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Abstract 3D structures [4], and protein interaction networks [5].
Mining structured patterns in a collection of graphs is

We propose a technique for evaluating the statistical sig- useful for understanding the intrinsic characteristics of sci-
nificance of frequent subgraphs in a database. A graph isentific data. In drug development, frequent pattern mining
represented by a feature vector that is a histogram over a setcan reveal conserved substructures in a category of med-
of basis elements. The set of basis elements is chosen baséchlly effective chemical compounds [6]. In studies of pro-
on domain knowledge and consists generally of vertices,tein interaction networks, conserved patterns in multiple
edges, or small graphs. A given subgraph is transformed tospecies reveal cellular machinery [5]. In the analysis of
a feature vector and the significance of the subgraph is com-protein structures, the presence of conserved subgraphs in
puted by considering the significance of occurrence of the protein contact maps can reveal evolutionarily significant
corresponding vector. The probability of occurrence of the patterns of chemical bonds and interactions [4].
vector in a random vector is computed based on the prior A number of techniques have been developed to find fre-
probability of the basis elements. This is then used to ob-quent subgraphs [7, 8, 9, 10, 11, 12, 13, 14] in a transac-
tain a probability distribution on the support of the vector in tional database, i.e., a large collection of graphs. However,
a database of random vectors. The statistical significancethe usefulness of frequent subgraph mining is limited by
of the vector/subgraph is then defined as the p-value of itstwo factors:
observed support. We develop efficient methods for comput-
ing p-values and lower bounds. A simplified model is fur-
ther proposed to improve the efficiency. We also address the 2. There is no way taank the frequent subgraphs. This

1. Not all frequent subgraphs aséatistically significant

problem of feature vector mining, a generalization of item- hinders the identification of subgraphs of real inter-
set mining where counts are associated with items and the est, especially when the number of discovered frequent
goal is to find significant sub-vectors. We present an algo- subgraphs is large.

rithm that explores closed frequent sub-vectors to find sig- ) ] .
nificant ones. Experimental results show that the proposed ~ FOr illustrative purposes, consider a sample graph data-
techniques are effective, efficient, and useful for ranking fre- P2se shown in Figure 1 and some frequent subgraphs shown

quent subgraphs by their statistical significance. in Figure 2. Thesupportof a subgraph is the number of
graphs that contain the subgraph. A subgrapfrequent

if its support is above a given threshold. Neither the sup-
. port nor the size of a subgraph is sufficient to measure the
1 Introduction statistical significance of a subgraph, and to rank the listed
subgraphs.
Recent advances in science and technology have gener-
ated a large amount of complex data. As a powerful ab-1.1 Our Approach
stract data type, graphs are often used to represent these
complex data. In the database community, graph models In this paper, we propose a technique for computing the
have been used for schema matching [1], web documentsstatistical significance of frequent subgraphs, and show that
multimedia [2], and social networks [3]. In biology, graphs frequent subgraphs can be effectively ranked by this mea-
have been used to represent molecular structures, proteisure.



elements are still captured. As shown by the experimental
results, this approximation is suitable for the discovery of
significant subgraphs.

Figures 3 and 4 outline our approach. In the first phase
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Figure 1. A sample graph database (Figure 3), we obtain frequent subgraphs from a target
graph database using existing graph mining techniques, and
Subgraph  Stuewre  Support transform them into feature vectors. In the second phase
R 6. 6.0.01 (Figures 4), we compute the probability that feature vector
® x of a subgraphy occurs in a random vector, and use this
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tistical significance is defined as the probability tgabc- vectors
curs in a database of random graphs with a supporty.,
namely thep-valueof g. In this way, we can compute the
p-values of all frequent subgraphs discovered by existing Probability that X Probability distribution of
subgraph mining techniques, rank them by p-values, and/or Deawrsna [T | X5 support in a database
remove insignificant ones. This would greatly improve the * i
quality of the mining results. Feature vector X !

The main challenge of the above procedure is how to es- ‘ »
timate the probability that a subgraph occurs in a random __.Su';;g;f;g sig_nifgjm

1Isg”

graph. As graphs have flexible structures, it is difficult to
estimate such probability directly in the graph space (Note w
that the problem of determining whether a graph is a sub-
graph of another is NP-complete). Milo et al [15] adopted a
simulation approach: generate many random graphs while  Figure 4. Computation of p-value of a frequent
maintaining some empirical measures such as degree of ver- - sypgraph
tices, number of edges, and then count the ones that contain
the subgraph. However, this approach is neither scalable to
a large collection of graphs nor precise for computing and  In the second half of the paper, we address the problem
comparing small p-values. of feature vector mining, a simplified version of graph min-
We address the above challenge by transforming graphsng. Vector (aka histogram and multiset) mining is an im-
into a feature space. First, we use domain knowledge to dejortant generalization of frequent itemset mining. We de-
fine a set of basis elements such as vertices, edges, or smalelop ClosedVect, an algorithm that exploredosedsub-
subgraphs. A graph is simply regarded as a collection or avectors to find significant ones. We prove tRddsedVect
histogram of basis elements; this defines its feature vectoris optimal in terms of the number of search states.
Then, we approximate the question of significance of a sub- We validate the quality of our technique through experi-
graph by considering the significance of its feature vector ments on chemical compounds and synthetic graphs. In par-
in the feature space. This is a simpler problem that admitsticular, we find that a specific subgraph, neither largest nor

P-value of g



most frequent, turns out to be the largest common subgraph) Co-occurrence: basis elements that frequently occur to-

in a specific class of medically effective compounds. This gether are relatively not independent.

finding validates the practical usefulness of our approach. Generally, it is computationally difficult to select the

We also demonstrate the efficiency of the computational optimal subset of basis elements. One may simply use a

methods and the feature vector mining algorithm. greedy approach [16]: choose th& best element accord-
The main contributions of our work are as follows: ing to its benefit gained (e.g., frequency) and its relevance

