is sent to the QBETS backend database, QBETS 

generates predictions based off the job accounting information and the predictions 

are displayed to the user in the Web Portal.  The main challenge integrating QBETS 
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in the portal machine was building a User Interface (UI) that is fast, consistent 

visually with the Portal, and returns comprehensive prediction information with a 

single query.   
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4. Approach 

 In Chapter 4 we present our approach to solving the challenges brought up 

in Chapter 3.  Section 4.1 discusses our approach to adding Condor to the UCLA 

Grid Portal and in section 4.2 we cover our approach to integrating QBETS into the 

UCLA Grid Portal. 

 

4.1.  Overcoming Condor Challenges  

 There were three kinds of challenges we faced adding Condor to the UCLA 

Grid Portal: the challenging of choosing the general approach, challenges in the 

appliance with index provider scripts, and challenges in the portal machine with job 

submission.   

 When considering our general approach to adding Condor to the UCLA 

Grid Portal, we saw two viable options: creating a Condor standalone portlet in the 

UCLA Grid Portal or using the Condor job manager in Globus.  We initially built a 

prototype Condor standalone portlet before we had access to the UCLA Grid Portal, 

and planned on adding the portlet directly into the UCLA Grid Portal.  Figure 6 

shows how job submission works with a Condor standalone portlet.  The user 

submits a job in the Portal, which creates a Condor Job Description file, and the 

Description file gets sent from the Portal to the appliance through Globus’ GridFTP 
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service.  Once the Condor Job Description File is on the appliance, it is sent to the 

cluster headnode, which then submits the cluster scheduler.    

 

Figure 6: Job Submission using Condor Standalone Portlet 

 

 In contrast, Figure 7 shows how job submission would work using the 

Condor Job Manager in Globus.  The user submits the job in the Web Portal and the 

Portal creates a GRAM file, as discussed in Section 2.2 regarding how the UCLA 

Grid Portal handles job submission for all cluster schedulers.   The Portal sends the 

GRAM file to the appliance through GridFTP and Globus passes the GRAM file to 

the job manager specified in the GRAM, which uses the GRAM to create a Condor 

Description file.  The Condor Description file is then submitted to the cluster 

scheduler for execution. 
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Figure 7: Job Submission using Condor Job Manager  

 

 Using the Condor job manager provided by Globus sacrificed some of the 

flexibility of allowing the user to create their own Condor description files, but 

enables Condor job submission to be consistent with other cluster schedulers and is 

easier for the novice user to use.  As a result of using the Condor job manager, it 

turned out that a lot of the work done to build a prototype standalone Condor portlet 

was not needed to integrate Condor into the UCLA Grid Portal because the Condor 

job manager and the preexisting Portal code provided many of the necessary 

features for integration.  In the appliance, the only changes needed to support the 

Condor job manager, other than the actual installation of the Condor job manager 

within Globus, was the creation of Condor index provider scripts to communicate 

cluster scheduler information from the appliance machine to the portal machine.   



45 

 

 The Web Portal displays cluster information, provided by the appliance 

machines, in the Web Portal interface.  Figure 8 shows how the Portal gets 

information about shared clusters.  The index scripts running in the background on 

each appliance get cluster information from the cluster headnodes and then publish 

the information to a URL.  The Portal periodically queries the URL for each 

appliance and displays the information to the user.  

 

Figure 8: How the Portal Gets Information about each Cluster 

 

 The information that the index scripts publish to URLs is formatted with 

XML tags.  This method of using XML tags enables the UCLA Grid Portal to 

ignore formatting differences among cluster schedulers and focus on providing the 

correct information to the Portal through index provider scripts. 
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 There are seven index provider scripts that we needed to create for Condor: 

globus-info-provider, globus-load-provider, globus-job-

provider, globus-jobdetail-provider, globus-local-provider, 

and globus-queue provider.  For each script, we used a corresponding PBS 

script as a template.  The PBS commands pbsnodes and qstat roughly match 

up with condor_status and condor_q.  Condor_status returns 

information about the machines in a Condor Pool and condor_q returns 

information about jobs scheduled in the Pool.  Each script provides information for 

a specific part of the UCLA Grid Portal Resource Page, thus there is some overlap 

between index scripts. 

