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Abstract

We present a new energy estimation model for sensor network intermediate nodes (i.e.
the Crossbow XScale Stargate). Such devices are battery powered and resource constrained
and commonly employed as communication, processing, and gateway elements within sensor
networks. Understanding and accurately characterizing the energy behavior of such devices is
key to conserving the battery life of sensor systems.

In this paper, we present a macro-model for estimating the energy consumption of the
device as a whole that couples estimation techniques for computation and communication. We
construct our model using empirical data that we collect via hardware performance monitors.
Our contributions are two-fold. 1) We demonstrate that hardware performance monitors are
effective in modeling the computational energy consumption of sensor network gateways, 2)
we present an analysis of linear dependencies between various hardware performance events,
discuss their effects on model stability, and show how we can use principal component analysis
to remove the undesirable side effects of such dependencies.

1 Introduction
Wireless sensor networks have become increasingly popular as a result of their low cost, small
size, and their potential for enabling transparent interconnection between the physical world and
powerful information systems. Typical installations of these systems consist of a hierarchy of
heterogeneous devices that range in capability but are both resource constrained and battery pow-
ered. Computationally simple, low-power, sensor elements make physical measurements, perform
minor processing, and relay the collected data to more powerful devices. These more powerful
devices, i.e., gateways or intermediate nodes, implement significantly more functionality, compu-
tational power, and battery capacity than the simpler sensor elements. To program and to facilitate
efficient use of sensor systems, we must be able to characterize accurately the power and energy
consumption of tasks that execute using these devices.

A significant body of research exists that models and estimates power and energy consumption
for a range of microprocessors [3, 12, 26, 9, 4, 13], sensor network devices [15, 21, 22] and battery
technologies [2, 19, 27, 14, 24]. However, a key missing piece in this prior work is effective and
accurate estimation of full-system energy consumption for sensor gateways. In this paper, we take
the first step toward providing a method that can do so for a typical sensor network gateway node,
the Crossbow Stargate.
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To enable accurate power modeling for complex Stargate tasks, we couple the use of hardware
performance monitors (i.e. HPM) with operating system (OS) software performance monitors.
We consider two primary Stargate activities: computation and wireless communication. In the
integrated model, we consider the energy consumption of the device as a whole including CPU,
memory, bus and other peripherals. Our approach is empirical in that we use program profile
information from a range of programs to develop our model.

We study applicability of hardware performance monitors to power modeling in general. There
is no standard implementation of hardware performance monitors across architectures, however,
in all architectures with which we are familiar, hardware performance monitors are specifically
designed for monitoring program performance behavior and not for estimating power consump-
tion. Thus, important power consumption events are typically missing. For instance, in our target
architecture, there are no events to monitor directly external memory accesses. Furthermore, there
are dependencies between many hardware events. Such dependencies increase model variance and
reduce the accuracy and usefulness of model parameter estimations. To mitigate this problem, we
apply statistical techniques that reduce model variation and improve model quality.

We evaluate our model using a wide range of programs that perform a number of computational
and communication activities typical of sensor network tasks for intermediate nodes. Our model
produces an average error of 7% for computation bound tasks and of 13% for tasks that perform
both computation and communication – significantly outperforming an extant but similar approach
for estimation of power consumption for the CPU and memory in isolation.

We investigate techniques that enable these error rates while reducing the number of model
parameters using the statistical correlation between them. We also investigate the use of principle
component analysis to remove the multicollinearity in the model input data – an effect that is due to
the dependence between HPM metrics. Removing multicollinearity from our model is important
if we are to extract the relative impact on energy for each of the individual components in our
model. Such information is vital for online energy estimation. We quantify the cost of obtaining
such benefits in terms of model accuracy.

In summary, we contribute with this paper:

� A simple, full-system energy estimation model for the Stargate sensor network gateway
device that considers both computation and communication;

� A set of techniques that reduce the number of model parameters and that enable extraction
of useful information from the coefficients in our model;

� An empirical evaluation of our models using a wide range of real programs and a comparison
with the best-performing extant model for estimating the energy consumption of the CPU
and memory system in isolation.

In the next section, we present our approach to energy estimation in sensor network gateways.
We then present our empirical evaluation (Section 3), related work (Section 4), and conclusions
(Section 5).

