
MIST: Distributed Indexing and Querying in Sensor Networks using
Statistical Models

Arnab Bhattacharya Anand Meka Ambuj K. Singh
Dept. of Computer Science, Dept. of Computer Science, Dept. of Computer Science,

University of California, University of California, University of California,
Santa Barbara Santa Barbara Santa Barbara

arnab@cs.ucsb.edu meka@cs.ucsb.edu ambuj@cs.ucsb.edu

Abstract

The modeling of high level semantic events from low level sensor signals is important in order to understand distributed
phenomena. For such content-modeling purposes, transformation of numeric data into symbols and the modeling of re-
sulting symbolic sequences can be achieved using statistical models—Markov Chains (MCs) and Hidden Markov Models
(HMMs). We consider the problem of distributed indexing and semantic querying over such sensor models. Specifically,
we are interested in efficiently answering (i) range queries: return all sensors that have observed an unusual sequence
of symbols with a high likelihood, (ii) top-1 queries: return the sensor that has the maximum probability of observing a
given sequence, and (iii) 1-NN queries: return the sensor (model) which is most similar to a query model. All the above
queries can be answered at the centralized base station, if each sensor transmits its model to the base station. However, this
is communication-intensive. We present a much more efficient alternative—a distributed index structure, MIST (Model-
based Index STructure), and accompanying algorithms for answering the above queries. MIST aggregates two or more
constituent models into a single composite model, and constructs an in-network hierarchy over such composite models.
We develop two kinds of composite models: the first kind captures the average behavior of the underlying models and the
second kind captures the extreme behaviors of the underlying models. Using the index parameters maintained at the root
of a subtree, we bound the probability of observation of a query sequence from a sensor in the subtree. We also bound the
distance of a query model to a sensor model using these parameters. Extensive experimental evaluation on both real-world
and synthetic data sets show that the MIST schemes scale well in terms of network size and number of model states. We
also show its superior performance over the centralized schemes in terms of update, query, and total communication costs.

1 Introduction

Large scale sensor networks are being deployed for appli-
cations such as habitat monitoring [19], seismic monitor-
ing [2], and location tracking systems [17]. As sensors
become more inexpensive and more easily deployable, in-
dividual measurements will pave the way to high level se-
mantically rich events, directly mined from the raw and
noisy sensor data. Given the potentially huge amount of
data streamed by sensors, algorithms to extract and inter-
pret the semantics will become an integral part of content-
summarization in networked sensor applications. For ex-

ample, the sound, humidity and light sensors on a MICA
mote [1] can sense whether a room is empty or occupied;
similarly, a temperature and chemical sensor can sense the
presence of fire. In the Zebranet project [16], scientists tied
acceleration sensors to zebras’ collars in order to observe
their movements. This enabled the scientists to character-
ize a zebra’s movement in terms of the three main states:
grazing, walking and fast moving.

The transformation from sensor readings to symbolic
states can be achieved at a central node that collects
readings from the entire network [16]. This paper ex-
plores a much more efficient alternative: first transform-

1

In−network, hierarchical

and distributed index structure

Readings from
 local sensors

sensor behavior

Readings from
 local sensors

Local model of
sensor behavior

Local model of

MIST

Querying in

semantic space

Figure 1: Distributed indexing and querying of sensor
models.

ing the readings into symbolic models locally at the sen-
sors through semantic interpretation, and then performing
an in-network indexing and aggregation of semantic mod-
els to capture the global patterns. This Model-based Index
STructure (MIST) can then answer semantic queries. The
setup is shown schematically in Figure 1.

Of the several semantic models relevant in a sensor net-
work context [6, 8, 10], Markov Chains [3] and Hidden
Markov Models [23] are the most useful. A Markov Chain
(MC) captures the underlying dynamics of the physical
phenomena or entity by a generative model that emits a
sequence of symbols. Figure 2 shows a typical example of
an MC. In this example, the speed observed by the sensor
on a zebra has been quantized into three symbols G (graz-
ing), W (walking) and F (fast moving). In previous work,
MCs were employed by Elnahraway et al. [10] to capture
spatial correlations, and by Deshpande et al. [8] to capture
temporal correlations.

A Hidden Markov Model (HMM), akin to an MC, is a
generative model for a sequence of symbols. However, in
an HMM, there exists a set of underlying system states that
are not directly observable, but can be inferred from the
observation symbols. Figure 3 illustrates an HMM for the
Zebranet project. It consists of two hidden states, Predator
Present and Predator Absent which emit the observation
symbolsG, W and F . Takasu et al. [28] employed HMMs
to distinguish the different states of a toy-satellite using
sensor data streams. Biologists at UCLA [29] trained an
HMM on each acorn woodpecker’s vocal signals (mea-
sured by acoustic sensor arrays) to recognize the identity

0.5
0.4

0.4

0.3

0.2

0.4

G

W

F

0.4 0.3

0.1

0.4

0.3

0.3

Figure 2: Markov Chain (MC) for mobility model of Ze-
branet. The states are G (grazing), W (walking) and F (fast
moving).

of the individual.
Given such semantic models, either MCs or HMMs,

built on the observation sequences at each sensor node,
users may be interested in sensors exhibiting a particu-
lar behavior. For example, in the Zebranet project, sci-
entists might be interested in identifying all nodes which
have observed the FFFFFF sequence (denoting a possi-
ble predator attack) with a likelihood of at least 0.8. These
nodes can be discovered by asking range queries on the
sensor network. In addition to the range queries, we also
propose top-1 and 1-NN queries:

1. Range query: Return the sensors that exhibit a par-
ticular behavior with a likelihood greater than a certain
threshold?

2. Top-1 query: Which sensor is most likely to exhibit a
given behavior?

3. 1-NN query: Which sensor model is the most similar
to a given pattern (model)?

There can be different ways of answering these queries.
The first scheme is a centralized scheme, where models
are built locally at each node, and then transmitted to the
base station (BS). Any query is answered on the models at
the BS. To keep the local models and their copy at the BS
synchronized, every update to a model’s parameters is sent
to BS. This is update-intensive. In the second technique,
centralized scheme with slack, a slack is introduced in up-
dating each parameter. If the query cannot be answered
using the cached-models at BS, then it is sent to the mod-
els in the network.

We propose a novel distributed indexing-based scheme
to answer the above queries. In MIST, along with a slack,
we construct an in-network hierarchical index structure to
answer queries efficiently. MIST exploits the high degree
of spatial correlations [9, 15] in environmental sensor net-

2

works, by performing a spatial aggregation of such corre-
lated symbolic data models into a single index model. The
index model is built only on the component model parame-
ters and not on the underlying sequences. MIST prunes up-
dates much better than the centralized scheme with slack,
as slack is not only maintained at individual nodes but also
at every level of the index structure. Queries are first sent
to the MIST’s hierarchical index. If they are not pruned,
they are sent to the local models.

To answer the queries mentioned above, MIST builds
two different types of index models, average models and
min-max models. These two models differ in the parame-
ters which are retained and the manner in which the queries
are handled. The min-max models have more parameters,
hence higher update costs, but prune the query better lead-
ing to lower query communication costs.

This paper makes the following contributions:

• We develop a distributed and hierarchical index struc-
ture for sensor networks based on statistical models.

• We design two novel methods of aggregating the sta-
tistical models into a distributed index structure of
models. The first method produces a valid model, the
average model, that captures the average behavior of
the constituent models. Spatial correlation parame-
ters are maintained along with the average models.
The second method produces pseudo-models in the
form of min and max models which are used to cap-
ture the extreme behaviors of the constituent models.

• We capture the dynamic behavior of the model pa-
rameters by introducing a slack at each level of the
index hierarchy. We design algorithms to aggregate
the index models using both spatial and temporal cor-
relations in a distributed setting.

• We propose two probabilistic sequence-based
queries, range and top-1 queries, and one model-
based semantic query, 1-NN query, that are of interest
in a distributed sensor network setting. We design
algorithms to answer them efficiently. We use the
index parameters maintained at the root of a subtree
to bound the probability of observation of a query
sequence from a sensor in the subtree. The distance
of a query model to a sensor model is similarly
bounded.

0.2

0.4

G W F

0.60.20.2

G W F

0.10.30.6

Present

Predator

Absent

Predator

0.3 0.7

0.8 0.6

Figure 3: Hidden Markov Model (HMM) for the Zebranet.

• We perform experiments on real and synthetic data
sets, using both MCs and HMMs, and show that
MIST schemes not only scale well with network size
and number of model states but also outperform the
competing centralized schemes in terms of update,
query and total communication costs.