Globus-info-provider returns the CPU load on a cluster, total nodes, 

free nodes, downnodes, running jobs, pending jobs, and peak performance.  In 

order to get this information, we used Condor_status to get the total nodes, 

free nodes, and cluster load.  One difficulty with using condor_status was that 

it returns an entry for each CPU in the pool, and we only want the number of nodes 

in the Pool.  To account for this we hash each new machine to a hash table and 

check to see if the machine has already been seen.  If it has, then we skip to the next 

entry.  Any nodes that are down are not returned by condor_status, so the 

down nodes field is always of value 0.  Running and pending jobs are found 

directly from condor_q.  Peak performance, measured in peak Gflops, is 

statically set in the PBS provider script so we also statically set peak performance 

with the Condor version of globus-info-provider. 
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Globus-load-provider returns the CPU load, architecture, number of 

processors, physical memory, memory-in-use, total swap space and free swap space 

for each machine in the cluster.  We used condor_status to get this 

information from the Condor scheduler.  However, Condor does not report actual 

memory-in-use so we looked at the memory that was used on the machines with the 

unix free command and in almost all cases the memory-in-use was close to all 

physical memory available.  Additionally, by default, Condor considers all physical 

memory of a machine as available to be used even though some memory is used for 

the operating system and background processes.  We decided to report the used 

physical memory as being equal to all available physical memory as reported by 

free, as this was the most common case when evaluating the memory usage of 

machines on our experimental cluster.  This memory usage information is only used 

when the user looks at the load link in the Resource Page of the UCLA Grid Portal.   

Globus-job-provider returns information about each job submitted 

to the cluster, specifically the job ID, job name, queue name, requested memory, 

requested time, status of the job, start time, and elapsed time.  This information can 

be readily obtained from condor_q. 

Globus-jobdetail-provider returns all information from 

condor_q with the command –long option on a specific jobID to the user.  It is 

used to get detailed information about a specific job.  We return all information 

reported by condor_q –long directly to the user.    
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Globus-local-provider returns the hostname of the appliance 

machine, the home directory of the cluster scheduler and the binary directory of the 

scheduler.  The information is found from the Linux commands: hostname, 

which, dirname, and the Globus user’s environment.  

Globus-queue-provider returns information about the queues that 

are available in a cluster.  Because Condor does not have queues, there were two 

available options of simulating queues in Condor.  One is to treat a Condor Pool as 

a queue; the other is to treat each individual machine as a queue (because you can 

specify which machine to submit jobs to).  We decided that we should represent 

each Condor Pool as a queue to stay consistent with what was represented for other 

schedulers and because the average user is more concerned with information about 

the Condor Pool as a whole than individual machines.  We believe it would not be 

as helpful to provide a list of individual machines as queues to the user and instead 

believe the user is more interested in knowing what machines and processors are 

available to a Condor Pool as a whole.  We report the queue name, max CPU time, 

max wall clock, max required CPUs, max total memory, max single memory, total 

and free cpus, total nodes, running jobs and waiting jobs.  We set the max required 

CPUs to one because the Condor job manager with Globus 4.0 does not support 

parallel jobs.  We set the various job requirements (Max WallClockTime, Max 

Total Memory, etc) to be unlimited (the default values) because those parameters 

are specified on a per machine basis and not as one setting for the entire Pool.  We 
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get the queue name from the Condor config file and use the Condor Pool name.  

We get the other parameters directly from condor_q and condor_status.  

 Now that the UCLA Grid Portal is capable of providing cluster scheduler 

information from the appliance to the Portal, we need a way to submit jobs to 

Condor clusters from the Web Portal interface.  Because we used the Condor job 

manager provided by Globus, we are able to use the same interface for Condor job 

submission that the Portal uses for other cluster schedulers.  Additionally, the 

majority of the code to support a Condor job manager is already provided in the 

Portal because specifying the cluster scheduler a job should use is a parameter in 

the GRAM file that is sent from the Portal to the appliance.    

 There are four types of jobs supported by the UCLA Grid Portal: single, 

multiple, MPI parallel, and Condor.  The Condor job manager initially worked with 

single and multiple job types with no modifications needed in the Portal.  MPI 

parallel jobs are not supported by the Condor job manager in Globus 4.0.  The 

Condor job type was not previously supported in the Portal, so it was necessary to 

discover why it was not working.   