2 A Macro-Model for Sensor Network Energy Consumption
The goal of our work is to accurately characterize the energy behavior of the Stargate sensor
network intermediate node – at the system level. The Stargate implements a 400MHz Intel XScale
CPU, short range 802.11 and long range WAN radio interfaces, and flash memory, among other
devices. The Stargate resources are managed by the Linux operating system. Characterizing energy
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Training Benchmark Set Reference Benchmark Set
Application Description Application Description
basicmath Math Test gsmdecode GSM decoder
dijkstra Dijkstra shortest path gsmencode GSM encoder
matmult Matrix multiplication jpegdecode JPEG decoder
stringsearch String search jpegencode JPEG encoder
memri* Memory read in-cache mpegdecode MPEG decoder
memro* Memory read out-of-cache mpegencode MPEG encoder
memwi* Memory write in-cache em3d (Java) Graph processing
memwo* Memory write out-of-cache bisort (Java) Sorting
reg* Register operations treeadd (Java) Recursive depth-first traversal
scps secure file send scps secure file send
scpr secure file receive scpr secure file receive
netpipe network analyzer game of life MPI life game

pvnx MPI non-linear solver (small)
pvkx MPI non-linear solver (medium)
pvkxb MPI non-linear solver (large)

Table 1: Benchmarks. We use two benchmark sets: Training (left) to parameterize our model and
Reference (right) to evaluate the accuracy of our model. We use the benchmarks above the line to
model/evaluate computation; those below for communication. We have developed the applications
with asterisks ourselves.

consumption of Stargate is critical for us to better understand its energy behavior and develop
power aware software and optimizations. In the following subsections, we first describe our energy
measurement methodology and our benchmarks. Next, we describe our model, the challenges, and
our solutions.

2.1 Benchmarking Methodology

We employ two benchmark suites. The first suite, to which we refer to as the training set, we use
to define our model. The second suite, to which we refer to as the reference set, we use for the
empirical evaluation of the accuracy of our model. We present the suites and their brief description
in Table 1. The left half of the table is the training set and the right is the reference set. We use
the benchmarks above the line to model/evaluate computation and those below for communication.
We execute all programs from RAM drive to minimize the effect of flash read/write latency. The
wireless network card is on for all of our experiments regardless of whether we use it or not.

Our applications come from popular benchmark suites (e.g. MediaBench [16], Mibench [7], and
Java-Olden [1]). Our communication benchmarks include the secure copy protocol (scp) receive
and transmit and netpipe [18]. For scp, we transfer a 1.7 MB file. Netpipe is a network analyzer.
We also include distributed (message passing interface (MPI)) applications: Game of Life [6],
Pvnx, Pvkx and Pvkxb [23]. MPI is typically employed for distributed computing applications in
larger systems. These MPI applications have moderate computation requirements that are within
the limits of the Stargate.

The characteristics of the MPI applications are analogous to the requirements of high-performance
sensor network applications. For example in Life, the first processor divides the problem space into
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Event Description
0x0 Instruction cache miss requires fetch from external memory.
0x1* Instruction cache cannot deliver an instruction.
0x2* Stall due to a data dependency.
0x3 Instruction TLB miss.
0x4 Data TLB Miss
0x5 Branch instruction executed, branch may or may not have

changed program flow.
0x6 Branch mispredicted
0x7 Instructions executed
0x8* Stall because the data cache buffers are full.
0x9 Stall because the data cache buffers are full.
0xa Data cache access, not including Cache Operations.
0xb Data cache miss, not including Cache Operations.
0xc Data cache write-back. This event occurs once for each 1/2

line (four words) that are written back from the cache.
0xd PC Modified

Table 2: HPM events in Intel PXA-255. The flagged events count the number of cycles the event
condition persists.

subspaces and distributes them to the other processors. Once the other processors complete the ex-
ecution, they return the results back to the first processor. Then the first processor combines the
results, and reiterates the process if necessary. This mechanism is very similar to recent query
processing and vehicle tracking architectures for sensor networks. For instance in [20], the nodes
are organized in a tree structure. The root node distributes a query to the network. Each node
partially processes the query and returns the results to the parent node. It is the parent node which
combines the results. In [25], the remote sensor nodes collaborate with a central sensor node for
airport security and tracking moving objects. The remote nodes do partial stream processing and
filtering using computationally expensive algorithms, while they continuously exchange updates
with a central node. The central node produces the results.

