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ABSTRACT 1. INTRODUCTION

Understanding the full-system power and energy behavicealf
resource-constrained, battery-powered devices is \gtatturately
characterize, model, and develop effective techniquesdfiending
battery life. Unfortunately, extant approaches to measyirand

characterizing power and energy consumption focus on biuth-
processors, do not consider the complete device, empl@gina

rate (program-only) simulation, rely on inaccurate, coengrained
battery level data from the device, or employ expensive pmea-
surement tools that are difficult to share across researclugs and
students.

As battery-powered, resource-constrained systems centio
grow in capability and complexity, it is increasingly diffit to ac-
curately measure and characterize the full-system powesurop-
tion of real devices. However, we must do so if we are to eiffelt
model, predict, and optimize programs and systems to igerieat-
tery life. Extant approaches to measurement and charzatien
of power and energy behavior include simulation, procekse
metrics, and measurement via external monitoring devieas. (
multi-meters).

Simulation and CPU-based techniques are most commonly used

In this paper, we present RPM, a remote performance monitor- t0 evaluate power and energy consumption of a program erecut

ing system, that enables fine grained characterization dfesfded

computers. RPM consists of a tightly connected set of coemten
which (1) control lab equipment for power measurements anad-a
ysis, (2) configure target system characteristics at rumet{such as
CPU and memory bus speed), (3) collect target system data usi

on-board hardware performance monitors (HPMs) and (4) mev

a remote access interface. Users of RPM can submit and config-
ure experiments that execute programs on the RPM targetelevi

(currently a Stargate sensor platform that is very similaran

on a particular device. Simulation is limited in that the siation
process introduces error in both performance and powemasti
tion. Moreover, most simulation systems emulate a singlgnam
as opposed to a complete system including operating systeém a
external devices — each of which can significantly impact grow
energy, and performance.

Hardware performance monitors (HPMs) have gained wideegpr
use recently for estimation of CPU processing power [244165,
12, 13, 14]. In addition, other types of processor-levelringhave

HP iPAQ) to collect very accurate power, energy, and CPU per- been shown to be effective for predicting CPU performanag an

formance data with high resolution.

power consumption, in particular those related to progréasp

We use RPM to investigate whether CPU-based performance behavior [23, 3, 13, 14]. These processor-level metrice tmen
data in the form of HPM metrics or program phase behavior cor- shown in these prior works to correlate well with processmwer

relates well with full-system energy or power behavior.oPwwork
shows that both accurately estimate processor power copisoim
for high-end CPUs. In resource-constrained devices, sictha

consumption [4, 12, 13, 14, 15]. Unfortunately, prior worked
not evaluate how well processor-level metrics correlaté i es-
timate the power and energy consumed by the entire system (as

one we study, however, the processor consumes a much smalleppposed to simply the CPU power and energy consumption). Ful

portion of the total power in the system than for high-endcps

system energy is important for techniques that attempt tenek

sors. Our experimentation with RPM for the Stargate and $et o battery life in resource-constrained, mobile devices. o
embedded system benchmarks, show that CPU-based metrics do Moreover, most prior work on HPM-based power prediction fo-

not correlate well with full-system energy and power constion.
Moreover, we find that full-system energy and power varigsifi
cantly with the type of memory device and file system.
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cuses on high-end processors such as the Intel Pentiumaflass
processors. These processors consume a much larger padrtien
total system power than the processors used in resourcstraored
devices such as those in which we are interested: hand;fseids
sor network nodes, and cellular phones. These devices calpmo
implement energy-efficient processors such as those fret@ttion-
gARM [10] and XScale [11] family of processors.

Our prior work employed internal battery monitors to measur
and characterize power and energy consumption of resoorce ¢
strained devices [18, 26, 25]. Unfortunately, all extate¢inal bat-
tery monitors or mobile devices are coarse grained, notramg
specific, and inaccurate. A more accurate approach to megsur



the power and energy consumed by a device is to use high-end cu
rent meters such as oscilloscopes and programmable power su
plies that sample a system via external probes with higHutien

and accuracy. External systems, however, are expensivepim
bile, and cannot be used remotely. These factors limit tlypede

to which such systems can be shared by geographically sedara
researchers and students.

To enable the characterization of a full-system as easitlyaan
curately as possible, we developed a toolset calleiRéraote Per-
formance Monitoring (RPM3ystem. RPM consists of both hard-
ware and software components. The hardware componentsiecl
a set of high-end tools to monitor the target microcompuiére
software tools include utility programs to configure vas@ystem
characteristics of the monitored device, and operatingeay£x-
tensions and device drivers to collect performance dateh(sis
HPM counters). A GUI program and a web interface enables re-
mote users (e.g. students and researchers) to submit jowesrfor-
mance profiling to our system, i.e, to extract accurate perdoce
profiles without investing in, installing, and managingith@vn
system. RPM collects power, energy, and HPM data for fixed- or
variable-length intervals. Interval lengths are in terrhglymamic
binary instructions and can be set by the user upon job sgionis
Users of our system can also control which metrics RPM ctdlec
and which intervals RPM samples.

At present, we use a RPM to characterize a Crossbow Stargate

embedded microcomputer. The Stargate implements an Ii8el X
cale processor and a number of I/O devices. The Stargateyis ve
similar in functionality to an HP iPAQ handheld device (vatti the
LCD display), and itis used extensively in sensor netwosleagch.

We employ RPM to investigate how well processor-level nastri
correlate with full-system power and energy consumptiorpimy
grams. We consider a number of different HPMs as well as a tech
nique that identifies code-based phases in program behasiioy
simulation. We make many interesting observations usinylRP
We find that

e HPMs do not explain the variance in full-system power and
energy consumed by the device for the programs that we
have studied. This is in contrast to prior works that show
that HPMs are effective for explaining varianceprocessor
power consumption.

IPC is also not highly correlated with power and that for

e An analysis enabled by RPM of the efficacy of commonly
used processor-level metrics for estimating full-systemugr
and energy consumption. Prior work has shown such tech-
niques to be effective for processor-level estimation efgo

e An analysis of how well program-level phase behavior maps
to full-system power and energy behavior.

e An evaluation of the impact of memory types and file system
implementations on power and energy consumption.

