
Language and Virtual Machine Support
for Efficient Fine-Grained Futures in Java

Lingli Zhang Chandra Krintz Sunil Soman
Computer Science Department

University of California, Santa Barbara
{lingli z,ckrintz,sunils}@cs.ucsb.edu

Abstract

In this work, we investigate the implementation of fu-
tures in Java J2SE v5.0. Java 5.0 provides an interface-
based implementation of futures that enables users to
encapsulate potentially asynchronous computation and
to define their own execution engine for futures. Al-
though this methodology decouples thread schedul-
ing from application logic, for applications with fine-
grained parallelism, this model imposes an undue bur-
den on the average user and introduces significant per-
formance overhead.
To address these issues, we investigate the use of

lazy futures and offer an alternative implementation
to the Java 5.0 approach. In particular, we present a
directive-based future that uses annotations in Java 5.0
(as opposed to interfaces) and lazy future support to
significantly simplify programmer effort. Our directive-
based futures employ novel compilation and runtime
techniques that transparently and adaptively split and
spawn futures for parallel execution. All such decisions
are automatic and guided by dynamically determined
future granularity and underlying resource availability.
We empirically evaluate our future implementation us-
ing different Java Virtual Machine configurations and
common Java benchmarks that implement fine-grained
parallelism. We compare directive-based lazy futures
with lazy and Java 5.0 futures and show that our ap-
proach is significantly more scalable.

1. Introduction

As multi-processor computer systems become in-
creasingly ubiquitous, it is vital that popular, high-

level, programming languages enable easy-to-use and
efficient parallel programming. One simple and ele-
gant construct that programmers can use to identify po-
tentially asynchronous computation, is the future. Fu-
tures were introduced in Multilisp [11, 22], and are sup-
ported by many modern programming languages using
a variety of implementations (e.g. Java J2SE 5.0 [14],
X10 [7] and Fortress [1]).

In this work, we investigate an implementation of fu-
tures for Java that is both easy to use and that enables
high performance and scalability – for applications with
significantly fine-grained parallelism. The current Java
future APIs [14] employ a Executor-Callable-Future
programming model. With this model, users encap-
sulate a computation that can be potentially evaluated
in parallel using a Callable object and submit the ob-
ject to an Executor for execution. The Executor cre-
ates and returns a Future object to the initiating thread
with which it can later access the return value computed
by the future. The initiating thread immediately exe-
cutes the code that follows this process, i.e., the con-
tinuation. The Java API provides several general Ex-
ecutors that implement different thread scheduling poli-
cies for futures and users can implement their own, cus-
tomized versions via this interface. This decoupling of
thread scheduling from application logic greatly simpli-
fies parallel programming in Java.

The disadvantages of this approach are two-fold:
the programmer must create the encapsulating objects
for every potential future, and is burdened with future
scheduling decisions. Since Executors execute in the
application context, they have no control over, or feed-
back from, the services internal to the Java Virtual Ma-
chine (JVM), e.g., compilation, thread scheduling, per-
formance monitoring, etc. Feedback from these ser-



vices, such as program behavior, future granularity, and
underlying resource availability, are key for deciding
when to spawn a future (by spawning a thread) and
when to execute it inline (directly). However, employ-
ing this information effectively is complex and different
for every system.

To simplify the programming of futures in Java and
to enable automatic and adaptive spawning of futures,
we present Directive-based Lazy Futures (DBLFutures)
in this paper. DBLFutures are inspired by parallel
programming models for other languages that employ
keywords or directives to identify parallel computa-
tions [5, 18, 7, 1, 20]. Using the DBLFuture program-
ming model in Java, users annotate variable declara-
tions with @future directives. Users annotate all vari-
ables that store the return value from a function that can
be potentially executed concurrently. Using DBLFu-
tures, the parallel version of a program is the same as
the serial version with annotations on a subset of vari-
able declarations.

Our DBLFuture implementation moves future
scheduling into the JVM. To enable this, we extend
Lazy Java Futures (LazyFutures) [28], a JVM fu-
ture implementation based on Lazy Task Creation
(LTC) [19]. LazyFutures first executes potentially
concurrent computations inline and then spawns them
via runtime stack splitting during thread switching
and scheduling when the system estimates that the
remaining execution time of the future will amortize
the cost of splitting. To estimate future execution time,
LazyFutures builds upon the performance monitoring
service that is common to most JVM implementations.

Our extensions to this system include a set of
compiler and runtime modifications that support our
directive-based future specification, yet spawns futures
lazily with low overhead. Key to the efficacy of our
extensions, is our avoidance of all object creation for
sequentially invoked, potential futures. When the sam-
pling system identifies a future as long running and
there are sufficient processor resources, the system
splits the thread stack into two, creates the future ob-
ject, and executes the future and continuation in paral-
lel. Our compilation system produces code (inline, not
duplicated) that checks whether the future was spawned
or directly executed and handles the return value stor-
age and first access appropriately and transparently.

