
Full System Energy Estimation
for Sensor Network Gateways

Selim Gurun Chandra Krintz
Computer Science Department

University of California, Santa Barbara
{gurun,ckrintz}@cs.ucsb.edu

ABSTRACT
We present a new energy estimation model for sensor network in-
termediate gateway nodes (i.e. Crossbow Stargates). Such de-
vices are battery powered and resource constrained and commonly
employed as communication, processing, and gateway elements
within sensor networks. Understanding and accurately estimating
the energy behavior of such devices is key to conserving the battery
life of the system.

Our approach considers the system as a whole and couples tech-
niques that estimate energy consumption for a wide range of pro-
gram activity, including computation, communication, and persis-
tent storage access. We construct our model using empirical data
that we collect via hardware performance monitors in the device
and novel software performance monitors in the Linux operating
system. By integrating information from the hardware, operating
system, and program, we are able to accurately characterize the
full system energy behavior of the device and its programs.

We extensively evaluate our model and compare its accuracy to
that of an extant and similar approach to power estimation for the
CPU and and memory subsystem of the Stargate. We find that this
prior work, when applied directly to estimate whole system power
consumption, is ineffective (introducing error rates of over 50%).
Our model achieves an error rate of 3% for computationally bound
tasks and of 11% for programs that employ both computation and
communication.

1. INTRODUCTION
Wireless sensor networks have gained in popularity recently as

a result of their low cost, small size, and their potential for en-
abling transparent interconnection between the physical world and
powerful information systems. Typical installations of these sys-
tems consist of a hierarchy of heterogeneous devices that range
in capability but are both resource constrained and battery pow-
ered. Computationally simple, low-power, sensor elements make
physical measurements, perform minor processing, and relay the
collected data to more powerful devices. These more powerful de-
vices, i.e., gateways or intermediate nodes, implement significantly
more functionality, computational power, and battery capacity than
the simpler sensor elements. To program and to facilitate efficient
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use of sensor systems, we must be able to characterize accurately
the power and energy consumption of tasks that execute using these
devices.

A significant body of research exists that models and estimates
power and energy consumption for a range of sensor network de-
vices [15, 18, 17, 20, 13, 3, 2, 9, 12] and battery technologies [21,
14, 5, 19, 1, 16]. Prior work has provided models for estimating the
power consumption of the simpler sensor elements [15, 18, 17] as
well as for specific components of the sensor gateways (and similar,
battery-powered devices) [?, 2, ?, 12, 20, 13, 9, 3]. However, a key
missing piece in this prior work is effective and accurate estima-
tion of full-system energy consumption for sensor gateways. In this
paper, we present and evaluate such a model for the Crossbow Star-
gate. The key to our approach is integrated architectural, operating
system, and program-level energy behavior characterization.

Extant approaches to estimation of power consumption for gateway-
class devices, focus on the primary consumer of battery power: the
CPU [3, 2, 12]. Such devices typically implement an energy effi-
cient processor such as the Intel XScale [7]. Prior work has pro-
duced very accurate models (e.g., with an average error of 4%) for
estimating the power consumption of such processors for a wide
range of applications [3]. However, such models are not sufficient
for tasks that do not solely perform computation, e.g. sensor net-
work tasks that perform computation, communication, and other
I/O. The goal of our work is to model accurately the energy con-
sumption of the entire Stargate device as it executes such tasks.

To enable accurate, full system energy estimation for complex
Stargate tasks, we couple the use of hardware performance mon-
itors with operating system (OS) software performance monitors.
We consider three primary Stargate activities: computation, wire-
less communication, and persistent storage access. Our approach is
empirical in that we use program profile information from a range
of programs to develop our model.

Moreover, we employ a two phase estimation process. In the first
phase, we filter the profile information to reduce variance in our
measurements. Whenever we (or others) measure the performance
of tasks that execute on real devices with real OS support, non-
deterministic and transient behavior can perturb the measurements.
That is, multiple runs of the same program and input produce dif-
ferent results. Such perturbations are caused by a wide range of
factors including hardware interrupts, memory and I/O effects, and
system calls. To mitigate this problem, we present a novel suite
of statistical techniques that filter outliers from the data sets using
observations of the clock cycle counts. Our filters use and extend
similar techniques used in prior work and help to improve the qual-
ity of our full-system energy estimation model – the second phase
of our approach.

Our model couples independent linear functions, that we param-



eterize using our filtered data sets, for three primary program activ-
ities: computation, communication, and persistent storage access.
Our computation model combines measurements from a subset of
the available hardware performance monitors (HPMs) on the de-
vice. This model is similar to that in prior work [?, 3] but is de-
signed to estimate full system energy consumption as opposed to
the power consumed by the CPU and memory subsystem in isola-
tion (as in prior work).

We couple this computation model with two other novel mod-
els that estimate I/O behavior of a sensor network program. Our
models estimate the energy consumed for 802.11b wireless net-
work communication and flash memory access. For communica-
tion, we employ a similar approach but extend it to use empirical
data from novel software performance monitors (SPMs) in the op-
erating system. Our SPMs collect packet counts and bytes trans-
fered to parameterize the linear estimation function for communi-
cation. For flash memory, we use a simple model that estimates
power consumption for reads and writes large files (>300KB). We
parameterize two different models (one for read and one for write)
due to the asymmetric energy characteristics of flash access. We
use profiles of random, variable size, file access, to parameterize
the models.