We collect performance data from these benchmarks in the form of CPU hardware performance
monitors (HPMs). We collect data for each hardware event for five repetitions of the same pro-
gram. HPMs provide efficient hardware support for profiling CPU-based activities. To monitor
I/O activity, we use operating system counters. The HPMs that the Stargate supports are shown in
Table 2.

We collect the power consumption data using a 2-channel Agilent 54621A oscilloscope and a
National Instruments data acquisition board (DAB). We connect these measurement devices to the
exposed terminals of the Stargate. We collect HPM data using a very light-weight device driver
that we have developed. Our monitoring overhead is less than 2%. The HPM driver collects HPM
counters every 10 million instructions and uses an external output pin to control the oscilloscope
and the data acquisition board. Throughout this paper, we use the term interval to refer to a period
of 10 million instructions.

4



2.2 Computation Model

Our energy estimation model consists of a computation and a communication component. We
describe the former in this section and the latter in Section 2.4. We employ precise power mea-
surements of the entire device, i.e., the full system, to develop both components. We collect these
measurements using an Agilent 54621A oscilloscope and a light weight device driver that we have
developed. The device driver collects HPM counters every 10 million instructions, which we refer
as an interval throughout this paper. Our monitoring overhead is less than 2%. Prior techniques
that employ a similar methodology to ours focus on the power consumption of the CPU alone [3]
or the CPU and memory subsystem [4, 13], in isolation, whereas our focus is on (and thus, our
energy measurements are for) the entire Stargate device.

The computation model estimates the energy consumption on average per instruction for tasks
that do not have any significant persistent storage access or communication behavior. In other
words, our computation model models the energy consumption of three most important unit; CPU,
memory, and the memory bus. Our model employs 6 parameters: cycles per instruction (CPI)
( ��� ), instruction cache misses ( ��� ), instructions not delivered ( ��� ), data stalls ( ��� ), instruction TLB
misses ( �	� ) and data TLB misses ( ��
 ). These and similar events has been shown to be effective for
power estimation of the CPU and memory [4, 10, 8].

We use a linear parametric function to characterize energy consumption. Linear models have
been successfully used in previous studies to model energy consumption of various components
including CPU and memory. Our model is as follows:

������������������������ �"!$#&%'! �(��� %'! �)�	� %+*,*-*.%/! 
)�	
 (1)

where � ’s are the model input and the
!

’s are the weights determined by the model. The model
inputs are expected number of events for an average instruction, for instance �0� gives the expected
number of cache misses during the execution of an instruction. We compute this value by dividing
the number of event counts in an interval by the interval length (10Million). The model outputs the
estimated energy consumption of an instruction on average, in nanojoules. We estimate the param-
eter weights using least squares linear regression (i.e. LSQ). LSQ models are simple and robust
and they do not require a priori knowledge of the distribution associated with the observations [5].

Since the XScale processor is only able to monitor two events at once, we execute the same
program many times to monitor the different events. The measurement data can differ across runs
(of the same program/input) as a result of hardware state or operating system events. To be able to
better understand the extent of such perturbations, we monitor each event 5 times. However, since
averaging causes linear regression to look stronger than it really is [5], we only use the 13254 dataset
for each event. We use the remaining 4 observations to evaluate the impact of such perturbations
on model accuracy.

The benchmarks that we use are significantly different in their durations. Since we do not want
any single benchmark to be represented more than its share in our model, we choose an equal
number of observations from each benchmark. To extend the range of possible behaviors, we
select the first, middle, and last 10 intervals from each profile.

