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Abstract

We propose a technique for evaluating the statistical sig-
nificance of frequent subgraphs in a database. A graph is
represented by a feature vector that is a histogram over a set
of basis elements. The set of basis elements is chosen based
on domain knowledge and consists generally of vertices,
edges, or small graphs. A given subgraph is transformed to
a feature vector and the significance of the subgraph is com-
puted by considering the significance of occurrence of the
corresponding vector. The probability of occurrence of the
vector in a random vector is computed based on the prior
probability of the basis elements. This is then used to ob-
tain a probability distribution on the support of the vector in
a database of random vectors. The statistical significance
of the vector/subgraph is then defined as the p-value of its
observed support. We develop efficient methods for comput-
ing p-values and lower bounds. A simplified model is fur-
ther proposed to improve the efficiency. We also address the
problem of feature vector mining, a generalization of item-
set mining where counts are associated with items and the
goal is to find significant sub-vectors. We present an algo-
rithm that explores closed frequent sub-vectors to find sig-
nificant ones. Experimental results show that the proposed
techniques are effective, efficient, and useful for ranking fre-
quent subgraphs by their statistical significance.

1 Introduction

Recent advances in science and technology have gener-
ated a large amount of complex data. As a powerful ab-
stract data type, graphs are often used to represent these
complex data. In the database community, graph models
have been used for schema matching [1], web documents,
multimedia [2], and social networks [3]. In biology, graphs
have been used to represent molecular structures, protein

3D structures [4], and protein interaction networks [5].
Mining structured patterns in a collection of graphs is

useful for understanding the intrinsic characteristics of sci-
entific data. In drug development, frequent pattern mining
can reveal conserved substructures in a category of med-
ically effective chemical compounds [6]. In studies of pro-
tein interaction networks, conserved patterns in multiple
species reveal cellular machinery [5]. In the analysis of
protein structures, the presence of conserved subgraphs in
protein contact maps can reveal evolutionarily significant
patterns of chemical bonds and interactions [4].

A number of techniques have been developed to find fre-
quent subgraphs [7, 8, 9, 10, 11, 12, 13, 14] in a transac-
tional database, i.e., a large collection of graphs. However,
the usefulness of frequent subgraph mining is limited by
two factors:

1. Not all frequent subgraphs arestatistically significant.

2. There is no way torank the frequent subgraphs. This
hinders the identification of subgraphs of real inter-
est, especially when the number of discovered frequent
subgraphs is large.

For illustrative purposes, consider a sample graph data-
base shown in Figure 1 and some frequent subgraphs shown
in Figure 2. Thesupportof a subgraph is the number of
graphs that contain the subgraph. A subgraph isfrequent
if its support is above a given threshold. Neither the sup-
port nor the size of a subgraph is sufficient to measure the
statistical significance of a subgraph, and to rank the listed
subgraphs.

1.1 Our Approach

In this paper, we propose a technique for computing the
statistical significance of frequent subgraphs, and show that
frequent subgraphs can be effectively ranked by this mea-
sure.
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Figure 1. A sample graph database
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Figure 2. Frequent subgraphs and their sup-
ports

Given a subgraphg and its observed supportµ0, its sta-
tistical significance is defined as the probability thatg oc-
curs in a database of random graphs with a supportµ ≥ µ0,
namely thep-valueof g. In this way, we can compute the
p-values of all frequent subgraphs discovered by existing
subgraph mining techniques, rank them by p-values, and/or
remove insignificant ones. This would greatly improve the
quality of the mining results.

The main challenge of the above procedure is how to es-
timate the probability that a subgraph occurs in a random
graph. As graphs have flexible structures, it is difficult to
estimate such probability directly in the graph space (Note
that the problem of determining whether a graph is a sub-
graph of another is NP-complete). Milo et al [15] adopted a
simulation approach: generate many random graphs while
maintaining some empirical measures such as degree of ver-
tices, number of edges, and then count the ones that contain
the subgraph. However, this approach is neither scalable to
a large collection of graphs nor precise for computing and
comparing small p-values.

We address the above challenge by transforming graphs
into a feature space. First, we use domain knowledge to de-
fine a set of basis elements such as vertices, edges, or small
subgraphs. A graph is simply regarded as a collection or a
histogram of basis elements; this defines its feature vector.
Then, we approximate the question of significance of a sub-
graph by considering the significance of its feature vector
in the feature space. This is a simpler problem that admits

closed-form solutions. Although structural information of
a graph is lost in the feature space, statistics on the basis
elements are still captured. As shown by the experimental
results, this approximation is suitable for the discovery of
significant subgraphs.

Figures 3 and 4 outline our approach. In the first phase
(Figure 3), we obtain frequent subgraphs from a target
graph database using existing graph mining techniques, and
transform them into feature vectors. In the second phase
(Figures 4), we compute the probability that feature vector
x of a subgraphg occurs in a random vector, and use this
probability to compute the probability distribution onx’s
support in a random database. The statistical significance
of g is then computed as the p-value of its observed support
in the target database.
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Figure 3. Representation of graphs as feature
vectors
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Figure 4. Computation of p-value of a frequent
subgraph

In the second half of the paper, we address the problem
of feature vector mining, a simplified version of graph min-
ing. Vector (aka histogram and multiset) mining is an im-
portant generalization of frequent itemset mining. We de-
velop ClosedVect, an algorithm that exploresclosedsub-
vectors to find significant ones. We prove thatClosedVect
is optimal in terms of the number of search states.

We validate the quality of our technique through experi-
ments on chemical compounds and synthetic graphs. In par-
ticular, we find that a specific subgraph, neither largest nor
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most frequent, turns out to be the largest common subgraph
in a specific class of medically effective compounds. This
finding validates the practical usefulness of our approach.
We also demonstrate the efficiency of the computational
methods and the feature vector mining algorithm.

The main contributions of our work are as follows:

1. We propose a technique for computing the p-values of
frequent subgraphs, and show that frequent subgraph
can be ranked by this measure. Efficient methods are
developed for computing p-values and lower bounds.