2 Markov Chains and
Hidden Markov Models

A first-order Markov Chain (MC) [3] is a discrete time
stochastic process with a finite number of states in which
the probability of occurrence of a future state depends only
on the current state; past states are inconsequential. This
property is called the Markov property. An MC is defined
as:

MC = {n, π, τ}

where n is the number of states, π is the start state prob-
ability vector of length n, and τ is the n × n transition
matrix. π(u) denotes the probability of starting from state
u in the first step; τ(u, v) denotes the probability of reach-
ing state v from state u in a single step.

In an MC, each observation symbol is modeled as a
state. A Hidden Markov Model (HMM) [23], on the other
hand, models the stochastic process assuming that the in-
ternal states cannot be observed directly. Only the obser-
vations from these states can be measured. Thus, there is
an observation probability vector of the symbols for each
state of the HMM, in addition to the transition matrix be-
tween the states and the start state probability vector. An
HMM is defined as:

HMM = {n,m, π, τ, ξ}

where n, π and τ are defined as in an MC,m is the number
of observation symbols, and ξ is the n × m observation

3

matrix. ξ(u, x) denotes the probability of observation of
symbol x in state u.

Assume an observation sequence o = o1o2 . . . ok of
length k where each oi is an observation symbol. For an
MC to generate this sequence, it must first start from the
state o1, then transit to state o2 and so on. Hence, the prob-
ability of observation of the sequence o from the MC is:

p(o1o2 . . . ok) = π(o1)τ(o1, o2) . . . τ(ok−1, ok). (1)

The state path that the sequence follows is the same as
the sequence itself. However, in an HMM, the sequence
of symbols does not correspond to a particular state path.
All state paths of length k can possibly generate the se-
quence. The probability of observation of sequence o from
one such state path s1s2 . . . sk can be calculated. Adding
the probabilities along all the possible paths gives the total
probability of observation of o from the HMM:

p(o1o2 . . . ok) =
∑

all paths s1s2...sk

π(s1)ξ(s1, o1)τ(s1, s2) . . . ξ(sk, ok).

(2)

The Viterbi algorithm [23] uses dynamic programming to
compute the above probability in O(n2k) time.

3 Related Work

The general problem of content modeling and semantic
querying has received considerable interest in the data
mining community. Automated discovery of non-trivial,
useful and previously unknown content (or knowledge)
from raw data has been based on a few well-established
techniques for data analysis such as decision trees [24],
linear regression [22] and HMMs [23].

Linear regression models, e.g., ARIMA [22], fit a model
to raw data values either to observe the underlying trends
or to predict future data values. Lazardis et al. [18] pro-
posed an online algorithm to construct a piecewise con-
stant approximation of a time-series which guarantees that
the compressed representation satisfies an error bound on
the L∞ distance. Since sensors do not exhaustively rep-
resent data, BBQ [8] proposed to complement raw data
readings with a statistical model. BBQ answers queries
by returning approximate values with a probabilistic confi-
dence. Deshpande et al. [9] modeled conditional probabil-
ity distributions of various sensor attributes and introduced

the notion of conditional plans for query optimization with
correlated attributes. Temporal correlations are captured
by a Markov model in BBQ, and by a Kalman filter in Jain
et al. [14]. Chu et al. [6] capture spatial correlations using
joint probability distributions. Elnahraway et al. [10] also
employed Markov models to estimate the current data val-
ues at a node based on the last observation at the node and
those at its immediate neighbors.

Chu et al. [6], Silberstein et al. [26] and Olston et
al. [21] maintain bounded approximations on actual val-
ues. Composition of MCs and HMMs has been stud-
ied by Minnen et al. [20] in order to cluster sequences.
Even though the composite model’s recognition perfor-
mance is good, its poor scalability with the number of con-
stituent models makes it infeasible for large-scale sensor
networks. Smyth [27] used an expectation-maximization
(EM) algorithm to build such composite models. Zeng et
al. [30] proposed a novel fused-HMM model to integrate
HMM models from the two different domains of audio
and video. Brand [4] and Saul et al. [25] have developed
tightly-coupled HMM models by introducing state depen-
dencies between hidden states of the constituent HMMs,
but their models do not scale with the number of con-
stituent HMMs.

4 Distributed Index Structure

This section describes the construction of MIST, a dis-
tributed and hierarchical index structure on statistical mod-
els. We assume that every sensor trains an MC or an HMM
on its observations. We first capture the notion of spatial
correlation in two neighboring MCs.

Definition 1. ((1 − ε)-correlation) Models λ1 and λ2 are
(1 − ε)-correlated if for all corresponding parameters σ1

of λ1 and σ2 of λ2, the following relationship holds

(1 − ε) ≤
min{σ1, σ2}

max{σ1, σ2}
(3)

For m models having the corresponding ith parameters as
σi

1, σi
2, . . . , σi

m, the correlation among them can be simi-
larly defined. In this case, the correlation is given by

(1 − ε) = min
∀i

[

min{σi
1, σ

i
2, . . . , σ

i
m}

max{σi
1, σ

i
2, . . . , σ

i
m}

]

(4)

4

Example: Consider the following pair of two-state MCs:

π1 =
[

0.5 0.5
]

π2 =
[

0.6 0.4
]

τ1 =

[

0.3 0.7
0.6 0.4

]

τ2 =

[

0.4 0.6
0.7 0.3

]

The correlation (1 − ε) between them is the minimum of
the following set: { 0.5

0.6 ,
0.4
0.5 ,

0.3
0.4 ,

0.6
0.7}, i.e., ε = 0.25.

The correlation signifies how similar the two models
are. When ε → 0, the two models are highly correlated
and are very similar to each other. On the other hand, when
ε→ 1, the models are quite dissimilar. We next define two
types of index models.

4.1 Average Model

Definition 2. (Average Model) Given m MCs λ1, λ2, . . . ,
λm, the average MC λavg can be defined as:

∀u, πavg(u) =
π1(u) + π2(u) + · · · + πm(u)

m

∀u, v, τavg(u, v) =
τ1(u, v) + τ2(u, v) + · · · + τm(u, v)

m

In addition to these parameters, λavg also maintains 3 ad-
ditional parameters: an ε′ parameter, from which its cor-
relation to the individual models can be computed, and
βmax and βmin, the maximum and minimum among all
the parameters of the constituent models.

The next theorem captures the correlation between the
average model and any of the constituent models.

Theorem 1. Givenmmodels λ1, λ2, . . . , λm that are (1−
ε)-correlated, the correlation between λavg , the average
model built from them, and any of the m models is at least

(1 − ε′) where ε′ =
(1− 1

m)ε

(1− 1

m
ε)

.

Proof. Let the kth parameter belonging to one of the con-
stituent models λi, be σk

i ; and assume that the minimum of
this parameter across all m models is φ and the maximum
is ψ. Therefore,

(1 − ε)ψ ≤ φ ≤ σk
i ≤ ψ (5)

Denote this parameter’s average over all models as µ,
which is maintained by λavg . The correlation between ψ
and µ is minimized when µ attains its minimum possible

value. That happens when all the parameters except ψ are
equal to φ. Thus,

µ =
φ+ σk

1 + · · · + σk
m−2 + ψ

m
≥

(m− 1)φ+ ψ

m

≥
(m− 1)(1 − ε)ψ + ψ

m
=

[

1 −

(

1 −
1

m

)

ε

]

ψ

Also, µ ≤ ψ. Therefore, the correlation parameter be-
tween ψ and µ is ε1 =

(

1 − 1
m
ε
)

. Similarly, the correla-
tion between φ and µ is minimized when µ is maximum.
This happens when all the parameters except φ are equal
to ψ. Thus,

µ =
φ+ σk

1 + · · · + σk
m−2 + ψ

m
≤
φ+ (m− 1)ψ

m

≤
φ+ (m− 1) φ

1−ε

m

or, φ ≥

[

1 −

(

1 − 1
m

)

ε

1 − ε
m

]

µ

Also, φ ≤ µ. Therefore, the correlation parameter be-
tween φ and µ is ε2 = (1 − 1

m
)ε/(1 − ε

m
).

The correlation between all other parameters and µ lie
within these two extremes. Since, (1− ε2) ≤ (1− ε1), we
say that the average model is at least (1− ε′)-correlated to

the individual models where ε′ =
(1− 1

m)ε

(1− 1

m
ε)

.

For two models, the correlation parameter ε′ evaluates to
ε/(2 − ε), which is roughly half the correlation parameter
ε between the constituent models, for low values of ε.

4.2 Min-Max Model

The min-max model consists of two separate models: the
min-model, denoted by λmin, and the max-model, denoted
by λmax.

Definition 3. (Min-Max Model) Given m MCs λ1, λ2,
. . . , λm, the min MC and the max MC are defined using
the following parameters:

∀u, πmin(u) = min{π1(u), π2(u), . . . , πm(u)}

∀u, v, τmin(u, v) = min{τ1(u, v), τ2(u, v), . . . , τm(u, v)}

∀u, πmax(u) = max{π1(u), π2(u), . . . , πm(u)}

∀u, v, τmax(u, v) = max{τ1(u, v), τ2(u, v), . . . , τm(u, v)}

5

Note that the min and max models are pseudo-models,
since the start state probabilities of all the states and the
transition probabilities for each state do not necessarily
add up to 1. As these models maintain an upper and lower
bound on each parameter, they are employed to provide an
upper and lower bound on the probability of observation
of a query sequence from the underlying models.