We believe that our work provides a shared infrastructuag whll
enable researchers and students to collect fine-grainghlyrac-
curate power, energy, and HPM profiles from a real systenmgusin
real programs without investing in the necessary hardweliae-
over, our measurement analysis using RPM for real programs r
veals that current approaches for processor-level povienason
do not correlate well with full-system power and energy éira

2. REMOTE PERFORMANCE
MONITORING (RPM)

One of the primary goals of RPM is to provide a research test-
bed for power studies on embedded systems. Understandihg an
characterizing energy behavior is critical for techniqtiest ex-
tend battery life in embedded and mobile systems. To enhlde t
we require mechanisms that measure the power and energy a de-
vice consumes at a high resolution (fine grain) with high escy
Moreover, we must understand the power and energy behakior o
the device as a whole to ensure that we identify the primany co
tributing factors of battery drain and that the techniquesievelop
reduce this drain (and do not accelerate it).

Recent research using real systems has shown that hardevare p
formance monitors correlate well with, and thus, can be ueed
estimate, the power consumption of the CPU [24, 16, 4, 15, 12,
13, 14]. Similarly, estimation based on patterns in the etieg
code, i.e., phase behavior, is also successful for CPU pestigna-
tion [3, 13, 14, 23]. For systems for which the CPU is the prima
consumer of energy, these techniques may be adequate. elpwev
processors vary greatly in capability, energy consumptonl the
portion of the full-system power and energy consumption ity
they contribute. Moreover, prior work has focused on poviene
However, high power consumption can result in lower totargp
consumed if the execution time is significantly decreasethlEn-

some programs IPC is correlated to some degree with energy.ergy consumption is key to understanding and prolongintebat

Prior work shows that IPC is a good measure of processor
power consumption.

phases.

I/O types and their OS support, e.g., volatile memory and

Branch-based phases do not map well to power and energy

life in resource-constrained systems — so both must be messu
studied, characterized, and accurately understood.

An alternative approach to measurement of power and energy
ehavior for real systems is to employ a set of external nreasu
ment tools. Such tools include a multi-meter, oscilloscapel pro-
grammable power supply and enable highly accurate and vezy fi

file systems, can impact the power and energy consumed by drained measurement (i.e., a large number of measurements p

a program significantly.
In summary, with this paper, we contribute

e Aremotely accessible and freely available toolset for resmo
performance monitoring of XScale programs.

e An RPM system that automatically collects accurate power,
energy, and hardware performance monitor profiles.

e An RPM web interface through which users can submit jobs
to the system for profile collection. User control what met-
rics RPM employs, interval size, and which intervals to pro-
file.

millisecond) of power and energy consumed by a device. Wufor
nately, these tools are costly and immobile, making thes tiesn
ideal for sharing between geographically disjoint reseaoups
and students. Moreover, these systems only collect posiated
metrics; access to the performance profiling capabilities & de-
vice may have is not supported.

The goal of our work is to extend such a system to enable con-
current performance profiling and shared access to thersytsye
remote users. We refer to this system asRieenote Performance
Monitor (RPM)and provide an overview of its primary components
in Figure 1. RPM is a tightly integrated suite of tools to ntoni
program energy, power, and CPU performance. The RPM inslude
four components:
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Figure 1: RPM Overview.

A device driver and Linux kernel patches, called VPerfmon,
that enable and control HPM, power, and energy profiling.

e A user program, called VPMon, that executes a submitted
program under the control of VPerfmon.

e Auser program, called SCL, that dynamically switches CPU
frequency level.

e A Windows XP GUI program called the PowerTool, that
monitors and controls the lab equipment (oscilloscope and
power supply), and sets the experimental parameters.

e A web interface through which remote users can submit pro-
grams to the system for execution and profile collection.rtse
specify a set of parameters that control how often RPM pro-
files the program, the duration of profiling, profile granular
ity and accuracy, CPU frequency, and the metrics that RPM
collects.

RPM monitors program power consumption at a very fine gran-
ularity (2K measurements/second) and high accuracy (1ns&re
lution) by default. A key difference between RPM and pastmea
surement systems, is that RPM monitors the energy and pamer ¢
sumed by the entire device. We can extend RPM to monitor indi-

the submitted program and controls HPM profiling by intaragt
with VPerfmon. VPMon and VPerfmon are also portable to any
architecture that supports Linux and implements hardweréop
mance counters. We describe VPerfmon in greater detaiéineixt
subsection.

The target device that we currently support is the Stargatea
network intermediate node. The Stargate is representaftineod-
ern battery-powered, resource constrained devices apligiments
the recent PXA-255 XScale processor and a wide range of appul
1/0 devices. We detail the components of this system in 8e@i
We show the range of HPMs available (and thus available fo(vRP
profiling) in Table 1. The Stargate is very similar to an HP @A
device without an LCD display.

The Stargate is used extensively in sensor network researah
gateway for communication and data collection from sensbine
Stargate supports many important mechanisms that enatite-in
mentation and analysis of the system. For example, the &targ
implements both JTAG ports (a standardized interface thables
users to test and debug at the chip level) and general putfidse
(GPIO) ports.

The RPM uses the SCL driver to scale the CPU speed of the Star-
gate if desired. For target devices that do not support &egy or
voltage scaling of the processor, we simply do not load thé SC
driver module into the Linux system. The Stargate procesker

vidual elements such as memory and CPU; however, our focus in PXA-255, has a very flexible CPU clock implementation thatras

this work is full-system power consumption.

RPM consists of an Agilent deep-memory oscilloscope that-mo
itors the current passing through a high-precision resistonected
to the target computer power supply. We connect the oscilos
to a workstation through a general purpose interface busgGP

can configure to set memory, bus, and CPU core speed indepen-
dently. There are currently five valid configurations (duéntng
constraints). SCL enables users to manipulate the confignsa

at runtime and compiles a log of the new speed, device, and the
time at which it implemented the changes the clock speeddusi

The PowerTool executes on the workstation and consumes, ana microsecond resolution).

lyzes, and packages the collected data. The PowerTool afso ¢
trols a high-precision, programmable power supply, thelékgi
E3648A. In addition, RPM users can investigate and rewhie t
boot-loader on the target devices using the PowerTool. Vgewr
the PowerTool software in the portable C# language usind/ihe
crosoft .Net platform.