We present the coefficients of our model and evaluate its fit on the training benchmark set in
Table 3. The top portion of the table shows the coefficients for each of the HPMs. The bottom
portion of the table shows the fit statistics. We evaluate the accuracy of our model for the reference
set in Section 3.
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Computation Energy Consumption Model
Description Coefficient t-statistic� # Constant � ������� � ���
	��� � CPI

	����� �����
	��
� � Inst. Miss

��	�������	 �������
� � Inst. Not Dlvrd ��� ����� � �������� � Data Stalls � ������	 � �������� � Inst. TLB Miss

����������� � �������� 
 Data TLB Miss � ����������� � �������� � �������
Average Error

���������
Table 3: Coefficient and fit statistics for the computation model.

Figure 1: Correlation among model parameters. The darker entries show events that have strong
correlations.

The coefficient of determination, i.e., the � � fit statistic, indicates the amount of variation that
the model explains. Under most circumstances, it is a reliable indicator of model goodness. The � �
varies between 0 and 1, and larger values are better. The high � � value of our model is a positive
indicator of its high quality.

The average error statistic shows the absolute model estimation error. We compute this value
using ��� � �"! �#

measured $ estimated
# � measured

�%� ��&�& , where
�

is the number of measurements.
The model fits very well to the data with an average error of 3.8%. The final column shows the
t-statistics for the model coefficients. The t-statistic values that are larger than 2 indicate that the
corresponding coefficient is statistically significant (i.e. has a high probability that it is non-zero).
The t-statistic values indicate that only three of the coefficients in our model, CPI, DSTALL, and
DTLBMISS are statistically significant.

2.3 Reducing the Number of Model Parameters and Multicollinearity

We investigate two ways to improve our model. First, we identify statistically valid ways to reduce
the number of parameters in our model. Our goal is to develop a model that is accurate but that
employs a small number of parameters. If we can reduce the number of parameters used by our
model, we can reduce the complexity and overhead of the model. However, we must be careful to
do so without reducing accuracy of the model significantly.

To eliminate model parameters, we empirically analyze the statistical correlations between the
events in our model. We show this data in Figure 1. For each event pair, the closer the number is
to � * & , the higher the correlation. Our goal is to eliminate events that are highly correlated since
only one event is needed to represent the others.
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Figure 2: Coefficient of principal components and the amount of variance explained for our training
model

The correlation matrix from this data shows that CPI, data stalls (DSTALL) and data tlb misses
(DTLBMISS) have high correlation. Among those three, we retain the CPI, since it has the highest
t-statistic, and discard the others. Furthermore, the instruction cache (IMISS, INDLVRD) and
instruction TLB miss (ITLBMISS) events also have strong correlation. Using similar reasoning,
we can use IMISS and discard ITLBMISS and INDLVRD events. We form a model from IMISS
and CPI data that we refer to as MMISS. Furthermore, we also form a model, MCPI, which uses
the CPI metric alone.

Our second method for improving our model focuses on enabling the extraction of meaningful
information from the coefficients of the model. That is, we would like to be able to understand the
relationship to overall power consumption that each component of the model contributes to as has
been attempted in prior work [4]. Such characterization of model components is vital for enabling
online energy estimations.

However, an interesting phenomenon in HPM data is the existence of multicollinearity. Mul-
ticollinearity indicates that some linear relationship exists between the model parameters. For
example, data cache misses are related to data stalls. As the amount of linearity increases between
metrics, the stability of the coefficient estimates decreases precluding us from extracting useful
information from the coefficients in our model [5].

If the purpose of regression is only to estimate a variable � using a set of model inputs ��� ,
without assigning any particular meaning to the values of ��� , multicollinearity is not a significant
problem and model predictions will still be accurate. However, if the goal is to understand how
much each ��� effects � , then multicollinearity can lead to misleading results. Models that suffer
from multicollinearity have much larger confidence intervals in parameter estimations, that is, the
parameter estimations can shift substantially when there are small changes in input. Another side
effect of such wide confidence intervals is that the t-statistic value of individual parameters cannot
be used confidently to remove arbitrary parameters from the model.

Our approach for reducing multicollinearity is to apply principal component analysis [11] to
transform the correlated variables into a smaller number of uncorrelated variables called as prin-
cipal components. The first principal component captures as much of the variability in the data as
possible, and the succeeding components capture the rest of the variability.

In the first step of PCA, we standardize the dataset, that is, we subtract sample mean from each
observation, and then divide the result by standard deviation of each parameter.