2. We address the problem of feature vector mining, and
present an algorithm for mining significant closed sub-
vectors. This is an important problem in its own right.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses how to represent graphs as feature vectors.
Section 3 presents the probabilistic model. Section 4 de-
scribes methods for computing p-values and lower bounds.
Section 5 describes a simplified probabilistic model. Sec-
tion 6 describes feature vector mining. Experimental results
are reported in Section 7. Section 8 discusses related work.
We conclude with a brief discussion in Section 9.

2 Representing Graphs as Feature Vectors

We view a graph as a collection of basis elementsB =
{b̂1, ..., b̂m}. These basis elements can be vertices, edges,
or small graphs. Each basis elementb̂i is associated with
a prior probability θi. We first discuss how to select basis
elements and transform graphs into feature vectors.

2.1 Feature Selection

The selection of basis elements is application-dependent
and may require domain knowledge. A basic approach is
to select all types of vertices or edges as features. This ap-
proach can be done efficiently and the meaning is clear: we
evaluate the statistical significance of a subgraph by looking
at how its vertices or edges are distributed. The drawback
of this approach is that it does not capture any structural
information of graphs.

For other graphs such as chemical compounds, one may
choose small graphs such as Benzene rings. In this case, the
number of available elements may grow dramatically, and
these small graphs may overlap structurally. Thus, select-
ing a representative subset would be more appropriate. The
following criteria for selection can be used: 1) frequency:
frequent basis elements are more representative of graphs;
2) size: large basis elements carry more structural infor-
mation (but would be less frequent); 3) structural overlap:
overlapping basis elements are relatively not independent;

4) Co-occurrence: basis elements that frequently occur to-
gether are relatively not independent.

Generally, it is computationally difficult to select the
optimal subset of basis elements. One may simply use a
greedy approach [16]: choose thekth best element accord-
ing to its benefit gained (e.g., frequency) and its relevance
(e.g., overlap, covariance) to the previously selectedk − 1
basis elements:

b1 = arg max
b
{w1freq(b) + w2size(b)}

bk = arg max
b
{w1freq(b) + w2size(b)

− w3

k − 1

k−1∑

i=1

sim(bi, b)− w4

k − 1

k−1∑

i=1

cov(bi, b)},

k = 2, ..., m

(1)

wherew1 − w4 are weighting factors,freq(b) is the fre-
quency ofb, size(b) is the size ofb, sim(bi, b) is the overlap
betweenbi andb, andcov(bi, b) is the covariance between
bi andb. All terms are normalized to[0, 1]. The procedure
repeats untilm features are selected.

For the sample database shown in Figure 1, we use
all kinds of edges as the basis, i.e.,B={A-B , A-C, B-B ,
B-C, C-C}. The prior probabilities are empirically com-
puted using their frequency in the database, i.e.,θ =
( 6
17 , 2

17 , 3
17 , 5

17 , 1
17 ).

2.2 Transforming Graphs into Feature Vectors

After a basis is selected, we transform (sub)graphs into
feature vectors. We denote a feature vector byx =
(x1, ..., xm), wherexi counts the frequency of featurêbi

in the graph. The size ofx is defined as|x| = ∑
xi. Vector

x is asub-vectorof vectory (andy a super-vectorof x) if
xi ≤ yi for i = 1, ..., m, and is denoted byx ⊆ y. Thefloor
of two vectorsx andy is a vectorv wherevi = min(xi, yi)
for i = 1, ..., m. The definition extends to a group of vec-
tors. Theceiling of a group of vectors is defined analo-
gously.

For the sample subgraphs shown in Figure 2, Table 1
shows their corresponding feature vectors.

 
 A-B A-C B-B B-C C-C 

g1 1 0 0 0 0 
g2 1 0 1 0 0 
g3 2 0 1 0 0 
g4 1 0 1 1 0 
g5 2 0 1 1 0 

 

Table 1. Feature vectors of the subgraphs in
Figure 2
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3 Probabilistic Model

In this section, we model the probability with which a
feature vectorx (corresponding to a subgraph) occurs in a
random vector (corresponding to a random graph) obtained
using prior probabilities on the basis elements, and the prob-
ability distribution ofx’s support in a database of random
vectors. Statistical significance is obtained by comparison
to its observed support.

3.1 Probability of occurrence of a feature vector
in a random vector

We regard the basisB as a set ofm distinct events, one
for every basis element, where basis elementb̂i is associated
with its prior probabilityθi. A feature vector of a certain
size` is thus regarded as an outcome of` independent trials.

Given a feature vectory = (y1, ..., ym), |y| = `, the
probability thaty is observed iǹ trials can be modeled by
a multinomial distribution:

Q(y) =
`!∏
yi!

m∏

i=1

θyi

i , (2)

In other words, Eqn. (2) gives the probability of observing
y in a random vector of sizè.

Let x be the feature vector of a subgraphg. Then, the
probability thatx occurs in a random vector of size` is a
cumulative mass function (c.m.f.) of Eqn. (2):

P (x; `) =
∑

ys.t.yi≥xi,|y|=`

Q(y) (3)

In other words, this is the probability thatx occurs in a
random vector of sizè. The size constraint̀ is reasonable:
the larger a random vector, the more likely thatx will occur
in the vector.

For example, the feature vector of subgraphg3 in Fig-
ure 2 isx = (2, 0, 1, 0, 0). The probability thatx occurs in
a random vector of size 3 isP (x; 3) = 0.066.

The computation of Eqn. (3) is not trivial whenm and
` are large. We will discuss an efficient way to compute
Eqn. (3) in Section 4.

3.2 Probability distribution of a feature vector’s
support in a database of random vectors

Now we consider the support ofx in the context of a
database of random vectors. This support is a random vari-
able that follows a probability distribution. Since we are as-
sessing the significance ofx in a given target database, the
random database should have the same number of vectors
as the target database, and vectors in the random database
should have similar sizes as those in the target database.