(e.g., overlap, covariance) to the previously seleéted1
1. We propose a technique for computing the p-values of phasis elements:

frequent subgraphs, and show that frequent subgraph .
can be ranked by this measure. Efficient methods are b1 = argmax{wy freq(b) +wasize(b)}
developed for computing p-values and lower bounds. b = arg mbax{wlfreq(b) + wasize(D)
2. We address the problem of feature vector mining, and k—1 k—1
present an algorithm for mining significant closed sub- ~ _ 3 > simi(b;,b) — W > cou(bi, b)),
vectors. This is an important problem in its own right. k—1 i=1 k—1 i—1

1)

k=2,...m

The remainder of the paper is organized as follows. Sec-
tion 2 discusses how to represent graphs as feature vectorgyherew; — w, are weighting factorsfreq(b) is the fre-
Section 3 presents the probabilistic model. Section 4 de-quency o, size(b) is the size ob, sim(b;, b) is the overlap
scribes methods for computing p-values and lower bounds petweerp; andb, andcov(b;, b) is the covariance between

Section 5 describes a simplified probabilistic model. Sec-}, andp. All terms are normalized t@, 1]. The procedure
tion 6 describes feature vector mining. Experimental results repeats untit features are selected.

are reported in Section 7. Section 8 discusses related work. Eqor the sample database shown in Figure 1, we use

We conclude with a brief discussion in Section 9. all kinds of edges as the basis, i.B={A-B, A-C, B-B,
B-C, C-C}. The prior probabilities are empirically com-
2 Representing Graphs as Feature Vectors Dléted using their frequency in the database, ite.~=

172 172 172 172 17/°

We view a graph as a collection of basis eleméhts: . .

{131, - Bm}. These basis elements can be vertices, edges,z'2 Transforming Graphs into Feature Vectors
or small graphs. Each basis eleménis associated with
a prior probability 6;. We first discuss how to select basis
elements and transform graphs into feature vectors.

After a basis is selected, we transform (sub)graphs into
feature vectors. We denote a feature vector sby=
(z1,...,xm), Wherex; counts the frequency of featuﬁe
in the graph. The size of is defined a$z| = > «,. Vector
x is asub-vectorof vectory (andy a super-vectomof x) if
z; < y;fori=1,...,m, and is denoted by C y. Thefloor

The selection of basis elements is application-dependenigf ywo vectorse andy is a vectorn wherev; = ;m-n(% n
and may require domain knowledge. A basic approach isfor ; = 1, ..., m. The definition extends to a group of vec-
to select all types of vertices or edges as features. This aptors. Theceiling of a group of vectors is defined analo-
proach can be done efficiently and the meaning is clear: Wegously.
evaluate the statistical Signiﬁcance Ofasubgl’aph by |OOking For the Sample Subgraphs shown in Figure 2’ Table 1
at how its vertices or edges are distributed. The drawbackghows their corresponding feature vectors.
of this approach is that it does not capture any structural

2.1 Feature Selection

information of graphs. AB[AC[B-B[BC|[CC
For other graphs such as chemical compounds, one may g | 1]0]0]0]oO
choose small graphs such as Benzene rings. In this case, the g2 |1 |]0]1]0]|O
number of available elements may grow dramatically, and gs | 2 0 1,/ 0] 0
these small graphs may overlap structurally. Thus, select- g+ |1 ] 0|1 ]1]O0
ing a representative subset would be more appropriate. The gs | 2] 0] 11110

following criteria for selection can be used: 1) frequency:

frequent basis elements are more representative of graphs; Table 1. Feature vectors of the subgraphs in
2) size: large basis elements carry more structural infor-  Figure 2

mation (but would be less frequent); 3) structural overlap:

overlapping basis elements are relatively not independent;



3  Probabilistic Model

In this section, we model the probability with which a
feature vector: (corresponding to a subgraph) occurs in a

random vector (corresponding to a random graph) obtained

Let n be the number of vectors in the target database, we
summarize the sizes of the vectors by (¢4, ...,¢4) and
n = (nq,...,nq), Wwheren, is the number of vectors of size
l;, andz n; = n.

If we regard a random vector as a trial, and the occur-

using prior probabilities on the basis elements, and the prob-rence ofz in the vector as a “success”. Then, the database

ability distribution of2’s support in a database of random

of random vectors correspondssidrials, and the support

vectors. Statistical significance is obtained by comparisonof z corresponds to the number of successes tnials. If

to its observed support.

3.1 Probability of occurrence of a feature vector
in a random vector

We regard the basiB as a set ofn distinct events, one
for every basis element, where basis elen?)e'rnassociated
with its prior probabilityd;. A feature vector of a certain
sizel is thus regarded as an outcome @idependent trials.

Given a feature vectoy = (y1,...,ym), ly| = ¢, the
probability thaty is observed irf trials can be modeled by
a multinomial distribution:

m

0:
- v
[Tv! i1

In other words, Eqgn. (2) gives the probability of observing
y in a random vector of sizé

~ Let z be the feature vector of a subgragh Then, the
probability thatx occurs in a random vector of siZeis a
cumulative mass function (c.m.f.) of Eqn. (2):

> Qw

ys.t.yi >xq,|y|=¢

Qy) =

@)

P(z;0) = ®)

In other words, this is the probability thatoccurs in a
random vector of sizé The size constraintis reasonable:
the larger a random vector, the more likely thawill occur
in the vector.

For example, the feature vector of subgrapghin Fig-
ure 2 isz = (2,0,1,0,0). The probability that: occurs in
a random vector of size 3 B(z; 3) = 0.066.

The computation of Eqn. (3) is not trivial when and
¢ are large. We will discuss an efficient way to compute
Eqgn. (3) in Section 4.