We evaluate our model using a wide range of programs (differ-
ent from those that we use to parameterize the different compo-
nents of the model). The programs perform a number of different
activities typical of sensor network tasks for intermediate nodes,
e.g, persistent storage access, network communication, and com-
putation. Our estimator achieves an error rate of 3% on average
for computation-bound programs and of 11% for tasks that em-
ploy both computation and communication. For communication,
we find that both packets and bytes are necessary for accurately es-
timating communication behavior: we find that using the number of
bytes transfered alone produces an order of magnitude larger error.
When we consider computation and persistent storage access to-
gether, we achieve error rates similar to those for programs that we
execute using RAM (as opposed to flash memory); moreover, we
find that if the OS forces a flush following program execution, our
combined model approach correctly approximates the (very differ-
ent) energy consumption behavior of doing so.

In summary, we contribute with this paper:

• A full-system energy estimation model for the Stargate sen-
sor network gateway device;

• A set of techniques for filtering noisy data sets from repeated
executions of the same program/input;

• Individual components that combine to estimate computa-
tional behaviors, communication activity, and file I/O via a
compact flash device; and

• An empirical evaluation and comparison of our model with
an extant approach to CPU-based power estimation. Our re-
sults indicate that we must consider the full-system (archi-
tecture, operating system, and program) to characterize the
behavior of typical sensor network tasks and estimate accu-
rately the full-system energy consumption of the Stargate in-
termediate node.

In the sections that follow, we present our approach to full-system
energy estimation. Our system consists of two key components:
a suite of filters to mitigate the effects of spurious events that per-
turb performance measurements (Section 2.2.1) and the composite
model that we use to estimate energy consumption using these mea-
surements (Section 2). Our model comprises three submodels that
characterize computation, communication, and persistent storage
activities of programs. In the remainder of the paper, we present
our empirical evaluation (Section 3), related work (Section 4), and
conclusions (Section 5).

2. ESTIMATING FULL-SYSTEM
ENERGY CONSUMPTION

The goal of our work is to estimate accurately the energy behav-
ior of sensor network tasks that employ a typical sensor network
gateway (i.e. intermediate) device. We target the Crossbow Star-
gate device for our work. The Stargate implements a 400MHz Intel
XScale CPU, short range 802.11 and long range WAN radio inter-
faces, and flash memory (that implements potentially gigabytes of
storage), among other devices. In addition, the Stargate resources
are managed by the Linux operating system.

Full system energy estimation of such devices is critical for sen-
sor networking since their applications employ communication and
computation as well as persistent storage and other types of I/O.
Such behaviors are not captured by considering only the CPU and
memory subsystems as is done in prior work. Our approach to full
system energy estimation employs measurements from hardware
performance monitors (HPMs) and novel, operating system soft-
ware performance monitors (SPMs). Prior work has shown that the
former are effective to estimate accurately the power consumption
of the CPU [12, 8, 2, 3]. We employ these techniques to form a
computation model (Section 2.2) which we couple with statistical
models for wireless network communication (Section 2.3) and flash
file system access (Section 2.4) to estimate the energy consumption
of the entire device.

For each model, we use empirical data that we collect (via offline
profiling) using a real device and wide range of benchmarks, to de-
velop each model. We first describe our benchmarking methodol-
ogy and then detail each component of the model in the following
subsections.

2.1 Benchmarking Methodology
We employ two benchmark suites for our investigation of accu-

rate estimation of sensor task power consumption for the Stargate.
The first suite, to which we refer to as the training set, we use to
define our model. The second suite, to which we refer to as the ref-
erence set, we use for the empirical evaluation of the accuracy of
our model. The suites contain some overlapping applications, how-
ever the inputs that we used for the programs are different. The ref-
erence set however, contains additional non-overlapping programs.
We present the suites and their input sizes in Table 1. The left half
of the table is the training set and the right is the reference set. We
use the benchmarks above the line to model/evaluate computation
and those below for communication. We refer to the former as the
NONET group and the latter as the NET group. The benchmarks
in boldface we use to model and evaluate our persistent storage
model; we refer to this group as FLASH. We execute all programs
except the FLASH group (which we execute from the compact flash
card) from RAM. The wireless network card is on for all of our ex-
periments regardless of whether we use it or not.

Our applications come from popular benchmark suites (e.g. Me-
diaBench [?] and Java benchmarks: Java-UCSD [?], Java-Olden [?])
and other similar studies. We plan to make all of the programs and
inputs available via our project webpage. We also include a num-
ber of applications that perform communication. These include the
secure copy protocol (scp) and netpipe [?]. For scp, we transfer
a 17 MB file. We also include distributed (message passing inter-
face (MPI)) applications: Game of Life (Life) [?], Pvnx, Pvkx and
Pvkxb [?]. MPI is typically employed for distributed computing
applications in larger systems. However, these MPI applications
above have fair computation requirements that are within the limits
of the Stargate CPU.

The characteristics of the MPI applications are analogous to the
requirements of sensor network applications. For example in Life,



Training Benchmark Set Reference Benchmark Set
Application Input Size Application Input Size
gsmdecode 400 KB gsmdecode 30 KB
gsmencode 4.6 MB gsmencode 295 KB
jpegdecode 1.6 MB jpegdecode 1.5 MB
jpegencode 11.6 MB jpegencode 18.6 MB
mpegdecode 34 KB mpegdecode 79 KB
mpegencode 480KB mpegencode 480 KB
UCSD java N/A em3d (Java) N/A

bisort (Java) N/A
treeadd (Java) N/A

scp send 17 MB scp send 1.6MB
scp receive 17 MB scp receive 1.6MB
netpipe N/A game of life (MPI) N/A

pvnx (MPI) N/A
pvkx (MPI) N/A
pvkxb (MPI) N/A

Table 1: Benchmarks. We use two benchmark sets: Training
(left) to parameterize our model and Reference (right) to eval-
uate the accuracy of our model. We use the benchmarks above
the line to model/evaluate computation; those below for com-
munication. We refer to the former as the NONET group and
the latter as the NET group. The benchmarks in boldface we
use to model/evaluate persistent storage; we refer to this group
as FLASH. We execute all programs except the FLASH group
(which we execute from the compact flash card) from RAM.