Let n be the number of vectors in the target database, we
summarize the sizes of the vectors by` = (`1, ..., `d) and
n = (n1, ..., nd), whereni is the number of vectors of size
`i, and

∑
ni = n.

If we regard a random vector as a trial, and the occur-
rence ofx in the vector as a “success”. Then, the database
of random vectors corresponds ton trials, and the support
of x corresponds to the number of successes inn trials. If
the sizes of the vectors were identical, say`, then the sup-
port can be modeled as a binomial random variable, with
parametersn andP (x; `). When the sizes are distinct, each
size will correspond to one binomial random variable with
parametersni andP (x; `i). Then, the support ofx is the
sum of the binomial random variables: the probability of
x’s support being equal toµ is given by

R(µ;x, `, n) =
d∑P
tj=µ

bino(tj ; ni, P (x; `i)) (4)

wherebino(t;n, p) = (n
t )pt(1−p)n−t is the binomial prob-

ability distribution. In other words, thejth binomial con-
tributestj successes, with the sum of them equal toµ. All
possible combinations oftj give the total probability of ob-
servingµ.

For the sample database of Figure 1, a random database
would have` = (3, 4) andn = (3, 2). Figure 5 plots the
probability distribution of subgraphg3’s support in the ran-
dom database.
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Figure 5. Probability distribution of g3’s sup-
port and its p-value

We will discuss an efficient method of computing
Eqn. (4) in Section 4.

3.3 Statistical Significance of a Feature Vector

Let µ0 be the observed support in the target database.
Then, the p-value, i.e., the probability of observing a sup-
port of at leastµ0 in the random database is given by

R(µ ≥ µ0; x, `, n) =
n∑

µ=µ0

R(µ;x, `, n). (5)
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We denote Eqn. (5) byp-value(x, µ0). The smaller the p-
value, the more statistically significant is the feature vector.

For example,g3’s observed support is2. Its p-value is
shown as the shaded part in Figure 5.

The p-value has the following monotonicity properties:

1. Given two vectorsx1 and x2, if x1 ⊆ x2, then p-
value(x1, µ0)≥ p-value(x2, µ0) for anyµ0.

2. Given two supportsµ1 andµ2, if µ1 ≤ µ2, thenp-
value(x, µ1)≥ p-value(x, µ2) for anyx.

A frequent pattern isclosedif none of its super-patterns
has the same support as the pattern. According to the
monotonicity properties, the p-value of a non-closed pattern
is greater than or equal to that of its closed super-pattern.
Thus, we can consider only closed sub-vectors/subgraphs.

Now, we are ready to answer the question regarding sig-
nificance raised in Figure 2. The p-value of each subgraph
is computed and shown in Table 2. Their expected supports
are computed as well. Among the subgraphs listed in Fig-
ure 2,g3 has the smallest p-value. Thus, we can claim that
g3 is the most statistically significant (though it is neither
the largest nor the most frequent).

 
 µ  

0µ  p-value 

g1 3.84 4 0.67 
g2 1.65 3 0.20 
g3 0.55 2 0.09 
g4 0.85 2 0.20 
g5 0.16 1 0.15 

 

Table 2. P-values of the subgraphs in Figure
2; subgraph g3 has the smallest p-value.

4 Computation of P-values and Lower
Bounds

In this section, we present efficient methods to compute
Eqn. (3) and Eqn. (4), which would take exponential time
using naive approaches. Lower bounds are also developed
for fast estimation.

4.1 Computation ofP (x; `)

We develop a divide-and-conquer scheme for the com-
putation ofP (x; `), the probability thatx occurs in a vector
of size` (Eqn. (3)). The idea is to splitx into two halves:
x1 = (x1, ..., xm

2
) andx2 = (xm

2 +1, ..., xm), and then take
the convolution ofx1 andx2. In other words, the proba-
bility of observingx in a vector of sizè is equal to the
probability of observingx1 in the first half, and observing

x2 in the second half of the vector, provided that the sum of
the two halves is equal tò. The recurrence relation is given
by

P (x; `) =
`−|x2|∑

t=|x1|
(`
t)P (x1; t)P (x2; `− t) (6)

The splitting is done recursively until a single binxi is
reached, whereP (xi; `) = θ`

i . The recurrence form re-
quires an array forP (x1; t) andP (x2; ` − t) respectively.
Thus, at each recurrence step we need to compute an array
P (x; s) for s = |x|, ..., `.

The time complexity of the above recurrence is ana-
lyzed as follows. Letf(m, `) be the time to compute array
P (x; s) for s = |x|, ..., `, then it takes2f(m

2 , `) to compute
the arrays of the sub-units, and(` − |x|)2 to compute the
array of the current unit. Thus,f(m, `) = O(2f(m

2 , `) +
(`−|x|)2). Solving the equation yields the time complexity
of O(m(` − |x|)2). Valuem can be further reduced to the
number of non-zero bins inx.

4.2 Computation of Sum of Binomials

The sum of binomial distributions (Eqn. (4)) can also be
computed using a divide-and-conquer scheme. To observe
µ in thed binomials, one observest in the first d

2 binomials
andµ − t in the rest binomials for allt = 0, ..., µ. The
recurrence is given by

R(µ;x, `, n) =
µ∑

t=0

R(t;x, `1, n1)R(µ; x, `2, n2) (7)

where〈`1, n1〉 and〈`2, n2〉 correspond to the first and the
second half of thed binomials, respectively. Analogous to
Subsection 4.1, the time complexity can be computed to be
O(dµ2).

4.3 Lower Bound to P-value

For faster estimation, we develop a lower bound to the p-
value. The lower bound to the p-value is obtained through a
lower bound toP (x; `). Theorem 1 shows how this is done.

Theorem 1. Let x and y be two vectors, ifP (x; `) ≤
P (y, `) for ∀`, thenp-value(x, µ) ≤ p-value(y, µ) for ∀µ.

Next, we get a lower bound toP (x; `) by decoupling the
multinomial into a product of binomials.