3.2 Probability distribution of a feature vector’s
support in a database of random vectors

Now we consider the support af in the context of a

database of random vectors. This support is a random vari-
able that follows a probability distribution. Since we are as-

sessing the significance ofin a given target database, the

the sizes of the vectors were identical, $ayhen the sup-
port can be modeled as a binomial random variable, with
parameters and P(z; ¢). When the sizes are distinct, each
size will correspond to one binomial random variable with
parameters:; and P(z;¢;). Then, the support af is the
sum of the binomial random variables: the probability of
z's support being equal to is given by

d
R(piz,tin) = Y bino(tjing, P(z;6:)  (4)
2 tj=n

wherebino(t;n,p) = (?)pt(1—p)"~tis the binomial prob-
ability distribution. In other words, thg*" binomial con-
tributest; successes, with the sum of them equaltcAll
possible combinations @ give the total probability of ob-
servingy.

For the sample database of Figure 1, a random database
would havel = (3,4) andn = (3,2). Figure 5 plots the
probability distribution of subgraps’s support in the ran-
dom database.
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Figure 5. Probability distribution of
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We will discuss an efficient method of computing
Eqn. (4) in Section 4.

3.3 Statistical Significance of a Feature Vector
Let uo be the observed support in the target database.

Then, the p-value, i.e., the probability of observing a sup-
port of at leasj in the random database is given by

random database should have the same number of vectors

as the target database, and vectors in the random database
should have similar sizes as those in the target database.

R(u> po;z,in) = Y R(wa,Ln).  (5)
1%

=Ko



We denote Eqn. (5) bp-valudz, o). The smaller the p- x5 in the second half of the vector, provided that the sum of

value, the more statistically significant is the feature vector. the two halves is equal t The recurrence relation is given
For examplegs's observed support i8. Its p-value is by

shown as the shaded part in Figure 5. O~ lao]

The p-value has the following monotonicity properties:
P J yprop Plait)= 3 (OPai:t)Plasil—t)  (6)

1. Given two vectorsz; and g, if 1 C 9, thenp- t=|21]

valugz1, 110)> p-valugzs, o) for any . The splitting is done recursively until a single hin is
2. Given two supportg:; and pg, if 1 < 2, thenp- reached, where(z;; () = 6. The recurrence form re-
valugz, 111)> p-valudz, uo) for anyz. quires an array fo’(x;;t) and P(zo; ¢ — t) respectively.
Thus, at each recurrence step we need to compute an array
A frequent pattern islosedif none of its super-patterns — p(gz; s) for s = |z|, ..., /.
has the same support as the pattern. According to the The time complexity of the above recurrence is ana-
monotonicity properties, the p-value of a non-closed pattern|yzed as follows. Letf(m, £) be the time to compute array
is greater than or equal to that of its closed super-pattern.p(z; s) for s = |z|, ..., £, then it take2f (%, ¢) to compute
Thus, we can consider only closed sub-vectors/subgraphs. the arrays of the sub-units, atid — |z|)? to compute the
. .Now, we are rfaady to answer the question regarding sig-array of the current unit. Thug(m, () = O(2f(2,0) +
nificance raised in Figure 2. The p-value of each subgraph(/ —|z|)2). Solving the equation yields the time complexity

is computed and shown in Table 2. Their expected supportsof O(m(¢ — |z|)?). Valuem can be further reduced to the
are computed as well. Among the subgraphs listed in Fig- number of non-zero bins in.

ure 2,g3 has the smallest p-value. Thus, we can claim that

gs is the most statistically significant (though it is neither 4.2 Computation of Sum of Binomials
the largest nor the most frequent).

The sum of binomial distributions (Eqn. (4)) can also be

H Ho p-value computed using a divide-and-conquer scheme. To observe
01 3.84 4 0.67 w1 in thed binomials, one observesn the firstg binomials
g2 1.65 3 0.20 andp — t in the rest binomials for alt = 0,..., 4. The
s 0.55 2 0.09 recurrence is given by
g4 0.85 2 0.20 "
R e R(usz,t,n) = Y Rtz b, m)R(uz, €,n5)  (7)

Table 2. P-values of the subgraphs in Figure

2: subgraph gs has the smallest p-value. where (¢, n;) and ({3, nz) correspond to the first and the

second half of thel binomials, respectively. Analogous to
Subsection 4.1, the time complexity can be computed to be
O(du?).

4 Computation of P-values and Lower

4.3 Lower Bound to P-value
Bounds

For faster estimation, we develop a lower bound to the p-

In this section, we present efficient methods to compute value. The lower bound to the p-value is obtained through a
Egn. (3) and Eqgn. (4), which would take exponential time lower bound taP(z; ¢). Theorem 1 shows how this is done.

using naive approaches. Lower bounds are also develope

) ' q‘heorem 1. Let z and y be two vectors, ifP(z;¢) <
for fast estimation.

P(y, () for V¢, thenp-valugz, 1) < p-valudy, i) for V.
4.1 Computation of P(z; () Next, we get a lower bound t8(z; £) by decoupling the
multinomial into a product of binomials.

We develop a divide-and-conquer scheme for the com-Theorem 2. (Lower bound taP(z; £))
putation of P(z; ¢), the probability that: occurs in a vector -

of size? (Eqn. (3)). The idea is to split into two halves: TN ot

7y = (z1,...,zm) andzy = (zm 41, ..., 2,,), and then take P(z;¢) > H Z(f )0; (1 — 6:)

the convolution ofr; andz,. In other words, the proba- e (8)
bility of observingz in a vector of size/ is equal to the _ Hl(ﬁi; wia; — i+ 1)
probability of observinge; in the first half, and observing Pl



wherea; = ¢ — f;} x;, andI(0;;x;,a; — x; + 1) is the Sinceﬁ(g) is fixed, the support of in a database of

regularized Beta function. random vectors can be modeled by a single binomial distri-
. . bution, with parameters and P(x).