RPM monitors garget deviceon which we execute the VPMon.
The VPMon is the user interface to the target device thatugrsc

2.1 VPerfmon

VPerfmon is the control center for program profiling. VPeofm
provides virtual hardware performance counters to eachicapp
tion. The HPMs by default count global CPU events, i.e. they d
not track events at the program or thread level. VPerfmowniges
a layer that multiplexes the counters and that enablestse@con-
itoring of particular programs and threads. VPerfmon im@ats a



Event || Description

0x0 Instruction cache miss requires fetch from external mempry

Ox1* Instruction cache cannot deliver an instruction. This doul
indicate an ICache miss or an ITLB miss.

0x2* Stall due to a data dependency.

0x3 Instruction TLB miss.

0x4 Data TLB Miss

0x5 Branch instruction executed, branch may or may not have
changed program flow.

0x6 Branch mispredicted

0x7 Instructions executed

Ox8* Stall because the data cache buffers are full.

0x9 Stall because the data cache buffers are full.

Oxa Data cache access, not including Cache Operations.

Oxb Data cache miss, not including Cache Operations.

Oxc Data cache write-back. This event occurs once for each [L/2
line (four words) that are written back from the cache.

Oxd PC Modified

Table 1: PXA-255 Performance Monitoring Events. The events
marked with a * counts the number of cycles that the condition
is present.

virtual instruction per cycle (IPC) counter by trackingtimgtions
(cycles are tracked by default on most devices). The vitoah-
ters are 64bits in size to reduce overflow problems. It isiptesso
selectively enable/disable sampling during the monitprin

In our target device, the Stargate processor, the PXA-Dahe-
ments three 32-bit event counters; the hardware uses onertb m
tor dynamic clock cycles. VPerfmon sets the remaining censrto
any two of the 14 events supported. The VPerfmon virtual tansn
reflect the same architecture ( (i.e. extended to 64 bitasds one
counter to count CPU clock cycles and the other two to monitor
events.

VPerfmon interfaces to and monitors other system events-to i
crease the accuracy of the HPM profiles. When the VPMon ini-
tiates a new program, it contacts VPerfmon The VPerfmoredriv
allocates a set of virtual counters for the new task. Sityjl&Perf-
mon allocates a set of virtual counter when a process undeii
trol of VPerfmon forks a child process. When the kernel penf®
a context switch to a task under VPerfmon control, VPerfmam ¢

figures and enables the counters. When the task is suspended o

terminates, VPerfmon stores the virtual HPMs.

To isolate application and operating system performante, t
VPerfmon kernel patch disables HPMs on interrupt entry and r
enables them on exit. This operation requires a read-maodifye
cycle that is equal to three XScale instructions. As a reshé
patch does not significantly increase interrupt latency.

VPerfmon also manages the profiling parameters set by defaul
or by the RPM user. These parameters are forwarded to VPerfmo
by VPmon upon program instantiation. The parameters cbntro

e System call monitoring (off by default). If on, VPerfmon
continues to monitor system HPMs during system calls. One
useful way to compare simulated data with real data coltecte
by RPM is to turn system call monitoring off when the simu-
lation system under investigation does not fully suppost sy
tem calls (as is common).

e Exceptions and floating point operation monitoring (off by
default): Many resource-constrained devices, includiugé
with StrongARM and XScale processors, do notimplement a
floating point co-processor. For such devices, floatingtpoin

operations are implemented as user level libraries or, more

commonly, as undefined instructions. For the latter, when th

kernel executes one of these instructions, it emulatesrtpat
point hardware in software. The VPerfmon driver can dis-
able performance monitoring during the processing of float-
ing point emulation and other exceptions. When this option
and the previous option are disabled, the VPerfmon virtual
HPMs reflect the performance of only user-space execution.
There is a 2% difference at most between RPM and Sim-
plescalar [2] simulation. This difference is due to therinst
tions required to turn HPM profiling on and off.

e Fixed versus arbitrary interval lengths (fixed intervalstea
with length 10 million instructions, by default): VPerfmon
can monitor and log the events for fixed or arbitrary length
intervals. For fixed-length intervals, the user specifies th
length in terms of some HPM count. Arbitrary intervals pro-
vide a way to the user to set interval boundaries withoutgusin
a fixed length. It is an array of long long integers. The VP-
mon program reads this information from a file and passes to
the VPerfmon using an device driver command.

VPerfmon facilitates interval-based data collection i@ GPIO
pin on the development board. Initially the GPIO pin is reset
logic O on program start. During program execution, VPerimo
toggles the pin’s value at then end of every interval. VPerfm
as mentioned above tracks interval lengths (arbitrary edfibus-
ing some performance event specified by the user. For thardata
this paper, we use instruction counts as the event and femgth
intervals of 10 million instructions. The oscilliscope igugpped
with two channels. One channel monitors the voltage shsistor
to measure power consumption. The second channel morti@rs t
GPIO pin that VPerfmon toggles. Using this setup, RPM is able
to log and track power, energy, and performance data atvaiter
boundaries.

2.2 RPM Web Interface

The WWW interface export most RPM functionality to the re-
search and educational community. The features that weosupp
via the interface include:

e Atool chain for cross-compilation of programs for the targe
device.

e An form to download the benchmark package. The pack-
age is a gzipped-compressed UNIX tar archive. The package
contains all of the necessary target binaries and input fites
addition, the package includes (in its root directory) dlshe
script, called start.sh, that initiates execution. We euily
support programs with execution durations of less than 10
minutes.

e An interface to control the execution (such as start, cancel
and the number of times to repeat the experiment (currently
the max is 5)).

e An interface to control the VPerfmon configuration (fixed or
arbitrary intervals, the interval start data (if arbitramtervals
are used), interval length (if fixed intervals are used)neve
to monitor, etc.

¢ An interface to the measurement equipment to direct to ac-
cess experimental results and to power cycle the boardéefor
or during the user’s experiments.