We empirically evaluate our system using a num-
ber of Java programs that implement fine-grained par-
allelism and JVM configurations. Our results show that
our system enables speedups of 2-11 times over Lazy

and Java 5.0 future implementations, is significantly
more scalable, and imposes very low overhead.

2. Java futures

The Java 5.0 release provides several new interfaces
and library support of concurrent programming. One
significant extension is the Executor-Callable-Future
programming model. In this model, programmers en-
capsulate a computation that can be safely evaluated in
parallel in a Callable object and submit the object to an
Executor object for execution scheduling. The Execu-
tor returns a Future object that the current thread can
use to query the results that the computation eventually
returns; the current thread initiates execution of the con-
tinuation. The Java 5.0 API provides several implemen-
tations of Executor with various scheduling strategies.
Moreover, programmers can implement their own Ex-
ecutors with which they can customize scheduling deci-
sions. We refer to this programming model as J5Future
in this paper. Figure 1(a) shows a simplified program
for computing the Fibonacci sequence (Fib) that uses
the Executor-Callable-Future model and its Java 5.0 in-
terfaces.

The J5Future programming model is simpler than a
thread-based model since it decouples thread schedul-
ing from application logic. However, since this model
requires that users wrap all future computation into an
object, significant programmer effort may be required
to convert serial versions of programs to parallel ver-
sions. In addition, given the multiple levels of encapsu-
lation, this model consumes significant memory (which
then must be managed by garbage collection) for each
future.

The second drawback of this model is that it places
the burden of scheduling futures on the user. The de-
fault Executors are effective for simple cases but do
not consider the granularity of computation or under-
lying resource availability – both of which are vital to
achieving scalability and high-performance but are very
difficult to extract accurately at the library level. As a
result, especially for applications with fine-grained par-
allelism, naive Executors, e.g., those implemented us-
ing a thread-pool to execute each submitted future, can
severely degrade performance and scalability.

Users can create their own Executors and/or hard-
code thresholds that attempt to identify when to spawn
(and amortize the cost of spawning) or inline futures.
However, this requires expert knowledge about the dy-

2



public class Fib
implements Callable<Integer>

{
ExecutorService executor = ...;
private int n;

public Integer call() {
if (n < 3) return n;
Future<Integer> f =

executor.submit(new Fib(n-1));
int x = (new Fib(n-2)).call();
return x + f.get();

}
...

}

public class Fib
implements Callable<Integer>

{
private int n;

public Integer call() {
if (n < 3) return n;
LazyFutureTask<Integer> f =

new LazyFutureTask(new Fib(n-1));
f.run();
int x = (new Fib(n-2)).call();
return x + f.get();

}
...

}

public class Fib
{
public fib(int n) {

if (n < 3) return n;
@future int x = fib(n-1);
int y = fib(n-2);
return x + y;

}
...

}

(a) Futures in Java 5.0 (b) Object-oriented lazy futures (c) Directive-based lazy futures

Figure 1. Different programming models for futures in Java

namic behavior of the program and the characteristics
(the spawn cost of futures, and the compilation systems,
processor count and availability, etc.) of the platform on
which the application ultimately executes. Moreover,
regardless of the expertise with which the scheduling
decisions are made, this model, since it is implemented
outside and independent of the runtime, is unable to
exploit the services (recompilation, scheduling, alloca-
tion, performance monitoring) and detailed knowledge
of the system and program that the execution environ-
ment has access to.

To exploit the services and knowledge of the Java
Virtual Machine (JVM) and to reduce the burden of us-
ing Executors in Java 5.0, prior work [28] introduces
Lazy Futures for the Java language and virtual machine
(to which we refer to as LazyFuture throughout).

The LazyFuture implementation is inspired by a
technique originally proposed by Mohr et al. [19],
called lazy task creation (LTC). LTC initially imple-
ments all futures as function calls. The system then
maintains special data structures that enable spawn-
ing of the continuation. When there is an idle pro-
cessor available, the idle processor steals continua-
tion from the first processor and executes it in parallel
with the future. Similar techniques are employed for
many different languages to support fine-grained paral-
lelism [21, 9, 10, 24]. The LazyFuture implementation
for Java employs volunteer splitting as opposed to work
stealing and it couples dynamic information about com-
putation granularity with underlying resource availabil-
ity to make scheduling decisions.

LazyFutures use an abstraction called the LazyFu-
tureTask which extends the Java 5.0 FutureTask. Users
create a LazyFutureTask object for each potentially
asynchronous computation and invoke its run method

directly (in a way similar the traditional Java thread
model). Figure 1 (b) shows the LazyFuture implemen-
tation of Fib.

The LazyFuture-aware JVM recognizes this run()
method (in each LazyFutureTask). The JVM initially
inlines the computation on the current thread (i.e. it
does not spawn the future). The system then mon-
itors the computation to estimate its granularity and
the underlying resource availability to determine when
spawning will result in improved performance. Lazy-
Futures leverage adaptive optimization and the low-
level program and system information to which a JVM
has access. The system estimates granularity using
feedback from the sampling system common to JVMs
that identifies “hot”, i.e., long running, methods. The
system then splits the runtime stack of a thread that is
executing a hot future into two, the future and the con-
tinuation, and relies on the internal Java threading sys-
tem to enable efficient scheduling. Since this process
happens only when a thread switch occurs (approxi-
mately every 10ms in our JVM), the overhead of moni-
toring methods is hidden and thread synchronization is
unnecessary and avoided.