 The Condor job type initially reported two types of errors, a ProcessDied 

error and an InvalidPathType error, depending on what executable was used while 

testing the Condor job type.  The UCLA Grid Team had used the Condor job type 

in the past with a SGE job manager, so we initially assumed that we were mis-

configuring the Condor job manager in Globus.  However, we eventually 

discovered that the single and multiple job types run in the Condor Vanilla 
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Universe and the Condor job type runs in the Condor Standard Universe.  The 

Condor Vanilla Universe does not require any changes to executables in order to 

run them; the Condor Standard Universe requires executables to be compiled 

specifically for Condor (condor_compile is a command that Condor provides) 

in order to be run.  Our test process was dying because it was not compiled for 

Condor and after using condor_compile on our test process, the Condor job 

type worked.  The InvalidPathType error came from the way that the Condor 

Standard Universe deals with executable paths, which requires paths to be absolute 

and not relative.  We documented the requirements for Condor job types in the 

Portal in the help page of the job submission portlet and modified the job 

submission portlet to automatically provide an absolute path to the executable for 

any Condor job types submitted to a Condor job manager and our integration of 

Condor into the UCLA Grid Portal was complete. 

 

4.2.  Overcoming QBETS Challenges   

 There were two kinds of challenges we faced adding QBETS to the UCLA 

Grid Portal: challenges with the monitors in the appliance, and challenges adding 

the standalone portlet into the Portal.   

 The main challenge in the appliance was modifying the QBETS monitors to 

get job accounting information and send that information to the QBETS prediction 

database.  Our approach can be broken up into several smaller steps, specifically: 
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finding out which scheduler is used on the cluster, finding the cluster scheduler log 

files, efficiently parsing the log files for new jobs, and sending the results to the 

QBETS database.  We created a file called sitescript that is used by the QBETS 

monitors to get job accounting information.  The QBETS installation comes with a 

background sensor that runs the sitescript file periodically, at an interval 

configurable by the user.  The background sensor then sends any new job 

information to the QBETS prediction system.  The appliance machine initiates 

communication with the QBETS prediction system to avoid possible firewall issues 

setup on the appliance because most firewall settings restrict incoming traffic, not 

outgoing traffic.   

 We did not want to require any additional information over what is required 

in the appliance because QBETS should be fully integrated with the UCLA Grid 

Portal and should not require any additional work by the cluster administrator to 

support QBETS.  We checked what is required inside Globus to set up a job 

manager and what Globus does when a new job manager is added in order to see 

what information we had available to use.   

 Globus requires the environment variable GLOBUS_LOCATION to be set in 

order to run and Globus creates a job manager folder inside 

Globus_Location/etc/gram-service-<job manager> when 

installing a new job manager.  Inside sitescript, we identify the job manager folders 

that have been created.   When Globus adds a new job manager, it requires an 

environment variable pointing to the home directory of the scheduler to be set.  The 
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LSF scheduler is a special case and Globus expects LSF_ENVDIR to point to the 

LSF configuration file.  We use the cluster scheduler environment variable to find 

the root directory of the scheduler and then search inside the home directory to find 

the job accounting files.  In the case of LSF we use the unix grep command to 

search inside the configuration file for the root directory.  The job accounting 

information that QBETS sends to the backend database is: jobID, start timestamp, 

wait time, nodes, walltime, and queue.   In order to efficiently get job information 

from the cluster accounting files, we only want to parse jobs that we have not seen 

before.  In order to do this, we modified code that was already in deployment for 

QBETS and added the modifications to sitescript.  We save all previously seen 

jobIDs into a cache_db file and all previously parsed files (LSF and PBS) to 

logcache_db file; SGE stores all job accounting information in a single file and a 

logcache_db file is therefore unneeded.  We store all relevant accounting 

information to a waittime_log_db file, which gets periodically sent to the QBETS 

backend database.  Each time sitescript runs and attempts to parse new jobs, we 

hash the contents of cache_db and logcache_db and then hash each new file or 

jobid to see if it is in our hash of previously seen ids.  If the file or jobid has been 

seen we advance to the next entry, if not, we parse the id or file normally.  The 

monitors allow QBETS to send job accounting information from the appliance to 

the QBETS backend prediction system, which can then be used to give predictions 

in the Web Portal interface. 
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 QBETS is implemented as a standalone portlet in the UCLA Grid Portal 

infrastructure and relies on the UCLA Grid Portal to provide a list of clusters 

accessible by the logged-in user.  Other than needing a list of accessible clusters 