Proof. Let us start with the simple case wheXehas two Under the simplified model, we compute the p-value as

bins z; and z;. We rewrite P(X, N) in the form of  f5j0ws.
P(y1 > x1,y2 > x2; N), i.e., the probability of observ-

ing at leastx; in the first bin and at least; in the second 1. Empirically obtain the prior probabilitie®(Y; > j)
bin in N trials. Note thatP(y; > x1,y2 > 29;N) = for every basis elemebitand every; (up to the maxi-
P(y1 > x1; N)P(y2 > 22; N|y1 > x1; N). For P(y, > mum possible value).
x9; N|y1 > x1;N), we can always ensure the condition For example, elemerit, =*A-B” occurs twice (1
y1 > x1 by reservingz; trials from the N trials. Thus, andGs) in the sample database, thBsY; > 2) = 2.
P(ys > a2;Nly1 > x1;N) > P(ys > a2;N — x1). Similarly. P _ 4 SO =1 PV, 2
y, P(Y1 > 1) = 4, P(Y; > 0) = 1, P(Y; >
HenceP(y1 > z1,y2 > 22; N) > P(y1 > 21; N)P(y2 > 1) = 3 etc
x9; N — x1). When we extend the above reasoning to more 5T
than two bins, we obtain the product of sums in Egn. (8). o Computeﬁ(g) using Eqn. (11). For subgraph, z =
Equivalence to the regularized Beta function is known from (2,0,1,0,0). Thusﬁ(x) = P(Y; > 2) x P(Y; >
the statistics literatute O 1)’:’ 2 3 _ 6 - - -
5 5 25°
Theorem 3 gives an upper bound®dz; ¢) in an analo- 3. Compute the p-value of by ZZU bino(u; n, ]3@)),

gous manner. or_equivalently by the regularized Beta function

Theorem 3. (Upper bound taP(z; £)) I(P(x); po, n). When bothnP(z) andn(1 — P(z))
- are large, the binomial distribution can be approxi-
m e mated by a normal distribution.
P(z;0) < JT D- (61 — 6,
=ht=w (9) 6 Feature Vector Mining

= HI(HZ‘;CEZ‘,E—CEZ‘ + 1)
o As frequent subgraphs are represented as feature vec-

tors and evaluated for statistical significance, an interest-
5 A Simplified Model ing question arisesan we directly search top-K significant
sub-vectors, or sub-vectors above a significance threshold?
. . To our best knowledge, the problem of feature vector min-
The computation of p-values and lower bounds as illus- ing has not been addressed before. Feature vector mining is

gratteg n thel p{ﬁymus t_sect|on does n;)t S(_:alel_;p (\j/ery (ljarlgeimportant in two aspects. First, feature vectors, also known
atabases. In this section, we present a simplified modetin, histograms and multisets, are common ways to summa-

which the computation of p-values is much more efficient. rize complex data. As a result, feature vector patterns are

In our previous model, we had a constraint on the size profiles of structured patterns, and feature vector mining can

of rand(_)m vectors. Qur first S|mpllf|9at|on is to relax this work as a foundation of structured pattern mining. Second,
constraint, and consider the probability that a feature VeCtOre, -+ re vector mining is an important generalization of the

occurs in a random vector of arbitrary size. The probability well studied frequent itemset mining: each item is now as-

can be written as sociated with a count instead of a boolean value.

We developClosedVectan algorithm that explores fre-
guentclosedsub-vectors to find significant ones. The algo-
rithm consists of two phases: exploring closed sub-vectors
and evaluating the significance of a closed sub-vector.

P(z) = P(Y1 > x1,...., Yoy > Zpy) (10)

Further, if we assume that different types of basis elements
are orthogonal, then the above joint probability can be de-

coupled into a product of probabilities: )
6.1 Exploring Closed Sub-Vectors

Plz) = H P(Y; > ;) (11) Alg. 1 outlines the phase of exploring closed sub-vectors.
=1 The algorithm explores sub-vectors in a bottom-up, depth-
first manner. At each search state, the algorithm “jumps”
to a future state that has an immediately smaller supporting
set along a branch (line 3). The corresponding sub-vector
Lhitp://mathworld.wolfram.com/BinomialDistribution.html is then promoted as thféoor of the supporting set (line 6).

whereP(Y; > x;) is the probability that element occurs
at leastr; times in a random vector.




To prevent duplicates, each state is associated with a begin- Now, we show the correctness and efficiency of algo-
ning positionb. Any future state must extend at a position rithm ClosedVect. We say that an algorithm ompletsif
greater than or equal to All extensions starting at the same it explores all desired answers. Itdempactf every search
position are placed along the same search branch. If an exstate finds at least one distinct answer. Hiplicate-fredf
tension designated at positionesults in a starting position it does not extend duplicate search states nor generate du-
of less thani, then it must be a duplicate extension (lines plicate answers.
7-8). First, we state a lemma that establishes the udoof

The evaluation phase (line 1) computes the p-value of aof supporting sets when exploring closed sub-vectors.
sub-vector and reports top-K significant ones. Lines 9-10 | emma 1. For any closed sub-vectar and its supporting
estimate a lower bound on the p-value of the super-vectorsgets , — Ffloor(S)

of 2/ and prune it if this bound is too high. The evaluation o
phase and the pruning will be discussed in Subsection 6.2 heorem 4. (Correctness and Efficiency @flosedVect)
and 6.3. Algorithm ClosedVect explores closed and only closed

sub-vectors. It is complete, compact, and duplicate-free.