4.3 Hidden Markov Model (HMM)

We assume that the number of states in the constituent
HMMs are the same and that there is a one-to-one cor-
respondence between the states of the constituent models.
The parameters of a state in the composite HMM will then
have a one-to-one correspondence with the parameters of
the corresponding states of the constituent models. With
this requirement, correlation can be defined by Eq. (4).
The average model and the min-max models analogously
adopt Definitions 2 and 3. When a priori knowledge of
hidden states is not available, a state correspondence can
be established by considering all possible state mappings.

In this paper, we have assumed a priori knowledge of
the number of hidden states and their meaning. This es-
tablishes state correspondence. When no prior information
regarding the hidden states is available, we next present a
method of establishing a state correspondence based on
the similarity of the states. A notion of distance between
two states is defined and then a minimum distance map-
ping is found between the states of one constituent HMM
to the other. This mapping is then used to establish the
one-to-one correspondence. The state distance can be de-
fined as the Euclidean distance between start state, tran-
sition and observation probabilities of the two states. For
more than two models, the correspondence can be built in-
crementally. MIST schemes are, however, guaranteed to
return the correct answers for any state correspondence.

4.4 Hierarchical Index Construction

In this section, we describe how a distributed and hierar-
chical index structure is built over the entire sensor net-
work. We overlay a tree topology on the network and per-
form a bottom-up aggregation of the index models. The
leaf-level models are the actual models built by the individ-
ual sensors, while the internal index nodes (models) sum-
marize the statistical behavior of the models underneath.

R

S 1

L 1 L k

S c

’2ε1−

’1ε1−

’ε1−

Figure 4: Correlation of the average modelR with any leaf
model Li in its subtree: (1− ε′) = (1− ε′2)(1− ε′1) where
ε′1, ε

′
2 are the correlation parameters between the average

models and their children at levels 1 and 2 respectively.

We first explain how average models are indexed. Fig-
ure 4 shows an example of a tree topology with 2 levels of
index nodes. Model R is the average model of its children
S1 through Sc. Model S1 is the average model built from
the leaf models L1,. . . ,Lk. Suppose that the correlation
between R and its children S1,. . . ,Sc models is at least
(1 − ε′2), and the correlation between any average model
Si and the leaf models under it is at least (1 − ε′1). Theo-
rem 2 shows how to calculate the correlation parameter ε′

from the model R to any of the leaf models.

Theorem 2. Consider an average model R. If the corre-
lation between R and its children S1,. . . ,Sc models is at
least (1 − ε′2), and the correlation between any average
model Si and the leaf models under it is at least (1 − ε′1),
then the correlation between the average modelR and any
of the leaf models is at least (1 − ε′) = (1 − ε′2)(1 − ε′1).

Proof. Assume that the node R has c children S1, . . . , Sc.
Also assume that each child Si has a variable number of
leaf models Li1, . . . , Lin as shown in Figure 4. Consider
a single parameter σ across all the models.

If σmin2
is the minimum across all the parameters σs1

,
. . . , σsc

at level 2, then

σmin2
≥ (1 − ε′2)σR (6)

Denoting the maximum correlation parameter across the
constituent models of all subtrees S1 to Sc as ε1, i.e.,

ε1 = max{ε11, . . . , ε1c} (7)

6

Without loss of generality, assume that the maximum cor-
relation parameter ε1 = ε11; i.e., it is observed between the
leaf models in subtree 1. Then, if σmin1

is the minimum
parameter across all the models in the subtree 1, then,

σmin1
≥ (1 − ε′1)σs1

(8)

Combining Eqs. (6) and (8),

σmin1
≥ (1 − ε′1)σs1

≥ (1 − ε′1)σmin2

≥ (1 − ε′1)(1 − ε′2)σR (9)

Similarly, denoting the maximum across all the children
of node R by σmax2

, and the maximum across the leaf
level nodes by σmax1

,

σmax1
≤ σs1

/(1 − ε′1)

≤ σmax2
/(1 − ε′1)

≤ σR/((1 − ε′1)(1 − ε′2)) (10)

From Eqs. (9) and (10), we can conclude that the mini-
mum correlation between R and any of the leaf level sen-
sors under it, is at least (1 − ε′) = 1 − (1 − ε′2)(1 − ε′1).

The other index parameters are calculated in the follow-
ing way. The maximum of the βmax’s of the children gives
the βmax for this node and the minimum of the βmin’s is
the new βmin. Employing these parameters, the average
model can estimate the minimum and the maximum prob-
abilities of observation of a sequence for the set of nodes
in its subtree.

The min-max models are also aggregated in a hierar-
chical manner. Each parameter of the min-model is the
minimum of all corresponding parameters from the min-
models and each parameter of the max-model is the maxi-
mum of all such parameters of the max-models.

4.5 Dynamic Maintenance of Models

Once an aggregation of distributed data sources has been
carried out, the underlying data distribution may change.
This may lead to violations of the existing parameters at
the higher levels of the tree, necessitating an expensive re-
building of composite models. In this section, we discuss
how to avoid such expensive update costs by introducing a

small slack locally at each node, and at every index node
in the tree. Although this may lead to a degradation in
query pruning capabilities, and hence higher query com-
munication costs, the amortized benefits in communication
are large.

We consider the parameters of each model to be a func-
tion of time, and denote the model at time t by λ(t). As the
data distribution changes, the underlying model parame-
ters are recomputed after every small duration d. Assume
that the model transmitted by a node to its parent at the
last update time t = u is λ(u). The child node does not
update its parent at time t+d, as long as λ(t+d) is (1− δ)-
correlated with λ(u). The idea of the slack parameter δ is
analogous to the correlation parameter ε (Definition 1).

We now explain how the slack parameter δ is incorpo-
rated in maintaining the correlation parameters at every
level of the index structure. Consider an average model. It
maintains an εwhich allows it to bound its correlation with
any model in its subtree. However, this ε has been calcu-
lated by observing the correlation of the cached copy of its
child models. With time, the child models may be updated.
Consider a single parameter σavg of the average model
and the corresponding parameter σ(u) from the child’s
cached model. The correlation parameter ε guarantees that
σ(u) ≥ (1 − ε)σavg and the slack parameter δ guarantees
that at any other time-point t + d, σ(t+d) ≥ (1 − δ)σ(u).
Together, they guarantee that σ(t+d) ≥ (1−δ)(1−ε)σavg.
Similarly, σ(t+d) ≤ σavg/((1 − δ)(1 − ε)). This relation-
ship is true at any level of the index tree. Using Defini-
tion 1, the relationship of the correlation parameters with
and without slack can be expressed by

εslack = 1 − (1 − δ)(1 − εnoslack)

Therefore, aggregating the slack parameters in a
bottom-up fashion, as mentioned above, preserves the cor-
rectness of the correlation parameter maintained by the
index structure. We will see in the next section how the
spatial and temporal correlation parameters, ε and δ, are
employed during query pruning.

5 Query Algorithms

This section describes the processing of range, top-1 and
1-NN queries using MIST’s average and min-max models.

7

5.1 Range Query

Users may be interested in sensors exhibiting an abnor-
mal behavior. These nodes can be discovered by asking
range queries of the form: Return all nodes in the net-
work that have observed a particular sequence of symbols
q with a probability greater than a certain threshold χ.
These queries are like select queries since they select the
set of sensors that satisfy the threshold.

First, we explain how these queries are handled by
MIST’s average models. Along with the average model,
every node in the tree maintains the parameters, βmax,
βmin, and the aggregate ε, as mentioned in Section 4. As
the index model maintained at a node is (1− ε)-correlated
with respect to any constituent model in its subtree, the
aggregate model can be used to provide lower and upper
bounds on the probability of observation of a sequence
from any constituent model. The next theorem states the
bounds for an MC.