the first processor divides the problem space into subspaces and
distributes them to the other processors. Once the other proces-
sors complete the execution, they return the results back to the first
processor. Then the first processor combines the results, and reit-
erates the process if necessary. This mechanism is very similar to
recent query processing and vehicle tracking architectures for sen-
sor networks. For example in [?], the nodes are organized in a tree
structure. The root node distributes a query to the network. Each
node partially processes the query and returns the results to the par-
ent node. It is the parent node which combines the results. In [?],
the remote sensor nodes collaborate with a central sensor node for
tracking moving vehicles. The remote nodes do partial stream pro-
cessing and filtering, however, they continuously exchange updates
with the central node. The central node produces the results.

We collect performance data from these benchmarks in the form
of CPU hardware performance monitors (HPMs). We collect data
for each hardware event for five repetitions of the same program.
HPMs provide efficient hardware support for profiling CPU-based
activities. To monitor I/O activity, we employ novel software per-
formance monitors. We describe these in Sections 2.3 and 2.4. The
HPMs that the Stargate supports are shown in Table 2.

We collect the energy consumption data concurrently with HPM
data using a 2-channel Agilent 54621A oscilloscope to construct
our models and to validate our system. We connect a National In-
struments data acquisition board to the exposed terminals of the
Stargate to measure the energy consumption of peripheral devices.
We collect HPM data using a very light-weight device driver that
we have developed. Our monitoring overhead is less than 2%. The
HPM driver is coupled with the oscilloscope. It collects HPM coun-
ters every 10 million instructions and uses an external output pin to
control the oscilloscope and the data acquisition board. Through-
out this paper, we use the term interval to refer to a period of 10
million instructions.

2.2 Computation Model
The computation model estimates the power consumption of tasks

that execute within the boundaries of CPU. Our model employs 6

Event Description
0x0 Instruction cache miss requires fetch from external memory.
0x1* Instruction cache cannot deliver an instruction.
0x2* Stall due to a data dependency.
0x3 Instruction TLB miss.
0x4 Data TLB Miss
0x5 Branch instruction executed, branch may or may not have

changed program flow.
0x6 Branch mispredicted
0x7 Instructions executed
0x8* Stall because the data cache buffers are full.
0x9 Stall because the data cache buffers are full.
0xa Data cache access, not including Cache Operations.
0xb Data cache miss, not including Cache Operations.
0xc Data cache write-back. This event occurs once for each 1/2

line (four words) that are written back from the cache.
0xd PC Modified

Table 2: HPM events in Intel PXA-255. The flagged events
count the number of cycles the event condition persists.

parameters: Core clock cycles (x1), instruction cache misses (x2),
instructions not delivered (x3), data stalls (x4), instruction TLB
misses (x5) and data TLB misses (x6). We employ these events be-
cause of their close relationship program power consumption and
because their use has been shown to be effective for power esti-
mation of the CPU by prior researchers [?, 2, 3]. We have experi-
mented with data cache access miss events and found that they did
not contribute to improvements in the accuracy of our model.

Since the Stargate processor is only able to monitor two events
at once, we must execute the same program many times to moni-
tor the different events and to collect consistent measurements for
the same events. The measurement data can differ across runs (of
the same program/input) as a result of hardware state or operating
system events. To mitigate the impact of these perturbations, we
employ a set of statistical techniques that filter outlying data sets
(execution profiles) – those that differ significantly from the rest.

2.2.1 Filtering Runtime Variability from Repeated
Runs of the Same Program

A phenomenon that impacts the quality of program profiles gen-
erated using real devices with real applications and operating sys-
tems, is the noise that is introduced into the data due to asyn-
chronous, transient, or otherwise uncommon and spurious hard-
ware and software activities [?, 10]. Hardware interrupts, mem-
ory and I/O effects, system calls, virtual memory paging, and OS
scheduling decisions, among other external factors, result profile
variations of different magnitudes.

For applications such as phase tracking, applying advanced tech-
niques that can recognize and eliminate these variations can soften
their adverse side-effects [?, 10, 11]. However, in a modeling study
such as ours, the accuracy of the model is strictly bounded by the
quality of the collected data, i.e. the observations. Hence, our esti-
mation system first filters the profile data prior to model construc-
tion (training benchmarks) or model evaluation (reference bench-
marks). As a result, we are monitoring and estimating the behavior
of a program without these perturbations (however infrequent). As
part of future, work, we are considering how to handle them inde-
pendently to improve the accuracy of our estimation system.

Each of our filters use the CPU clock cycle counter to analyze
data set variance. We execute each program repeatedly (25 times in
our experiments) using the same input, recording the cycle counter
value for each interval (10 million instructions) of execution. We
refer to the vector of intervals that each execution produces as CCNT.
The kth entry in CCNT is the clock cycle count for interval k.



We distinguish individual runs using a subscript on CCNT, e.g.,
CCNT4 is the 4th run of the program. We use n to mean the total
number of runs that we profile as part of a single experiment (e.g.,
25). When we refer to a particular interval within a particular run,
we subscript CCNT with two variables (CCNTi,k) to indicate the
kth interval in the ith execution. For example, CCNT4,2 is the
number of clock cycles recorded in second interval of fourth run.