3. Directive-based lazy futures

The LazyFuture model follows an interface-based
approach that is similar to (yet more efficient than)
J5Futures. As a result, it inherits similar programmer
productivity and performance disadvantages. Using the
interface-based approach, users must employ object en-
capsulation of futures, and thus, incur memory alloca-
tion and management overhead. In addition, the coding
style using this methodology imposes an extra burden
on the programmer and causes source code to be longer

3



and less readable. To address these limitations, we pro-
pose a new implementation of futures in Java that we
call Directive-based Lazy Futures (DBLFutures).

Our DBLFuture implementation builds upon and ex-
tends LazyFutures to improve the ease-of-use of future-
based parallelism in Java as well as performance and
scalability. To enable his, DBLFutures exploit the Java
language extension for annotations (JSR-175 [15]). An-
notations are source code directives that convey pro-
gram metadata to tools, libraries, and JVMs; they do
not directly affect program semantics. In particular,
we introduce a future annotation (denoted @future
in the source code) for local variables. Users employ
our future directive to annotate local variables that can
be used as placeholders of results returned by function
calls that can be potentially executed concurrently by
the system. If a function call stores its return value to a
annotated local variable, it is identified as a future func-
tion call. Figure 1(c) shows the implemented Fib pro-
gram using this model.

Our DBLFuture model avoids creation (and thus,
user specification) of Callable, Future, LazyFutureTask,
or other objects when the future is inlined (executed se-
quentially) by the system. As such, we avoid the mem-
ory allocation, memory management, and extra source
code required by previous approaches. With this model,
users easily specify computations that can be safely ex-
ecuted in parallel with minimal rewriting of the serial
programs. This programming methodology also pro-
vides the JVM with the flexibility to implement poten-
tially concurrent code regions as efficiently as possible.

Our DBLFuture-aware JVM recognizes the future
directive in the source and implements the associated
calls using a set of LazyFuture extensions and compiler
techniques. First, the future directive in the source is
saved as a method attribute in the bytecode. The class
loader of our DBLFuture-aware JVM recognizes this
attribute and builds a future local variable table for each
method, which contains the name, index, and bytecode
index range of each future local variable. Our Just-In-
Time, dynamic compiler consults this table during com-
pilation.

Initially, the JVM treats every future call as a func-
tion call, and executes the code on the runtime stack of
the current thread. For each such call, the system also
maintains a small stack that shadows the runtime stack
for each thread, called the future stack. This future stack
maintains entries for potential future calls only. Each
entry contains metadata for the corresponding runtime
stack frame of the future call that includes the location

of the frame on the runtime stack and a sample count
that estimates how long the future call has executed.
The system uses this information to make splitting and
spawning decisions.

Each DBLFuture shadow stack frame also contains
the local variable index and the stack slot in the runtime
stack of the caller of the future call that the compiler has
allocated for this local variable. Our system employs
this information to set up the future and continuation
thread correctly upon a split and spawn.

3.1. Future compilation

For LazyFutures, the LazyFutureTask.run() method
is the only marker of potential future calls in the pro-
gram. In addition, the process of storing the return
value of a future call and accessing the value later on
is explicitly coded in the application via implementa-
tion of the run() and get() methods of the LazyFuture-
Task class. The LazyFutureTask object serves as the
placeholder of the computation result, and is always
created regardless of whether the computation is inlined
or spawned.

To enable this, a Lazy Future compiler implements a
small, inlined, and very efficient, stub in the prologue
and epilogue of the run() method. This stub pushes an
entry onto the future stack at beginning of a future call,
and pops the entry off of the future stack when exit-
ing the future call. In addition, the return type of the
run() method is void, so the address of the first instruc-
tion of the continuation is the return address of the run
method. Thus, upon future splitting, the system can ex-
tract the return address from the runtime stack frame
for the run() method, and use it as the starting program
counter (PC) of the new thread (that will execute the
continuation). The system sets the original return ad-
dress to a stub that terminates the current thread when
the future call completes.

DBLFutures require a somewhat more complex com-
pilation approach. We maintain the future stack for
every marked future call as is done for Lazy Futures.
However, since we want to allow any method call to be
specified as a potential future call if it can be executed
safely in parallel, and to allow the same method defini-
tion to be used in both a future and a non-future context,
the extant compilation strategy requires that we produce
two versions of compiled code for every method that
may be used in the future context, and insert stubs into
the prolog and epilog of all such methods. This is not
feasible or desirable since it causes unnecessary code

4



bloat and compilation overhead. Instead, we expand
the future call cite and insert future stack maintenance
stubs before and after the call site of the future.