We password protect the web site to limit access and to limit
security problems. The web page is currently availabletigt



Processor 32 Bit, 400 MHz Intel PXA-255 Xscale
Arm architecture Version 5TE ISA

32 KByte Instruction and 32 KByte Data cac
2 KByte Mini Data cache

2 KByte Mini Instruction cache

32 MB Intel StrataFlash

1 Type Il CompactFlash Slot
(populated with 256 MB CF card)

1 PCMCIA slot

10 Base-T Wired Ethernet

RS-232

JTAG

USB (disabled at present)

I12C (disabled at present)

]

Memory
Expansion Ports

Network & Others

Table 2: Stargate device characteristics (RPM target devie)

Benchmark | Instr. Time Energy Diff. RPM
Count seconds joules % ovhd
108 EXT2 | RAM EXT2 | RAM %
gsmencode | 2.59 10.88 | 10.87 1530 | 1521 | 063 | 7.1
gsmdecode | 1.64 6.95 6.61 11.19 | 10.86 | 3.05 11.2
jpegencode | 4.28 48.53 | N/A 63.20 | NA NA 7.2
jpegdecode | 1.45 1946 | 11.36 | 26.45 | 1843 | 4349 8.2
mpegencode| 1.43 107.24 | 107.49 | 195.02 | 195.37 | -0.18 | 3.6
mpegdecode| 2.13 311.80 | 312.01 | 570.27 | 568.60 | 0.29 | 0.9

Table 3: Benchmark characteristics

/lwww.cs.ucsb.edu/"racelab/RPM . The login for inter-
ested reviewers isevl and the password igi10bisys06 . We
plan to make the webpage available to the research commitinity
this paper should be accepted.

3. EVALUATION AND ANALYSIS

To show the utility of RPM, we use it to evaluate the relathips
between the full-system energy and power consumption aridt CP
based events. Prior work considered the relationship lestvitee
events and microprocessor energy behavior — for both highaad
energy efficient CPUs such as those in which we are interesigd
the Intel XScale processor. As such, we are interested idgheee
to which CPU-based events explain observed, full systemepow
and energy performance. The RPM target device that we study i
the XScale-based Crossbow Stargate sensor network irdextee
node. The Stargate is similar in functionality and perfange(and
is similarly equipped in terms of and external devices) ® P
iPAQ hand-held.

In the following subsection, we describe our experimentethad-

use the standard power and energy functions:

VxI
VxIxt

Power

Energy

where I is the amperes running through a circuit avidis the
potential drop. The battery voltag®;, is dependent on internal
chemical components and diminishes as the capacity ofrpalte
creases. A program can reduce its energy consumption diyher
reducing the rate of dischargé, or the duration of discharge,

or both. The energy consumed by a program decreases theybatte
lifetime. Power consumption is also important becausecglyj,

the relation between battery capacity and rate of dischaagea
non-linear component and battery capacity decreases nastér f

if a program draws current at a larger rate. However, it isjibs

for one program to consume more power than another yet cansum
less energy (due to the time component in the energy conipuiXat
Power is also important, since its fluctuation relates diyeo the
heat produced by the system.

In order to plot power, energy, and HPM data on the same graph,
we normalize the data so that the mean is 0. We do so by suibggact
the average from the measured value and dividing the regtilteb
standard deviation. When we compute the correlation caesfitic
for two datasets, we do so using the normalized values.

In our evaluations, we use six popular, embedded systenchiben
marks from the MediaBench benchmark suite. We show the bench
mark programs and their characteristics that we collecsdgu
RPM in Table 3. The first three columns show the instruction
count, execution time, and energy for each benchmark. Timthfo
column shows the difference between EXT2 drive and RAM. The
fifth column shows the RPM overhead (in energy). The overhead
(relatively) decreases as the application becomes largercol-
lect benchmark energy characteristics, we run each benkHiva
times with RPM using the same input, delete the first run (due t
the high variability in performance due to system warmupjl av-
erage the results. We collect power data in fixed intervath @ath
length 10 million instructions. We use this methodologyotigh-
out our experimentation section.

We study the energy and power behavior for the benchmarks us-
ing two memory technologies: the compact flash card attaciaca
PCMCIA bus and the internal RAM. The flash is supported by the
EXT2 file system. JPEGEncode benchmark does not fit in RAM
on this device, so we exclude it from our RAM-based experimen
tal results. During the experiments, the wired networkriiatee is
connected but idle and there are no other tasks running.

RPM supports all of the performance monitoring events that w
showed previously in Table 1. However, to limit the amourdatia
we present in this paper, we only consider HPMs for instounti
per cycle (IPC), instruction cache miss, data stalls, iresion TLB
misses, and data TLB misses. These metrics have been shoen to

ology and benchmarks. We then show how we (and others) can Us&mnortant in modeling the CPU power consumption [4]. Toedll
RPM to measure and analyze the power and energy behavior ofyypym event statistics, we run the program repeatedly, difigone

complex programs. We then use RPM to investigate the relatio
ship between CPU-level metrics (HPM data and phase data col-
lected via simulation) and full-system power and energyaloir.

3.1 Experimental Methodology

We present the characteristics of the RPM target devic&; thgs-
bow Stargate, in Figure 2. We list the various componentsttiea
device implements broken down by those specific to the psotes
memory, expansion ports, and other.

In our experiments, we investigate both power and the energy
For real devices, the capacity of a battery is expressed ihoGs,

i.e., Ampere-hours, that the battery can deliver to theatel]. We

statistic at a time.

3.2 Complexities in Full-System, Real Device
Behavior

Resource-constrained, battery-powered devices and sbétir
ware exhibit complex interactions and behaviors that RPEbis
to capture. As an example, Figure 2 displays the RPM output fo
one of our benchmarks (JPEGDecode). The benchmark decodes a
large file (30MB) and writes to an EXT2 Linux file system. The
horizontal axis of the figure is time. There are two sets chAgdahe
per oscilloscope channel: Power (at the top) and executmyress
(at the bottom). The power data shows periods of stable hahav
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Figure 3: GSMEncode performance data from RPM over time
for the first half of benchmark execution. We plot all metrics

with energy and power. We normalize all data as described in
Figure 2: Power consumption of JPEGDecode on Ext2 file sys-  Section 3.1.
tem. The top line shows the power consumption, and the bot- 25 *Icpycdes [ S
tom line shows the interval detection output pin voltage red- s ——ITLB Misses —DTLB Misses

ings. The power phases (during the initialization and file wite)

are marked with an arrow. A post-execution effect, due to 15
writes on compact flash, follows approximately 20 secondstaf
execution and very consistent across runs.
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(phases) and periods of instable behavior (transitions).
We indicate execution progress by toggling a binary swisthe 05 t & H i ‘
time an interval completes. Interval sizes are fixed for éxigeri- N . -
ment at 10 million instructions. The second channel simplpots
a line of ones and zeros. and is set to 1 when the program atarts -15
indicated in the figure. Whitespace between interval togglaes
indicate that the interval takes more time than other itisrwhich
appear to be blocks of adjacent lines. For example the firestial
in the program takes significantly more time than the intisrtizat
follow it.