We introduce three novel filters that identify runs that are signif-
icantly different from the other runs using the CCNT vectors. Our
first filter evaluates correlation coefficients (using Pearson’s corre-
lation [?]). Given that there are n CCNT vectors (for the n execu-
tions) we compute the correlation coefficient between all pairs of
vectors. We store the result in a n × n square matrix. This matrix,
to which we refer to as the correlation matrix, is lower triangular
as the correlation operation is commutative.

Our algorithm makes multiple passes over this matrix. In the first
pass, it flags any entry that is below a certain threshold (0.9 in our
case). In the subsequent passes, it removes the column that has the
highest number of flagged entries, together with the corresponding
row. The algorithm continues removing one column and one row
at a time until there are no flagged entries.

The correlation filter is similar to that used in prior work [?, ?]
and identifies many anomalies. We find though that the correlation
filter is unable to capture a number of outliers. Figure 1 depicts
such cases. The graphs show CPU clock cycles over time for five
repetitions (p1 - p5) of a hypothetical program. In the left graph, p2
uses 33% more CPU cycles than p1. The correlation filter however,
cannot recognize the difference since the clock cycle counts of p1
and p2 are fully correlated. Our comparison of total clock cycles
is not helpful either, because the value is the same for all three
programs. We can use the correlation between total execution time
to eliminate p1; however, the correlation filter will still consider p2
and p3 to be the same.

To capture the differences between p1, p2, and p3, we employ an
area filter. This filter first transforms the CCNT variable for each
execution i via:

ACCUMCCNTi,k =

k∑

l=1

CCNTi,l (1)

ACCUMCCNT is the number of accumulated clock cycles across
all k intervals (i.e., since program execution commenced). Note
that this transformation produces a monotonically increasing func-
tion. As ACCUMCCNT is a discrete function, we compute the area
under the line using the summation function.

To identify outliers, we assume that our clock cycle observations
(of which we have a large number) are normally distributed and ap-
ply the z-test [6] to remove any value that is 3 standard deviations
from the sample mean. The area filter captures the differences be-
tween the functions in the left graph in Figure 1(a). It is not perfect
however; for example, it (like the correlation filter) is unable to
capture the differences in the data sets in the right graph.

We refer to our third filter as MADMSE. MAD stands for me-
dian of the absolute deviations about the median and MSE is mean
square error. MADMSE first produces an average CCNT across
all (n) runs for each interval (k) via:

MEANCCNTk =
1

n

n∑

j=1

CCNTj,k (2)

The MEANCCNT vector thus, records the expected number of
CPU clock cycles for each interval. Next, the filter computes the
mean squared distance between the cycle count in the ith run (CCNTi)
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Figure 1: The figures show CPU clock cycles counts for repe-
titions of hypothetical program executions. In (a), even though
p1, p2 are very different, they are perfectly correlated and pass
the correlation filter easily. However, the area filter correctly
identifies p1, p2 and p3 as three different variations. The area
filter will not catch the differences between the data sets in (b).

and MEANCCNT for each interval (k):

MSEi =
1

p

p∑

k=1

(CCNTi,k − MEANCCNTk)2 (3)

The MSE function assigns higher scores to the outliers due to the
square operation. We identify and remove the outliers using the
modified-z test [6].

Since the sample mean and sample standard deviation considers
all the observations, a single outlier can affect both significantly.
Such conditions occur for example, during a file access for which
the CPU cycle counts can differ by millions depending on whether
the OS has buffered the data or not. The modified-z test substitutes
sample mean with sample median, and sample standard deviation
with MAD to reduce the effect of outliers. We compute MADE and
the modified-z score, Mi, using:

MAD = median|MSEi − µ|

Mi = c(MSEi − µ)/MAD (4)

where µ is the average MSE and 1 ≤ i ≤ n (i is the run and n is
the total number of runs). The modified-z test specification recom-
mends that we set c to 0.6745 and label observations as outliers if
their |Mi| score is greater than 3.5.

Our filters in combination eliminate much of the noise in the
data sets of repeated executions for the same program/input. Our
filters only capture noise due to variations in CCNT values. There
are however, other sources of noise (such as power measurement
errors due to the external apparatus). We expect these errors to be
much less significant and ignore them for the scope of this paper
(we plan to consider them as part of future work). Their impact
contributes to the overall error of the model which is included in
our overall results.

2.2.2 Empirical Computation Model Generation
We use a linear parametric function to model full system energy

consumption. Linear models have been successfully used in pre-
vious studies to model energy consumption of various components
including CPU and memory [?]. Our energy consumption model is
as follows:

E(Joules) = α0 + α1x1 + α2x2 + ... + αrxr (5)

where x is the model input (i.e the HPM counter values), the α’s
are the weights determined by the model, and r is the number of pa-
rameters. We estimate energy consumption for periods of program
executions (i.e. intervals) and combine them additively to produce
an estimate of energy consumption for an entire program. We es-
timate the parameter weights using least squares linear regression



Computation Energy Consumption Model
Coef. Description Ad-Hoc K-Clustered
α0 Constant −8.478 × 10−3 −1.265 × 10−2

α1 CPU cycles 7.496 × 10−9 7.815 × 10−9

α2 Inst. Miss −2.906 × 10−8 2.380 × 10−7

α3 Inst. Not Dlvrd −1.299 × 10−9 −3.390 × 10−9

α4 Data Stalls −1.064 × 10−9 −1.428 × 10−9

α5 Inst. TLB Miss −2.278 × 10−7 6.097 × 10−7

α6 Data TLB Miss −2.511 × 10−7 −2.357 × 10−7

R2 0.998 0.999
Average Error 2.16% 1.92%
95th Percentile Error 6.55% 5.40%

Table 3: Coefficient and fit statistics for the computation model.
We evaluate two techniques for interval selection (Ad-Hoc and
K-Clustered).

of program energy consumption. LSQ models are simple, they do
not require a priori knowledge of the distribution associated with
the observations and they continue to perform well even when the
model includes too many or irrelevant parameters [4].

