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ABSTRACT
Understanding the full-system power and energy behavior ofreal,
resource-constrained, battery-powered devices is vital to accurately
characterize, model, and develop effective techniques forextending
battery life. Unfortunately, extant approaches to measuring and
characterizing power and energy consumption focus on high-end
processors, do not consider the complete device, employ inaccu-
rate (program-only) simulation, rely on inaccurate, course-grained
battery level data from the device, or employ expensive power mea-
surement tools that are difficult to share across research groups and
students.

In this paper, we present RPM, a remote performance monitor-
ing system, that enables fine grained characterization of embedded
computers. RPM consists of a tightly connected set of components
which (1) control lab equipment for power measurements and anal-
ysis, (2) configure target system characteristics at run-time (such as
CPU and memory bus speed), (3) collect target system data using
on-board hardware performance monitors (HPMs) and (4) provide
a remote access interface. Users of RPM can submit and config-
ure experiments that execute programs on the RPM target device
(currently a Stargate sensor platform that is very similar to an
HP iPAQ) to collect very accurate power, energy, and CPU per-
formance data with high resolution.

We use RPM to investigate whether CPU-based performance
data in the form of HPM metrics or program phase behavior cor-
relates well with full-system energy or power behavior. Prior work
shows that both accurately estimate processor power consumption
for high-end CPUs. In resource-constrained devices, such as the
one we study, however, the processor consumes a much smaller
portion of the total power in the system than for high-end proces-
sors. Our experimentation with RPM for the Stargate and set of
embedded system benchmarks, show that CPU-based metrics do
not correlate well with full-system energy and power consumption.
Moreover, we find that full-system energy and power varies signifi-
cantly with the type of memory device and file system.
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1. INTRODUCTION
As battery-powered, resource-constrained systems continue to

grow in capability and complexity, it is increasingly difficult to ac-
curately measure and characterize the full-system power consump-
tion of real devices. However, we must do so if we are to effectively
model, predict, and optimize programs and systems to increase bat-
tery life. Extant approaches to measurement and characterization
of power and energy behavior include simulation, processor-level
metrics, and measurement via external monitoring devices (e.g.
multi-meters).

Simulation and CPU-based techniques are most commonly used
to evaluate power and energy consumption of a program executing
on a particular device. Simulation is limited in that the simulation
process introduces error in both performance and power estima-
tion. Moreover, most simulation systems emulate a single program
as opposed to a complete system including operating system and
external devices – each of which can significantly impact power,
energy, and performance.

Hardware performance monitors (HPMs) have gained wide-spread
use recently for estimation of CPU processing power [24, 16,4, 15,
12, 13, 14]. In addition, other types of processor-level metrics have
been shown to be effective for predicting CPU performance and
power consumption, in particular those related to program phase
behavior [23, 3, 13, 14]. These processor-level metrics have been
shown in these prior works to correlate well with processor power
consumption [4, 12, 13, 14, 15]. Unfortunately, prior work does
not evaluate how well processor-level metrics correlate with or es-
timate the power and energy consumed by the entire system (as
opposed to simply the CPU power and energy consumption). Full-
system energy is important for techniques that attempt to extend
battery life in resource-constrained, mobile devices.

Moreover, most prior work on HPM-based power prediction fo-
cuses on high-end processors such as the Intel Pentium classof
processors. These processors consume a much larger portionof the
total system power than the processors used in resource-constrained
devices such as those in which we are interested: hand-helds, sen-
sor network nodes, and cellular phones. These devices commonly
implement energy-efficient processors such as those from the Stron-
gARM [10] and XScale [11] family of processors.

Our prior work employed internal battery monitors to measure
and characterize power and energy consumption of resource con-
strained devices [18, 26, 25]. Unfortunately, all extant internal bat-
tery monitors or mobile devices are coarse grained, not program
specific, and inaccurate. A more accurate approach to measuring



the power and energy consumed by a device is to use high-end cur-
rent meters such as oscilloscopes and programmable power sup-
plies that sample a system via external probes with high resolution
and accuracy. External systems, however, are expensive, immo-
bile, and cannot be used remotely. These factors limit the degree
to which such systems can be shared by geographically separated
researchers and students.