Theorem 2. (Lower bound toP (x; `))

P (x; `) ≥
m∏

i=1

ai∑
t=xi

(ai
t )θt

i(1− θi)ai−t

=
m∏

i=1

I(θi;xi, ai − xi + 1)

(8)
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whereai = ` −∑i−1
t=1 xi, andI(θi; xi, ai − xi + 1) is the

regularized Beta function.

Proof. Let us start with the simple case whereX has two
bins x1 and x2. We rewrite P (X, N) in the form of
P (y1 ≥ x1, y2 ≥ x2;N), i.e., the probability of observ-
ing at leastx1 in the first bin and at leastx2 in the second
bin in N trials. Note thatP (y1 ≥ x1, y2 ≥ x2; N) =
P (y1 ≥ x1; N)P (y2 ≥ x2;N |y1 ≥ x1; N). For P (y2 ≥
x2; N |y1 ≥ x1; N), we can always ensure the condition
y1 ≥ x1 by reservingx1 trials from theN trials. Thus,
P (y2 ≥ x2; N |y1 ≥ x1; N) ≥ P (y2 ≥ x2;N − x1).
HenceP (y1 ≥ x1, y2 ≥ x2; N) ≥ P (y1 ≥ x1;N)P (y2 ≥
x2; N − x1). When we extend the above reasoning to more
than two bins, we obtain the product of sums in Eqn. (8).
Equivalence to the regularized Beta function is known from
the statistics literature1.

Theorem 3 gives an upper bound toP (x; `) in an analo-
gous manner.

Theorem 3. (Upper bound toP (x; `))

P (x; `) ≤
m∏

i=1

∑̀
t=xi

(`
t)θ

t
i(1− θi)`−t

=
m∏

i=1

I(θi; xi, `− xi + 1)

(9)

5 A Simplified Model

The computation of p-values and lower bounds as illus-
trated in the previous section does not scale to very large
databases. In this section, we present a simplified model in
which the computation of p-values is much more efficient.

In our previous model, we had a constraint on the size
of random vectors. Our first simplification is to relax this
constraint, and consider the probability that a feature vector
occurs in a random vector of arbitrary size. The probability
can be written as

P (x) = P (Y1 ≥ x1, ..., Ym ≥ xm) (10)

Further, if we assume that different types of basis elements
are orthogonal, then the above joint probability can be de-
coupled into a product of probabilities:

P̂ (x) =
m∏

i=1

P (Yi ≥ xi) (11)

whereP (Yi ≥ xi) is the probability that element̂bi occurs
at leastxi times in a random vector.

1http://mathworld.wolfram.com/BinomialDistribution.html

SinceP̂ (x) is fixed, the support ofx in a database of
random vectors can be modeled by a single binomial distri-
bution, with parametersn andP̂ (x).

Under the simplified model, we compute the p-value as
follows.

1. Empirically obtain the prior probabilitiesP (Yi ≥ j)
for every basis elementb̂i and everyj (up to the maxi-
mum possible value).

For example, element̂b1 =“A-B ” occurs twice (G1

andG2) in the sample database, thusP (Y1 ≥ 2) = 2
5 .

Similarly, P (Y1 ≥ 1) = 4
5 , P (Y1 ≥ 0) = 1, P (Y3 ≥

1) = 3
5 , etc.

2. ComputeP̂ (x) using Eqn. (11). For subgraphg3, x =
(2, 0, 1, 0, 0). Thus P̂ (x) = P (Y1 ≥ 2) × P (Y3 ≥
1) = 2

5 × 3
5 = 6

25 .

3. Compute the p-value ofx by
∑n

µ0
bino(µ; n, P̂ (x)),

or equivalently by the regularized Beta function
I(P̂ (x); µ0, n). When bothnP̂ (x) andn(1 − P̂ (x))
are large, the binomial distribution can be approxi-
mated by a normal distribution.

6 Feature Vector Mining

As frequent subgraphs are represented as feature vec-
tors and evaluated for statistical significance, an interest-
ing question arises:can we directly search top-K significant
sub-vectors, or sub-vectors above a significance threshold?
To our best knowledge, the problem of feature vector min-
ing has not been addressed before. Feature vector mining is
important in two aspects. First, feature vectors, also known
as histograms and multisets, are common ways to summa-
rize complex data. As a result, feature vector patterns are
profiles of structured patterns, and feature vector mining can
work as a foundation of structured pattern mining. Second,
feature vector mining is an important generalization of the
well studied frequent itemset mining: each item is now as-
sociated with a count instead of a boolean value.

We developClosedVect, an algorithm that explores fre-
quentclosedsub-vectors to find significant ones. The algo-
rithm consists of two phases: exploring closed sub-vectors
and evaluating the significance of a closed sub-vector.

6.1 Exploring Closed Sub-Vectors

Alg. 1 outlines the phase of exploring closed sub-vectors.
The algorithm explores sub-vectors in a bottom-up, depth-
first manner. At each search state, the algorithm “jumps”
to a future state that has an immediately smaller supporting
set along a branch (line 3). The corresponding sub-vector
is then promoted as thefloor of the supporting set (line 6).
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To prevent duplicates, each state is associated with a begin-
ning positionb. Any future state must extend at a position
greater than or equal tob. All extensions starting at the same
position are placed along the same search branch. If an ex-
tension designated at positioni results in a starting position
of less thani, then it must be a duplicate extension (lines
7-8).

The evaluation phase (line 1) computes the p-value of a
sub-vector and reports top-K significant ones. Lines 9-10
estimate a lower bound on the p-value of the super-vectors
of x′ and prune it if this bound is too high. The evaluation
phase and the pruning will be discussed in Subsection 6.2
and 6.3.