Alg. 1 ClosedVect(z, S, b) Proof. 1) completenesdor any closed sub-vectaf, letS
x: current sub-vector; be its supporting set, then = floor(S). We show thate
S: supporting set of;, i.e., feature vectors in the database can be found in a search state. Starting from the root state
that containg; leti be the first bin such thgtloor(S); > r;, thenS must be
b: beginning position at which bins can be extended; a subset of the supporting set at extensgidBy induction on
the number of bins, the supporting set will eventually shrink
1: Eval(z, |S)); to S, hencez is found. 2)compactnessBy construction,
2 for i := btom do each state in the search tree corresponds to a closed sub-
3 S —{Y|YeSY>u) vector. 3)duplicate-free Acc_ording to the lsearch order,
4:  if |[S'| <minSupporthen each search state can be uniguely located in the search tree.
5 continue; O
6 2’ := floor(S'); , In other words ClosedVect is optimal in terms of the
7. if 3j < isuchthat > =; then number of search states because every search state corre-
& continue sponds to a distinct closed sub-vector.
9. if p-valudceiling(S'),|S’|) > maxzPvalue then
10:  continug; 6.2 Evaluating Closed Frequent Sub-Vectors

11:  ClosedVect(z', S', 7);

Next, we describe the evaluation phase of our feature
mining algorithm. Alg. 2 outlines the evaluation phase. A
priority queue is used to maintain the answer set, i.e., top-K
Igignificant sub-vectors found so far. The p-value threshold
maxPvalués the p-value of thé{*" significant sub-vector
found so far. To evaluate a candidate sub-vector, the lower
bound to the p-value (Eqgn. (8)) is examined before the com-
putation of exact p-values (Eqn. (5)). If they are both less
than maxPvalue then both the priority queue andaxP-
valueare updated.

Figure 6 shows a running example of Alg 1. The under-
lined numbers denote the beginning posithaf each state.
Duplicate search states are pruned by examining the searc
order. For example, an extension to stat@ ‘2’ at position
“3" leads to a supporting se{fi;, h3}", of which thefloor
is “3 4 2". However, this extension violates the search order
and is pruned (lines 7-8).

222

E; ‘3‘22 {h1, h2, h3, ha} To search top-K significant sub-vectors, one sets the ini-
h3: 342 tial maxPvalue as 1; to search sub-vectors above a signifi-
ha: 233 332 232 323 cance threshold, one s&is= +cc.
{h1, h2, h3} {h1, h3, h4} {h1, h2, ha}
><"\ . 6.3 Lower Bound of P-values of Super-Vectors
4(51,6 {:fhi) {:l?h%) {,,3,,4,,23) (ffh%} {:,,2,;‘12) Next, we study how to compute a lower bound to the
X N p-values of all super-vectors of a given sub-vector. This is
156 456 used to prune unnecessary extensions in algorCtosed-
{1} {1} Vect (lines 9-10). There are two approaches to computing
this lower bound. The first approach computesthiing
Figure 6. A running example of ClosedVect of the supporting set and uses it to bound the p-value.



Alg 2 Eval(g, /L())

2. a sub-vector;

0. support ofz;

PQ: Priority queue for top-K answers;

if p-valuelowerboundz, 1o)<maxPvalughen
if p-valudz, 110)< maxPvalughen
Insert(p-valudz, o), ) into PQ;
if |PQ| > K then
Pop an item from PQ;
maxPvalue=PQ.top.pvalue;

Theorem 5. Letz andu be two vectors and C wu, then
for anyy subject tox C y C u, p-valuef, supportf)) >
p-valuef:, support)).

Proof. The proof follows from the monotonicity property
of the p-value. O

7 Experimental Results

In this section, we report experimental results that vali-
date the quality and efficiency of the proposed techniques.
The experiments are divided into two parts: 1) Validation of
the quality of our probabilistic model, and 2) Performance
evaluation of the feature vector mining algorithm as well as
the p-value computation.

Three datasets are used in our experiments. The first
dataset is the DTP-AIDS Antiviral Screen chemical com-
pound dataset from NCI/NIH The compounds have been
classified into three categories according to their AIDS an-
tiviral activities. We focus on the category of confirmed
active (CA) which contains 422 chemical compounds. On
average, each graph has 40 vertices and 42 edges. The sec-
ond dataset is synthetic graphs for recall tests. The third
dataset is a web page visits dataset.

The p-value computation and the feature vector mining
algorithm were implemented in Java using Sun JDK 1.5.0.
The regularized Beta function (Eqgn. (8)) was computed us-

The second approach constructs the most skewed supeing Apache’s Commons-Math Libraty All experiments

vector of a certain size from, and uses it to bound the

were performed on an Intel 2.8GHz, 1G memory running

p-value of all super-vectors of the same size. The following MS Windows XP Professional.

lemma allows us to incrementally skew a vector.

Lemma 2. Assuming); < 0y < ... < 0,,. Letz=(x4, ...,
Ly eer Ty wey Tim)-

1) fx; > xj, lete’ = (x1, .., mi+1, ., 25— 1, o0, T,
thenP(z’;¢) < P(z;{). In this case, we increment and
decrement:;.

) Ifz; <z, leta = (z1,...,25, ..., iy ..., T )., theN
P(2';¢) < P(z;¢). In this case, we switch; andz;.

Proof. See Appendix A. O

We use CloseGraph [10] to find frequent closed sub-
graphs. We compare the p-value ranking with a simple
ranking approach based on size. To our best knowledge,
there are no other methods that evaluate the statistical sig-
nificance of frequent subgraphs in a graph database. Thus,
comparative assessments to other statistical methods are not
presented.

7.1 Evaluating the Quality of the Results

7.1.1 Chemical Compound Graphs

In the following theorem, we estimate a lower bound to We demonstrate the practical usefulness of our method on

the p-value of a super-vector of constant sizet § by first
skewingz to 2’ using Lemma 2, and then addingo bins
with the smallest prior probabilities.

Theorem 6. Assumingd; < 0y < ... < 0,,. Letu =
(u1,...,umn) be the ceiling of super-vectorsy, > wus >
oo > U, Giveng, z C u, sorta’s in non-increasing order:
= (af,...,x,), ¢y > xh > ... > x,. Givend > 0,
constructy,, from 2’ as follows: fillz} up tou,, thena}
up tous, ..., and so on untid is used up. Then, for any

subjecttar C y C wandly| = [z[+5, P(y; £) = P(ym; ().