To enable the characterization of a full-system as easily and ac-
curately as possible, we developed a toolset called theRemote Per-
formance Monitoring (RPM)system. RPM consists of both hard-
ware and software components. The hardware components include
a set of high-end tools to monitor the target microcomputer.The
software tools include utility programs to configure various system
characteristics of the monitored device, and operating system ex-
tensions and device drivers to collect performance data (such as
HPM counters). A GUI program and a web interface enables re-
mote users (e.g. students and researchers) to submit jobs for perfor-
mance profiling to our system, i.e, to extract accurate performance
profiles without investing in, installing, and managing their own
system. RPM collects power, energy, and HPM data for fixed- or
variable-length intervals. Interval lengths are in terms of dynamic
binary instructions and can be set by the user upon job submission.
Users of our system can also control which metrics RPM collects
and which intervals RPM samples.

At present, we use a RPM to characterize a Crossbow Stargate
embedded microcomputer. The Stargate implements an Intel XS-
cale processor and a number of I/O devices. The Stargate is very
similar in functionality to an HP iPAQ handheld device (without the
LCD display), and it is used extensively in sensor network research.

We employ RPM to investigate how well processor-level metrics
correlate with full-system power and energy consumption bypro-
grams. We consider a number of different HPMs as well as a tech-
nique that identifies code-based phases in program behaviorusing
simulation. We make many interesting observations using RPM:
We find that

• HPMs do not explain the variance in full-system power and
energy consumed by the device for the programs that we
have studied. This is in contrast to prior works that show
that HPMs are effective for explaining variance inprocessor
power consumption.

• IPC is also not highly correlated with power and that for
some programs IPC is correlated to some degree with energy.
Prior work shows that IPC is a good measure of processor
power consumption.

• Branch-based phases do not map well to power and energy
phases.

• I/O types and their OS support, e.g., volatile memory and
file systems, can impact the power and energy consumed by
a program significantly.

In summary, with this paper, we contribute

• A remotely accessible and freely available toolset for remote
performance monitoring of XScale programs.

• An RPM system that automatically collects accurate power,
energy, and hardware performance monitor profiles.

• An RPM web interface through which users can submit jobs
to the system for profile collection. User control what met-
rics RPM employs, interval size, and which intervals to pro-
file.

• An analysis enabled by RPM of the efficacy of commonly
used processor-level metrics for estimating full-system power
and energy consumption. Prior work has shown such tech-
niques to be effective for processor-level estimation of power.

• An analysis of how well program-level phase behavior maps
to full-system power and energy behavior.

• An evaluation of the impact of memory types and file system
implementations on power and energy consumption.

We believe that our work provides a shared infrastructure that will
enable researchers and students to collect fine-grained, highly ac-
curate power, energy, and HPM profiles from a real system using
real programs without investing in the necessary hardware.More-
over, our measurement analysis using RPM for real programs re-
veals that current approaches for processor-level power estimation
do not correlate well with full-system power and energy behavior.

2. REMOTE PERFORMANCE
MONITORING (RPM)

One of the primary goals of RPM is to provide a research test-
bed for power studies on embedded systems. Understanding and
characterizing energy behavior is critical for techniquesthat ex-
tend battery life in embedded and mobile systems. To enable this,
we require mechanisms that measure the power and energy a de-
vice consumes at a high resolution (fine grain) with high accuracy.
Moreover, we must understand the power and energy behavior of
the device as a whole to ensure that we identify the primary con-
tributing factors of battery drain and that the techniques we develop
reduce this drain (and do not accelerate it).