and their current status, QBETS has little reliance on the UCLA Grid Portal and 

could be integrated into other Grid Portals with minimal effort.  The QBETS portlet 

was integrated as a standalone portlet in its own “tab” of the Portal because the 

information provided by QBETS did not fit into the existing UI structure of the 

Portal.  The UI of the separate tab matches the general UI scheme of the Portal and 

is consistent with the information provided by the Resource Page of the UCLA 

Grid Portal.  We separated the portlet into the frontend UI and the backend 

information that populates the UI.  The frontend UI, or presentation logic, is 

handled by JavaServer Pages (JSP) and the backend information, or content logic, 

is handled by Java classes.  We used JavaBeans to pass information between the 

JSP client code and the Java server code. 

 The goal of the UI is to make QBETS easy to use, comprehensive (a single 

prediction for all resources), and consistent with the rest of the UCLA Grid Portal. 

The QBETS portlet is easy to use because only a few pieces of readily available 

information is needed about each job: the prediction method desired (wait time or 

deadline), number of nodes, runtime, and either deadline or quantile depending on 

the prediction method.  The user only needs one prediction per job because the 

portlet gets a prediction for all cluster queue pairs that are accessible to the user for 

the specified job.  After the QBETS portlet gets all predictions, it first sorts the 
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prediction results into clusters that the Portal knows are alive and clusters that the 

Portal does not know are alive and then sorts each category, alive and not alive, 

according to the results of the predictions.  Thus, the cluster queue pair at the top of 

the output will have the highest prediction results for clusters that the Portal knows 

are currently alive.  The rest of the cluster queue pairs will be shown in sorted order 

for each category of clusters alive and not alive.  The last prediction category is 

made of clusters that QBETS can never make a prediction for, specifically clusters 

running Condor as a scheduler and, as mentioned in Section 2.7, QBETS can not 

make predictions for Condor Pools as a whole.   Finally, all prediction results are 

color coordinated for easier viewing. 

 With the QBETS portlet getting a prediction for every cluster queue pair 

available to a user and checking the aliveness of each cluster, it became necessary 

to find a way to get all predictions within a reasonable time.  We made several 

optimizations to speed up prediction requests.  First, the portlet gets and saves an 

XML document from QBETS web service that lists all available clusters when the 

portlet is initialized and the portlet creates a list of the clusters it cannot make a 

prediction for at that time.  When a prediction is requested, the portlet intersects the 

clusters that a user can access with all clusters known by QBETS and when an 

intersection is found, the portlet gets predictions for all cluster queue pairs 

involving the cluster and saves them to a list.  After all predictions have been made, 

the portlet gets the aliveness status of each cluster/queue pair by checking a Cluster 

Service in the Portal.  The Cluster Service is periodically updated when the Portal 
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queries the index scripts published by appliances.  Therefore, the aliveness reported 

in the Portal could be delayed by the interval that the Portal waits to check the 

appliance index scripts, but in return the QBETS portlet is able to immediately 

discover the aliveness of each cluster.  The QBETS portlet gets the predictions from 

the QBETS database through a web service query and uses a SOAP (Service 

Oriented Architecture Protocol) client to perform the web service request.  As a 

result of our approach, the user is able to get fast and comprehensive predictions 

from the QBETS portlet to use when making job scheduling decisions.   
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5. Results 

 In Chapter 5 we present our results in the context of the overall UCLA Grid 

Portal.  In Section 5.1 we present the Home Page of the Portal.  In Section 5.2 we 

cover the Resource Page and the index provider scripts that were written for 

Condor.  Section 5.3 demonstrates the Job Services page and how to submit jobs to 

the Condor scheduler and in 5.4 we look at the NWS Page with the QBETS portlet.     

 

 

Figure 9: Home Page 

 

5.1.    Home Page 

 Figure 9 presents the home page of the UCLA Grid Portal.  This is the first 

page the user sees when he or she logs into the Portal.  The name of the Portal is in 

the top left corner of the page, the current username and logout button is in the top 
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right corner of the page.  Underneath the Portal name are the seven main tabs in the 

Portal: My Home, Resources, Data Manager, Job Services, Other Grids, Advanced, 

and NWS.  Each tab handles a specific area of the Portal and presents portal pages 

for those sections.  Underneath the main tabs are the subtabs for the currently 

selected main tab, in this case the subtabs for My Home are My Home, Add A 

Cluster, and Feedback.  The subtabs navigate to specific pages within the maintab 

area.  The subtab currently selected is My Home, which informs the current user the 

status of the clusters they can access on the left side of the page and the status of 

their most recent jobs on the right.  The clusters on the left side are links that can be 

clicked to see more information about each cluster and the jobs provide current 

information about recently submitted jobs.  The My Home page is provided by the 

UCLA Grid Portal and our work did not affect this page. 