Proof. According to Lemma 2y can be iteratively trans-
formed intoy,,, with P(y; £) non-increasing. O

Theorems 5 and 6 are intended to prune search states ;

the chemical compound dataset. Two sets of basis elements
are generated to transform subgraphs into feature vectors.
The first set of basis elements consists of all different edges
(39 in total), namelyl-edge basis For the second set of
basis elements, we consider all possible subgraphs contain-
ing 3 edges (322 in total), and select 30 of them using the
greedy approach discussed in Section 2. We call this the
3-edge basisFor each case, we compute the prior probabil-
ities using their frequency in the background dataset (con-
taining around 42,000 compounds).

Using CloseGraph [10] with minimum suppormin-
SupE5%, 7879 closed subgraphs are genertefor each
of them, we compute its p-value using the two bases and the
two models for p-value computation (exact and simplified).

2http://dtp.nci.nih.gov/
http://jakarta.apache.org/commons/math/

where the closed sub-vectors are large. They can be espe- e results are different from [10] since aromatic bonds are not spe-

cially effective if large sub-vectors are not significant.

cially treated.
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; 10 Figure 9. P-value vs. rank with different fea-
ture bases and models
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Figure 7. P-value vs. rank with cross-
validation
model are smaller than those in the exact model. The un-
derlying reason is the stronger assumption by the simplified
Figure 7 shows the p-values of the subgraphs vs. theirmﬁdel th"?lt (tjr;fferent ?aS'Z elletrr?ents are tottally m(;jte)peﬂr]lder_n,
ranks using 3-edge basis and the exact model. To crossW/Nereas in the exact model, they are constrainea by the size

validate the significance of the subgraphs, we also c:omputeOf random graphs. Nevertheless, the rankings by the wo

their p-values in the category of confirmed moderately ac- ][nodels ar:a mtﬁretor Iigs ccz)n&stint. gﬂder thet3—e(;ijg? bk?3|s,
tive (CM) for comparison. As shown in the figure, the p- or exampie, he top LU subgraphs of the exact model show

values of the discovered subgraphs are much smaller tharvp\'/r\}the top 30 subgrarl)(hs of the Slmr?“ﬂ.e: moo!el. ki
they would be in the context of the CM category. Further, a e compare our ranking approach with a naive ranking

large number of the subgraphs are statistically insignificant. approach: rank by siz_e (in case of tie, ran_k by support). Ta-
Using a p-value cutoff, say 0.01, we are able to reduce thePle 3 shovy_s the rankings of some special subgraphs: the
number of discovered subgraphs by one order of magnitude MOSt significant subgraph (AZT*), the largest subgraph,

and Benzene (a ring with six carbons). There is no current
scientific evidence regarding the importance of the largest

subgraph. As shown in the table, ranking by p-value is

0
N N% + . . ;
N§N much more appropriate than the ranking by size. And the
o N most significant subgraph is not necessarily the largest or
/ o the most frequent subgraph.
o)

Rank by p-value Rank
Subgraph | Support | Size 3-edge basis 1-edge basis by size
strict | simpl. | strict | simpl.
Figure 8. The most significant subgraph in CA AZT | 15 | 19 | 1% | 1° | 40" [ 69" | 428"
Largest 5% 34 | 914" | 142 | 752 751 1
Benzene | 70% 6 886" | 1424™ | 6820™ | 1875" | 6969" |

Figure 8 shows the most significant subgraph found in
our results (the unlabeled nodes are C atoms). It is ranked
1t in both the exact and simplified model using the 3-edge
basis. This subgraph has 19 edges and 15% support. We
found that this subgraph is the largest common subgraph in7.1.2  Recall Tests on Synthetic graphs
the chemical class of Azido Pyrimidinés The AZT com-
pound (NSC 602670), a super graph of this subgraph, has
extra edge on the left hexagon and 12% support. Itis ranke
374 in the exact model an2i*® in the simplified model. The
compound has been widely used for HIV inhibition. The
findings validate the practical usefulness of our approach.

Figure 9 shows the p-values of the subgraphs vs. their
ranks using different feature bases and different models for
the computation of p-values. The p-values in the simplified

Table 3. Ranking by different approaches

aI)|/Ve also verify the quality of our method through recall tests
on synthetic graphs. The procedure of recall tests is illus-
trated in Figure 10. The basic idea is to embed some sig-
nificant subgraphs into a synthetic database, and then see
how they can be recalled through p-value ranking. The tests
are “supervised” in that all prior knowledge, such as basis
elements and significant subgraphs, are known in advance.
We generate synthetic graphs as follows. Letand L g

be the label set of vertices and edges respectively. The size
Shttp://dtp.nci.nih.gov/docs/aids/searches/list.html of a graph is measured by the number of edges. First, we
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Table 4. Rankings of subgraphsin A

Compare A and A’
Top-K Significant
Subgraphs, A’

7.2 Computation Costs of P-values and Lower

Figure 10. Recall tests on synthetic graphs Bounds

We evaluate the computation costs and lower bounds of
generate a set of building blocks (also the basis elements)p-values, as well as tightness of lower bounds (Section 4)
B = {by,...,b,,}. Each building block is a tiny subgraph using random data. The scenario is set up as follows. The
generated by randomly adding an edge to the subgraph unsize of the database is 1000; the sizes of database vectors
til it reaches a given fixed sizeB. Then, we generate randomly range from 50 to 300; the number of distinct sizes
significant subgraph& = {A;, ..., A} using the building  of database vectors is 100, i.e., there are 100 binomial distri-
blocks. Each significant subgraph is generated by randomlybutions; the number of dimensions of vectors ranges from 5
inserting a building block into the subgraph until it reaches to 100 with an interval of 5; for each number of dimensions,
sizez A, which has a Poisson distribution. Next, we e we randomly generate 50 sub-vectors of size 30, compute
andA to generate the database graphs. Each database gragheir p-values and lower bounds, and average the running

has a probability ofP, of selecting a significant subgraph
from A. Then, the building blocks are randomly selected
and inserted into the database graph until it reacheg6ize
which has a Poisson distribution.

times.