We employ the NONET training benchmarks for model param-
eterization and LSQ. Since we do not want any single benchmark
to represent more than its fair share (which is possible since the
benchmarks execute for different durations), we choose an equal
number of intervals from each benchmark. To extend the range of
possible behaviors, we select the first, middle, and last 10 intervals
from each profile. We refer to this as the ad-hoc method for interval
selection.

We also employ an interval selection technique based on k-means
clustering. Prior work employs k-means clustering for interval-
based phase detection to improve the accuracy of phase detection [3].
We divide each application into 3 phases using the k-means clus-
tering algorithm and select the first 10 intervals from each phase.
For the situations where some phases had fewer than 10 intervals
(transient phases), we increase the phase count until we had at least
3 phases with 10 intervals each.

We present the coefficients of our model and evaluate its fit on
the training benchmark set in Table 3. The final two columns show
the data for the ad-hoc and k-means clustering techniques. The top
portion of the table shows the coefficients for each of the HPMs.
The bottom portion of the table shows the fit statistics. We form
the model using the training benchmarks and compute the fit statis-
tics using the same benchmark and interval set. We evaluate the
accuracy of our model for the reference set in Section 3.

An interesting phenomenon in this data is the existence of neg-
ative coefficients. All parameters except the clock cycle counter,
have a negative coefficient. The reason behind the negative coeffi-
cients is multicollinearity. Multicollinearity exists whenever some
linear relationship exists between the model parameters (as is the
case for HPM data). As the amount of linearity increases, the sta-
bility of the coefficient estimates decreases. However, this does
not invalidate the model quality or the model specification in any-
way [4].

The coefficient of determination, i.e., the R2 fit statistic, indi-
cates the amount of variation that the model explains. Under most
circumstances, it is a reliable indicator of model goodness. The R2

varies between 0 and 1, and larger values are better. The high R2

value of our model is a positive indicator of its high quality.
The average error statistic shows the absolute model estimation

error. We compute this value by averaging the error for each obser-
vation and multiplying by 100. We compute error using |measured−

Communication Energy Consumption Model
Coef. Description Bytes+Packets Bytes
TXB TX bytes 2.40 × 10−6 6.29 × 10−6

RXB RX bytes −4.78 × 10−7 −1.69 × 10−6

TXP TX packets −2.90 × 10−3

RXP RX packets 5.50 × 10−3

K Constant 2.37 × 10−2 2.00 × 10−1

R2 0.972 0.796
Average 26.9% 208%
95th Percentile 59.6% 470%
Wireless Idle Power 562 ± 146 mWatts

Table 4: Communication Energy Model. We model the energy
consumption of wireless card as a function of transferred bytes
and packets.

estimated|/measured.
The model fits very well to the data with an average error rate

of 2%. However average error does not describe how large the
worst case estimation errors are. To describe this, we use the 95th

percentile statistic. We define the 95th percentile error as the max-
imum absolute error for 95% of the estimations. Our model error
rate is 6.55% or less for 95% of the cases. The k-means clustering
improves the results only slightly. Due to the complexity of the k-
means algorithm, we employ the ad-hoc method as part of our final
model.

2.3 Modeling Wireless Network
Communication

We next introduce our model for sensor network wireless com-
munication. The Stargate employs a NetGear 802.11b wireless ra-
dio card which we model. Our model is independent from our com-
putation model to enable portability, i.e., we can swap the model
for others for comparison or to improve accuracy. We combine the
models via arithmetic addition of the two estimates.

Modeling the network interface is more challenging than mod-
eling the processing unit because the network interface is signif-
icantly impacted by external effects such as RF interference, net-
work congestion, asymmetric links due to badly calibrated hard-
ware, etc. We have not tested our radio model with all of these
conditions and we do not expect it to perform well in extreme con-
ditions. Furthermore, we assume an 11Mb/s communication rate
setting for the purpose of this paper. We plan to incorporate other
supported rates into our model as part of future work.

As we did for the computation model, we employ a wide range
of empirical observations from benchmarks to develop our com-
munication model. Our wireless network includes a set of 6 hosts,
including PDAs and laptop computers. The network load varies
from idle to a few megabits/second and is susceptible to interfer-
ence from two separate wireless networks. Thus, we believe our
model captures a wide variety of common situations.

The previous research on 802.11 networks has shown that the
energy consumption of a wireless card his related to the transmit
and the receive time. This information however is very low level
and not easily accessible. Our system employs transfer size char-
acteristics instead. We extract this information using software per-
formance monitors (SPMs) that we deploy in the Linux operating
system of the Stargate. The SPMs count the number of bytes and
packets transfered as efficiently as possible.

Our model is a linear parametric function like the computation
model, and has four parameters: transmit bytes (TXB), receive
bytes (TXB), transmit packets (TXP ), and receive packets (RXP ).



The model uses these parameters as follows:

En(Joules) = TXBβ1 + RXBβ2 + TXPβ3 + RXPβ4 + K

Our NET training benchmark suite considers three different sce-
narios: (i) upload heavy communications (ii) download heavy com-
munications and (iii) almost symmetrical, mesh type communica-
tions. For the first two scenarios, we use the scp benchmark. To
collect behavior from the symmetric communications, we use the
netpipe benchmark to generate network load. Typically, netpipe
transfers are ping-pong like, it transfers one packet to a server and
receives another packet before continuing. This forces the network
to transmit every single packet, without opportunity to stream mul-
tiple small packets together. Netpipe also exposes idiosyncrasies
that result from the internal hardware buffer, by re-evaluating each
packet size using a constant perturbation factor. We consider for
transfer size categories: (1) small: < 100 bytes; (2) medium: 100
to 1000 bytes; (3) large: 1000 to 4000 bytes; and (4) very large:
4000 bytes to 200KB. We repeat each transfer 100 times for the
first tree categories and 10 times for the last category. As we do
for our computation model, we use 30 intervals (first, middle, last)
from each benchmark to construct the regression model.