Theorem 3. Consider an average model λavg . Assume
that the correlation parameter maintained at λavg is ε and
the slack parameter maintained is δ. If q is a sequence of
length k, the probability of observation of q from λavg can
be expressed as

∏k

i=1 σ
i
avg . The probabilities of observa-

tion of q from any model λj in its subtree are then bounded
by pl and pr:

pl ≤ pj ≤ pr (11)

where

pl =

k
∏

i=1

[

max
{

σi
avg((1 − ε)(1 − δ)), βmin(1 − δ)

}]

(12)

pr =

k
∏

i=1

[

min
{

σi
avg/((1 − ε)(1 − δ)), βmax/(1 − δ)

}]

(13)

Proof. We consider and examine the bounds of each pa-
rameter σi

avg .
σi

avg was computed from the corresponding parameters
of the models in the subtree of λavg when the last updates
happened for these models. Assume model λj’s parameter
to be σi

j at that time. From the assumption of (1 − ε)-
correlation, σi

j ≥ σi
avg(1−ε). However, this bound can be

improved by utilizing the βmin parameter. No parameter

can be less than βmin, and hence,

σi
j ≥ max{σi

avg(1 − ε), βmin}

Since a slack is maintained, the current value σi,(t)
j at time

t may not be exactly equal to σi
j . However, since the slack

is at most δ,

σ
i,(t)
j ≥ σi

j(1 − δ)

≥ max{σi
avg((1 − ε)(1 − δ)), βmin(1 − δ)}

Since pj is the product of k such σi,(t)
j s, we can write

pj =

k
∏

i=1

σ
i,(t)
j ≥ pl (14)

Utilizing the βmax parameter and the (1−ε)-correlation,

the upper bound on each parameter σi,(t)
j can be written as

σ
i,(t)
j ≤ σi

j/(1 − δ)

≤ min{σi
avg/((1 − ε)(1 − δ)), βmax/(1− δ)}

Therefore,

pj =
k
∏

i=1

σ
i,(t)
j ≤ pr (15)

Together, Eqs. (14) and (15) prove the theorem.

If the threshold for the range queryχ < pl, all sensors in
the subtree are guaranteed to satisfy the query. Similarly,
if χ > pr, no sensor in the subtree can satisfy the query. In
these two cases, the entire subtree below the node where
λavg is maintained can be pruned. If neither of the pruning
conditions is satisfied, the query is percolated down, and
this pruning is recursively carried down, if necessary, till
the leaf level models. All the results (nodes that satisfy the
query) are aggregated in a bottom-up fashion at the base
station.

Next, we explain how the base station employs its min-
max models to prune the query. Similar to the average
models, min-max models compute the bounds on the prob-
ability of observation of the query, and use the bounds to
prune subtrees. The following theorem states the bounds
for MCs.

8

Theorem 4. The probability of observing a sequence q
from any of the child models of an index node is bounded
by pl and pr:

pl = p(q|λmin)(1 − δ)k (16)

pr = p(q|λmax)/(1 − δ)k (17)

where λmin and λmax are the min and the max models
maintained by the index node.

Proof. Without loss of generality, consider q to be an ob-
servation sequence q1q2 . . . qk of length k. The probability
of observation of q from λ is

p(q|λ) = π(q1).

k−1
∏

i=1

[

τ(qi, qi+1)
]

For each parameter σi employed by any child model λ to
compute the above probability of query generation, there
exists a corresponding parameter σmin in λmin and σmax

in λmax. Therefore, using Definition 3 and the (1 − δ)-
correlation property, for any parameter σ(t+d) at the cur-
rent time-point t+d, σ(t+d) ≥ σ(t)(1− δ) ≥ σmin(1− δ)
and σ(t+d) ≤ σ(t)/(1 − δ) ≤ σmax/(1 − δ).

Utilizing these inequalities for each of the k terms, we
see that the probability of observation of q is bounded by
the probabilities of observation of q from the min and max
models with a slack factor.

For the case of HMMs, Theorems 3 and 4 can be used
to bound the probabilities of observation of a given query
sequence along a single state path. Since the probability
of observation of a sequence from an HMM is the sum of
such probabilities along all possible paths, the total proba-
bility is bounded as well.

5.2 Top-1 Query

Range queries may return all or none of the sensors as the
answer set. In order to avoid the difficulties of finding the
right threshold, users may be interested in the sensor which
best describes a particular behavior. Then, top-1 queries of
the following form may be posed on the sensor network:
Given a sequence of symbols q, return the sensor that has
the highest probability of observing it. Using the answer
of such a query, a threshold can be chosen to retrieve the
other sensors via range querying.

MIST answers the top-1 query in the following way. At
every level, the parent node calculates the bounds of ob-
servation of the sequence q from each of its child models
in the same way as described in Section 5.1. This may be
done by employing the average model and the index pa-
rameters or the min and the max models. Then, it checks
whether the maximum value for observation of q from any
child is less than the minimum value of observation of q
from any other child. If so, the former child model and the
subtree below it are pruned. The query is recursively sent
to each of the remaining child nodes.

In general, top-1 queries are more communication inten-
sive than range queries. This is because, for range queries,
at any level of the index, there is a chance that all children
of a particular node may be pruned as none of them satisfy
the threshold. However, for top-1 queries, the bounds of
the children are compared against each other. Therefore,
the query will be sent to at least one child. Further, as the
similarities among the children increase, their bounds be-
come identical making the pruning for top-1 queries less
likely.

5.3 1-NN or Model Query

Both range and top-1 queries were sequence-based
queries. In this section, we will consider a higher level
semantic query, the 1-NN query. Instead of providing a
single observation sequence as a query, users may provide
a model (or a set of observation sequences from which a
model can be built) and ask the following model query:
Return the sensor model that is most similar to the given
query model Q.

To answer the model query, we first define the notion
of distance between two Markov Chains. The distance be-
tween two MCs λ1 and λ2 is defined as

d(λ1, λ2) =
√

∑

∀u

(

π1(u) − π2(u)
)2

+
∑

∀u,v

(

τ1(u, v) − τ2(u, v)
)2

This distance is a metric distance. This definition can be
extended to HMMs.

We will first explain how 1-NN queries are handled for
average models. To find the model nearest to the query
model, we employ an M-tree like mechanism [7]. An M-
tree is built on the model parameter space but is physically

9

embedded in the communication graph. Average models
at each node maintain a radius which is the largest dis-
tance from the average model to any of its child models.
Between a parameter σavg of the average model and a cor-
responding parameter σ of any model in its subtree, the
distance can be calculated as follows:

max

{

min{σavg/(1 − ε), βmax} − σavg ,
σavg − max{σavg(1 − ε), βmin}

The upper bound of σ is given by min{σavg/(1 −
ε), βmax} and hence its distance to σavg can be calculated
as shown above. Similarly, the distance of the lower bound
of σ to σavg can be calculated, and consequently the max-
imum distance can be computed.

Then, radius is calculated as the square root of the sum
of squares of all the distances defined on each parameter
σ. The details of how this radius is used to prune subtrees
is shown next.

We show how a particular sensor node S employs M-
tree pruning to handle the model query. If the distance
from the query model to the composite model maintained
at S is d, then triangle inequality guarantees that the dis-
tance of query to any of the (composite) models in its sub-
tree will lie betweenmin{0, d−rad} and d+rad. A prior-
ity list of subtrees is maintained according to the ascending
order of its minimum possible distance to the query model.
If the smallest possible distance to a subtree is greater than
the largest possible distance to another subtree, then it is
guaranteed that the model nearest to the query cannot re-
side in this subtree and hence this subtree can be safely
pruned. Out of all remaining subtrees, the one for which
the minimum distance is the lowest is expanded and ex-
plored as before. This subtree is deleted from the priority
list and the results are aggregated bottom up, and are added
to the list. Then all the subtrees that can now be pruned are
deleted from the list. This algorithm is carried on for the
rest of the subtrees until there is only one sensor node left.
S returns this to its parent. Finally, the priority list of base
station contains the model nearest to the query model.

Min-max models answer the model query by utilizing
a principle similar to the R-tree [13]. For each parameter
of the constituent models, the corresponding parameters
in the min-model and the max-model act as the bounds.
In the vector space of model parameters, the min and the
max models form a minimum bounding rectangle (MBR).
The query model is a point in this space. Therefore, to any
MBR, it has a minimum and a maximum possible distance.

Similar to the average models, these minimum and maxi-
mum distances can be used to prune the MBRs (i.e., the
min-max models and the entire set of constituent models
under it).

5.4 Effect of Dimensionality

The effect of dimensionality (number of model parame-
ters) on MIST is observed only for the model queries and
not for the sequence (range or top-1) queries. Even though
MIST maintains min and max parameters analogous to the
R-tree, there is a significant difference in how these bounds
are utilized to prune the sequence queries. In an R-tree,
each index is an MBR, and the query is a hyper-rectangle
(or a point) in the multi-dimensional space. Query pruning
depends on the intersection (or containment) in this high-
dimensional space resulting in the curse of dimensionality.
However, in the case of MIST, given a sequence query of
length k, we compute two values—a lower bound and an
upper bound—on the value of the query observation prob-
ability. In the case of MCs, the lower bound is obtained
as the product of k individual min-model parameters (the
corresponding start state and the k − 1 transition proba-
bility parameters). Similarly, the upper bound is obtained
from the max-model parameters. For the case of HMMs,
the upper and lower bounds can computed as discussed
in Section 5.1. Pruning depends on whether the query
threshold χ lies within these lower and upper bounds. In
other words, pruning takes place in the single-dimension
of probability space—i.e., on the (0, 1) real number line.
Thus, irrespective of the number of dimensions of the un-
derlying models, the upper and lower bounds on query
probability depend only on the product of k min-max
model parameters. Similarly, the bounds for the average
models are also computed on the single-dimensional prob-
ability line and therefore, there is no curse of dimension-
ality.