Another interesting behavior occurs approximately 25 sdso
execution terminates at which point there is an increaseirep
consumption. We refer to this agpast-execution effeciThis be-
havior is consistent across runs and we do not obse_rve “‘?”“” show data from the entire execution of MPEGEncode.
when we execute the application from the RAM device. Sincstmo The data exhibits uniform behavior for GSMEncode and bi-ahod
HPM measurement ends when the program ends, HPM data is un-, . o

" . behavior for most of the metrics in MPEGEncode. For GSMEn-
able to capture such activities (and even this assumesthetRMs

are operational during operating system execution). Sigjlsim- code, no HPM metrics appears to track power. However, it is un
op gop gsys ) hst clear from the visual representation of the data whetherdti? Ms
ulation cannot capture such behavior unless the systemwsrpo

accurate and supports OS execution. Such phenomenon &re rea{[raCk energy. For MPEGEncode, both energy and power move in

and motivate the need for full system monitoring of energyer, unison. Moreover, a few of the metrics appear to track thimtior

and performance in a unified experimentation framework sach either either directly or inversely (€.g., IPC).
RPMp P We next investigate the relationship between HPM behavidr a

that of power and energy more formally. To evaluate whether t
. . HPM metrics explain power and energy variability, we coneglut
3.3 The Relatlonshlp Between the statistical correlation coefficients between the podegaset
HPMs and Energy/Power and each HPM dataset (likewise for energy). Correlatiomntsp
The overall power, energy, and performance behavior ofrtlie i how well one dataset explains another. The resulting caroel
vidual benchmarks varies significantly. The GSM benchmarks value is between -1 and 1. Values near zero indicate vetg litt
very stable and produce uniform behavior. MPEGEnNcode éstab correlation, while values at the other extremes indicagé lsorre-
very regular bi-modal patterns. JPEGDecode, as we showtein  lation. A correlation of -1 means that as data in one set dsei®
example above, varies significantly over the life of the paog data in the other set increases similarly. A correlation afdans
Figure 3 shows graphs for two representative benchmarks (GS that the data in the two sets vary together in the same directi
MEncode and MPEGEnNcode). For each graph, we plot each aver- Figures 5 and 6 show the correlations for all of our benchmark
age metric value for each interval in the program over ittilifie. for each of the HPM metrics. Figure 5 shows the correlatiotie
We produce this data by executing the benchmarks on the EXT2 EXT2 file system and Figure 6 shows the correlation of the RAM
files system; the performance of these benchmarks usingAv R drive. The left graph in each figure shows the correlationhef t

0 20 40 60 80 100 120 140

Figure 4: MPEGEnNcode performance data from RPM over the
entire execution. We plot all metrics with energy and power.
We normalize all data as described in Section 3.1.

drive is similar. For GSMEncode, we show only the first half of
execution for clarity; the second half is also similar, hoare We
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Figure 5: Correlation of HPM metrics for the EXT2 file system. Graph (a) shows the correlation of each metric with energy ad (b)
with power.
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Figure 6: Correlation of HPM metrics for the RAM drive. Graph (a) shows the correlation of each metric with energy and (b) vth
power.

VS Energy IPC Cycles ICache Misses | Data Stalls | ITLB Misses | DTLB Misses
Average -0.261 0.294 0.176 0.093 -0.052 0.250
Min Name MPEGEncode | MPEGDecode| MPEGDecode | MPEGDecode| MPEGDecode | MPEGDecode
Min -0.930 -0.058 -0.741 -0.930 -0.663 -0.452
Max Name JPEGEncode | MPEGEncode JPEGDecode MPEGEncode | MPEGEncode | JPEGDecode
Max 0.111 0.978 0.674 0.882 0.235 0.812
VS Power

Average -0.139 0.082 -0.172 0.075 0.049 -0.018
Min Name MPEGEncode | JPEGDecode JPEGEncode JPEGDecode | JPEGEncode | JPEGDecode
Min -0.987 -0.451 -0.573 -0.552 -0.075 -0.722
Max Name JPEGDecode | MPEGEncode MPEGEncode MPEGEncode | MPEGEncode | MPEGEncode
Max 0.455 0.973 0.332 0.931 0.352 0.811

Figure 7: Correlation across benchmarks for the EXT2 file sysem. The table shows the average (row 2) as well as the minimum
and maximum correlation across benchmarks. Above each mimum and maximum correlation value, we include the name of the
benchmark for which the minimum or maximum occurred.



HPM metrics with energy. The right graph in each figure shdwes t
correlation of the HPM metrics with power.

The data indicates that across benchmarks, for eithergetale
vice, the relationship between HPM metrics and power and en-
ergy is widely varied. GSMEncode shows the weakest relsiign
across all metric will all correlation values less ttaR. All metric
values that are near 0 (betweeid).2 and0.2) indicate very weak
correlation.

For particular benchmarks, we can identify certain metifieg
correlate well. For example, data stalls and data TLB misses
relate well with both energy and power for MPEGEncode. Other
trends are less clear and are very particular to the benéhamat
device type.

Across all benchmarks, the cycle based metrics (IPC anésycl
the first two bars for each benchmark) exhibit the largesttation
to energy. IPC correlates negatively for most programss agu-
itive — an increase in IPC decreases energy or power. However
JPEGENcode and MPEGDecode, IPC correlates positively.nWhe
a metric correlates positively with one benchmark and riegjsit
for another, it indicates that the metric will be difficultiise accu-
rately as part of a full-system power or energy model. Thatush
metrics do not explain the variance in the power or energg ohat
the same way for all benchmarks. Most of the metrics produck s
results (positive and negative values for different berats).

benchmarks that include significant amount of floating pojer-
ations. The PXA-255 processor does not have a floating point ¢
processor thus, floating point instructions generates furatk in-
struction exceptions and the kernel acts as a softwarerfpptint
emulator. As we are more interested in the applicationsetia
the whole system and to be able to compare our results adfess d
ferent processors and simulators such as Simplescalareiged
to shut down performance counters during the undefineduictsbn
exceptions. In this execution mode, the intervals thatidelheavy
floating point operations are correctly identified as mucharex-
pensive (in terms of energy) phases than the others. Ihdyieach
floating point instruction looks as if it is a conventionastruction
with an extremely long clock cycle and much higher energy.cos
JPEGDecode and JPEGEnNcode, as mentioned previouslyy highl
variable in their performance behavior. JPEGEncode redaiga
file, and JPEGDecode writes a similar sized file, exploitimg he-
havior of file system. Figure 10 shows the energy consumption
and instruction miss correlation for JPEGDecode (file Writed
JPEGEnNcode (file read) on EXT2 and RAM devices. On datasets
collected from EXT2 drive, the effect of heavy file systemesx
(towards the initialization for JPEGEncode, and towardsfthal
part for JPEGDecode) are easily visible. The increasingyistem
access increases the energy consumption. FurthermoreMiss
rate also increases with more file system calls due to morexbn