Figure 12(a) shows the running time for a single p-value
computation in the number of dimensions. ‘Accurate’ refers
to the computation of exact p-values; ‘Lower bound’ refers

Next, we use our technique to discover the frequent to that of lower bounds (Egn. (8)). The running time for ex-
subgraphs, compute their p-values, and see how they aréCt computation increases when the number of dimensions

ranked.

In our experiments, we fixly | = |Lg| = 10, 2B = 3,
m = 100, zA = 10, k = 5, |B| = 100, 2G = 30, |D| =
1000, andPy = 0.6 ~ 1.0.

E. L L L L L L
0 10 20 30 40 50 60 70 80

Figure 11. P-value vs. rank

Figure 11 shows the p-value vs. rank f&r=0.6 and 0.9
respectively. On average, the p-values for = 0.9 are
smaller than those faPy = 0.6. This is because faoP, =
0.9, database graphs contains more significant subgraphs.

Table 4 shows the rankings of the subgraphgainAll
significant subgraphs iA have been discovered and ranked
at very high positions.

10

increases. The time complexity is actually lineanin, the
number of non-zero bins in the sub-vectors. The running
time for the lower bound computations is much less than
that of the accurate computation.

Time (millisec)

0 20 80 100 510 15 20 25 30 35 40 45 50

0 E
Dimensions Size of sub—histogram

(a) Running time (b) Lower/upper bounds

Figure 12. Computation costs and bounds of
p-values

To evaluate the tightness of the lower bound and upper
bound, we gradually grow a sub-vector starting with size
5 until size 50, and compute the p-value and lower/upper
bounds. This procedure fits the typical depth-first feature
vector mining scenario.

Figure 12(b) shows the lower bound and upper bound to
the p-value. Both the lower bound and the upper bound are
close to the exact p-value in orders of magnitude. Thus,
they can be effectively used to estimate the exact p-value.



7.3 Feature Vector Mining Table 5 shows the first few categories and the prior proba-
bilities of being visited at least once (in the context of the

7.3.1 Chemical Compound Graphs simplified model).

We evaluate the performance of algorithGlosedVect Category frontpage| news | tech | local
(Section 6) using the chemical compound dataset which| Prob. of> 1visit | 0.316 | 0.177| 0.123| 0.123
contains 422 graphs. The graphs are transformed into fea-

ture vectors using the 3-edge basis. We run the algo- Table 5. Page Categories and prior probab“i_
rithm using the exact model, the simplified model, and tjes

without p-value evaluation. The experimental settings are:

minSupport=5-25%; K=+oo; maxPvalue=1, 0.01.

Figure 13(a) shows the running time GflosedVect We use the simplified model to evaluate statistical signif-
W.rt. minSupport. As expected, the running time de- icance. The experimental settings are: minSuppor%;
creases with higher support thresholds. Also, the runningK=+oc; maxPvalue=1,0.01.
time without p-value evaluation is only in seconds. This  Figure 14(a) shows the running time w.ntinSupport.
demonstrates the high efficiency GfosedVect in explor-  As shown in the figure, th€losedVect algorithm is very
ing closed sub-vectors. With p-value computation, the sim- efficient and scalable to large datasets (nearly 1 million
plified model adds a little amount of overhead. The exact records). Figure 14(b) shows the number of closed sub-
model takes much longer in the computation of p-values. Vectors w.r.t.minSupport. The maximum p-value thresh-
Actually, the computation time of a single p-value in the old effectively reduces the number of discovered results.
exact model is less than one second. Itis the large number
of closed sub-vectors that lead to the high running time. ’

Figure 13(b) shows the number of closed sub-vectors
w.r.t. minSupport under the exact model. With the max-
imum p-value threshold set at 0.01, the number of closed
sub-vectors is reduced by one order of magnitude.

10°

Running time (sec)

# of closed sub-vectors

10° 107 T~
2

9

4 5 6 4 5 6
minSupport (%) minSupport (%)

(a) Running time (b) # of Closed Sub-vectors

Y

Figure 14. ClosedVect on MSNBC page visits
data

Running time (sec)
# of closed sub-vectors

s 10 25 5 10

minStsport 06) minStaport 06 = A preliminary study of the results shows that the most

(a) Running time (b) # of closed sub-vectors significant sub-vectors are those with skewed distributions

_ ] and at least two non-zero bins. For example, a discov-

Figure 13. ClosedVect on chemical com- ered sub-vector with a high statistical significance was one
pounds in which users visited th&ontpageseven times andews

once; the corresponding support was only 1.1%. In con-
trast, another pattern in which users visited ttuatpage
eight times was not statistically significant, even though its

7.3.2 MSNBC Page Visits Data support was 2.1%.

We also run theClosedVect algorithm on the MSNBC

page visits dataset. The dataset is available in the UCI KDD8 Related Work

archive repositof¥. It records the page visits of msnbc.com o . )

on a specific day. The dataset consists of 989,818 records, Graph mining has been an active research topic re-
each of which is a sequence of page categories visited bycently. In the area of mining frequent subgraphs from a

a user. There are 17 page categories. Thus, each record iffansactional graph database, Inokuchi et al. [7] addressed
the data set is a vector of size 17 and we are interested iff€ problem using an Apriori approach. Kuramochi and

finding the sub-vectors that denote significant visit patterns. Karypis [8] proposed FSG, an Apriori-based approach to
frequent subgraph discovery. Yan and Han [9] proposed