On the other hand, for model queries, the search is
carried over the m-dimensional space of model parame-
ters. Each sensor model becomes a point in the multi-
dimensional space and the one nearest to the query model
is retrieved. MIST’s min-max models employ a straight-
forward R-tree based 1-NN search and its average models
employ M-tree based 1-NN search. As the dimensionality
increases, the probability of intersection of the query with
the index nodes increases, and thus, the pruning power of
MIST decreases.

10

910

1112

13

1516

14 1

3

2

4

5 6

7 8

BS

Figure 5: Topology of the laboratory sensor network.
There are 4 rooms and 4 sensors in each room. BS denotes
the base station.

6 Slack Analysis

A large value of slack minimizes updates, but consider-
ably decreases MIST’s query pruning capabilities because
of the wider query probability bounds. On the other hand,
a small slack will have efficient query pruning due to tight
bounds, but will lead to increased update costs. In this sec-
tion, we characterize the optimal choice of δ to achieve the
minimum total communication cost, comprising both the
update and query costs.

We denote the probability that the query will be sent
down from an aggregate model to its children by Pq, and
the probability that an update (for a parameter) will be sent
up from the children to its aggregate by Pu. A detailed
analysis (Appendix A) based on the random-walk devia-
tion of a parameter shows that

Pu = 16/ [1/(1 − δ) − (1 − δ)]
2
.

Similarly, the analysis (Appendix A) of Pq for a range
query on a sequence of length k yields

Pq = (1/2k)
[

1/(1 − ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
]

.

We assume that the communication cost for sending a
query parameter, and the cost of updating a parameter are
equal and normalized to 1. Further, assuming that each
model has n parameters, and Q queries each of length k
are posed during this duration d, the total expected com-
munication cost at each index node is

T =
16nd

[1/(1 − δ) − (1 − δ)]2
+
Qk

2k
.s(k)

where s(k) =
[

1/(1 − ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
]

.
To obtain the optimal δ, we differentiate T with respect

to δ and set it to zero. This yields a polynomial equation
of degree 2k + 5. The second derivative of T with re-
spect to δ is greater than zero, showing that the solution
obtained is indeed a minimum. As the second derivative is
continuous in the open interval (0, 1), the solution of the
equation can be obtained using Newton’s method [12], or
techniques like finite-difference methods for faster conver-
gence [11].

Slack estimated by the above method minimizes the
communication cost locally at each index node. The op-
timal slack δi required at each node i to minimize the
global communication cost (Appendix A) for the entire
network can be evaluated only after considering the cost
at all nodes. There are two main bottlenecks involved in
this global optimization: (i) all the εi parameters have to
be sent to the base station to evaluate δi’s, and (ii) it is
computationally demanding to solve for δi’s. Further, as εi
parameters keep evolving, the optimal δi parameters will
change, and hence recomputing the globally optimal δi’s
is very expensive.

Since the sensors have limited processing capabilities,
the iterative numerical operations involved in the calcula-
tion of the locally optimal slack are also computationally
challenging. Therefore, we use experimental techniques
to estimate the slack δ. We estimate the optimal value of
the slack parameter a priori for a wide range of ε, query
rate, and query length settings. Each sensor or an index
node maintains a table, and uses an appropriate δ based on
table-lookup.

7 Fault-Tolerance

Node failures are one of the primary causes of network
unreliability. A parent node in the MIST index needs to
distinguish between the case where a child node fails and
the case that a child’s parameters are within the slack δ. To
make MIST robust to node failures, every parent maintains
an expected update interval and poll the child for updates.
Detecting node failures using acknowledgment packets is
costly. Therefore, MIST employs periodic heartbeat [6]
message exchanges to keep the parent-child nodes syn-
chronized. After a node has failed, its children switch to a
new parent, and transmit their parameters to the new par-
ent. This is a one-time cost. Subsequently, the correlation

11

and the slack-based update protocols are followed.

However, if MIST were to handle queries even during
node failures, then replication may be a good alternative
mechanism. The index model (or base model) information
can be replicated at a chosen sibling node. There should
exist a path between the sibling and the parent of the node,
even if the node fails. The parent and children of a node
are informed of the identity of the sibling node. At the sib-
ling node, the replicated index can be maintained with a
correlation of (1 − φ) with respect to the actual indices.
If φ is a small value, then the replicated index is more
up-to-date with the current index, but incurs larger com-
munication costs. Hence, this protocol can be seen as a
trade-off between consistency and communication costs,
similar to the replication protocols which achieve scalabil-
ity by providing loose consistency guarantees [5]. Hence,
when a node fails, its parent transmits the query to the sib-
ling node. The sibling node attempts to answer the query
employing its (1 − φ)-correlated models. If it succeeds, it
returns the result; else, it transmits the query to the chil-
dren of the original node.

Periodic heartbeat messages can be used to discover link
failures for updates. For queries, if an answer is not re-
turned by the subtree within a specific time-out, it is as-
sumed that the link has failed. When a node detects link-
failure with respect to its parent, it switches to a new par-
ent and transmits its model parameters to the new parent.
When a parent detects a link failure to a child, it notifies
it through alternate routes. MIST allows transient data in-
consistencies until the detection of failures. MIST trades-
off these short-lived inconsistencies in favor of the com-
munication savings accrued by avoiding the robust but ex-
pensive ACK protocol.

8 Performance Evaluation

In this section, we present the experimental results for
all the three queries—range, top-1 and 1-NN—on MIST’s
min-max and average models built for MCs and HMMs.
First, we describe our datasets. Then, we explain the dif-
ferent settings for the measurements of query, update and
total communication costs.

8.1 Experimental Setup

Our experiments were conducted on two datasets—a real
data set obtained from our laboratory and a synthetically
generated data set. In the laboratory data set, sensors were
located in four rooms and four sensors were placed in four
different corners of each room. The topology is illustrated
in Figure 5. The base station is a central server where the
queries are posed.

In the laboratory dataset, sensors were used to mea-
sure the temperature inside the laboratory. The sensors
sensed temperature every 30 seconds for 10 days. The
values were quantized into three symbols: C (cold) for
temperatures less than 25◦C, P (pleasant) for tempera-
tures between 25◦C and 27◦C, and H (hot) for temper-
atures higher than 27◦C. Semantic queries which are of
interest, such as (i) alternating weather patterns, HCHC,
(ii) consistently pleasant temperature, PPPP , etc., were
posed. Sequence queries were generated in random by
sampling from a uniform distribution. For 1-NN queries,
query models were sampled from a uniform distribution.
Markov Chains with 3 states and HMMs with 2 states and
3 symbols were built on each sensor on sequences gener-
ated for each day.

The synthetic dataset was generated for different net-
work sizes ranging from 16 to 512. The number of model
states was varied from 3 to 11. The base models were gen-
erated by controlling the model correlation or the ε param-
eter for 5 different values ranging from 0.001 to 0.5. These
models were built for sequences generated over three hour
periods, for five days. Updates to data value were gener-
ated using the uniform random walk method [3].

Communication costs were measured in number of
bytes. Transmission messages encoded a model parame-
ter in 2 bytes, and a k length query string in k bytes. For
model queries, the entire model was encoded in 2m bytes
where m is the number of parameters in the model. The
answers for n-size networks were encoded in a bit vector
of length n, or equivalently n/8 bytes.

8.2 Compared Techniques

We first present the two centralized schemes. Then, we
present variations of MIST that are considered in the ex-
perimental results.
• Centralized scheme with no slack: Each node trans-

mits its models to the base station (BS). Every update to a

12

model parameter is sent to the BS. Queries are posed at the
BS, which always maintains the latest models. As a result,
queries are answered using zero communication cost.
• Centralized scheme with slack: Initially all models

are transmitted to the BS. An update at each node is not
transmitted to the BS if the current parameter is within the
slack, i.e., within a (1−δ)-correlation of the base station’s
cached parameter. Query probabilities and distances are
bounded using the approximate models at BS. If a query
cannot be answered with certainty, it is injected into the
network to retrieve the required models.
• MIST schemes: Both types of index models—

average and min-max—are maintained under slack and no
slack conditions.

We evaluate the performance of our index structure with
respect to query rate, slack and correlation in terms of
communication costs. Our experiments were conducted
for the following values of ε: 0.001, 0.01, 0.1, 0.2, 0.5.
Unless mentioned otherwise, the slack δ is set to the lo-
cally optimal value. We experiment with both MCs and
HMMs built from real-life and synthetic data. For brevity,
we only report the representative results.