Let the variables ����� are model inputs,( i.e the explanatory variables), such that ����� is equal to���
	
observation of � �
	 variable. The variable ���� gives the observed mean of variable �� that is
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�� � � ! � � � � � � � , and
�
� is the sample standard deviation of �� that is

�
�
��� ! � �  � ��� $ �� � � � � �� $ � � .

In both formulas,
�

is the number of observations.
After standardization, our goal is to find the coefficients � � that best fit to the linear equation:

� �
� � # % ���5��� � � % �3� ���� � % �3� ���� � %+*,*,*�% �3
 ���
 � %�� � (2)

In the equation above, � �� � are the standardized observations of HPM counters. � � is called the
response variable or model output and here it gives the energy consumption per instruction. The

�
is the error term (which we assume to be normally distributed). We can rewrite Equation 2 as

�
� � # %
	 ��� %
� (3)

where
	 � is an

� ��
matrix whose columns

	 �� are standardized HPM observations, � #�� ��� � *-*,*�� � �
respectively. � is a column vector of size

�
and its entries are coefficients � #�� ��� � *,*-*�� � � .

Our goal is to transform the model explanatory variables,
	 � , into a new set of uncorrelated

variables, which are the principal components of the correlation matrix
	 ��� 	 � . We then remove

the components that explain the least amount of variance. By doing so, we can decrease the effect
of multicollinearity, and therefore narrow the confidence interval in our coeffient estimates.

As
	 ��� 	 � is a square matrix, we can decompose it into its eigenvectors ��� and eigenvalues � �

such that
�	 ��� 	 � $�� ��� � � � � & , where I is the identity matrix. The eigenvectors are orthonormal,

that is � ��� � � & for ���� �
. Let eigenvector matrix be � ��� �0� � ��� � *,*,* ��
! . Again, as eigenvectors

are orthonormal, �"� � gives the identity matrix � . Thus, we can rewrite Equation 3 as:

�
� � # %�	 � �#� � � %
�

We can substitute
	 � � with $ and � � � with % :

�
� � # % $&% %
� (4)

The normalized eigenvectors �� of squared matrix
	 ��� 	 � give the coefficients of principal com-

ponents. In other words, the principal components matrix $ is equal to the product of parameter
observations

	 � with eigenvector matrix � . Once we compute the principal components of the
data, we can remove the multicollinearity by discarding the components that account only a frac-
tion of the total variability. The penalty however is a decrease in model accuracy in exchange of
an increase in confidence level of model parameter estimations. The eigenvalues show this varia-
tion. Let � � is an eigenvector and ��� is the corresponding eigenvector. The ratio �� � ! 
 � �(' , gives
the amount of variation that the corresponding principal component explains. Figure 2, shows the
principal components of our data and the amount of variance that they explain (the largest first).
As the figure suggests, the first three principal components account for more than 95% of model
variability. Hence, we retain the first three components and discard the rest.

We next do our regression using the principal components $ and compute the coefficients of
principal components, that is the column vector % . The estimated regression coefficients are free
from the correlation (and thus, are more stable). Using % , we compute the coefficients of standard-
ized HPM counters, � : � � �#%
However, the � gives the coefficients of the standardized HPM counters. Finally, as described
in [17], we transform the coefficients back to the original HPM variables. We do this using:

!
�
�)� ��

�
� �+* �,* �
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Computation Energy Consumption Models
Description MPCA Coefficients MMISS Coefficients MCPI coefficients
Constant

����� ������� �������
CPI

����� ���
	 � ���
	 �
Inst. Miss

����� � ��� ��������� � �
Inst. Not Dlvrd � ������� �"� � �
Data Stalls

������� � � � �
Inst. TLB Miss

����������� � �"� � �
Data TLB Miss

� ��������� � � � �� � ������� ������� �������
Average Error

��������� ������� � ���������
Table 4: Coefficient and fit statistics for the computation model.

!$# � � # $

�
�����

� � �� ��
�

We call this model MPCA.
We develop MMISS and MCPI using the same method that we applied previously in Section 2.2.