   

5.2.    Resources Page 

 The Resources Page provides status information about each cluster 

accessible by the current user.  The Resources Page uses the information that the 

index provider scripts written for cluster schedulers on the appliance publish to a 

URL.  We did not write the code for generating the UI for the Resources Page, but 

our Condor index scripts provide the information in the Resources Page for clusters 

running Condor, in this case the mayhem cluster. 

 



58 

 

 

Figure 10: Portal Resources Page: Main Page 

 

 Figure 10 shows the Resources Page of the UCLA Grid Portal.  The page 

presents a table with information about each cluster that the user can access and the 

information for each row of the table is provided by the globus-info-

provider script. The first column of the table has the cluster name link, second is 

the cluster status, third is a link to cluster [CPU] load, then comes total nodes, free 

nodes, down nodes, running [jobs], queued [jobs], and Peak Performance.  Last, are 

links to queues supported by the cluster and jobs running on the cluster.  In this 

screenshot, the mayhem cluster is currently alive with 12.9% load, 31 total nodes, 

27 free nodes and 0 running jobs.  The clusters IUTeragrid, BigBen and 

DatastarP690 are currently down, which means the appliance running on the 

cluster is either down or not communicating correctly with the cluster headnode.  
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The mayhem cluster in the table is using a Condor cluster scheduler, and the 

information provided by mayhem is from the index provider scripts that we wrote 

during this work.   

 

 

Figure 11: Resources Page Cluster Information 

 

 First we present the cluster information provided by the Resources Page 

after the mayhem cluster link has been clicked.  Figure 11 shows that the user is 

provided with cluster information and specific information about the machines in 

the cluster.  This information is from the index script globus-clusterinfo-
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provider, the only index script we did not need to modify because it only 

provides statically set text to the user.   

 

Figure 12: Resources Page Load Information 

 

 After viewing cluster information, we look at the information that the 

Resources Page provides after the “load” link of the mayhem cluster has been 

clicked.  At the top of Figure 12 we see a graph showing the load on each machine 

in the cluster and below the graph is a table with detailed information about each 

machine in the cluster, in particular the machine name, operating system, number of 

processors, load on each machine, physical memory, memory used, swap space and 
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swap space used.  This information is provided by the globus-load-

provider index script we wrote for the Condor scheduler.  

 

 

Figure 13: Resources Page Queue Information 

 

 Figure 13 shows the Resources Page after the “Queues” link on the mayhem 

cluster has been clicked and presents the output of the globus-queue-

provider script we wrote for Condor.  In the case of Condor, Figure 13 provides 

information about a Condor Pool instead of a queue in a cluster.  The “Queues” link 

is less useful for a Condor scheduler because there is only one “queue” in Condor, 

the Condor Pool.  With other batch schedulers the “Queues” link can show the user 

what resources are available in each queue and the requirements and running jobs 

of each queue. 
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Figure 14: Resources Page Job Information 

 

 In Figure 14, we see the Resources Page after the “Jobs” link of the mayhem 

cluster has been clicked.  Globus-job-provider provides the information 

used in the “Jobs” link of the Portal, which ink provides details about all jobs 

currently running or queued on the cluster and the resources that each job requests, 

when the job was submitted and how long it has been running.  On the left side of 

Figure 14, we see a “Scheduler ID” link for each job that is running or scheduler in the 

Portal.  The “Scheduler ID” link creates a popup window that provides detailed information 

about individual jobs, as shown in Figure 15.  This information is provided by 
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globus-jobdetail-provider and uses the command condor_q –long 

<jobid> to provide detailed information about jobs.   