8.3 Scalability with Query Rate

The first experiment evaluates the scalability of the differ-
ent schemes with query rate. Figure 6 compares MIST’s
schemes with the centralized schemes on MCs built from
synthetic data. The total communication cost, which is
the sum of update costs and (range) query costs was mea-
sured for varying query rates. The query rate is the number
of queries posed to the network between two successive
model construction time instances. This time interval is 3
hours for our datasets. The centralized scheme with slack
performs poorly, as it injected most of the queries into the
network. We notice that the rest of the schemes scale well
with query rate.

Figure 7 magnifies Figure 6 to compare MIST’s average
and min-max models with the centralized scheme without
slack. For small query rates, MIST’s slack-based schemes,
which maintain a slack at every level, outperform those
without slack by almost a factor of two. Up to query rates
of 5, we see that average model with slack performs the
best among MIST schemes. At small query rates, updates
become the dominating factor of the total costs, and as
the average model maintains smaller number of parame-
ters than the min-max model, it outperforms the min-max

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60 70 80 90 100

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Query rate

Synthetic MCs: Total communication cost

ε=0.1, δ=0.05

Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Centralized no slack

Figure 6: Total communication costs of MIST and the
competing schemes for varying query rates.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Query rate

Synthetic MCs: Total communication cost

ε=0.1, δ=0.05

Minmax slack
Minmax no slack

Average slack
Average no slack

Centralized no slack

Figure 7: Total communication costs of MIST and the
competing schemes for varying query rates.

scheme.
As the query rate increases to 25, the min-max models

provide efficient query pruning and better query commu-
nication costs, and hence outperform the average model.
When the query rate increases further up to 50, the cost
of slack-based indexing schemes increases rapidly. This is
because those queries which were not pruned by the slack-
based index models are drilled down into the network. At
these query rates, min-max scheme with no-slack provides
the lowest costs. As this scheme maintains up-to-date in-
dices, it provides tight bounds on the probability of query
observation from the underlying models, and hence prunes
most of the queries at the highest levels of the index struc-
ture. At higher query rates, the centralized scheme which

13

 0

 5000

 10000

 15000

 20000

 25000

 30000

 5 10 15 20 25

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Query rate

Laboratory MCs: Total communication cost

δ=0.3

Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Centralized no slack

Figure 8: Total communication costs of MIST schemes
and the competing schemes for MCs built on laboratory
data.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Query rate

Laboratory HMMs: Total communication cost

δ=0.5

Minmax slack
Minmax no slack

Average slack
Average no slack

Centralized no slack

Figure 9: Total communication costs of MIST and the
competing schemes for HMMs built on laboratory data.

has zero query costs becomes a viable alternative and ulti-
mately becomes the most efficient scheme.

Figure 8 depicts the communication costs of the vari-
ous schemes for MCs built from the laboratory data. The
overall trend of the schemes is similar to those observed
in synthetic MCs (Figure 7). However, we note that the
schemes with no slack outperform the slack based schemes
at medium query rates of 10. Although the update costs
were reduced due to the high δ value of 0.3, these savings
were offset by the large increase in query communication
costs because of the reduced pruning power. The pruning
power was much lower than the synthetic data set because
of the high values of ε for the laboratory data.

 2000

 4000

 6000

 8000

 10000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

U
pd

at
e

co
st

 in
 b

yt
es

Slack δ

Laboratory MCs: Update cost

Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Centralized no slack

Figure 10: Update costs of MIST and the competing
schemes for MCs built on laboratory data for varying
slack.

Figure 9 shows that for HMMs built from real data,
the average slack scheme is the best for query rates up to
9. After that, the min-max scheme with slack performs
the best. On further analysis, we found that query prun-
ing is very little on real-world HMMs, and therefore for
low query rates, the update costs become more significant.
This explains why the average models with their low up-
date costs perform the best.

8.4 Update Costs

We next compare the update costs of the various schemes.
Figure 10 shows the low update costs of MIST-based
schemes with increasing slack, for MCs built on labo-
ratory data. We observe that the update costs of slack-
based schemes were almost half the costs of the corre-
sponding schemes without slack. We also observe that
the costs of slack-based centralized schemes are twice as
high as MIST’s slack-based indexing schemes. This is be-
cause MIST maintains slack at every level of the hierarchy
whereas the centralized scheme maintains the slack only
for the base models. The average models transmit a single
model and three index parameters compared to min-max’s
two pseudo-models at every level of hierarchy; therefore,
the update costs of average models were better than those
of min-max models.

14

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.001 0.01

Q
ue

ry
 c

os
t i

n
by

te
s

Slack δ

Synthetic HMMs: Top-1 query cost

ε=0.01

Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Figure 11: Top-1 query costs for HMMs built on synthetic
data for varying slack.

8.5 Query Costs

We finally analyze the costs for answering the three differ-
ent queries in terms of the total message size. The central-
ized scheme with no slack always has a cost of 0 and is
therefore not shown.

Figure 11 depicts the query costs for top-1 queries on
HMMs built on synthetic data. Query costs were plot-
ted against varying slack parameters. The query cost of
the slack-based schemes, including the centralized scheme
were almost twice as expensive as the schemes without
slack. As the slack is maintained at every level, the bounds
on the query probability at the top levels of MIST hier-
archy are too wide for efficient query pruning. Hence,
schemes without slack performed much better. Min-max
models outperform the average models since it maintains
two pseudo-models, which provide much tighter bounds
than a single average model.

Figure 12 depicts query costs for 1-NN queries on MCs
built from synthetic data. Here, the communication costs
are measured against different values of correlation param-
eter ε. For low values of ε, the synthetically generated
models are highly correlated and hence the index struc-
ture provides very tight bounds on the underlying models.
Hence, at these values, the query communication costs for
MIST’s indexing schemes without slack are very low. It
is worth noting that at such low values, even the central-
ized scheme with slack, can prune queries much more effi-
ciently than the slack-based schemes. When ε increased to
0.1, we observed that most of queries could not be pruned

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.001 0.01 0.1

Q
ue

ry
 c

os
t i

n
by

te
s

Correlation parameter ε

Synthetic MCs: Model query cost

δ=0.2ε

Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Figure 12: Model query costs for MCs built on synthetic
data for varying correlation.

by the centralized scheme and hence were injected into the
network. With increasing ε, the bounds for average models
become worse. This explains the increasing costs for the
no-slack schemes. The bounds from the min-max mod-
els also become larger as the minimum and maximum for
each parameter become more varied.

Figure 13 illustrates the effects of different lengths
of the query sequence on the query costs for the range
queries. The experiments were performed on synthetic
MCs. Query length k was varied from 2 to 6 and the
threshold set as αk, with α chosen uniformly between
0 and 1. With increasing query length, the number of
bytes needed to encode the query string goes up. How-
ever, the bounds for the probability of observation of the
query becomes tighter with increasing length. Thus, the
chances of a query getting filtered increases. This results
in a small increase of query costs, and good scalability of
MIST schemes with query length.

8.6 Optimal Slack

We next performed experiments on real data to evaluate
the effect of the slack parameter on the total communica-
tion cost. Figure 14 shows the total costs for the min-max
and the average slack schemes with δ varied from 0.1 to
0.9 when the query rate was set to 5. For low values of
δ, the update costs are large; whereas for high values of δ,
there is almost no query pruning resulting in prohibitively
high query costs. For δ = 0.3, the total communica-
tion cost was found to be minimum for both the indexing

15

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 2.5 3 3.5 4 4.5 5 5.5 6

Q
ue

ry
 c

os
t i

n
by

te
s

Query length k

Synthetic MCs: Range query cost

ε=0.1, δ=0.05Minmax slack
Minmax no slack

Average slack
Average no slack
Centralized slack

Figure 13: Range query costs for MCs built on synthetic
data for varying query length.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Slack δ

Laboratory MCs: Total communication cost

Minmax slack
Average slack

Centralized slack

Figure 14: Total communication costs of MIST slack
schemes for MCs built on real data for varying slack.

schemes. At this slack value, not many updates happened
and many of the queries could be pruned at higher lev-
els. Interestingly, the total costs for the centralized slack
scheme kept decreasing with increasing δ. As the query
rate was low, update costs dominated the query costs, and
hence decreased the total costs with increasing slack.

8.7 Scalability with Network Size

The centralized schemes scale linearly with network size.
In the centralized scheme without slack, each update mes-
sage travels the entire path from the sensor to the BS
whereas in the centralized scheme with slack, a query
which could not be answered at the base station is sent

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 100 200 300 400 500

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Network size

Scalability with network size

Minmax slack
Minmax no slack

Average slack
Average no slack

Centralized no slack

Figure 15: Scalability of MIST and centralized schemes
with network size.

to a sensor in order to retrieve the corresponding results.
Therefore, the total communication costs of the centralized
schemes increase linearly with increasing network size.
MIST exploits spatial correlations among the different sen-
sors and both its updates and queries are pruned using a
tree-based protocol. Hence, the scalability is better.