Recent research using real systems has shown that hardware per-
formance monitors correlate well with, and thus, can be usedto
estimate, the power consumption of the CPU [24, 16, 4, 15, 12,
13, 14]. Similarly, estimation based on patterns in the executing
code, i.e., phase behavior, is also successful for CPU powerestima-
tion [3, 13, 14, 23]. For systems for which the CPU is the primary
consumer of energy, these techniques may be adequate. However,
processors vary greatly in capability, energy consumption, and the
portion of the full-system power and energy consumption to which
they contribute. Moreover, prior work has focused on power alone.
However, high power consumption can result in lower total energy
consumed if the execution time is significantly decreased. Total en-
ergy consumption is key to understanding and prolonging battery
life in resource-constrained systems – so both must be measured,
studied, characterized, and accurately understood.

An alternative approach to measurement of power and energy
behavior for real systems is to employ a set of external measure-
ment tools. Such tools include a multi-meter, oscilloscope, and pro-
grammable power supply and enable highly accurate and very fine-
grained measurement (i.e., a large number of measurements per
millisecond) of power and energy consumed by a device. Unfortu-
nately, these tools are costly and immobile, making them less than
ideal for sharing between geographically disjoint research groups
and students. Moreover, these systems only collect power-related
metrics; access to the performance profiling capabilities that a de-
vice may have is not supported.

The goal of our work is to extend such a system to enable con-
current performance profiling and shared access to the system by
remote users. We refer to this system as theRemote Performance
Monitor (RPM)and provide an overview of its primary components
in Figure 1. RPM is a tightly integrated suite of tools to monitor
program energy, power, and CPU performance. The RPM includes
four components:



Figure 1: RPM Overview.

• A device driver and Linux kernel patches, called VPerfmon,
that enable and control HPM, power, and energy profiling.

• A user program, called VPMon, that executes a submitted
program under the control of VPerfmon.

• A user program, called SCL, that dynamically switches CPU
frequency level.

• A Windows XP GUI program called the PowerTool, that
monitors and controls the lab equipment (oscilloscope and
power supply), and sets the experimental parameters.

• A web interface through which remote users can submit pro-
grams to the system for execution and profile collection. Users
specify a set of parameters that control how often RPM pro-
files the program, the duration of profiling, profile granular-
ity and accuracy, CPU frequency, and the metrics that RPM
collects.

RPM monitors program power consumption at a very fine gran-
ularity (2K measurements/second) and high accuracy (1mW reso-
lution) by default. A key difference between RPM and past mea-
surement systems, is that RPM monitors the energy and power con-
sumed by the entire device. We can extend RPM to monitor indi-
vidual elements such as memory and CPU; however, our focus in
this work is full-system power consumption.

RPM consists of an Agilent deep-memory oscilloscope that mon-
itors the current passing through a high-precision resistor connected
to the target computer power supply. We connect the oscilloscope
to a workstation through a general purpose interface bus (GPIB).
The PowerTool executes on the workstation and consumes, ana-
lyzes, and packages the collected data. The PowerTool also con-
trols a high-precision, programmable power supply, the Agilent
E3648A. In addition, RPM users can investigate and rewrite the
boot-loader on the target devices using the PowerTool. We wrote
the PowerTool software in the portable C# language using theMi-
crosoft .Net platform.

RPM monitors atarget deviceon which we execute the VPMon.
The VPMon is the user interface to the target device that executes

the submitted program and controls HPM profiling by interacting
with VPerfmon. VPMon and VPerfmon are also portable to any
architecture that supports Linux and implements hardware perfor-
mance counters. We describe VPerfmon in greater detail in the next
subsection.

The target device that we currently support is the Stargate sensor
network intermediate node. The Stargate is representativeof mod-
ern battery-powered, resource constrained devices as it implements
the recent PXA-255 XScale processor and a wide range of popular
I/O devices. We detail the components of this system in Section 3.
We show the range of HPMs available (and thus available for RPM
profiling) in Table 1. The Stargate is very similar to an HP iPAQ
device without an LCD display.

The Stargate is used extensively in sensor network researchas a
gateway for communication and data collection from sensors. The
Stargate supports many important mechanisms that enable instru-
mentation and analysis of the system. For example, the Stargate
implements both JTAG ports (a standardized interface that enables
users to test and debug at the chip level) and general purposeI/O
(GPIO) ports.