The store of the return value after the future call com-
pletes requires special handling. If the call is not split,
the return value must be stored into the specified local
variable. If the future is split and spawned, the return
value must be stored into a placeholder (i.e. a Future
object) for access by the continuation thread. To enable
this, we add one word to every runtime stack frame, for
a split flag. This flag is a bitmap of spawned futures
indexed by the future local variable index in the byte-
code local variable array. For example, if the future call
associated with a local variable at index 1 is spawned,
the JVM sets the second lowest bit of the flag to 1. The
JVM checks this bit at two points in the code: (i) at the
store of the return value and (ii) at the first use of the
return value. We currently support 32 futures (64 for
64-bit machines) per method given this use of a bitmap.
However, we can extend this by using the last bit to in-
dicate when there more futures, and storing a reference
to a full-fledged bit-vector if so.

Our compiler always allocates a slot on the runtime
stack for every future-annotated local variable. This
slot holds different variable types at different times: be-
fore splitting, its type is the declared type of the local
variable; after splitting, it holds a reference to a Future
object which is created and set by the splitting system
in the JVM. To ensure correct garbage collection (GC),
the compiler includes this slot in the GC maps and the
garbage collector dynamically decides whether it holds
a reference or not using the split flag.

We compile the return value storage point to a con-
ditional branch. If the split flag is set, the code stores
the return value directly in the local variable slot on the
stack. Otherwise, the code extracts the reference to the
Future object from the same stack slot, and stores the
return value into the Future object.

We similarly expand instructions that use the return
value. If the split flag is set, the codes uses the value in
the local variable slot on stack directly; otherwise, the
code executes the get() method on the Future object that
it extracts from this same slot (which will block if the
return value is not ready yet). In this latter case, when
the system eventually returns a value from a method via
the get() method, it also stores the value in the slot (an
thus, the slot at this point holds the type of the origi-
nal local variable). If there are multiple use points, our
compiler only converts the first one (the one that domi-
nates the others) since all uses thereafter are guaranteed

to access the value with the original return type.
Finally, we must set the starting PC of the continua-

tion thread correctly. Logically, if a future is split, the
continuation thread should start at the point in the code
immediately after the point at which the return value is
stored. Note, though, that this is not the return address
of the future call any longer (as is the case for Lazy
Futures). To provide this information to the JVM split-
ting mechanism, we insert a fake instruction after the
return value store instruction which we pin throughout
the compilation process. At the end of compilation we
remove this instruction; but, we put its PC and the in-
dex of the associated local variable into a map which
we store with the compiled code and query during fu-
ture splitting.

By extending a JVM, our DBLFutures implementa-
tion avoids complicated source or bytecode rewriting
or multiple code versions and yet easily enables mi-
gration from inlined to concurrent execution. In addi-
tion, our system is able to mix future calls with nor-
mal calls naturally since we have access to the Java
operand stack and local method state. Non-JVM im-
plementations cannot do this easily. For example, Cilk
and JCilk [5, 18] do not allow non-Cilk method to call a
Cilk method at all since a non-Cilk method is not com-
piled with parallel support (fast and slow clones) and is
not migratable.

4. Experimental methodology

We have implemented DBLFutures (as well as Lazy-
Futures) in the popular, open-source Jikes Research
Virtual Machine (JikesRVM) [13] (x86 version 2.4.6)
from IBM Research. We have conducted our experi-
ments on a dedicated 4-processor box (Intel Pentium
3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) with
hyper-threading enabled. We report results for 1, 2,

Bench- Inputs future# BaseVM PAOptVM
marks size (106) (secs) (secs)

AdapInt 0-250000 5.78 102.45 28.84
FFT 2

18 0.26 43.63 8.27
Fib 40 102.33 673.40 29.09
Knapsack 24 8.47 106.75 11.88
Quicksort 2

24 8.38 54.10 8.77
Raytracer balls.nff 0.27 167.00 20.41

Table 1. Benchmark characteristics.

5



1 2 4 8
Number of processors 

0

1

2

3

Sp
ee

du
p 

ov
er

 se
ria

l e
xe

cu
tio

n singleThread 
threadPool 
OO-Lazy 

1 2 4 8
Number of processors

0

1

2

3

Sp
ee

du
p 

ov
er

 se
ria

l e
xe

cu
tio

n singleThread 
threadPool 
OO-Lazy

(a) BaseVM (b) PAOptVM

Figure 2. Efficacy of the LazyFuture implementation

4, and 8 processors – 8 enabled virtually via hyper-
threading. We execute each experiment 10 times and
present performance data for the best-performing.

For each set of experiments, we report results
for two JVM configurations. The first uses a
fast, non-optimizing compiler (BaseVM) and the sec-
ond employs an adaptively optimizing compiler [2]
(PAOptVM). With PAOptVM, we employ pseudo-
adaptation (PA) [4], to reduce non-determinism in our
experimentation. We include results for both JVM con-
figurations to show the performance impact of DBLFu-
tures for systems that dynamically produce very differ-
ent code quality.