Table 4 summarizes our new models and their coefficients. As we expect, our removal of three prin-
cipal components reduces the accuracy of MPCA model, and consequently its error rate increases
to ��� *���� . However, we note that this model enables us to extract information about the impact of
each component in the model. The MPCA coefficients provide significant insight into memory and
CPU energy consumption. We find that, (1) an instruction miss is approximately 1000 times more
expensive than a clock cycle, (2) a data stall cycle (a clock cycle where pipeline stalls and waits
for data) is slightly more expensive than an instruction execution cycle (probably due to memory
access activity), and (3) an instruction TLB miss is 75 times more expensive than a data TLB miss.
However, the most interesting coefficient is instructions not delivered, which has a negative coeffi-
cient. A negative coefficient here does not mean a flaw in our model, but it indicates that the CPU
(and memory) energy consumption drops below average level, which is the sum of constant factor,
CPU clock counter and other events that our model includes. This indicates that the CPU applies
several techniques such as clock gating to reduce its energy consumption once pipeline is stalled.

The MCPI and MMISS model perform similarly and both are more accurate than MCPI. How-
ever, the t-statistic for the IMISS event is only 0.49 which indicates that this parameter is not
significant. We therefore, remove MMISS from our model set.

Prior work [3, 4] on models for energy consumption of the CPU alone and CPU and memory
subsystem in isolation also show that CPI is a significant metric in the estimation of energy con-
sumption. Interestingly, we find that a CPI based one-input model is very effective and performs
best for estimating full-system computational energy consumption. In Section 3, we will evaluate
our results on a wide set of different applications from our reference set.

2.4 Communication Model

We next introduce our model for wireless communication. Our model is independent from our
computation model to enable portability, i.e., we can swap the model for others for comparison
or to improve accuracy. We combine the models via arithmetic addition of the two estimates.
Modeling the network interface is more challenging than modeling the processing unit because the
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Communication Energy Consumption Model
Coef. Description Bytes+Packets Bytes
TXB TX bytes

��� � ��� � ��� 
 ��������� � ��� 

RXB RX bytes ��� �
	���� � � ��� � ��������� � � � 

TXP TX packets � ��������� � �	� �
RXP RX packets

��������� � � � �
K Constant

������	�� � ��� � ��������� � ��� �� � 0.972 0.796
Average 26.9% 208%��� �
	

Percentile 59.6% 470%
Wireless Idle Power

���
	���
 �������
Watts

Table 5: Communication Energy Model. We model the energy consumption of wireless card as a
function of transferred bytes and packets.

network interface is significantly impacted by external effects such as RF interference, network
congestion, asymmetric links due to badly calibrated hardware, etc. We have not tested our radio
model with all of these conditions and we do not expect it to perform well in extreme conditions.
Furthermore, we assume an 11Mb/s communication rate setting for the purpose of this paper. We
plan to incorporate other supported rates into our model as part of future work.

As we did for the computation model, we employ a wide range of empirical observations from
benchmarks to develop our communication model. Our wireless network includes a set of 6 hosts,
including PDAs and laptop computers. The network load varies from idle to a few megabits/second
and is susceptible to interference from two separate wireless networks. Furthermore, we assume
an 11Mb/s communication rate setting for the purpose of this paper. We plan to incorporate other
supported rates into our model as part of future work. Thus, we believe our model captures a wide
variety of common situations.

Our model is a linear parametric function like the computation model, and has four parame-
ters: transmit bytes ( � 	� ), receive bytes ( � 	� ), transmit packets ( � 	�� ), and receive packets
( � 	�� ). The model uses these parameters as follows:

� � ��0����������� � � 	��� � % � 	��� � % � 	���� � % � 	���� � %��
Our training benchmark suite for our communication model considers three different scenarios:

(i) upload heavy communications (ii) download heavy communications and (iii) almost symmetri-
cal, mesh type communications. For the first two scenarios, we use the scp benchmark. To collect
behavior from the symmetric communications, we use the netpipe benchmark to generate network
load. Typically, netpipe transfers are ping-pong like, it transfers one packet to a server and receives
another packet before continuing. This forces the network to transmit every single packet, without
opportunity to stream multiple small packets together. Netpipe also exposes idiosyncrasies that
result from the internal hardware buffer, by re-evaluating each packet size using a constant pertur-
bation factor. We consider for transfer size categories: (1) small: � ��&�& bytes; (2) medium: 100
to 1000 bytes; (3) large: 1000 to 4000 bytes; and (4) very large: 4000 bytes to 200KB. We repeat
each transfer 100 times for the first tree categories and 10 times for the last category.