The RPM uses the SCL driver to scale the CPU speed of the Star-
gate if desired. For target devices that do not support frequency or
voltage scaling of the processor, we simply do not load the SCL
driver module into the Linux system. The Stargate processor, the
PXA-255, has a very flexible CPU clock implementation that users
can configure to set memory, bus, and CPU core speed indepen-
dently. There are currently five valid configurations (due totiming
constraints). SCL enables users to manipulate the configurations
at runtime and compiles a log of the new speed, device, and the
time at which it implemented the changes the clock speed (using
microsecond resolution).

2.1 VPerfmon
VPerfmon is the control center for program profiling. VPerfmon

provides virtual hardware performance counters to each applica-
tion. The HPMs by default count global CPU events, i.e. they do
not track events at the program or thread level. VPerfmon provides
a layer that multiplexes the counters and that enables selective mon-
itoring of particular programs and threads. VPerfmon implements a



Event Description
0x0 Instruction cache miss requires fetch from external memory.
0x1* Instruction cache cannot deliver an instruction. This could

indicate an ICache miss or an ITLB miss.
0x2* Stall due to a data dependency.
0x3 Instruction TLB miss.
0x4 Data TLB Miss
0x5 Branch instruction executed, branch may or may not have

changed program flow.
0x6 Branch mispredicted
0x7 Instructions executed
0x8* Stall because the data cache buffers are full.
0x9 Stall because the data cache buffers are full.
0xa Data cache access, not including Cache Operations.
0xb Data cache miss, not including Cache Operations.
0xc Data cache write-back. This event occurs once for each 1/2

line (four words) that are written back from the cache.
0xd PC Modified

Table 1: PXA-255 Performance Monitoring Events. The events
marked with a * counts the number of cycles that the condition
is present.

virtual instruction per cycle (IPC) counter by tracking instructions
(cycles are tracked by default on most devices). The virtualcoun-
ters are 64bits in size to reduce overflow problems. It is possible to
selectively enable/disable sampling during the monitoring..

In our target device, the Stargate processor, the PXA-255, imple-
ments three 32-bit event counters; the hardware uses one to moni-
tor dynamic clock cycles. VPerfmon sets the remaining counters to
any two of the 14 events supported. The VPerfmon virtual counters
reflect the same architecture ( (i.e. extended to 64 bits), ituses one
counter to count CPU clock cycles and the other two to monitor
events.

VPerfmon interfaces to and monitors other system events to in-
crease the accuracy of the HPM profiles. When the VPMon ini-
tiates a new program, it contacts VPerfmon The VPerfmon driver
allocates a set of virtual counters for the new task. Similarly, VPerf-
mon allocates a set of virtual counter when a process under the con-
trol of VPerfmon forks a child process. When the kernel performs
a context switch to a task under VPerfmon control, VPerfmon con-
figures and enables the counters. When the task is suspended or
terminates, VPerfmon stores the virtual HPMs.

To isolate application and operating system performance, the
VPerfmon kernel patch disables HPMs on interrupt entry and re-
enables them on exit. This operation requires a read-modify-write
cycle that is equal to three XScale instructions. As a result, the
patch does not significantly increase interrupt latency.

VPerfmon also manages the profiling parameters set by default
or by the RPM user. These parameters are forwarded to VPerfmon
by VPmon upon program instantiation. The parameters control:

• System call monitoring (off by default). If on, VPerfmon
continues to monitor system HPMs during system calls. One
useful way to compare simulated data with real data collected
by RPM is to turn system call monitoring off when the simu-
lation system under investigation does not fully support sys-
tem calls (as is common).

• Exceptions and floating point operation monitoring (off by
default): Many resource-constrained devices, including those
with StrongARM and XScale processors, do not implement a
floating point co-processor. For such devices, floating point
operations are implemented as user level libraries or, more
commonly, as undefined instructions. For the latter, when the

kernel executes one of these instructions, it emulates floating
point hardware in software. The VPerfmon driver can dis-
able performance monitoring during the processing of float-
ing point emulation and other exceptions. When this option
and the previous option are disabled, the VPerfmon virtual
HPMs reflect the performance of only user-space execution.
There is a 2% difference at most between RPM and Sim-
plescalar [2] simulation. This difference is due to the instruc-
tions required to turn HPM profiling on and off.