We present the average correlation as well as the minimum and switches, suggesting the reason for high correlation betweese

maximum correlations in Figures 7 (for EXT2) and 8 for (RAM).
By showing the minimum and maximum, we can see which met-
rics produce both positive and negative correlations achesch-
marks. The top half of each table shows the correlation of HPM
versus energy and the bottom half is versus power. The caumn
present the data for each metric. The first row of each se(tiqn
and bottom) shows the average correlation across all begrgism
for each metric. Below this, we show the minimum and the max-
imum correlation across benchmarks and identify the beackm
responsible for the minimum and maximum values. GSMEncode
and GSMDecode are never the minimum or the maximum. This is
because, all of the metrics are near 0 (uncorrelated) ag¢heps
figures show.

Figure 9 shows the?? value which is also known as theri-
ation explained We compute this value by squaring the average
correlation (shown in the previous tables) and multiplyiryg100.
This value indicates what percentage of the variance in riieegy
and power data, respectively, is explained by each HPM metri
The left graph shows the data for the EXT2 file system and the

two parameters. Another interesting result is high negatorrela-
tion of energy and IPC. This is also due to the same reasong hi
number of instruction misses reduces IPC, so more time agrgjgn
is needed to complete the execution of an interval. The JREGE
code on EXT2 is not effected in the same way.

MPEG (both Encode and Decode), by far, exhibit the largest co
relation between HPM metrics and both power and energy. iShat
because MPEG shows large variations in energy consumgiioa:
reason is the existence of software floating point emulat@hen
these intervals are entered, the energy cost of an ingirustid-
denly explodes, however, IPC decreases, introducing fegative
correlations. Another reason is the characteristics of MPHEPE-
GEncode, reads an input frame, encodes, writes the encedad d
and moves to the next frame. The investigation of run-tinta da
veals very efficient processing phases where instructiohnecand
TLB misses are almost zero, and data stalls are at a minimom- C
sequently, these intervals have the largest IPC, and sshalergy
consumption. Even though a reduction in energy consumgiisn
pears nonintuitive, it is possible since each interval igrillion

right graph shows the data when we use the RAM drive. The data instructions, any event increasing the IPC rate, can retheen-

shows that across benchmarks, each HPM metric explainsya ver
low percentage of the variance in either energy or power\ieha
and for either storage device. The clock cycle metrics explze
largest percentage of variance, i.e., cycles and IPC, #&orehsons
we articulate above.

3.4 Further Analysis

ergy consumption.

3.5 Using RPM to Study Phase Behavior

We also use RPM to evaluate the efficacy of code-based phase
characterization in capturing power and energy phases. asegh
characterization attempts to group periods with similaceion
characteristics together so that observed behavior isumifvithin

In general, running the benchmarks on the RAM device reduces a phase and each phase represents a distinct behavior inothe p

the variability in performance and energy data when contbtoe
running the programs on the compact flash. Our evaluatiatis in
cate that the effect of the latter is most visible when larlgs fare
written. For example, the JPEGDecode, which generates &an ou
put file of almost~ 30M Bytes uses 50% more energy when run
on compact flash. This cost does not include the post-exacuti
effect that we described above. Table 3 that we presentdidrear
shows the differences in the average energy consumptiosafcit
benchmarks.

gram’s execution. Much prior research has focused on dagtur
and exploiting phase behavior, especially in runtime izt and
optimization. Recent studies show that phase behavioucegpat
the basic block level is indicative of a variety of executicmar-
acteristics at the architectural level. We perform a priglary in-
vestigation to study the correlation between code-basdeaergy
phases in this section.
As a first step, we generate similarity matrices from the per-

interval basic block vector trace and per-interval energasure-

The MPEGENcode and MPEGDecode applications are the only ments. Similarity matrices present a visual represemtaifdime



VS Energy IPC Cycles ICache Misses | Data Stalls | ITLB Misses | DTLB Misses
Average -0.395 0.391 -0.095 0.209 -0.109 -0.026
Min Name JPEGDecode | GSMEncode MPEGDecode | MPEGDecode | MPEGDecode | JPEGDecode
Min -0.964 -0.094 -0.657 -0.947 -0.645 -0.469
Max Name | MPEGDecode | MPEGEncode MPEGEncode JPEGDecode | MPEGEncode | MPEGEncode
Max 0.056 0.979 0.181 0.907 0.230 0.696
VS Power

Average -0.060 0.029 0.057 -0.016 0.035 0.188
Min Name MPEGEncode | JPEGDecode MPEGDecode | JPEGDecode | GSMEncode | MPEGDecode
Min -0.989 -0.893 -0.075 -0.826 -0.089 -0.213
Max Name JPEGDecode | MPEGEncode MPEGEncode MPEGEncode | MPEGEncode | MPEGEncode
Max 0.891 0.975 0.338 0.935 0.345 0.798

Figure 8: Correlation across benchmarks for the RAM drive. The table shows the average (row 2) as well as the minimum and
maximum correlation across benchmarks. Above each minimunmand maximum correlation value, we include the name of the
benchmark for which the minimum or maximum occurred.
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varying behavior. Each entry in a row or column represents-an
terval. We list intervals in each row or column in the ordewimich
they occur in the program. An entry in the matrix at positigyy)
is a pixel colored to represent the similarity between wekx and
interval y (black is similar, white is completely dissimija Fig-
ure 11(a) shows the similarity matrices for four benchmddce
per column). The first row of is the BBV-baseed matrices; #e s

profiling of a target device. The toolset consists of an Adilagh-

end deep-memory oscilloscope, an Agilent programmableepow
supply, and a software system that we developed to enableteem
access and programmable experimentation, that coupleswsrp
and energy profile collection with HPM profile data. The taag
vice that we currently have plugged into the RPM is a Crossbow
Stargate sensor network intermediate node. We are cuyrreotk-

ond row shows those computed using real energy data. GSMEnN-ing on supporting a very similar device, the HP iPAQ handihel

code and GSMDecode show very little variation for eitheretyb

The primary difference between these devices is the LCDalisp

matrix. JPEGEncode and JPEGDecode however, do show someand user interface (key pad, buttons, and touch screen).

differences; in particular, the energy matrices show metaitiand
resolution, i.e., differences between intervals. Thisdsduse the
differences in energy data is more pronounced than therelifées

in the code executed during the intervals in the last 1/3 e€etion

for JPEGDecode and the initial 1/4 of execution for JPEGHecO
The changes in energy are due to the use of the file systemdor fil
writes and reads for JPEGDecode and JPEGEncode, respgctive
as we explained in the previous section.