We consider two different models, one that considers both bytes and packets transfered and one
that only considers bytes transferred. We refer to the former as (Bytes+Packets) and the latter as
(Bytes). We present the LSQ coefficients for both models as well as the fit statistics for the training
data set for the selected intervals in Table 5.
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Both models exhibit much higher error rates than those from the computation model. The error
is due to the difficulty of capturing external effects. However, these results are for energy consump-
tion of the wireless card only. In our evaluation section, we consider benchmarks that perform both
computation and communication. The error for the latter will impact overall estimation depending
on the amount of communication performed by the application.

Interestingly, these results show that it is very important to consider both packet count and bytes
transfered to produce an accurate model. By extending the byte model to include the packet counts,
we improve the error rate of the model by almost an order of magnitude. The low accuracy of byte
model reflects the non-linearity between transfer sizes and packet sizes. Small packets have a
disproportionately large overhead due to protocol headers.

3 Evaluation
In this section, we empirically evaluate the efficacy of our techniques. In the subsections that
follow, we compare our model to the one described in prior work [4]; we refer to this second
model as MCPUMEM in our results.

MCPUMEM was developed for the same Intel XScale CPU and memory configuration as our
own and uses similar HPM-based techniques. One primary difference between our model and
MCPUMEM is that the latter combines HPM and energy measurements of the CPU to model
and estimate CPU and memory power consumption. In our work, we are interested in modeling
and estimating the energy consumption of the full system. Our model combines HPM and energy
measurements of the entire device and employs PCA to ensure statistical soundness of our model.
Moreover, as we evaluate in the next section, we combine this model with a communication model
to estimate full system power consumption for applications that perform both computation and
communication.

To implement a similar experimental methodology as the prior work, we (1) add the idle power
consumption of wireless card to MCPUMEM (a constant factor), and (2) report MCPUMEM’s
mean error and its deviation. Deviation indicates how much the mean prediction error varies from
one benchmark to another. As mean error can be affected by the idle energy consumption of
hardware components, the deviation of the estimations better describes the quality of model. In the
subsections that follow, we evaluate our computation and communication model.

3.1 Accuracy of the Computation Model

Figure 3 shows the error rate for the reference benchmark set for the models that we describe in
previous section. These models include MLARGE – the original model without the removal of
multicollinearity; MPCA – the original model that uses principle component analysis for multi-
collinearity removal; MCPI – the original model with HPM metrics CPI (our second approach to
multicollinearity removal); MCPUMEM – the CPU-only HPM-based model from prior work [4].
MCPI and MLARGE perform similarly with an average error of 7%. The error is slightly lower for
the MediaBench benchmarks than for the Java benchmarks, this is because the behavior of the Java
benchmarks is much more variable due to benchmark activity, garbage collection, class loading,
interpretation, and other factors.

MPCA produces an average error of 22% making it unsuitable for energy estimation of computation-
bound tasks. As we explained previously, removing some principal components can reduce model
accuracy while improving the parameter estimates. On the other hand, MPCA error rate is partic-
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Figure 3: Error rate for the computation model.

ularly low for two benchmarks, jpegencode and jpegdecode. These two benchmarks are less data
intensive and more processor bound than the other benchmarks. Our HPM data indicates that jpeg
executes one instruction per data stall. The MPCA is particularly successful in modeling processor
than the memory – as there is no direct memory access counter in XScale, we can measure mem-
ory access cost only indirectly, as a combination of other counters. However, since we remove
some principal components from our model to improve model coefficient estimations, MPCA lose
significant information about memory access cost.

MCPUMEM produces an average error rate of 30%. Moreover, its error rates vary from 20%
to 40% across benchmarks, with a standard deviation that is twice that of the other models. The
reason for this is that MCPUMEM is designed to estimate the power consumption of the CPU
alone and not the full system. In particular, MCPUMEM does not account for memory bus and
device access. Our models consider the consumption of the entire device at the instruction level
and thus, are able to account for energy consumption of the system more accurately. This result
emphasizes the importance of taking a global view of energy estimation – which has not yet been
done in prior work, to our knowledge.