We consider two different models, one that considers both bytes
and packets transfered and one that only considers bytes trans-
ferred. We refer to the former as (Bytes+Packets) and the latter as
(Bytes). We present the LSQ coefficients for both models as well
as the fit statistics for the training data set for the selected intervals
in Table 4.

Both models exhibit much higher error rates than those from the
computation model. The error is due to the difficulty of capturing
external effects. However, these results are for energy consump-
tion of the wireless card only. In our evaluation section, we con-
sider benchmarks that perform both computation and communica-
tion. The error for the latter will impact overall estimation depend-
ing on the amount of communication performed by the application
(relative to computation).

Interestingly, these results show that it is very important to con-
sider both packet count and bytes transfered to produce an accurate
model. By extending the byte model to include the packet counts,
we improve the error rate of the model by almost an order of mag-
nitude. The low accuracy of byte model reflects the non-linearity
between transfer sizes and packet sizes. Small packets have a dis-
proportionately large overhead due to protocol headers.

2.4 Modeling Persistent Storage Access
The final component of our full-system energy estimation system

models energy consumption due to accesses to persistent storage.
In particular, we model the 256MB Sandisk Compact Flash card
that the Stargate uses. Even though micro-drives are also useful for
secondary storage, the constantly increasing capacity of flash cards
makes flash storage more popular.

We measure and model the energy consumption of the compact
flash card by reading and writing random data of various size. We
avoid sizes that are multiple of the 64KB page size. To eliminate
the effects of buffering, we force the file system to flush buffers
using the sync system call before and after each operation. Figure 2
shows the data transfer sizes and measured energy consumption per
unit byte.

The data in the figure exhibits stable consumption behavior both
for reads and for writes, except for very small size transfers. At
present, we ignore the very small file sizes as the operating system
and compact flash buffering mechanisms hide how and when they
are going to be written to a file. Instead, for files larger than 300

Figure 2: Compact Flash Energy Consumption Rate. The fig-
ure shows the measured energy consumption per byte for read
and write in a 256MB Sandisk CF (fullness < 10% ).

KB, we model the energy consumption using this linear model:

Ew = size(inbytes) × 4.99 × 10−7 + 0.094 (6)

Er = size(inbytes) × 2.40 × 10−7 + 0.014 (7)

Both models result in an R2 value of 0.999.

3. EVALUATION
In this section, we empirically evaluate the efficacy of our tech-

niques. In the subsections that follow, we first present results for
our outlier filters. We then evaluate the accuracy of our computa-
tion model and compare it to an extant approach for estimation of
CPU and memory power consumption. Finally, we present accu-
racy results for our combined models (computation, communica-
tion, and persistent storage access).

3.1 Efficacy of Variability Filters
To evaluate our filters, we collect profiles from our reference set

(we also include Java-UCSD from our training set here). We ex-
ecute each program 25 times for each experiment; in each exper-
iment we collect observations of power, energy, SPM, and HPM
data. Overall, we collect over 700 datasets. To present our results
we use the NONET, NET, and FLASH groups that we specify in
Figure 1 in Section 2.1. For the FLASH group, we execute the
benchmarks (and inputs) using the compact flash file system (as
opposed to RAM as we do for the NONET and NET groups).

We evaluate the quality of our filters using the number of out-
liers extracted by each of the three tests (Correlation, Area, and
MADMSE). Typically, a receiver operating characteristics (ROC)
curve illustrates filter quality, however, in our case, we have no
baseline to which we can compare. We therefore, present outlier
data and discuss individual cases.

Table 5 summarizes the overall results. Each entry shows the
number of executions filtered out by a particular test. In the last
row, we show the total number of filtered data sets and executions
(in parentheses). Overall, we only filter a small subset of the ex-
periments. This is important as it shows that such outliers are an
infrequent phenomenon and yet we are able to recognize them.

Relatively, the filters reject a many more NET experiments than
the others; the FLASH benchmarks have the least rejections. The
former is due to the high variability in wireless network commu-
nication. MADMSE identified these cases. Interestingly, the other
tests did not. This indicates the importance of employing MADMSE



NONET NET FLASH
Correlation 4 33 1
Area 3 2 1
MADMSE 44 8 5
Combined 46 (400) 34 (225) 5 (75)

Table 5: Filter performance.

Category Application Correlation Area MADTEST

NONET
mpegencode 0 0 7
jpegencode 1 0 7
treeadd 0 0 1

NET scprecv 25 0 0
FLASH jpegdecode 0 3 3

Table 6: Applications with the most filtered data sets.

as part of the suite. The FLASH results are surprising given the
non-determinism of compact flash writes. The impact of this non-
determinism however, does not cause the overall performance data
to differ significantly.

All applications have at least one data set that is rejected by the
filters. The applications in Table 6, have a larger number of re-
jections. In the NONET set, mpegencode, jpegencode and treeadd
have seven executions filtered out. In the NET group, the corre-
lation test rejects all twenty-five executions – rejecting the entire
benchmark.

In Figure 3, we present two executions of mpegencode. We took
the data from the NONET test. In the figure, we plot the squared
difference of observed and expected clock cycle counter values for
two executions of mpegencode. The execution labeled outlier
fails MADMSE. The outlier curve exhibits higher variance (differ-
ence from the expected value).