Shttp://kdd.ics.uci.edu/databases/msnbc/msnbc.html gSpan that efficiently explores frequent subgraphs. Their
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later work [10] searched closed frequent subgraphs. Huan9 Conclusions
et al. [11] explored frequent subgraphs using a canoni-
cal adjacency matrix representation of graphs. Their later
work [12] searched maximal frequent subgraphs. Vanetik
et al. [13] proposed an Apriori approach using paths as
building blocks. Their later work [14] addressed partially

Statistical significance and ranking are useful in the post-
processing of data mining results. In this paper, we pro-
posed a probabilistic model for frequent subgraphs, and
. show that frequent subgraphs can be effectively ranked by
labeled gr_aph patterns. In the area of mining frequent SUb'their p-values. By representing graphs in the feature space,
trees, Zaki [17] developed an algorithm to find frequent sub- we derived a exact model which leads to a closed form so-

tr_ees in a forest. Chi et al. [18]_presented an index te(?h'lution for the p-values. Efficient methods were developed
nigue for free trees and applied it to frequent subtree min- ¢ computing the p-values and lower bounds. A simpli-

ing. All these techmque_s f.ocus.on_ de'ng frequent sub- fied model was further proposed to improve efficiency. We
graphs or subtrees. Statistical significance of the frequentaISO addressed the problem of feature vector mining, and
patterns was not addressed. developed an algorithm that efficiently searches significant
closed sub-vectors. Experimental results validated the qual-

Milo et al. [15] identified network motifs in complex net- ity performance, and practical usefulness of the presented
works. They defined network motifs as graph patterns thatiechniques.

appear significantly more frequently than those in random-
ized networks. However, their method deals with a single
large graph, whereas our model deals with a large collection

Although presented in the context of graphs, the pro-
posed techniques are generic and can be applied to mining
_ of other complex data, such as trees. Future directions are
of graphs. Moreover, they computed the p-value by Simu- iyteqration of the significance measurement and graph min-

lation: they generated a number of randomized networks, i techniques, incorporation of feature dependency into the

and counted the number of networks that contained the Su_b'probabilistic model, and development of better approxima-
graph with a support at least the observed support. This;jyns and lower bounds.

approach cannot compute p-values with high accuracy be-

cause the generation 8f randomized networks can never acknowledgements: We would like to thank Xifeng Yan
yield a non-zero p-value of less thajiV'. In contrast, our  and Jiawei Han for providing the code of CloseGraph. The
method is deterministic and computes accurate p-values. work was supported in part by NSF grants 11S-0612327 and

DBI-0213903.
In the study of large graphs such as the Internet, random

graph models [19] are used to describe the graph topology.

Faloutsos et al. [20] showed that degrees of nodes of the

Internet follow a power-law distribution. Albert et al. [21]

showed the small-world phenomena of the world-wide web. [1] E. Rahm and P. Bernstein. A survey of approaches to

Leskovec et al. [22] observed how graphs evolve over time automatic schema matchingLDB J. 10(4): 334-350

in terms of densities and diameters etc. Whereas these stud-  (2001)

ies pertain to properties of the graph topology, we target the [2] S. Berretti, A. D. Bimbo, and E. Vicario. Efficient

discovery of recurring subgraphs in a collection of graphs. matching :;md indexing (;f graph models in content-

) ) based retrieval. IHEEE Trans. on Pattern Analysis

In an approach to interestingness measurement, Bayardo 344 Machine Intelligengevolume 23, 2001.

and Agrawal [23] proposed to mine an optimal set of rules . . .

according to a partial order defined using both rule sup- [3] S- White and P. Smyth. Algorithms for estimating rel-

port and confidence. Jaroszewicz and Simovici [24] defined ative importance in networks. KDD, 2003.

the interestingness of frequent itemsets as the difference be-[4] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki.

tween the support from data and the support estimated from Mining protein contact maps. IBIOKDD, 2002.

a background Bayesian network. Amer-Yahia et al. [25] [5] R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. Mc-
proposed scoring methods based on both structure and con- Cﬁine P l’Jeiz T Sittlér 'R M Karp,> ;and T’Idéker

';(e,\r/'ltL The scoring methods are used for ranking answers to Conserved patterns of protein interaction in multiple
quenes. species. IrProc Natl Acad S¢i2005.

In the area of frequent itemset mining, Srikant and [6] S. Krame.r,'L. D Raedt, and C. Helma. Molecular
Agrawal [26] addressed the problem of mining quantitative feature mining in HIV data. I&DD, 2001.
association rules. Han et al. [27] developed an algorithm for [7] A. Inokuchi, T. Washio, and H. Motoda. An apriori-
mining top-K frequent closed patterns. based algorithm for mining frequent substructures
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APPENDIX

A Proof of Lemma 2

Proof. (1) According to Eqn. (6), letty = (z;,z;) and
zy = (z; + 1,z; — 1). Itis sufficient if we can show that

P(z1;s) > P(af;s) forall s > z; + z;.

P(ay;s)= ) (;)0:6;
t=x;
s—xj+1
Playzs)= Y (0005
T t=x;+1
P(z1;5) — P(a), 5)

S A S (R s

z;—1/"% J

Sincez; > z; ands > x; + x;, we get(;.) > (;j_l).

Sinceei < (9j andxi < s— T +1, we getelﬂﬂlejf:rl >
0‘?’—wj+19;‘,'r1_ Thus,P(z1;s) — P(2;5) > 0.

() Letay = (x4, 2;), ¥y = (x5, 2:),

P(zy,s) = Y (70105
t=x,;

P(ay,s) = ) (7665

t=x;

Sincez; < z; ands > z; + z;, letb = min(s — z;, z;),
then

b S—x;
=D (ke = Y (eiest
t=x; t=s—b
b b
=D (o0 = Y ()6: S
t=x; t=x;

It can be verified that < s — ¢t whenz; <t < b. It follows
thatd}0;~" > 0;7'0%. Thus,P(xzy,s) — P(x},s) > 0.
O
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