Alg. 1 ClosedVect(x, S, b)
x: current sub-vector;
S: supporting set ofx, i.e., feature vectors in the database
that containx;
b: beginning position at which bins can be extended;

1: Eval(x, |S|);
2: for i := b to m do
3: S′ ← {Y | Y ∈ S, Yi > xi};
4: if |S′| <minSupportthen
5: continue;
6: x′ := floor(S′);
7: if ∃j < i such thatx′j > xj then
8: continue;
9: if p-value(ceiling(S′), |S′|) ≥ maxPvalue then

10: continue;
11: ClosedVect(x′, S′, i);

Figure 6 shows a running example of Alg 1. The under-
lined numbers denote the beginning positionb of each state.
Duplicate search states are pruned by examining the search
order. For example, an extension to state “23 2” at position
“3” leads to a supporting set “{h1, h3}”, of which thefloor
is “3 4 2”. However, this extension violates the search order
and is pruned (lines 7-8).

h1:   4 5 6
h2:   3 2 4
h3:   3 4 2
h4:   2 3 3

2 2 2
{h1, h2, h3, h4}

2 3 3
{h1, h4}

3 2 4
{h1, h2}

3 4 2
{h1, h3}

4 5 6
{h1}

2 2 3
{h1, h2, h4}

2 3 2
{h1, h3, h4}

3 2 2
{h1, h2, h3}

3 4 2

{h1, h3}

4 5 6

{h1}

X X

4 5 6

{h1}

3 2 4

{h1, h2}

XX

Figure 6. A running example of ClosedVect

Now, we show the correctness and efficiency of algo-
rithm ClosedVect. We say that an algorithm iscompleteif
it explores all desired answers. It iscompactif every search
state finds at least one distinct answer. It isduplicate-freeif
it does not extend duplicate search states nor generate du-
plicate answers.

First, we state a lemma that establishes the use offloor
of supporting sets when exploring closed sub-vectors.

Lemma 1. For any closed sub-vectorx and its supporting
setS, x = floor(S).

Theorem 4. (Correctness and Efficiency ofClosedVect)
Algorithm ClosedVect explores closed and only closed
sub-vectors. It is complete, compact, and duplicate-free.

Proof. 1) completeness: For any closed sub-vectorx, let S
be its supporting set, thenx = floor(S). We show thatx
can be found in a search state. Starting from the root stater,
let i be the first bin such thatfloor(S)i > ri, thenSmust be
a subset of the supporting set at extensioni. By induction on
the number of bins, the supporting set will eventually shrink
to S, hencex is found. 2)compactness: By construction,
each state in the search tree corresponds to a closed sub-
vector. 3)duplicate-free: According to the search order,
each search state can be uniquely located in the search tree.

In other words,ClosedVect is optimal in terms of the
number of search states because every search state corre-
sponds to a distinct closed sub-vector.

6.2 Evaluating Closed Frequent Sub-Vectors

Next, we describe the evaluation phase of our feature
mining algorithm. Alg. 2 outlines the evaluation phase. A
priority queue is used to maintain the answer set, i.e., top-K
significant sub-vectors found so far. The p-value threshold
maxPvalueis the p-value of theKth significant sub-vector
found so far. To evaluate a candidate sub-vector, the lower
bound to the p-value (Eqn. (8)) is examined before the com-
putation of exact p-values (Eqn. (5)). If they are both less
than maxPvalue, then both the priority queue andmaxP-
valueare updated.

To search top-K significant sub-vectors, one sets the ini-
tial maxPvalue as 1; to search sub-vectors above a signifi-
cance threshold, one setsK = +∞.

6.3 Lower Bound of P-values of Super-Vectors

Next, we study how to compute a lower bound to the
p-values of all super-vectors of a given sub-vector. This is
used to prune unnecessary extensions in algorithmClosed-
Vect (lines 9-10). There are two approaches to computing
this lower bound. The first approach computes theceiling
of the supporting set and uses it to bound the p-value.

7



Alg. 2 Eval(x, µ0)
x: a sub-vector;
µ0: support ofx;
PQ: Priority queue for top-K answers;

if p-valuelowerbound(x, µ0)<maxPvaluethen
if p-value(x, µ0)< maxPvaluethen

Insert〈p-value(x, µ0), x〉 into PQ;
if |PQ| > K then

Pop an item from PQ;
maxPvalue:=PQ.top.pvalue;

Theorem 5. Let x andu be two vectors andx ⊂ u, then
for anyy subject tox ⊆ y ⊆ u, p-value(y, support(y)) ≥
p-value(u, support(x)).

Proof. The proof follows from the monotonicity property
of the p-value.

The second approach constructs the most skewed super-
vector of a certain size fromx, and uses it to bound the
p-value of all super-vectors of the same size. The following
lemma allows us to incrementally skew a vector.

Lemma 2. Assumingθ1 ≤ θ2 ≤ ... ≤ θm. Letx=(x1, ...,
xi, ...,xj , ...,xm).

(1) If xi ≥ xj , letx′ = (x1, ..., xi+1, ..., xj−1, ..., xm),
thenP (x′; `) ≤ P (x; `). In this case, we incrementxi and
decrementxj .

(2) If xi < xj , let x′ = (x1, ..., xj , ..., xi, ..., xm)., then
P (x′; `) ≤ P (x; `). In this case, we switchxi andxj .

Proof. See Appendix A.

In the following theorem, we estimate a lower bound to
the p-value of a super-vector of constant size|x|+ δ by first
skewingx to x′ using Lemma 2, and then addingδ to bins
with the smallest prior probabilities.

Theorem 6. Assumingθ1 ≤ θ2 ≤ ... ≤ θm. Let u =
(u1, ..., um) be the ceiling of super-vectors,u1 ≥ u2 ≥
... ≥ um. Givenx, x ⊆ u, sortx′is in non-increasing order:
x′ = (x′1, ..., x

′
m), x′1 ≥ x′2 ≥ ... ≥ x′m. Givenδ > 0,

constructym from x′ as follows: fill x′1 up to u1, thenx′2
up tou2, ..., and so on untilδ is used up. Then, for anyy
subject tox ⊆ y ⊆ u and|y| = |x|+δ, P (y; `) ≥ P (ym; `).

Proof. According to Lemma 2,y can be iteratively trans-
formed intoym with P (y; `) non-increasing.