 

 

Figure 15: Resources Page Job Details 

 

5.3.  Job Services Page 

 The Job Services page is where the user submits jobs and checks the status 

of jobs.  The user submits jobs through the Generic Jobs subtab, views jobs through 

the Job Status subtab, and can use the Applications and User Applications subtabs 

to quickly submit standardized job formats.   
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Figure 16: Job Submission Page 

 

 Figure 16 shows the Generic Jobs subtab of the Job Services maintab, which 

is the page used for job submission in the UCLA Grid Portal.  The interface in 

Figure 16 is used for submitting jobs to any cluster scheduler supported by the 

UCLA Grid Portal, including Condor and the only interface change we made was to 

add the job types “Condor” and “multiple” to the Job Type drop down box.  In 

Figure 16, the user is submitting a job called “DateTest” to the mayhem cluster.  

The job is the executable /bin/date and is a “Serial” job with no arguments or 

environment variables.  The job has the default requirements of 1 processor, a 

maximum memory requirement of 400Mb and a maximum time of 60 minutes.  We 

submit the job in the Portal and go to the “Job Status” subtab to see the status of the 
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job, as shown in Figure 17.  The job status page presents a table with the program 

name, time the job was submitted, time the job started, time the job ended, target 

cluster, stdout, stderr, and job status.  The “testCondorMultiple” job does not 

have a start time because it was a “multiple” job type and started several jobs at 

once.   

 

 

Figure 17: Job Status Page 

 

The DateTest job we submitted is currently pending, so we press the “Refresh” 

button and the Portal updates the Job Status page.  Figure 18 shows the Job Status 

page after the “DateTest” job has finished on mayhem and the Stdout link has 

been clicked.  The Portal displays the output, in this case the current date, in the 

rectangular window in the middle of the page.  This interface is convenient because 
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it is easy to view the output of all finished jobs across all clusters from the Web 

Portal interface.  In the case of a “multiple” job type submission, it shows the 

standard output of all job runs in the Stdout link.  We did not make any changes 

to this interface in the course of our work. 

 

 

Figure 18: Job Status Page with Job Info 

 

5.4.  NWS Page 

 The NWS Page is a new top-level tab we created in order to integrate 

QBETS into the UCLA Grid Portal; Figure 19 shows the user interface for the 

QBETS portlet.  The user selects the prediction method desired, deadline or 

waittime, the number of nodes, the runtime of the job and either the deadline for the 

job to start by (for deadline prediction), or the quantile level of accuracy desired 
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(for waittime prediction) and then requests a prediction.  In the following examples, 

we had the QBETS portlet think that IUTeragrid and DataStarP690 clusters were 

alive and the BigBen cluster was not alive.  We did this to show how the QBETS 

UI would work with some alive and not alive clusters  

 

 

Figure 19: QBETS Deadline Prediction 

.  In Figure 19, the Deadline prediction method is chosen for a job that requires 5 

nodes, has a runtime of 60 minutes, and a deadline of 120 minutes. We then request 

the prediction, with the results shown in Figure 20. 
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Figure 20: QBETS Deadline Prediction Results 

 The IUTeragrid Dque queue has the highest chance to start the job by the 

120-minute deadline, followed by the DataStarP690 Normal32 queue and 

DatastarP690 High32 queue.  Finally the IUTeragrid Workq has a 0% chance of 

starting the job by the deadline.  The two queues on the BigBen cluster have a 

higher probability than the DataStarP690 queues, but because BigBen is not 

currently alive in the Portal it is reported after all alive queues.  The green up arrow 

or red X next to clusters clarify whether the cluster is alive or not and all clusters in 

the Resources Page will show up in QBETS results.  The last section reported by 

QBETS lists all clusters for which no predictions are possible, currently the 
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mayhem cluster is alive and cannot be predicted for because it is using a Condor 

scheduler, and QBETS does not currently provide predictions for Condor Pools as a 

whole as discussed in section 2.7.  

  

 

Figure 21: BQP Wait Time Prediction 

 Next, we look at the QBETS interface when the Wait Time prediction 

method is chosen, as shown in Figure 21.  The job still needs 5 nodes and runs for 

60 minutes, but instead of a deadline there is a quantile field, which is specifies the 

level of accuracy desired from QBETS.  QBETS supports 95%, 75% and 50% as 

options for quantile.   
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Figure 22: BQP Wait Time Prediction Results 

 