Figure 15 depicts the total communication costs of
MIST schemes and the competing centralized schemes
with varying network size. The experiments employed
MCs built on synthetic data with ε = 0.1 and δ = 0.05
with (range) query rate 15. The centralized scheme with
slack has been omitted from the figure due to its high query
communication costs. MIST schemes without slack offer
significant savings compared to the slack-based schemes.
As the network size increases, the slack-based schemes
achieve low update costs due to pruning; however, there
is a huge increase in query communication costs due to
two reasons: (i) the query pruning decreases considerably
at higher levels of the tree due to the slack employed in
the parameters, and (ii) the queries traverse a longer dis-
tance to retrieve the results. The centralized scheme with-
out slack incurs large update costs since it transmits every
model to the base station. In MIST, models are sent up
only to the next level and indexed. Therefore, the update
costs are small. In sum, this figure depicts the superior
scalability of MIST based schemes with network size and
shows that MIST maintains the performance gain over the
centralized schemes.

16

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 3 4 5 6 7 8 9 10 11

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Number of states

Scalability with number of states

Minmax slack
Minmax no slack

Average slack
Average no slack

Centralized no slack

Figure 16: Scalability of MIST and centralized schemes
with number of states.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 3 4 5 6 7 8 9 10 11

U
pd

at
e

co
st

 in
 b

yt
es

Number of states

Scalability with number of states

Minmax slack
Minmax no slack

Average slack
Average no slack

Centralized no slack

Figure 17: Update costs of MIST with number of states.

8.8 Scalability with Number of Model States

In this section, we describe how MIST and the central-
ized schemes scale with number of states. Figure 16 de-
picts the total communication costs with varying number
of states for range queries. The experiments were done
with synthetic MCs with ε = 0.1, δ = 0.05, and query rate
100. We notice an interesting trend. For small state sizes,
the schemes without slack outperformed the schemes with
slack, whereas at larger state sizes the reverse phenomenon
was observed. In order to understand the underlying rea-
sons behind such a trend in total costs, we plotted the in-
dividual contributions of the update and the query costs of
each scheme in Figures 17 and 18 respectively.

Figure 17 illustrates that MIST’s slack-based schemes
scale well with increasing state size because of update

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 3 4 5 6 7 8 9 10 11

Q
ue

ry
 c

os
t i

n
by

te
s

Number of states

Scalability with number of states

Minmax slack
Minmax no slack

Average slack
Average no slack

Figure 18: Range query costs of MIST with number of
states.

pruning. On the other hand, the schemes without slack in-
cur larger transmission costs due to the increased number
of parameters and little update pruning. The centralized
scheme with no slack scales poorly.

However, for the range query costs depicted in Fig-
ure 18, it is interesting to observe that the query costs
of each scheme for 100 random queries decrease with in-
creasing state size. The centralized scheme without slack
has zero query costs and is, therefore, omitted. The aver-
age transition probabilities and the average start state prob-
abilities are inversely proportional to the number of states.
Therefore, the probability of observing a query of length k
(which is a product of k − 1 transition probabilities and 1
start state probability for an MC) decreases with increas-
ing number of states. The bounds are also products of k
probabilities. Thus, they become smaller and their dif-
ference shrinks resulting in fewer queries surpassing the
query threshold. The schemes without slack outperformed
those with slack because of the tighter probability bounds.
Figure 18 shows the query costs for a very high query rate
of 100. For lower query rates, the update costs dominated.
At high query rates and large state sizes, the query costs
became negligible, and the trend in the update costs was
reflected in the total communication costs. Thus, MIST
does not suffer from the “curse of dimensionality” from
the number of states for range and top-1 queries.

However, the effect of dimensionality is noticed for
model queries, where the search is carried over the m-
dimensional space of model parameters. Figure 19 shows
the degradation of performance in MIST’s models with in-

17

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 3 4 5 6 7 8 9 10 11

Q
ue

ry
 c

os
t i

n
by

te
s

Number of states

Scalability for model queries

Minmax slack
Minmax no slack

Average slack
Average no slack

Figure 19: Curse of dimensionality: Model query costs of
MIST with number of states.

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0.05 0.1 0.15 0.2 0.25

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Probability of node failure

Scalability with node failures

Minmax slack
Minmax no slack

Average slack
Average no slack

Figure 20: MIST’s performance under node failure.

creasing m. Even though there is an effect of dimension-
ality, the communication costs remain practical up to large
state sizes of 11. MIST schemes without slack provide bet-
ter bounds, and hence, lead to lower communication costs.

8.9 Fault-Tolerance Experiments

Figure 20 depicts the scalability of various schemes with
failure probability. Every node fails with a probability of
f . The experiments were performed on MCs with ε = 0.1,
δ = 0.05 and query rate set to 10. At the time of node fail-
ures, MIST schemes incur additional costs, as the children
of the failed node discover a new parent and propagate up-
dates to the new parent and its ancestors. Therefore, as the
probability of node failure increases, MIST schemes show

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.05 0.1 0.15 0.2 0.25

C
om

m
un

ic
at

io
n

co
st

 in
 b

yt
es

Probability of link failure

Scalability with link failures

Minmax slack
Minmax no slack

Average slack
Average no slack

Figure 21: MIST’s performance under link failure.

a moderate increase in total communication costs.
Figure 21 depicts the communication costs of MIST

schemes with increasing link failure probability. As the
link failure probability increases, the percentage of nodes
that switch to a new parent and follow the subsequent ex-
pensive update protocol increases proportionally. Hence,
the costs of each scheme increase.

Summary: When the spatial data is highly correlated, for
low query rates, the minmax scheme with slack is the best.
For high query rates (over 50), the minmax scheme and
the centralized scheme without slack are the best. When
the correlations are low, MIST schemes without slack per-
form the best for query rates of more than 10. For large
network sizes of more than 100 sensors, MIST schemes
without slack scale the best. For state sizes less than
6, MIST schemes without slack are recommended. For
higher state sizes, MIST schemes with slack are preferred.
With increasing link and node failure probability, the aver-
age scheme with slack scales better than other schemes.

9 Conclusion

In this paper, we developed a distributed and hierarchi-
cal index structure for sensor networks, MIST, based on
Markov Chains and Hidden Markov Models. These statis-
tical models capture the semantics of a sensor system by
transforming raw signals into symbols, thus permitting a
high-level understanding and analysis.

In order to unearth global semantic patterns, the mod-

18

els at the individual sensors need to be aggregated. In the
light of communication constraints in a sensor network,
aggregation should be based on the model parameters. We
designed two novel distributed algorithms for model ag-
gregation. The first algorithm produces a valid statistical
model, the average model, that captures the average be-
havior of the constituent models. Spatial correlation pa-
rameters and two other index parameters were maintained
along with the average models. The second algorithm pro-
duces pseudo-models in the form of min and max models
which were used to capture the extreme behavior of the
constituent models. We also captured the temporal shift of
the parameters of a model by considering a slack at each
level of the index structure.

We proposed two probabilistic sequence-based queries,
range and top-1 queries, and one high-level model-based
semantic query, 1-NN query, that are of interest in a dis-
tributed sensor network setting. We designed algorithms
to answer these queries efficiently. We used the index pa-
rameters maintained at the root of a subtree to bound the
probability of observation of a query sequence from a sen-
sor in the subtree. We also bounded the distance of a query
model to a sensor model using these parameters.

We designed algorithms to answer them efficiently by
bounding the probability of observation of a query se-
quence from a sensor (as well as the distance of a query
model from a sensor model) in a subtree using just the in-
dex parameters and the slack parameters maintained at the
root of the subtree.

We compared our schemes against two other central-
ized schemes, one with slack and the other without slack.
Extensive experimental evaluation on both real-world and
synthetic data sets showed that MIST’s models outperform
the competing centralized schemes in terms of update,
query and total communication costs. The scalability
experiments showed that MIST scales well with network
size and number of model states.

Acknowledgments: This work was supported in part by
grants ITR 0331697 from the National Science Founda-
tion, USA and DAAD19-03-D-004 from the Army Re-
search Organization through the Institute of Collaborative
Biotechnologies.

References

[1] Crossbow Wireless Sensor Networks. http://www.xbow.com/.

[2] G. W. Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitor-
ing Volcanic Eruptions with a Wireless Sensor Network. In EWSN,
2005.

[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing
Networks and Markov Chains. John Wiley, 1998.

[4] M. Brand. Coupled Hidden Markov Models for Modeling Interact-
ing Processes. Technical report, MIT Media Lab Perceptaul Com-
puting/Learning and Common Sense, 1997.