The scprecv is an interesting benchmark. MADMSE and the
area test do not detect any anomalous data sets, however, the cor-
relation test does. We find that in scprecv the correlation of CCNT
vectors is quite low, 0.6 < r < 0.8. For this particular benchmark
we also observe low correlation with other statistics such as power
and energy. Across all of our applications, scprecv is most suscep-
tible to external effects. As scprecv downloads a large file from
network, its performance, and execution characteristics reflect the
data transmit rate of the remote host, noise in the network, etc.

Figure 3: Deviation in Mpegencode. The figure compares
the deviation curves from two mpegencode executions. The
MADMSE test correctly identifies the outlier due to its high
deviation.

Even though the tests are very sensitive, they have been designed
to handle only the changes in CCNT vectors. Even though the clock
cycle counter is a very powerful indicator program behavior, it does
not explain the whole behavior of the system. An interesting exam-
ple of this limitation occurs in bisort. Figure 4 shows the clock
cycle counter (left graph) and energy (right graph) observations for
five repetitions of the bisort Java benchmark. We observe similar
behavior CPU clock cycle counts for all the five executions how-
ever, the energy consumption for I4 is significantly different from
the others – it seems to be an offset of the others. At approximately
140 million instructions (time), the energy consumption of all pro-
grams increase; this increase is much larger I4. As there is no net-
work activity and no other programs running, we believe this may
be a result of some hardware state. Since our filters only consider
CCNT values, they cannot catch such anomalies. If we remove this
particular execution from the dataset we improve the accuracy of
our estimation for bisort by more than 30%. We plan to investigate
filters for such (non-CCNT-based) anomalous behaviors as part of
future work.

3.2 Accuracy of the Computation Model
We next evaluate the accuracy of our computation model. In

Section 2.2, we present results on the fit of the model which we
generate using training data set from which we form the model.
Moreover, this study only considers the performance data from the
intervals that we select for model parameterization. Our results
indicate that our model produces estimates with an average error
of 2% across benchmarks. The error is the difference between the
estimates produced by the model and the observed data.

We evaluate the computation model that we describe herein and
compare it to a model from prior work [3] to which we refer to
as CPUMEM. CPUMEM is the best-performing model in the lit-
erature for estimating the power consumption for the Intel XScale
CPU and memory. Moreover, it is very similar in construction to
our own model (to which we refer to as CompMod). Both are de-
veloped for the same Intel XScale CPU and memory configuration
and they employ HPM counters for parameterization. Our model
however, is intended to estimate the energy consumption of the en-
tire device (and thus we use system energy data for model con-
struction), whereas the previous model is intended to estimate the
power consumption of the CPU and memory system in isolation.
The evaluation of the prior model shows that it is highly accurate
for doing the latter (the authors report a 4% error rate on average).

Our goal with evaluating this model from prior work for our com-
putationally bound benchmarks only is to see how well it is able to
predict the energy characteristics of the full system for these pro-
grams. We expect this model to perform well since the CPU and
memory subsystem consume a large portion of the full system en-
ergy for these devices for computationally intensive programs.

Figure 5 shows show the error percentage for the full training
(left graph) and reference (right graph) benchmark sets. This data
employs all of the NONET (computation-bound) benchmarks as
well as all of the intervals that execute for each. Our model is
demarked CompMod and the model from prior work is demarked
CPUMEM. We compute the error rate as we describe in Section 2.2.
For the training set, our model achieves a 2% error rate on average,
with a worst case error of 6%. The average error rate for CPUMEM
was 65%, with a worst case error of 81%. For the reference set, our
model achieves a 3% error on average, with a maximum of 9%.

The poor performance of CPUMEM emphasizes the importance
of taking a global view of energy estimation. The best case for
the CPUMEM model is em3d (17% error rate). Our investigation
into CPUMEM accuracy shows a high correlation the error rate and



Figure 4: Bisort behavior. The left graph shows CPU cycle count data for five executions of bisort. The right graph shows the
energy consumption measurements for the same five executions. One execution is clearly an outlier, however our variability filters
are unable to capture reject this data set since there is no change deviations CPU cycle count.

Figure 5: Error rate for the computation model. The left graph shows the results for the training benchmarks and the right graph
for the reference benchmarks. The light bar is the accuracy of the model we present and the dark bar is the error rate for a
competitive approach for estimation of CPU and memory power consumption. The results indicate that the latter cannot be used to
predict accurate the full system energy consumption. Our model achieves an average error of 2% for the training set and 3% for the
reference set.



Figure 6: Error rate for the combined computation and com-
munication models for the reference NET benchmarks. Comp-
Mod is the computation model alone.

the data TLB misses (we omit the data due to space constraints).
This may indicate that that the poor performance is the result of
underestimation of CPU and overestimation of memory cost.

3.3 Computation and Communication
We next integrate the computation and communication model

and evaluate the accuracy of the combined model. We estimate the
energy consumption using Et = El + En where Et is the total
energy consumption, El is the computation model output and En

is the network model output.
We evaluate our model using the NET reference benchmarks.

The benchmarks exhibit (i) upload heavy, (ii) download heavy, and
(iii) mesh like scenarios. We have selected these scenarios since
they represent a wide set of sensor network applications. In terms
of network activity, the total amount of data transfer is 2MB for
pvkx, 550KB for life, 2.1MB for pvnx, 1.8MB for pvkxb and 1.7MB
for scpsend.

Figure 6 shows the percent error for the benchmarks when we
use the combined model (dark bar demarked Combined). We also
include the results (light bar demarked CompMod) for when we
use the computation model alone – to investigate the importance of
considering full system behaviors to estimate energy consumption.
In the figure, we omit scprecv since, as we explained previously,
all of the data sets were rejected by our outlier filters due to high
variability.