Theorems 5 and 6 are intended to prune search states
where the closed sub-vectors are large. They can be espe-
cially effective if large sub-vectors are not significant.

7 Experimental Results

In this section, we report experimental results that vali-
date the quality and efficiency of the proposed techniques.
The experiments are divided into two parts: 1) Validation of
the quality of our probabilistic model, and 2) Performance
evaluation of the feature vector mining algorithm as well as
the p-value computation.

Three datasets are used in our experiments. The first
dataset is the DTP-AIDS Antiviral Screen chemical com-
pound dataset from NCI/NIH2. The compounds have been
classified into three categories according to their AIDS an-
tiviral activities. We focus on the category of confirmed
active (CA) which contains 422 chemical compounds. On
average, each graph has 40 vertices and 42 edges. The sec-
ond dataset is synthetic graphs for recall tests. The third
dataset is a web page visits dataset.

The p-value computation and the feature vector mining
algorithm were implemented in Java using Sun JDK 1.5.0.
The regularized Beta function (Eqn. (8)) was computed us-
ing Apache’s Commons-Math Library3. All experiments
were performed on an Intel 2.8GHz, 1G memory running
MS Windows XP Professional.

We use CloseGraph [10] to find frequent closed sub-
graphs. We compare the p-value ranking with a simple
ranking approach based on size. To our best knowledge,
there are no other methods that evaluate the statistical sig-
nificance of frequent subgraphs in a graph database. Thus,
comparative assessments to other statistical methods are not
presented.

7.1 Evaluating the Quality of the Results

7.1.1 Chemical Compound Graphs

We demonstrate the practical usefulness of our method on
the chemical compound dataset. Two sets of basis elements
are generated to transform subgraphs into feature vectors.
The first set of basis elements consists of all different edges
(39 in total), namely1-edge basis. For the second set of
basis elements, we consider all possible subgraphs contain-
ing 3 edges (322 in total), and select 30 of them using the
greedy approach discussed in Section 2. We call this the
3-edge basis. For each case, we compute the prior probabil-
ities using their frequency in the background dataset (con-
taining around 42,000 compounds).

Using CloseGraph [10] with minimum supportmin-
Sup=5%, 7879 closed subgraphs are generated4. For each
of them, we compute its p-value using the two bases and the
two models for p-value computation (exact and simplified).

2http://dtp.nci.nih.gov/
3http://jakarta.apache.org/commons/math/
4the results are different from [10] since aromatic bonds are not spe-

cially treated.
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Figure 7. P-value vs. rank with cross-
validation

Figure 7 shows the p-values of the subgraphs vs. their
ranks using 3-edge basis and the exact model. To cross-
validate the significance of the subgraphs, we also compute
their p-values in the category of confirmed moderately ac-
tive (CM) for comparison. As shown in the figure, the p-
values of the discovered subgraphs are much smaller than
they would be in the context of the CM category. Further, a
large number of the subgraphs are statistically insignificant.
Using a p-value cutoff, say 0.01, we are able to reduce the
number of discovered subgraphs by one order of magnitude.
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Figure 8. The most significant subgraph in CA

Figure 8 shows the most significant subgraph found in
our results (the unlabeled nodes are C atoms). It is ranked
1st in both the exact and simplified model using the 3-edge
basis. This subgraph has 19 edges and 15% support. We
found that this subgraph is the largest common subgraph in
the chemical class of Azido Pyrimidines5. The AZT com-
pound (NSC 602670), a super graph of this subgraph, has an
extra edge on the left hexagon and 12% support. It is ranked
3rd in the exact model and2nd in the simplified model. The
compound has been widely used for HIV inhibition. The
findings validate the practical usefulness of our approach.

Figure 9 shows the p-values of the subgraphs vs. their
ranks using different feature bases and different models for
the computation of p-values. The p-values in the simplified

5http://dtp.nci.nih.gov/docs/aids/searches/list.html
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Figure 9. P-value vs. rank with different fea-
ture bases and models

model are smaller than those in the exact model. The un-
derlying reason is the stronger assumption by the simplified
model that different basis elements are totally independent,
whereas in the exact model, they are constrained by the size
of random graphs. Nevertheless, the rankings by the two
models are more or less consistent. Under the 3-edge basis,
for example, the top 10 subgraphs of the exact model show
up in the top 30 subgraphs of the simplified model.

We compare our ranking approach with a naive ranking
approach: rank by size (in case of tie, rank by support). Ta-
ble 3 shows the rankings of some special subgraphs: the
most significant subgraph (AZT*), the largest subgraph,
and Benzene (a ring with six carbons). There is no current
scientific evidence regarding the importance of the largest
subgraph. As shown in the table, ranking by p-value is
much more appropriate than the ranking by size. And the
most significant subgraph is not necessarily the largest or
the most frequent subgraph.

 
Rank by p-value 

3-edge basis 1-edge basis Subgraph Support Size 
strict simpl. strict simpl. 

Rank 
by size 

AZT* 15% 19 1st 1st 40th 69th 428th 
Largest 5% 34 914th 142nd 752nd 751st 1st 
Benzene 70% 6 886th 1424th 6820th 1875th 6969th 

 
 

Table 3. Ranking by different approaches

7.1.2 Recall Tests on Synthetic graphs

We also verify the quality of our method through recall tests
on synthetic graphs. The procedure of recall tests is illus-
trated in Figure 10. The basic idea is to embed some sig-
nificant subgraphs into a synthetic database, and then see
how they can be recalled through p-value ranking. The tests
are “supervised” in that all prior knowledge, such as basis
elements and significant subgraphs, are known in advance.