We use the basic block distribution analysis based teclerigy
scribed in [21] to generate code-based phases given arvahter
length of 10 million instructions. We use the Simplerscalian-
ulator to generate per-interval basic block vector traces the
Simpoint framework [22] to obtain a phase classification.géo-
erate energy phases, we cluster per-interval RPM poweruresas
ments using the K-means clustering algorithm. The methodeb

We show the utility of the toolset and its importance for rgse-
constrained and battery powered systems by using it to stugy
rently open research questions in this area. In particwinves-
tigate how well HPM and phase behavior data correlate witigpo
and energy data. In addition, we investigate the impact ohorg
devices and file system implementations on power and energy.

The most closely related work in this area include systeras th
employ HPM data to estimate power and energy behavior ahd tec
niques for measurement and characterization of power agidjgn
behavior using real devices. To our knowledge, extant ambres
to measurement and characterization of power and energvbeh
ior are different from ours in that they either consider ohigh-
end processors (e.g., the Intel Pentium class), or do nesiigate
the full-system power consumption (i.e. they consider ciBU
power consumption). Another key difference is that manypmri

has one caveat. Even though XScale and Simplescalar use ARMstudies use the terms power and energy interchangeablyoand f

ISA, the dynamic instruction counts in XScale and Simplesaare

not 100% compatible. Furthermore due to the OS overheads (ev
though the HPMs are disabled during interrupts and schaglui

is not possible to eliminate all the overhead), XScale censnend

to increase a little faster. For most of our benchmarks, wado
the variation in instruction counts to be within 1%. We exigdu
MPEG (encode and decode) from this study since its use of float
ing point operations yields a larger variation across theutited
environment and the real-time measurement system. Footlre f

primarily on power. We focus on popular resource-conséite-
vices with energy-efficient processors and show that it fartant

to measure, understand, and characterize both to underkthn
system battery consumption. No extant system providesteeam
cess for highly programmable experimentation with a se¢fate
power and performance profiling tools.

There is much work that makes use of HPM data to estimate,

characterize, and optimize performance (as opposed torpavg. [8,
19, 1]. However, those that consider how HPM data correlatis

benchmarks studied, we find a fixed humber of phases (3 — chosenprocessor power and energy consumption is more related t@ou

arbitrarily) using both the basic-block-vector and K-meatus-
tering techniques. In addition to visual correlation, wefify
the difference between the two by computing the error irmessti
ing measured power using basic-block-vector phases. Tile ta
in Figure 11 lists the percentage error in estimating poveimgu
basic-block vector phases in column three. The error is asurea
of the deviation of estimated energy from measured enerdyisan
omputed asPower Deuvy, as:

S L (P - Ryi)?

E —
rror N

where P; is the measured energy for intervial R;; is the repre-
sentative energy for the phase that intervaielongs to. The rep-
resentative energy for a phase is computed as an averagealbver
intervals belonging to that phase. The table also providgaild
about the three phases found by each of the two clusterirggseh
We can see that basic-block-vector based phases and ernesgsp
not only yield different clusterings, but also differ in tbkearacter-
istics of phases found. An important point to note is thahalgh
the estimation error is very low, basic-block-vector bapkdses
do not necessarily yield distinct phases in terms of eneedpabior
although variations in energy behavior do exist.

4. RELATED WORK

The work that we describe herein is a remotely accessiblsg¢bo
for highly accurate power and energy measurement and CBedba

search and goals. Bellosa et. al [24] first proposed the usé of
CPU event counters to estimate power consumption and teeguid
dynamic voltage scaling. The authors focus on memory and CPU
power only; these are the only components that they can pronit
via the counters. The authors make two observations: (i)yMan
memory requests per second indicate heavy use of memorg:so e
ergy performance will benefit if CPU speed is reduced; and (ii
The IPC indicates the sensitivity for performance losshéfitPC is
low, the thread will be less sensitive to clock speed reduactThe
authors propose a modular system that samples HPM infamati
every timer interrupt and then uses the policies above focgs-
sor voltage switching. The support their case, they medsilne
energy consumption of the CPU (using a current meter attbithe
the CPU) for several applications, using different speeel$rang-

ing from 333MHz, 400MHz, 466MHz, 533MHz, 600MHz and 733
MHz. They maintain the same speed throughout the lifetinmntaef
program (i.e. they do not switch voltages during prograncexe
tion). Their results show that most applications experehigh
performance losses with lower CPU speeds.

Many other prior studies construct models of CPU power con-
sumption using HPM data. In [16], Kadayif et al. describe yEC
a model that estimates energy consumption of memory on-Ultra
SPARC CPU. vEC uses HPMs to determine rate of use of each
component in the memory hierarchy, including as the bushesac
and main memory. They estimate energy using the analytiodbin
defined in [17] which models the energy consumption of CPU-com
ponents with an average 2.4% error relative to a circuiglleim-



Energy

gsmdecode gsmencode jpegdecode
(a) Similarity Matrices
BBV Measured

Total % BBY Average Average

Benchmark Energy Estimation Phase # Intervals Ener # Intervals E

Error in Phase 8YPEr ] i Phase nergy per

Interval Interval
1 120 0.0593 11 0.0728
2 62 0.0598 82 0.0597
gsmencode 15.254 0.025 3 73 0.0599 163 0.0586
1 33 0.0686 1 0.1637
2 25 0.0690 7 0.0777
gsmdecode 11.144 0.069 3 102 0.0695 153 0.0682
1 93 0.1015 52 0.1958
2 227 0.1884 310 0.1059
jpegencode 63.118 0.114 3 100 0.1048 62 0.3243
1 87 0.1539 130 0.1367
2 19 0.3544 4 0.9125
jpegdecode 26.374 0.546 3 35 0.1650 10 0.4953