The average error for the combined models is 11%. If we only
employ our computation model, the average error is 35%. The best
case for our combined model is pvkxb and life, with error rates
of 4.7% and 5.7%, respectively. Our worst case is pvnx with an
error rate of 17.9%. Given the high variability in network perfor-
mance we expect a higher error rate for applications that exercise
the network. As part of future work, we plan to investigate ways
of improving our network model by considering multiple transfer
rates, noise, and multiple wireless cards.

3.4 Computation and Persistent Storage
To evaluate our permanent storage model, we employ our FLASH

reference benchmarks. We combine our persistent storage access
and computation model as we did for communication and compu-
tation in the prior section (Et = El + Efw + Efr). El is the
estimation from the computation model; we produce Efr and Efw

using Equations 7 and 6, respectively.
We perform two experiments. First, we collect data without in-

Figure 7: Error rate for the combined computation and per-
sistent storage access models for the reference FLASH bench-
marks.

terfering with the OS and file system, thus the operating system
manages and caches the file as usual. Second, we force the operat-
ing system to flush its buffers before and after each execution.

Figure 7 compares the energy consumption of applications (nor-
malized to the observed energy consumption for RAM-only execu-
tion). The bars show estimated energy consumption (i) estimated
when running in RAM (RAM est), (ii) observed when running in
compact flash with file system buffering (CF-nosyn-real), (iii) es-
timated when running in compact flash with file system buffering
(CF-nosyn-est), (iv) observed when flushed (CF-sync-real), and (v)
estimated when flushed (CF-sync-est). To our surprise, there is no
significant difference between the applications that run on the RAM
and the applications that run in flash memory with buffering. How-
ever, when we force the file system to flush, we increase the cost of
gsm and jpeg more than 60%.

4. RELATED WORK
In our work, we model full system energy consumption for sen-

sor network gateways. Our model uses hardware and operating
system monitors to estimate the power consumption of a complete
device, the Crossbow Stargate. The work most related to our own is
on HPM-based models for CPU and memory energy estimation [?,
2, 12, 11, 20, 13, 9, 3]. In recent work, Bircher et al. [2] presents a
power model for the Pentium-IV class of processors. They develop
their power model using least squares regression (LSQ) [4]. Their
model is different than ours for computation in that it estimates only
CPU energy consumption and uses two performance counters. Our
work shows that using such a model for full system energy estima-
tion is highly in accurate even for computation-bound programs.

In embedded systems, the most similar study to our own is by
Contreras et al. [3]. In this work, the authors use LSQ to develop a
power model for an Intel XScale processor attached to a develop-
ment board. Using this model, the authors are able estimate CPU
energy consumption with a 4% error rate. However, their efforts
to construct a memory power model did not perform as well due
to the lack of hardware counters in the CPU that count memory
events. In our work, we extend (and compare) this HPM model
to estimate full system energy consumption by employing software
counters and a statistical filtering process.

Another line of research that is related to our study is focuses
on run-time variability. Run-time variability is an important prob-
lem when program behavior is observed repeatedly. Recently, Isci
et al. [10], analyzed program power phases of applications using



real devices. In this context, the authors categorize run-time vari-
abilities as time-shifts, time dilations, phase mutations, transitional
glitches, and gradients. However, instead of identifying and elim-
inating variability, their technique assumes that these variabilities
are an integral part of the model. We eliminate outlying data sets
and focus our model development on the filtered data set. The num-
ber of data sets we eliminate is small. As part of future work, we
plan to couple our model with one that characterizes the energy
consumption of outliers. We believe that we must address them
separately to achieve highly accurate estimations.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present a system for accurately estimating the

power consumption of the Crossbow Stargate intermediate sensor
network device. Our system couples statistical techniques that em-
ploy empirical data to model various program activities including
computation, communication, and persistent storage access. We
collect the data using a subset of the hardware performance coun-
ters available on the device and using software performance mon-
itors in the Linux operating system. We gather the data using a
large number of repeated runs of programs that exhibit behaviors
typical of sensor network tasks. To mitigate the perturbation in the
profiles caused by isolated, asynchronous, and transient events in
the hardware and operating system, we present a set of statistical
techniques that effectively filter outliers from the data to improve
the quality of our model.

We implement our models for computation, communication, and
persistent storage access using this filtered data. By doing so and
by combining these models into a single energy estimation, we are
able to accurately characterize program energy consumption at the
device level. We evaluate our model using a wide range of bench-
marks and validate it using high-precision measurements of power
and energy. Our model achieves an error rate of of 3% on average
for computational tasks and of 11% on average for tasks that use
both computation and communication. We achieve similar error
rates for tasks that employ computation and flash file system ac-
cess. We compare our approach against a prior model that employs
HPM data to model the CPU and memory subsystem of the Star-
gate. We find that this prior model is not effective for predicting the
energy consumption of the full system.

As part of future work, we plan to improve our model by con-
sidering other sensor task activities such as serial communication
(a typical Stargate to mote path). We plan to investigate additional
programs to test further the robustness of our system in terms of
accuracy. In addition, we plan to identify a model that accurately
estimates the power consumption of outliers. Our current filter-
ing system eliminates such data sets from our empirical data. Al-
though, these sets are very few in number, we believe that we can
couple the system herein with an additional model (or set of mod-
els) that recognizes outliers and estimates their power consumption.
Finally, we plan to implement our prediction system as part of the
Linux OS in the Stargate and iPAQ handheld to enable online es-
timation of power consumption as part of energy-aware compiler
and runtime optimizations.
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