• Fixed versus arbitrary interval lengths (fixed intervals each
with length 10 million instructions, by default): VPerfmon
can monitor and log the events for fixed or arbitrary length
intervals. For fixed-length intervals, the user specifies the
length in terms of some HPM count. Arbitrary intervals pro-
vide a way to the user to set interval boundaries without using
a fixed length. It is an array of long long integers. The VP-
mon program reads this information from a file and passes to
the VPerfmon using an device driver command.

VPerfmon facilitates interval-based data collection via the GPIO
pin on the development board. Initially the GPIO pin is resetto
logic 0 on program start. During program execution, VPerfmon
toggles the pin’s value at then end of every interval. VPerfmon,
as mentioned above tracks interval lengths (arbitrary or fixed) us-
ing some performance event specified by the user. For the datain
this paper, we use instruction counts as the event and fixed-length
intervals of 10 million instructions. The oscilliscope is equipped
with two channels. One channel monitors the voltage shunt resistor
to measure power consumption. The second channel monitors the
GPIO pin that VPerfmon toggles. Using this setup, RPM is able
to log and track power, energy, and performance data at interval
boundaries.

2.2 RPM Web Interface
The WWW interface export most RPM functionality to the re-

search and educational community. The features that we support
via the interface include:

• A tool chain for cross-compilation of programs for the target
device.

• An form to download the benchmark package. The pack-
age is a gzipped-compressed UNIX tar archive. The package
contains all of the necessary target binaries and input files. In
addition, the package includes (in its root directory) a shell
script, called start.sh, that initiates execution. We currently
support programs with execution durations of less than 10
minutes.

• An interface to control the execution (such as start, cancel,
and the number of times to repeat the experiment (currently
the max is 5)).

• An interface to control the VPerfmon configuration (fixed or
arbitrary intervals, the interval start data (if arbitraryintervals
are used), interval length (if fixed intervals are used), events
to monitor, etc.

• An interface to the measurement equipment to direct to ac-
cess experimental results and to power cycle the board before
or during the user’s experiments.

We password protect the web site to limit access and to limit
security problems. The web page is currently available athttp:



Processor 32 Bit, 400 MHz Intel PXA-255 Xscale
Arm architecture Version 5TE ISA
32 KByte Instruction and 32 KByte Data cache
2 KByte Mini Data cache
2 KByte Mini Instruction cache

Memory 32 MB Intel StrataFlash
Expansion Ports 1 Type II CompactFlash Slot

(populated with 256 MB CF card)
1 PCMCIA slot

Network & Others 10 Base-T Wired Ethernet
RS-232
JTAG
USB (disabled at present)
I2C (disabled at present)

Table 2: Stargate device characteristics (RPM target device)

Benchmark Instr. Time Energy Diff. RPM
Count seconds joules % ovhd
10

6 EXT2 RAM EXT2 RAM %
gsmencode 2.59 10.88 10.87 15.30 15.21 0.63 7.1
gsmdecode 1.64 6.95 6.61 11.19 10.86 3.05 11.2
jpegencode 4.28 48.53 N/A 63.20 NA NA 7.2
jpegdecode 1.45 19.46 11.36 26.45 18.43 43.49 8.2
mpegencode 1.43 107.24 107.49 195.02 195.37 -0.18 3.6
mpegdecode 2.13 311.80 312.01 570.27 568.60 0.29 0.9

Table 3: Benchmark characteristics

//www.cs.ucsb.edu/˜racelab/RPM . The login for inter-
ested reviewers isrev1 and the password ismobisys06 . We
plan to make the webpage available to the research communityif
this paper should be accepted.