 We request a prediction from QBETS and see the results in Figure 22.  The 

IUTeragrid Dque has a 95% percent chance to start before 7.39 hours, then the 

DataStarP690 Normal32 and High32 queues have a 95% chance to start in 20.12 

and 20.55 hours, respectively, and QBETS does not have enough information about 

IUTeragrid WorkQ to make a prediction for when it would start with 95% 

probability.  The BigBen queues Batch and Debug would start within 7.89 and 9.68 

hours respectively, but the BigBen cluster is currently not alive in the Portal.  As 

before, the mayhem cluster is shown in the no predictions possible section. 
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 Using both the Deadline prediction results and the Wait Time prediction 

results, we can see that our job has a 91% chance to start within 2 hours (120 

minutes) and there is a 95% chance to start within 7.39 hours if we submit it to the 

IUTeragrid Dque queue.  If the user prefers not to submit their job to the 

IUTeragrid dque, they can also submit to other available clusters and queues and 

know the probability that the job will start by a deadline or the upper bound on 

when the job will start. 
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6. Lessons Learned and Future Work 

 In Chapter 6 we present the lessons we have learned, unexpected difficulties 

encountered and future work desired.  In section 6.1 we discuss the lessons learned 

over the course of this work.  In section 6.2 we mention some of the unexpected 

difficulties that came up and in 6.3 we discuss adding Condor glide-in as future 

work.   

 

6.1.    Lessons Learned 

 We have learned many lessons over the course of this work.  First and 

foremost, we learned that doing Web Portal development is hard primarily because 

none of the code in Java Server Pages (JSP) is checked at compile time and there is 

a conflict between what the client-side code knows and what the server-side code 

knows.  A minor typo in a JSP causes a stack trace exception in the Portal, which 

can be difficult to track down when the information from stack traces is sometimes 

cumbersome and unhelpful.   

 Debugging of JSP itself is cumbersome because each minor change requires 

the Portal to be redeployed, which takes 10-30 seconds.  Furthermore, when the 

Portal is redeployed and Apache is restarted, we sometimes needed to log out and 

log back in again instead of just refreshing the web browser because the changed 

code would use data that gets set when the user initially logs in.  If we tried to just 
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refresh the Portal, then we would be trying to use uninitialized data and cause an 

exception and throw a stack trace.  This caused difficulties because when we would 

forget to perform a full restart, code that was well tested would mysteriously stop 

working and need to be debugged.   

 A final development challenge with Web Portals was discovering that 

things we thought were easy could turn out to be really hard, and some things that 

we thought would be hard turned out to be easy.  An example of something that we 

thought was easy turning out to be hard is dynamic modification of the user 

interface presented from JSP pages, particularly mutually dependent dynamic 

dropdown boxes.  It seemed like a simple if-statement would provide a solution to 

this problem where if a specific value is in the first drop box, the JSP looks up what 

should be in the second dropdown box and displays it.  The difficulty in this “easy” 

fix is that the overlap in state shared between the client and server is problematic in 

development and the server cannot look up the values in the first dropdown box 

because that is known by the client code and not the server code.  Thus, in order to 

accomplish dynamic modification of the user interface, the developer typically 

either needs submit the page to the backend logic and refresh the page, or for some 

limited problems, the use of Javascript in the JSP is enough to solve the problem.   

 Throughout this thesis, we have learned how to do Web programming, and 

programming in JSP and Java classes using Java Beans.  We have alos learned 

about Web and Grid Portals, Web Services, batch schedulers, and the details of how 
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Condor works.  We feel that this thesis has improved our general programming and 

problem solving skills and taught us specific techniques about programming in a 

Web environment.  We also feel that writing this thesis has greatly improved our 

ability to communicate the details of complex technical projects in an 

understandable manner.   Writing this thesis has specifically taught us how to 

organize and present information in a written medium, and the importance of 

precision and clarity in writing.  We feel that the skills we have learned while 

writing this thesis will prove to be very valuable in the future.  

 

6.2.    Unexpected Difficulties 

 In this section we discuss some of the unexpected difficulties that we 

encountered in our work.  The first and foremost difficulty we encountered was that 

setting up the ULCA Grid Portal was very time consuming.  It required a fresh 

install of two separate machines with Fedora Core 4, and getting the 

communication set up correctly between the portal machine and appliance machine.  