[5] J. B. Carter, J. K. Bennet, and W. Zwaenepoel. Techniques for
reducing consistency-related communication in distributed shared-
memory systems. ACM Trans. Comp. Sys., 13(3):205–243, 1995.

[6] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong. Approxi-
mate data collection in sensor networks using probabilistic models.
In ICDE, pages 48–60, 2006.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB, pages
426–435, 1997.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-Driven Data Acquistion in Sensor Networks. In
VLDB, pages 588–599, 2004.

[9] A. Deshpande, C. Guestrina, W. Hong, and S. Madden. Exploiting
Correlated Attributes in Acquisitional Query Processing. In ICDE,
pages 143–154, 2005.

[10] E. Elnahrawy and B. Nath. Context-Aware Sensors. In EWSN,
pages 77–93, 2004.

[11] D. Faires, R. L. Burden, K. Sandberg, and B. Pirtle. Numerical
Methods. Thomson Learning, 2002.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathemat-
ics: A Foundation of Computer Science. Addison-Wiley, 1989.

[13] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, pages 47–57, 1984.

[14] A. Jain, E. Chang, and Y. F. Wang. Adaptive Stream Resource
Management Using Kalman Filters. In SIGMOD, pages 11–22,
2004.

[15] A. Jindal and K. Psounis. Modelling spatially-correlated sensor
network data. ACM TOSN, 2(4):466–499, 2004.

[16] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Ruben-
stein. Energy-efficient Computing for Wildlife Tracking: Design
Tradeoffs and Early Experiences with ZebraNet. In ASPLOS-X,
pages 96–107, 2002.

[17] H. T. Kung and D. Vlah. Efficient location tracking using sen-
sor networks. IEEE Trans. on Wireless Comm. and Networking,
3(1954-1961), 2003.

[18] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time se-
ries with quality guarantees. In ICDE, pages 429–440, 2003.

[19] A. MainWaring, J. Polastre, R. Szewczyck, D. Culler, and J. Ander-
son. Wireless Sensor Networks for Habitat Monitoring. Technical
report, Intel Research, 2002.

19

[20] D. C. Minnen and C. R. Wren. Finding Temporal Patterns by Data
Decomposition. In AFGR, pages 608–613, 2004.

[21] C. Olston, J. Widom, and B. T. Loo. Adaptive precision setting for
cached approximate values. In SIGMOD, pages 355–366, 2001.

[22] M. Pourahmadi. Foundations of Time Series Analysis and Predic-
tion Theory. Wiley, 2001.

[23] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proc. IEEE, 77(2):257–286,
1989.

[24] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

[25] L. K. Saul and M. I. Jordan. Mixed Memory Markov Model: De-
composing Complex Stochastic Processes as Mixture of Simple
Ones. In ICML, pages 75–88, 1999.

[26] A. Silberstein, K. Munagala, and J. Yang. Energy-efficient mon-
itoring of extreme values in sensor networks. In SIGMOD, pages
169–180, 2006.

[27] P. Smyth. Clustering Sequences with Hidden Markov Models.
Advances in Neural Information Processing Systems, 9:648–658,
1997.

[28] A. Takasu and K. Aihara. An Annotation Method for Sensor Data
Streams Based on Statistical Patterns. In IMDA, pages 95–100,
2006.

[29] Y. Yao, Y. Lin, E. Stabler, and C. Taylor. Vocal Individual Recog-
nition of Acorn Woodpecker. In CENS, UCLA Research Review
Poster, 2003.

[30] Z. Zeng, J. Tu, B. Pianfetti, M.Liu, T. Zhang, and Z. Zhang. Audio-
visual Affect Recognition through Multi-stream Fused HMM for
HCI. In CVPR, pages 967–972, 2005.

A Slack Analysis

We denote the probability that the query will be sent down
from an aggregate model to its children by Pq , and the
probability that an update will be sent up from the children
to its aggregate by Pu.

We assume that each parameter σ of the model performs
a uniform random-walk during the duration d. Hence the
probability Pu that σ does not deviate more than w in the
duration d can be calculated as 4d/w2 [21] using Cheby-
shev inequality [12]. Assuming σ to be uniformly dis-
tributed, the expectedw is given by

∫ 1

0 σ(1/(1−δ)− (1−
δ))dσ = (1/2)[1/(1 − δ) − (1 − δ)]. Hence, for a single
time instance (d = 1) and a single parameter,

Pu = 16/ [1/(1− δ) − (1 − δ)]
2 (18)

Next we evaluate Pq for range queries and perform an
average-case analysis, assuming that the lower and upper
bounds are the farthest apart. Consider a query sequence
q of length k. If the probability of its observation from
the average model is γ = γ1 . . . γk, then the probability of
observing q from the children lies in the range [γl, γr] =
[γ(1 − ε)k(1 − δ)k, γ/(1 − ε)k(1 − δ)k].

We want to evaluate the probability Pq that the query
could not be answered by the composite model, i.e., the
query threshold χ lies between the [γl, γr] bounds. Hence,
Pq = P (χ ∈ (γl, γr)). We assume each γi parameter to
be independent and uniformly distributed between 0 and
1. Similarly, the threshold χ is assumed to be uniformly
distributed. Hence, Pq can be evaluated by

Pq =

∫

P (χ ∈ (γl, γr)) p(γ)dγ

=

∫
[
∫ 1

0

(γr − γl) p(χ) d(χ)

]

p(γ) dγ

=

∫

(γr − γl) p(γ) dγ [∵ p(χ) = 1]

=

∫

γ[1/(1− ε)k(1 − δ)k − (1 − ε)k(1 − δ)k] p(γ) dγ

Each parameter γi can vary uniformly be-
tween 0 and 1. Therefore,

∫

γ p(γ) dγ =
∫ 1

0 . . .
∫ 1

0 γ1 . . . γk p(γ1) . . . p(γk) dγ1 . . . dγk = 1/2k.
Hence,

Pq = (1/2k)
[

1/(1− ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
]

(19)

20

We now estimate the total expected cost of both query
and updates. We assume that the communication cost for
sending a query parameter, and the cost of updating a pa-
rameter are equal and normalized to 1. Further, assuming
that each model has n parameters, and Q queries each of
length k are posed during this duration d, the total expected
communication cost is

T =
16nd

[1/(1 − δ) − (1 − δ)]2
+
Qk

2k
.s(k)

where s(k) =
[

1/(1− ε)k(1 − δ)k − (1 − ε)k(1 − δ)k
]

.
To obtain the optimal δ, we differentiate T with respect

to δ and set it to 0. This yields a polynomial equation of de-
gree 2k+5. The second derivative of T with respect to δ is
greater than zero, showing that the solution obtained is in-
deed a minimum. As the second derivative is continuous in
the open interval (0, 1), the solution of the equation can be
obtained using Newton’s method [12], or other techniques
like finite-difference methods for faster convergence [11].

Since the sensors have limited computational capabili-
ties to perform such iterative numerical calculations, we
instead use experimental techniques to estimate the opti-
mal δ. We estimate the optimal value of the slack param-
eter a priori for a wide range of ε, query rate, and query
length settings. Each sensor or an index node maintains a
table, and uses an appropriate δ based on the table-lookup.
In Section 8.6, we discuss the experimental procedure.

In the MIST index structure, every internal node in a
tree will estimate the δ locally, as mentioned in Section 6,
by employing the query settings and the ε-correlation pa-
rameter. This is a greedy choice, as the optimal δi required
at each level i to minimize the global communication cost
for the entire network can be evaluated only after consid-
ering the cost at all levels. Extending the previous analysis
to multiple levels of the tree, we now determine QC, the
query communication cost, andUC, the update cost for all
the updates.

Let Cl denote the total number of children at level l.
Since a query injected at a particular level l is condition-
ally dependent on the fact that it escaped pruning at all the
levels above l, the total query cost

QC = Qk

h
∑

l=1

(

Cl

2k

∏

i∈l

si(k)

)

where si(k) =
[

1/(1− εi)
k(1 − δi)

k − (1 − εi)
k(1 − δi)

k
]

.
Similarly, extending the above discussion on updates to

multiple levels, we get the expected update cost as

UC =

h
∑

l=1

(

Cl

∑

i∈l

[

16nd/ [1/(1 − δi) − (1 − δi)]
2
]

)

Hence, the total communication cost is

TC = QC + UC (20)

Given εi’s at every level, TC should be minimized over
all δi’s. This function is non-convex, and Monte-Carlo
techniques [11] can be employed to solve for δi values.
There are two main bottlenecks of this procedure: (i) all
εi parameters have to be sent to the base station to evalu-
ate δis, and (ii) it is computationally demanding to solve
for δs. Further, as εi parameters keep evolving, the opti-
mal δi parameters will change, and hence recomputing the
globally optimal δis is a very expensive procedure. Thus,
we employ our greedy algorithm to calculate the δi at each
index.

21