3. EVALUATION AND ANALYSIS
To show the utility of RPM, we use it to evaluate the relationships

between the full-system energy and power consumption and CPU-
based events. Prior work considered the relationship between the
events and microprocessor energy behavior – for both high-end and
energy efficient CPUs such as those in which we are interested, e.g.,
the Intel XScale processor. As such, we are interested in thedegree
to which CPU-based events explain observed, full system power
and energy performance. The RPM target device that we study is
the XScale-based Crossbow Stargate sensor network intermediate
node. The Stargate is similar in functionality and performance (and
is similarly equipped in terms of and external devices) to the HP
iPAQ hand-held.

In the following subsection, we describe our experimental method-
ology and benchmarks. We then show how we (and others) can use
RPM to measure and analyze the power and energy behavior of
complex programs. We then use RPM to investigate the relation-
ship between CPU-level metrics (HPM data and phase data col-
lected via simulation) and full-system power and energy behavior.

3.1 Experimental Methodology
We present the characteristics of the RPM target device, theCross-

bow Stargate, in Figure 2. We list the various components that the
device implements broken down by those specific to the processor,
memory, expansion ports, and other.

In our experiments, we investigate both power and the energy.
For real devices, the capacity of a battery is expressed in Coulombs,
i.e., Ampere-hours, that the battery can deliver to the device [5]. We

use the standard power and energy functions:

Power = V × I

Energy = V × I × t

where I is the amperes running through a circuit andV is the
potential drop. The battery voltage,V , is dependent on internal
chemical components and diminishes as the capacity of battery de-
creases. A program can reduce its energy consumption eitherby
reducing the rate of discharge,I , or the duration of discharge,t,
or both. The energy consumed by a program decreases the battery
lifetime. Power consumption is also important because typically,
the relation between battery capacity and rate of dischargehas a
non-linear component and battery capacity decreases much faster
if a program draws current at a larger rate. However, it is possible
for one program to consume more power than another yet consume
less energy (due to the time component in the energy computation).
Power is also important, since its fluctuation relates directly to the
heat produced by the system.

In order to plot power, energy, and HPM data on the same graph,
we normalize the data so that the mean is 0. We do so by subtracting
the average from the measured value and dividing the result by the
standard deviation. When we compute the correlation coefficient
for two datasets, we do so using the normalized values.

In our evaluations, we use six popular, embedded systems bench-
marks from the MediaBench benchmark suite. We show the bench-
mark programs and their characteristics that we collected using
RPM in Table 3. The first three columns show the instruction
count, execution time, and energy for each benchmark. The fourth
column shows the difference between EXT2 drive and RAM. The
fifth column shows the RPM overhead (in energy). The overhead
(relatively) decreases as the application becomes larger.To col-
lect benchmark energy characteristics, we run each benchmark five
times with RPM using the same input, delete the first run (due to
the high variability in performance due to system warmup), and av-
erage the results. We collect power data in fixed intervals each with
length 10 million instructions. We use this methodology through-
out our experimentation section.

We study the energy and power behavior for the benchmarks us-
ing two memory technologies: the compact flash card attachedvia a
PCMCIA bus and the internal RAM. The flash is supported by the
EXT2 file system. JPEGEncode benchmark does not fit in RAM
on this device, so we exclude it from our RAM-based experimen-
tal results. During the experiments, the wired network interface is
connected but idle and there are no other tasks running.

RPM supports all of the performance monitoring events that we
showed previously in Table 1. However, to limit the amount ofdata
we present in this paper, we only consider HPMs for instructions
per cycle (IPC), instruction cache miss, data stalls, instruction TLB
misses, and data TLB misses. These metrics have been shown tobe
important in modeling the CPU power consumption [4]. To collect
HPM event statistics, we run the program repeatedly, collecting one
statistic at a time.