The benchmarks that we investigate are from the
benchmark suite in the Satin system [25]; we list them
in Table 1. Each implements varying degrees of fine-
grained parallelism. At one extreme is Fib which com-
putes very little but creates a very large number of po-
tentially concurrent methods. At the other extreme is
FFT and Raytracer which implement few potentially
concurrent methods, each with large computation gran-
ularity. Column 2 in the table is the input size that we
employ and column three is the total number of poten-
tial futures in each benchmark.

In the final two columns of the table, we show the
execution time in seconds for the serial version of the
J5Future implementation. For this version, we invoke
the call() method of each Callable object directly in-
stead of submitting it to an Executor for execution.

5. Results

In this section, we first empirically compare the per-
formance and scalability of Java 5.0 futures (J5Futures)
and Lazy Futures (LazyFutures). We then evaluate the
efficacy of DBLFutures and investigate its overhead.

5.1. Java 5.0 vs Lazy futures

We first investigate the performance of the LazyFu-
ture implementation in our system and compare it to
that of J5Futures. For the J5Future implementation,
we employ Executor-Callable-Futuremodel for all po-
tentially concurrent methods in each benchmark. We
investigate two simple, but typical, Executors for this
model: one that spawns a thread for every future sub-
mitted and another that uses a variable-length thread
pool to execute futures. We refer to these implemen-
tations as J5Future-ST and J5Future-TP, respectively.

Since our benchmarks have a large number of fine-
grained futures, many more than these two executors
can handle, we identify spawning thresholds of compu-
tation granularity that enable the best performance ex-
perimentally for each system configuration and bench-
mark. We then parameterize the Executors with these
thresholds. The modified Executors evaluate the sub-
mitted computation prior to spawning a new thread
or employing the thread pool. If the granularity of
the job is smaller than the corresponding threshold,
the Executor simply invokes the call() method of the
Callable object directly. Note that such hand-tuned Ex-
ecutors are not feasible in practice since optimal spawn-

6



ing thresholds vary significantly across applications, in-
puts, and execution environments, and doing so intro-
duces a tremendous burden on the programmer. Never-
theless, we use these two hand-tuned Executors to rep-
resent cases where good spawning decisions are made
given perfect knowledge of the underlying system and
without incurring overhead for dynamic decision mak-
ing and future splitting.

We present the average speedup over serial execu-
tion, across benchmarks, for parallel execution using
J5Future-ST, J5Future-TP and LazyFuture respectively
in Figure 2. For the LazyFuture implementation, we
modify the benchmarks to eliminate the Executor as
we describe in Sections 2 and 3. Graph (a) shows the
results for BaseVM; graph (b) shows the results for
PAOptVM; the x-axis in both is the number of pro-
cessors that we use in each experiment. Note that for
one processor, there is no spawning in all three ap-
proaches. Thus, the speedup values for one processor
indicate the overhead of running Executors (for the two
J5Future implementations) or the future splitting sys-
tem (for LazyFutures).

The results with more than one processor show that
the lazy future splitting system produces comparable
performance to the hand-tuned Executors. In some
cases, the LazyFuture system performs better since it
is able to adaptively identify tasks to split and spawn.
J5Futures require that the user specify a static, fixed
threshold to determine whether or not to spawn a con-
current task. Even in the best case for J5Futures, since
the system is unable to adapt to available resources and
actual program behavior, the LazyFuture system is able
to make better spawning decisions automatically.

The absolute speedup values indicate however, that
neither approach scales well in either JVM configu-
ration. This is due to the significant overhead in-
troduced by interface-based future implementations in
Java. Such implementations create encapsulating ob-
jects regardless of whether the computation is inlined or
executed in parallel, and thus, cause significant mem-
ory management overhead, which severely limits per-
formance and scalability. We next evaluate the effi-
cacy with which directive-based lazy futures address
this limitation.

5.2. Directive-based lazy futures

We first compare the scalability of DBLFutures and
LazyFutures. Both implementations share our splitting
and spawning virtual machine infrastructure; the DBL-

Future system however, employs the extensions that we
describe in Section 3.

Table 2 shows the speedup of DBLFutures over
LazyFutures for each benchmark. Columns 2-5 present
results for increasing processor counts; Table (a) shows
the results for BaseVM and (b) shows the results
for PAOptVM. DBLFutures enable significant perfor-
mance gains over LazyFutures for all configurations
and processor counts. On average, the DBLFuture im-
plementation is 9.1 to 10.8 times faster than LazyFu-
tures for all experiments for the BaseVM and 1.8 to 4.4
times faster for the PAOptVM case. Moreover, the per-
formance gains increase with the number of futures (eg
Fib versus Raytracer).

The primary reason for the performance improve-
ment is the programming model. For LazyFutures, the
JVM has the flexibility to decide whether to inline or
spawn a future, but must always create the Callable
and Future object due to its interface-based model.
The DBLFuture employs a function-call based model,
which (1) avoids the creation of Callable objects com-
pletely; (2) grants the JVM the flexibility to create a
Future object only when it decides to spawn a future
based on underlying resource availability and dynamic
program behavior.