A significant result of our model is the success of MCPI model. The MCPI has an error rate close
to the MLARGE model, using a single model input -the clock cycles per instruction. On XScale,
we can gather this information accurately by reading the two hardware performance monitors; the
clock cycle counter and the instruction counter. One of our short term goal is to implement a run-
time energy estimator that can predict energy consumption online, as the program executes, and
verify it across a large set of benchmarks.

3.2 Computation and Communication

We next integrate the computation and communication model and evaluate the accuracy of the
combined model. We estimate the energy consumption using ���������	�
��� where ��� is the total
energy consumption, ��� is the computation model output and ��� is the network model output.
We use the names of the computation models that we discussed in the prior section to identify the
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Figure 4: Error rate for the communication model.

integrated models in this section. MCPUMEM does not consider communication in its model.
We evaluate our model using the COMM reference benchmarks. The benchmarks exhibit (i)

upload heavy, (ii) download heavy, and (iii) mesh like scenarios. We have selected these scenarios
since they represent a wide set of sensor network applications. In terms of network activity, the
total amount of data transfer is 2MB for pvkx, 550KB for life, 2.1MB for pvnx, 1.8MB for pvkxb
and 1.7MB for scpsend.

Figure 4 shows the percent error for all our models. MCPI and MLARGE perform similarly
with an average error rate of 11%. The error rate is 38% on average for MCPUMEM. MCPUMEM
again does not account for other system activities that our models are better able to capture.

Interestingly however, in communication dataset the MPCA is as accurate as than the other mod-
els, with an average error of 13%. The prediction error of MPCA is below 25% for all programs.
MPCA is significantly different than all other models. As we show in Table 4, MPCA gives much
higher weight to instruction pipeline events (TLB miss, instruction not delivered, etc) than the
other models. In our communication dataset, due to frequent I/O between wireless card and CPU,
such events play a significant role in describing programs energy consumption. Hence, we believe
MPCA is important as it addresses the deficiencies in other models.

As part of future work, we plan to investigate ways of improving our network model by consid-
ering multiple transfer rates, noise, and multiple wireless cards. Moreover, we plan to integrate a
model for flash memory access into our full system energy estimation model. Finally, we plan to
employ this resulting model for power-aware optimizations of the system; we plan to investigate
ways of employing MCPI for computationally bound tasks and MPCA for communicating tasks to
achieve the best of both models for energy estimation for a wide array of programs.

4 Related Work
In our work, we model full system energy consumption for sensor network gateways. Our model
uses hardware and operating system monitors to estimate the power consumption of a sensor net-
work gateway. The work most related to our own is on HPM-based models for CPU and memory
energy estimation [3, 12, 26, 13, 9, 4]. In recent work, Bircher et al. [3] presents a power model for
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the Pentium-IV class of processors. They develop their power model using least squares regression
(LSQ) [5] and show that two hardware counters are enough to model energy consumption on their
target architecture. However, they do not consider memory, and memory bus in their study.

In embedded systems, the most similar study to our own is by Contreras et al. [4]. In this
work, the authors use LSQ to develop a power model for an Intel XScale processor attached to
a development board. Using this model, the authors are able estimate CPU energy consumption
with a 4% error rate. However, their efforts to construct a memory power model did not perform as
well due to the lack of hardware counters in the CPU that count memory events. In our work, we
extend (and compare) this HPM model to estimate full system energy consumption by employing
software counters. Our model considers a larger set of components including memory and memory
bus and demonstrates a lower error rate.

5 Conclusions and Future Work
In this paper, we present a system for estimating the full-system power consumption of the Cross-
bow Stargate sensor network device. Our system couples statistical techniques that employ empir-
ical data from hardware and software performance monitors to model the computation and com-
munication of executing tasks. Our results indicate that the CPI hardware metric is sufficient for
accurate estimation full-system power consumption using our methodology. Moreover, we find
that principle component analysis can reduce multicollinearity in the model data to enable us to
extract useful information about the contribution of the model components; however, doing so
comes at a cost in accuracy.
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