The installation instructions were eight pages long and some installation issues we 

encountered were hardware dependant.  The UCLA Grid Portal is still under 

development, and as a result, installing the UCLA Grid Portal was error-prone and 

required reinstalling the portal and the appliance several times.  An additional delay 

arose when we made our initial installation unusable during development and 

needed to reinstall.  After reinstalling, we spent a lot of time figuring out why the 
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appliance was not visible in the Portal, like it had been before.  It turned out that 

when you add a cluster to the Portal it asks for ClusterName, True Name, Head 

Node and scheduler and we entered the ClusterName (mayhem) instead of what the 

Portal actually wanted, the ClusterNode or ApplianceNode 

(bottlenose.cs.ucsb.edu).  The UCLA Grid Portal has since developed an 

installation package that will help with setting up the UCLA Grid Portal.   

 Another difficulty came up while using Web Services to communicate 

between the QBETS portlet and the QBETS prediction system in order to get 

predictions.  There are two primary methods of web service communication, using 

a  WSDL (Web Service Definition Language) or using SOAP (Service Oriented 

Architecture Protocol) for communication.  The QBETS prediction system provides 

a WSDL schema that can be used to automatically generate the necessary WSDL 

files which will provide Web Service communication between the Portal and the 

QBETS database.  The generated WSDL files worked outside of the Portal in 

testing, but when we tried to use them inside the Portal we got a 

“MalformedURIException: Cannot call function with empty parameters” error.  

According to the WSDL standards, the function calls in question were allowed to 

be called with empty parameters, but, it turned out that our implementation 

disallowed that functionality.  The QBETS Web Service is also used in deployment 

at the University of Texas User Portal.  After consulting with the University of 

Texas, we learned that they did not use the WSDL schema because they found the 

generated files to be cumbersome and hard to use.  Just as they did, we built a 
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standalone SOAP client of about 70 lines of code to solve this problem and the 

SOAP client successfully communicated with the QBETS Web Service.      

 

6.3.    Future Work 

 Our work adds functionality and enhances the user’s experience with the 

UCLA Grid Portal but there is still improvements that could be made to our work, 

which we discuss in this section.  One of the most helpful additions to the UCLA 

Grid Portal would be the addition of Condor “glide-in”, which is a method to 

temporarily install Condor onto machines in a cluster this running another batch 

scheduler.  Figure 23 demonstrates how Condor glide-in would work.  The user 

submits a Condor startup job in the Portal that is just like any other job and the job 

gets executed on the cluster and installs Condor on the number of nodes requested 

by the batch job, creating a temporary Condor Pool.  Now that Condor is installed 

on the cluster, Condor jobs can be submitted to the Condor Pool or the Pool can be 

added to a pre-existing Condor Pool, adding more resources to the Pool.  When the 

Condor startup job is terminated, Condor “glides” out of the cluster and is no longer 

running on any machines.  

 Condor glide-in provides a way to create a Condor Pool and execute Condor 

jobs on a cluster that does not have Condor as a cluster scheduler.  Condor glide-in 

is used to add more resources to a Condor Pool or to provide a way to submit 

executables that are optimized for Condor in a cluster that is not running Condor.  

The main technical challenges with implementing Condor glide-in are in submitting 
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jobs to the created Condor Pool from the Web Portal interface, creating a Condor 

glide-in job type that will also check whether a cluster has the required inter-cluster 

communication necessary for Condor glide-in to function.  The current UCLA Grid 

Portal interface only provides a mechanism to submit jobs to a cluster and does not 

support a way to specify what job manager on the cluster a job should use.  In order 

to add Condor glide-in to the UCLA Grid Portal, it would be necessary to both add 

the Condor glide-in job type to the Portal as a predefined application, setup Condor 

on the machines in the cluster, and provide ways to submit to a newly created Pool 

in the Portal and merge the newly created Pool with other Condor Pools.  
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Figure 23: Condor Glide-In 
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7. Conclusions 

 In this work we have enriched the functionality of the UCLA Grid Portal by   

increasing the resources available in the UCLA Grid Portal and providing better 

support for computationally intensive jobs and by providing additional feedback 

concerning queue delay to the user.  We have added this functionality by supporting 

Condor as a cluster scheduler in the UCLA Grid Portal and integrating QBETS, a 

prediction system that provides statistical bounds on queue delay based on current 

cluster conditions, into the Portal.    

 Furthermore, we believe that the UCLA Grid Portal will be enhance the 

research efforts of students and faculty at the UC Campuses by providing access to 

resources and convenient resource and job management through a Web Portal 

interface and the QBETS prediction system.  We look forward to seeing the effect 

the UCLA Grid Portal will have on research at the various UC Campuses. 
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