The improvements for PAOptVM are smaller than
for BaseVM due to the efficient runtime services and
dynamic code generation that PAOptVM performs (in-
cluding aggressive optimization of object allocation).
In addition, the performance difference between Ba-
seVM and PAOptVM speedups increase with the num-
ber of processors. This is because the more proces-
sors that are available, the more intense the competition
for system resource and services. Thus, by eliminating
most of the unnecessary object allocation, DBLFuture
is able to reduce the conflicts in parallel memory man-
agement, which provides additional performance gains.

We next analyze the overhead and scalability of our
DBLFuture system in Table 3. The table contains one
section each for the BaseVM (a) and the PAOptVM
(b) configurations. We use Ti to represent the execu-
tion time of programs written using DBLFuture with i
processors, and Ts for the execution time of the cor-
responding serial version, which is listed (in seconds)
in Columns 2 and 7 of Table 3. Note that due to its
function-call based coding style, this serial version is
much faster than the serial version we used as the base-
line for J5Futures and LazyFutures (see Column 4 and
5 of Table 1). Therefore, we are setting a higher stan-
dard here to evaluate our DBLFuture system against,

7



Benchmarks
AdapInt
FFT
Fib
Knapsack
Quicksort
Raytracer
Avg

Ts Ts/T1 T1/T2 T1/T4 T1/T8

43.04 s 0.97 x 1.98 x 3.85 x 6.19 x
41.61 s 1.00 x 1.88 x 3.09 x 2.86 x
8.17 s 0.31 x 1.99 x 3.96 x 4.26 x

88.36 s 0.97 x 1.86 x 3.68 x 3.43 x
14.65 s 0.91 x 1.83 x 3.28 x 3.87 x

162.40 s 1.00 x 1.93 x 3.66 x 3.78 x
59.71 s 0.86 x 1.91 x 3.59 x 4.07 x

Ts Ts/T1 T1/T2 T1/T4 T1/T8

24.34 s 0.93 x 1.73 x 3.43 x 5.24 x
7.55 s 0.99 x 1.60 x 1.99 x 1.88 x
5.59 s 0.34 x 1.98 x 3.94 x 4.02 x

10.70 s 0.96 x 1.84 x 2.76 x 2.58 x
6.14 s 0.88 x 1.90 x 3.01 x 3.44 x

19.81 s 0.99 x 1.90 x 3.22 x 3.84 x
12.36 s 0.85 x 1.83 x 3.06 x 3.50 x

(a) BaseVM (b) PAOptVM

Table 3. Overhead and scalability of directive-based lazy futures

Bench- Processor Numbers
marks 1 2 4 8

AdapInt 2.90 x 2.97 x 3.02 x 4.61 x
FFT 1.11 x 1.13 x 1.12 x 1.03 x
Fib 42.55 x 44.63 x 46.67 x 51.09 x
Knapsack 1.57 x 1.58 x 1.64 x 1.64 x
QuickSort 5.53 x 5.29 x 5.22 x 5.65 x
Raytracer 1.01 x 1.02 x 1.01 x 1.00 x
Avg 9.11 x 9.44 x 9.78 x 10.84 x

(a) BaseVM

Bench- Processor Numbers
marks 1 2 4 8

AdapInt 1.23 x 1.18 x 1.26 x 1.47 x
FFT 1.08 x 1.12 x 1.01 x 1.00 x
Fib 4.46 x 6.64 x 12.42 x 18.17 x
Knapsack 1.31 x 1.57 x 1.76 x 1.86 x
QuickSort 1.87 x 2.10 x 2.27 x 2.72 x
Raytracer 1.01 x 1.01 x 1.00 x 1.01 x
Avg 1.83 x 2.27 x 3.29 x 4.37 x

(b) PAOptVM

Table 2. Speedup of DBLFutures over
LazyFutures.

and the speedup values in Table 3 have different scales
from those in Figure 2.

Columns 3 and 8 show the Ts/T1 value, our over-
head metric. Since there is only function call over-
head for each potential future invocation in the serial
version, the difference between T1 (single processor)
and Ts reveals three sources of overhead: (1) the book-
keeping employed to maintain the shadow future stack,
(2) the activities of the future profiler, controller, and
compiler, and (3) the conditional processing required
by the DBLFuture version for the storing and first use
of the value returned by a potential future call. The
JVMs perform no splitting in either case. This data
shows that our DBLFuture implementation is very ef-
ficient: only negligible overhead is introduced for most
benchmarks. The worst case is Fib, which shows a
3x slowdown. This is because the Fib benchmark per-
forms almost no computation for each future invoca-
tion (computing a Fibonacci value). The results for this
benchmark represents an upper bound on the overhead
of our system. The C implementation for a similar par-
allel system, called Cilk, introduce a similar overhead
for this benchmark (3.63x slowdown [9]). Our system
however, significantly outperforms the Java version of
Cilk (JCilk) which imposes a 27.5x slowdown for this
benchmark [8]).