(b) Power Estimation using BBV Phases

jpegencode

Figure 11: (a) Visualization of bbv and energy phases usingrilarity matrices. The interval length used is 10 million instructions.
The number of intervals, n, vary and each graph is a n x n matrixwith the x and y axes representing the interval identifier. The
lower triangle is a mirror image of the upper one and is maskedor clarity. Each point on the graph indicates the similarity between
the intervals represented by that point. Dark implies similar and light implies dissimilar. The diagonal is dark, sinceevery interval

is entirely similar to itself.



ulation. Similarly, the authors in [15], describe a genactieme As resource-constrained, battery-powered devices afsthfe-
for estimating runtime power of the CPU and its constituemhe¢ ware continue to increase in complexity and capabilitys itpor-
ponents using HPMs for the Pentium Pro processor. The author tant for us to understand full system energy and power behafti
measure power via an external multi-meter and shunt resa$to we are to identify techniques that extend battery life. Tolifate
tached to the CPU of the device. better understanding of the energy and performance clegistats

Isci et al [12] build upon this scheme to estimate the power co  of these complex systems, we present RPM, the Remote Perfor-
sumed by a Pentium-1V processor. They identify 22 companent mance Monitor.
of the processor and estimate power cost of each of the cagnpon RPM is a remotely accessible system to characterizearem-
using external power measurement tools attached to thegsoc bedded devices. We provide remote access via a user-fyiarati
They use the HPMs to compute the rate of use of each compo-interface and hide most of the cumbersome lab equipmeniisieta
nent. The sum of power consumption of each component giees th from the end user. We couple high-end external power andygner
power consumption of CPU. Bricher et al [3] proposes a simila measurement with device-level CPU performance monitors.
but much simpler model that uses only two performance cosinte RPM characterizes the system in a number of different levels
to estimate power consumption of Pentium-IV processors.aAs For example, users can monitor a single application or pielti
high-end processor, Pentium-IV offers a large set of eveabters applications by including or excluding the effect of systeafis. It
(i.e. 18 counters and 59 event classes). Embedded prosem®sor is also possible for users to change the characteristi¢eotmote
much more limited in terms of the number of counters supplorte  system. Moreover, an RPM user can evaluate the programg usin
This increases the difficulty of establishing an accurateguasti- any of the valid five clock configuration options.
mation model. Contreras et al [4] investigates differentieidor We use RPM to investigate a number of open research questions
CPU and memory on a XScale development board. Their experi- regarding the correlation between CPU-based metrics anémo
ences show that a model using five HPMs can correctly estithate ~ and energy consumption. The relation between HPM staiaticl
power. However, they also show that the error in their modellwe CPU and memory power consumption has been investigated many
as high as 70%. This error is due to inaccurate modeling ofmem times, however, the correlation between HPM monitors aadth
ory accesses. Moreover, this model uses CPU HPM data to modelergy consumption is generally overlooked.

CPU power consumption, not full system power consumption. We find that HPM metrics do not correlate well with full-syste

In [12], a runtime power monitoring methodology was promgbse energy and power consumption for most benchmarks. We aldo fin
for runtime microprocessors. Even though this setup islamtd that it is important to consider system characteristichag file
ours in terms of design; there are a couple of significaneciffices. system type, system calls, 1/0O device types, etc., to cagnergy

(i) The proposed system is designed for CPU power monitdring  and power behavior. We also investigate how well code-lgliake
high-end systems, whereas our system is designed for mimigito  identification maps to the phases in power and energy. We find
the energy consumption of the whole system in embeddedeafevic  that there are many more phases identified by code-levaiitpobs

(i) The proposed methodology collects HPM data at run-tirom than are actually exhibited by full-system energy perfaroga

the monitored system, via ethernet. The run time data dalec As part of future work, we are adding additional devices t&/RP
and network connection perturb power, energy, and perfocema We are currently extending RPM to support two different g/pé
which is undesirable. Since the authors only monitor anidnesé HP iPAQ handheld. We will provide a mechanism to switch be-

CPU power consumption using a very fast processor, thisipert tween the devices as part of the web experiment request. RPM
bation can be negligible. In our setup, we are monitoringethe supports any device that runs Familiar Linux. Since RPM tesip
ergy consumption of a whole system, thus, the overhead bfanic power and performance monitoring, devices that exportvisairel

online monitoring system is not acceptable. The same asjtbgr performance monitors exercise all of the RPM functionalitye
tended this system in [13, 14], to evaluate the correlatetmben are interested in understanding the full-system power\behaf

the CPU power consumed and that estimated by HPM and phasehandheld with LCD displays and other types of /O devices.
profiles. Again, the studies are limited to CPU power only, fond Also as part of future work, we are extending RPM to enable
system power. They show that HPM-based estimations produceautomatic dynamic clock scaling and using RPM to investigat
accuracy errors of 2-7% and that phase-based estimatiods ¢ number of interesting questions. The most important is ¢ntidy
errors of 3-12%. which set of device behaviors does correlate well with fyk-s

Other work on phase-based power characterization have beentem energy and power. We are currently developing methgéeso
proposed to reduce energy via phase-guided dynamic cache an to characterize the systems that infer application charistics to
processor bus width reconfiguration [23] and phase-awanete manage global resources. One such system is AutoDVS [Qwhat
program profiling [20]. In the latter, we sample the programce developed in prior work. AutoDVS uses application inteiratt

per phase to reduce profiling overhead. RPM, describedr)ean to manage CPU clock speed. We are interested in combinisg the
also do the same (sample the intervals of interest) via ésinger- behaviors and effectively predicting future patterns i-$ystem
face. The user must specify which intervals to sample (cbtlata power and energy consumption.

for power, energy, and HPM performance). The user can genera
this interval list using our tools from this prior work. Weaithese Acknowledgments
tools to do so to investigate the similarities between doased
phases (i.e. periods of stability) and phases in power artygn
data. Most prior work on phase behavior employs simulat®mn t
measure, estimate, and evaluate the efficacy of phase tivézae
tion [20, 23, 22, 7, 6]. Our work herein, uses only real data; ¢
lected online, using a remotely accessible, programméitidgaly
accurate and and low overhead measurement system called RPM

This work was funded in part by Intel, Microsoft, and NSF dgran
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