We generate synthetic graphs as follows. LetLV andLE

be the label set of vertices and edges respectively. The size
of a graph is measured by the number of edges. First, we
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Figure 10. Recall tests on synthetic graphs

generate a set of building blocks (also the basis elements)
B = {b̂1, ..., b̂m}. Each building block is a tiny subgraph
generated by randomly adding an edge to the subgraph un-
til it reaches a given fixed sizezB. Then, we generatek
significant subgraphsA = {A1, ..., Ak} using the building
blocks. Each significant subgraph is generated by randomly
inserting a building block into the subgraph until it reaches
sizezA, which has a Poisson distribution. Next, we useB
andA to generate the database graphs. Each database graph
has a probability ofPA of selecting a significant subgraph
from A. Then, the building blocks are randomly selected
and inserted into the database graph until it reaches sizezG,
which has a Poisson distribution.

Next, we use our technique to discover the frequent
subgraphs, compute their p-values, and see how they are
ranked.

In our experiments, we fix|LV | = |LE | = 10, zB = 3,
m = 100, zA = 10, k = 5, |B| = 100, zG = 30, |D| =
1000, andPA = 0.6 ∼ 1.0.
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Figure 11. P-value vs. rank

Figure 11 shows the p-value vs. rank forPA=0.6 and 0.9
respectively. On average, the p-values forPA = 0.9 are
smaller than those forPA = 0.6. This is because forPA =
0.9, database graphs contains more significant subgraphs.

Table 4 shows the rankings of the subgraphs inA. All
significant subgraphs inA have been discovered and ranked
at very high positions.

0, 1, 2, 11, 13PA=0.9

0, 1, 2, 11, 23PA=0.6

Rankings of significant subgraphs

0, 1, 2, 11, 13PA=0.9

0, 1, 2, 11, 23PA=0.6

Rankings of significant subgraphs

Table 4. Rankings of subgraphs in A

7.2 Computation Costs of P-values and Lower
Bounds

We evaluate the computation costs and lower bounds of
p-values, as well as tightness of lower bounds (Section 4)
using random data. The scenario is set up as follows. The
size of the database is 1000; the sizes of database vectors
randomly range from 50 to 300; the number of distinct sizes
of database vectors is 100, i.e., there are 100 binomial distri-
butions; the number of dimensions of vectors ranges from 5
to 100 with an interval of 5; for each number of dimensions,
we randomly generate 50 sub-vectors of size 30, compute
their p-values and lower bounds, and average the running
times.

Figure 12(a) shows the running time for a single p-value
computation in the number of dimensions. ‘Accurate’ refers
to the computation of exact p-values; ‘Lower bound’ refers
to that of lower bounds (Eqn. (8)). The running time for ex-
act computation increases when the number of dimensions
increases. The time complexity is actually linear inm′, the
number of non-zero bins in the sub-vectors. The running
time for the lower bound computations is much less than
that of the accurate computation.
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Figure 12. Computation costs and bounds of
p-values

To evaluate the tightness of the lower bound and upper
bound, we gradually grow a sub-vector starting with size
5 until size 50, and compute the p-value and lower/upper
bounds. This procedure fits the typical depth-first feature
vector mining scenario.

Figure 12(b) shows the lower bound and upper bound to
the p-value. Both the lower bound and the upper bound are
close to the exact p-value in orders of magnitude. Thus,
they can be effectively used to estimate the exact p-value.
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7.3 Feature Vector Mining

7.3.1 Chemical Compound Graphs

We evaluate the performance of algorithmClosedVect
(Section 6) using the chemical compound dataset which
contains 422 graphs. The graphs are transformed into fea-
ture vectors using the 3-edge basis. We run the algo-
rithm using the exact model, the simplified model, and
without p-value evaluation. The experimental settings are:
minSupport=5∼25%; K=+∞; maxPvalue=1, 0.01.

Figure 13(a) shows the running time ofClosedVect
w.r.t. minSupport. As expected, the running time de-
creases with higher support thresholds. Also, the running
time without p-value evaluation is only in seconds. This
demonstrates the high efficiency ofClosedVect in explor-
ing closed sub-vectors. With p-value computation, the sim-
plified model adds a little amount of overhead. The exact
model takes much longer in the computation of p-values.
Actually, the computation time of a single p-value in the
exact model is less than one second. It is the large number
of closed sub-vectors that lead to the high running time.

Figure 13(b) shows the number of closed sub-vectors
w.r.t. minSupport under the exact model. With the max-
imum p-value threshold set at 0.01, the number of closed
sub-vectors is reduced by one order of magnitude.

5 10 15 20 25
10

0

10
1

10
2

10
3

minSupport (%)

R
un

ni
ng

 ti
m

e 
(s

ec
)

exact model
simpl. model
w/o Eval()

(a) Running time

5 10 15 20 25
10

2

10
3

10
4

10
5

minSupport (%)

# 
of

 c
lo

se
d 

su
b−

ve
ct

or
s

p−value <= 1
p−value <= 0.01

(b) # of closed sub-vectors

Figure 13. ClosedVect on chemical com-
pounds

7.3.2 MSNBC Page Visits Data

We also run theClosedVect algorithm on the MSNBC
page visits dataset. The dataset is available in the UCI KDD
archive repository6. It records the page visits of msnbc.com
on a specific day. The dataset consists of 989,818 records,
each of which is a sequence of page categories visited by
a user. There are 17 page categories. Thus, each record in
the data set is a vector of size 17 and we are interested in
finding the sub-vectors that denote significant visit patterns.

6http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

Table 5 shows the first few categories and the prior proba-
bilities of being visited at least once (in the context of the
simplified model).

Category frontpage news tech local ...
Prob. of≥ 1 visit 0.316 0.177 0.123 0.123 ...

Table 5. Page categories and prior probabili-
ties

We use the simplified model to evaluate statistical signif-
icance. The experimental settings are: minSupport=1∼9%;
K=+∞; maxPvalue=1,0.01.

Figure 14(a) shows the running time w.r.t.minSupport.
As shown in the figure, theClosedVect algorithm is very
efficient and scalable to large datasets (nearly 1 million
records). Figure 14(b) shows the number of closed sub-
vectors w.r.t.minSupport. The maximum p-value thresh-
old effectively reduces the number of discovered results.
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Figure 14. ClosedVect on MSNBC page visits
data

A preliminary study of the results shows that the most
significant sub-vectors are those with skewed distributions
and at least two non-zero bins. For example, a discov-
ered sub-vector with a high statistical significance was one
in which users visited thefrontpageseven times andnews
once; the corresponding support was only 1.1%. In con-
trast, another pattern in which users visited thefrontpage
eight times was not statistically significant, even though its
support was 2.1%.