The remaining columns for each JVM configuration
show the speedups gained by DBLFuture when we in-
troduce additional processors (which we compute as
T1/Ti as we increase i, the processor count). For
the BaseVM case, the execution time on N proces-
sors scales almost to 1/N (average speedup is 1.91x,
3.59x, 4.07x for processor 2, 4, 8 respectively), that
is, our system enables approximately linear speedup
for most of the benchmarks that we investigate. Note
that our hardware has 4 physical processors and uses

8



hyper-threading to emulate 8 processors. Despite im-
provements in code quality enabled by the PAOptVM
case, the DBLFuture version is able to extract average
performance gains of 1.83x, 3.06x, 3.50x for 2, 4, and
8 processors, respectively. In summary, our DBLFu-
ture implementation achieves scalable performance im-
provements with negligible overhead.

6. Related work

Language and runtime support for fine-grained fu-
tures has been studied widely for functional lan-
guages [17, 19] and C++ [26]. Lazy task creation
(LTC) [19], in particular, has inspired many system
designers interested in exploiting fine-grained paral-
lelism [21, 10, 9, 23] in a lazy fashion: execute sequen-
tially first, and in parallel if necessary.
Lazy Java Futures (LazyFutures herein) [28] is the

first Java Virtual Machine implementation in support
of fine-grained futures. It exploits both general thread
scheduling and performance sampling in the JVM to
guide splitting and spawning of futures lazily based on
underlying resource availability and dynamic computa-
tion granularity. In all prior systems, spawning is trig-
gered only by a blocked task or idle processor.

Our DBLFuture system extends LazyFutures to sup-
port a directive-based programming model for using fu-
tures in Java (as opposed to an interface-based, object-
oriented approach of LazyFutures and all other ap-
proaches to Java futures). As a result, DBLFutures sim-
plify the introduction of parallelism into programs and
enables greater flexibility to the JVM to implement po-
tentially concurrent code regions as efficiently as possi-
ble.

There are many previous works that support paral-
lel programming linguistically, either language-based,
i.e., through the addition of new keywords in the lan-
guage (e.g., Cilk [5], JCilk [18], X10 [7], Fortress [1]),
or directive-based (e.g. OpenMP [20]). Many program-
ming languages support the future construct to some
extent, either via a library interface (e.g., Java [14],
C++ [26]), or directly (e.g., Multilisp [22], C [6],
X10 [7], Fortress [1]). We follow the directive-based
approach instead of language-based approach for easy
implementation. The focus of our paper, however, is not
the linguistic programming model itself, instead, we are
interested in the performance impact of different future
implementations for Java. We find that a linguistic ap-
proach provides the JVM and compiler with more flex-

ibility to interpret future calls efficiently.
New extensions to the Java language can also be im-

plemented by transforming the new constructs to calls
to runtime libraries via either source-to-source transfor-
mation [8, 12] or bytecode rewriting [3, 16]. This ap-
proach has the advantage of portability and easy imple-
mentation since it does not require JVM modification.
We show, in this work, however, that JVM support in
a way that takes advantage of extant JVM services is
important to achieve high performance and scalability.
Also, our experiences show that such JVM supports to
new language constructs can be feasible and sometime
even simpler to implement comparing to higher-level
alternatives by leveraging extant JVM design and im-
plementations and eliminating extra abstraction layers.

The authors in [27] propose safe futures for Java.
Their system uses object versioning and task revocation
to enforce the semantic transparency of futures auto-
matically so that programmers are freed from reasoning
about the side-effects of future executions and ensuring
correctness. Safe futures are complementary to DBL-
Futures and we plan to investigate their integration into
our system as part of future work.

7. Conclusions

We investigate the implementation of the future par-
allel programming construct for Java. Futures provide
a simple and elegant way for programmers to intro-
duce concurrency into their programs. In the current
Java future APIs [14], programmers add futures to their
applications using the Executor-Callable-Future pro-
gramming model. We evaluate this model for programs
with fine-grained parallelism, and find that it introduces
significant performance overhead. Moreover, the pro-
gramming methodology it requires imposes an undue
burden on the average user. To address these limita-
tions, we introduce directive-based lazy futures (DBL-
Futures) and present its necessary Java Virtual Machine
compiler and runtime extensions.

With DBLFutures, programmers can easily introduce
parallelism into their programs by annotating local vari-
ables that receive results from function calls that can
be safely executed in parallel. Our DBLFuture system
builds upon and extends a lazy future implementation
to enable the runtime to decide when to split and spawn
annotated future calls according to underlying resource
availability and dynamically determined computation
granularity. In addition, our DBLFuture implemen-

9



tation avoids unnecessary object creation that causes
significant memory management overhead in prior ap-
proaches of futures in Java. We empirically evaluate our
future implementation using different Java Virtual Ma-
chine configurations and common Java benchmarks that
implement fine-grained parallelism. Our results show
that our DBLFuture system imposes negligible over-
head on serial executions and is significantly more scal-
able than all prior implementations of futures in Java.

References

[1] E. Allan, D. Chase, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The
Fortress language specification version 0.785. Techni-
cal report, Sun Microsystems, 2005.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive Optimization in the Jalapeño JVM. In ACM
SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA), Oct. 2000.

[3] The AspectJ Project. http://www.eclipse.org/aspectj/.
[4] S. M. Blackburn and A. L. Hosking. Barriers: friend or

foe? In Proceedings of the 4th international symposium
on Memory management, pages 143–151, 2004.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an ef-
ficient multithreaded runtime system. In Proceedings
of the fifth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 207–216,
1995.

[6] D. Callahan and B. Smith. A future-based parallel lan-
guage for a general-purpose highly-parallel computer.
In Selected papers of the second workshop on Lan-
guages and compilers for parallel computing, pages
95–113, London, UK, UK, 1990. Pitman Publishing.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform clus-
ter computing. In Proceedings of the 20th ACM SIG-
PLAN conference on Object oriented programming sys-
tems languages and applications, pages 519–538, 2005.

[8] J. S. Danaher. The jcilk-1 runtime system. Master’s the-
sis, Massachusetts Institute of Technology Department
of Electrical Engineering and Computer Science, June
2005.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The im-
plementation of the cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages
212–223, 1998.

[10] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy
threads: implementing a fast parallel call. J. Parallel
Distrib. Comput., 37(1):5–20, 1996.

[11] J. Henry C. Baker and C. Hewitt. The incremental
garbage collection of processes. In Proceedings of the
1977 symposium on Artificial intelligence and program-
ming languages, pages 55–59, New York, NY, USA,
1977. ACM Press.

[12] B. Hindman and D. Grossman. Atomicity via source-
to-source translation. In MSPC ’06: Proceedings of
the 2006 workshop on Memory system performance and
correctness, pages 82–91, New York, NY, USA, 2006.
ACM Press.

[13] IBM Jikes Research Virtual Ma-
chine (RVM). http://www-
124.ibm.com/developerworks/oss/jikesrvm.

[14] JSR166: Concurrency utilities.
http://java.sun.com/j2se/ 1.5.0/docs/guide/concurrency.

[15] JSR 175: A Metadata Facility for the JavaTM Program-
ming Language. http://jcp.org/en/jsr/detail?id=175.

[16] M. Karaorman and P. Abercrombie. jcontractor: In-
troducing design-by-contract to java using reflective
bytecode instrumentation. Form. Methods Syst. Des.,
27(3):275–312, 2005.

[17] D. A. Kranz, J. R. H. Halstead, and E. Mohr. Mul-T: a
high-performance parallel Lisp. In Proceedings of the
ACM SIGPLAN 1989 Conference on Programming lan-
guage design and implementation, pages 81–90, 1989.

[18] I.-T. A. Lee. The JCilk multithreaded language. Mas-
ter’s thesis, Massachusetts Institute of Technology De-
partment of Electrical Engineering and Computer Sci-
ence, Aug. 2005.

[19] E. Mohr, D. A. Kranz, and J. R. H. Halstead. Lazy task
creation: A technique for increasing the granularity of
parallel programs. IEEE Trans. Parallel Distrib. Syst.,
2(3):264–280, 1991.

[20] OpenMP specifications. http://www.openmp.org/specs.
[21] J. Plevyak, V. Karamcheti, X. Zhang, and A. A. Chien.

A hybrid execution model for fine-grained languages on
distributed memory multicomputers. In Supercomput-
ing ’95: Proceedings of the 1995 ACM/IEEE confer-
ence on Supercomputing (CDROM), page 41, 1995.

[22] J. Robert H. Halstead. Multilisp: a language for con-
current symbolic computation. ACM Trans. Program.
Lang. Syst., 7(4):501–538, 1985.

[23] K. Taura, K. Tabata, and A. Yonezawa. Stack-
threads/mp: integrating futures into calling standards.
In Proceedings of the seventh ACM SIGPLAN sympo-
sium on Principles and practice of parallel program-
ming, pages 60–71, 1999.

[24] K. Taura and A. Yonezawa. Fine-grain multithreading
with minimal compiler supporta cost effective approach
to implementing efficient multithreading languages. In
Proceedings of the ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages
320–333, 1997.

[25] R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and
H. E. Bal. Satin: Simple and efficient Java-based grid

10



programming. Scalable Computing: Practice and Ex-
perience, 6(3):19–32, September 2005.

[26] D. B. Wagner and B. G. Calder. Leapfrogging: a
portable technique for implementing efficient futures.
In Proceedings of the fourth ACM SIGPLAN sympo-
sium on Principles and practice of parallel program-
ming, pages 208–217, 1993.

[27] A. Welc, S. Jagannathan, and A. Hosking. Safe futures
for java. In OOPSLA ’05: Proceedings of the twenti-
eth ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pages
439–453, 2005.

[28] L. Zhang, C. Krintz, and S. Soman. Efficient Support
of Fine-grained Futures in Java. In International Con-
ference on Parallel and Distributed Computing Systems
(PDCS), 2006.

11