8 Related Work

Graph mining has been an active research topic re-
cently. In the area of mining frequent subgraphs from a
transactional graph database, Inokuchi et al. [7] addressed
the problem using an Apriori approach. Kuramochi and
Karypis [8] proposed FSG, an Apriori-based approach to
frequent subgraph discovery. Yan and Han [9] proposed
gSpan that efficiently explores frequent subgraphs. Their
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later work [10] searched closed frequent subgraphs. Huan
et al. [11] explored frequent subgraphs using a canoni-
cal adjacency matrix representation of graphs. Their later
work [12] searched maximal frequent subgraphs. Vanetik
et al. [13] proposed an Apriori approach using paths as
building blocks. Their later work [14] addressed partially
labeled graph patterns. In the area of mining frequent sub-
trees, Zaki [17] developed an algorithm to find frequent sub-
trees in a forest. Chi et al. [18] presented an index tech-
nique for free trees and applied it to frequent subtree min-
ing. All these techniques focus on finding frequent sub-
graphs or subtrees. Statistical significance of the frequent
patterns was not addressed.

Milo et al. [15] identified network motifs in complex net-
works. They defined network motifs as graph patterns that
appear significantly more frequently than those in random-
ized networks. However, their method deals with a single
large graph, whereas our model deals with a large collection
of graphs. Moreover, they computed the p-value by simu-
lation: they generated a number of randomized networks,
and counted the number of networks that contained the sub-
graph with a support at least the observed support. This
approach cannot compute p-values with high accuracy be-
cause the generation ofN randomized networks can never
yield a non-zero p-value of less than1/N . In contrast, our
method is deterministic and computes accurate p-values.

In the study of large graphs such as the Internet, random
graph models [19] are used to describe the graph topology.
Faloutsos et al. [20] showed that degrees of nodes of the
Internet follow a power-law distribution. Albert et al. [21]
showed the small-world phenomena of the world-wide web.
Leskovec et al. [22] observed how graphs evolve over time
in terms of densities and diameters etc. Whereas these stud-
ies pertain to properties of the graph topology, we target the
discovery of recurring subgraphs in a collection of graphs.

In an approach to interestingness measurement, Bayardo
and Agrawal [23] proposed to mine an optimal set of rules
according to a partial order defined using both rule sup-
port and confidence. Jaroszewicz and Simovici [24] defined
the interestingness of frequent itemsets as the difference be-
tween the support from data and the support estimated from
a background Bayesian network. Amer-Yahia et al. [25]
proposed scoring methods based on both structure and con-
tent. The scoring methods are used for ranking answers to
XML queries.

In the area of frequent itemset mining, Srikant and
Agrawal [26] addressed the problem of mining quantitative
association rules. Han et al. [27] developed an algorithm for
mining top-K frequent closed patterns.

9 Conclusions

Statistical significance and ranking are useful in the post-
processing of data mining results. In this paper, we pro-
posed a probabilistic model for frequent subgraphs, and
show that frequent subgraphs can be effectively ranked by
their p-values. By representing graphs in the feature space,
we derived a exact model which leads to a closed form so-
lution for the p-values. Efficient methods were developed
for computing the p-values and lower bounds. A simpli-
fied model was further proposed to improve efficiency. We
also addressed the problem of feature vector mining, and
developed an algorithm that efficiently searches significant
closed sub-vectors. Experimental results validated the qual-
ity, performance, and practical usefulness of the presented
techniques.

Although presented in the context of graphs, the pro-
posed techniques are generic and can be applied to mining
of other complex data, such as trees. Future directions are
integration of the significance measurement and graph min-
ing techniques, incorporation of feature dependency into the
probabilistic model, and development of better approxima-
tions and lower bounds.
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APPENDIX

A Proof of Lemma 2

Proof. (1) According to Eqn. (6), letx1 = (xi, xj) and
x′1 = (xi + 1, xj − 1). It is sufficient if we can show that
P (x1; s) ≥ P (x′1; s) for all s ≥ xi + xj .

P (x1; s) =
s−xj∑
t=xi

(s
t )θ

t
iθ

s−t
j

P (x′1; s) =
s−xj+1∑
t=xi+1

(s
t )θ

t
iθ

s−t
j

P (x1; s)− P (x′1, s)

= (s
xi

)θxi
i θs−xi

j − (s
xj−1)θ

s−xj+1
i θ

xj−1
j

Sincexi ≥ xj ands ≥ xi + xj , we get(s
xi

) ≥ (s
xj−1).

Sinceθi ≤ θj andxi ≤ s − xj + 1, we getθxi
i θs−xi

j ≥
θ

s−xj+1
i θ

xj−1
j . Thus,P (x1; s)− P (x′1; s) ≥ 0.

(2) Letx1 = (xi, xj), x′1 = (xj , xi),

P (x1, s) =
s−xj∑
t=xi

(s
t )θ

t
iθ

s−t
j

P (x′1, s) =
s−xi∑
t=xj

(s
t )θ

t
iθ

s−t
j

Sincexi < xj ands ≥ xi + xj , let b = min(s − xj , xj),
then

P (x1, s)− P (x′1, s)

=
b∑

t=xi

(s
t )θ

t
iθ

s−t
j −

s−xi∑

t=s−b

(s
t )θ

t
iθ

s−t
j

=
b∑

t=xi

(s
t )θ

t
iθ

s−t
j −

b∑
t=xi

(s
t )θ

s−t
i θt

j

It can be verified thatt ≤ s− t whenxi ≤ t ≤ b. It follows
thatθt

iθ
s−t
j ≥ θs−t

i θt
j . Thus,P (x1, s)− P (x′1, s) ≥ 0.
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