3.2 Complexities in Full-System, Real Device
Behavior

Resource-constrained, battery-powered devices and theirsoft-
ware exhibit complex interactions and behaviors that RPM isable
to capture. As an example, Figure 2 displays the RPM output for
one of our benchmarks (JPEGDecode). The benchmark decodes a
large file (30MB) and writes to an EXT2 Linux file system. The
horizontal axis of the figure is time. There are two sets of data, one
per oscilloscope channel: Power (at the top) and execution progress
(at the bottom). The power data shows periods of stable behavior



Initialization Data Write
Post−ExecutionEffect

A single interval(10M
instructions)

Program Start End of program

Figure 2: Power consumption of JPEGDecode on Ext2 file sys-
tem. The top line shows the power consumption, and the bot-
tom line shows the interval detection output pin voltage read-
ings. The power phases (during the initialization and file write)
are marked with an arrow. A post-execution effect, due to
writes on compact flash, follows approximately 20 seconds after
execution and very consistent across runs.

(phases) and periods of instable behavior (transitions).
We indicate execution progress by toggling a binary switch each

time an interval completes. Interval sizes are fixed for thisexperi-
ment at 10 million instructions. The second channel simply outputs
a line of ones and zeros. and is set to 1 when the program startsas
indicated in the figure. Whitespace between interval togglevalues
indicate that the interval takes more time than other intervals which
appear to be blocks of adjacent lines. For example the first interval
in the program takes significantly more time than the intervals that
follow it.

Another interesting behavior occurs approximately 25 seconds
execution terminates at which point there is an increase in power
consumption. We refer to this as apost-execution effect. This be-
havior is consistent across runs and we do not observe this behavior
when we execute the application from the RAM device. Since most
HPM measurement ends when the program ends, HPM data is un-
able to capture such activities (and even this assumes that the HPMs
are operational during operating system execution). Similarly, sim-
ulation cannot capture such behavior unless the system is power
accurate and supports OS execution. Such phenomenon are real
and motivate the need for full system monitoring of energy, power,
and performance in a unified experimentation framework suchas
RPM.

3.3 The Relationship Between
HPMs and Energy/Power

The overall power, energy, and performance behavior of the indi-
vidual benchmarks varies significantly. The GSM benchmarksare
very stable and produce uniform behavior. MPEGEncode exhibits a
very regular bi-modal patterns. JPEGDecode, as we showed inthe
example above, varies significantly over the life of the program.

Figure 3 shows graphs for two representative benchmarks (GS-
MEncode and MPEGEncode). For each graph, we plot each aver-
age metric value for each interval in the program over its lifetime.
We produce this data by executing the benchmarks on the EXT2
files system; the performance of these benchmarks using the RAM

Figure 3: GSMEncode performance data from RPM over time
for the first half of benchmark execution. We plot all metrics
with energy and power. We normalize all data as described in
Section 3.1.

Figure 4: MPEGEncode performance data from RPM over the
entire execution. We plot all metrics with energy and power.
We normalize all data as described in Section 3.1.

drive is similar. For GSMEncode, we show only the first half of
execution for clarity; the second half is also similar, however. We
show data from the entire execution of MPEGEncode.

The data exhibits uniform behavior for GSMEncode and bi-modal
behavior for most of the metrics in MPEGEncode. For GSMEn-
code, no HPM metrics appears to track power. However, it is un-
clear from the visual representation of the data whether other HPMs
track energy. For MPEGEncode, both energy and power move in
unison. Moreover, a few of the metrics appear to track this behavior
either either directly or inversely (e.g., IPC).

We next investigate the relationship between HPM behavior and
that of power and energy more formally. To evaluate whether the
HPM metrics explain power and energy variability, we computed
the statistical correlation coefficients between the powerdataset
and each HPM dataset (likewise for energy). Correlation reports
how well one dataset explains another. The resulting correlation
value is between -1 and 1. Values near zero indicate very little
correlation, while values at the other extremes indicate high corre-
lation. A correlation of -1 means that as data in one set decreases,
data in the other set increases similarly. A correlation of 1means
that the data in the two sets vary together in the same direction.

Figures 5 and 6 show the correlations for all of our benchmarks
for each of the HPM metrics. Figure 5 shows the correlation for the
EXT2 file system and Figure 6 shows the correlation of the RAM
drive. The left graph in each figure shows the correlation of the



(a) VS Energy (b) VS Power

Figure 5: Correlation of HPM metrics for the EXT2 file system. Graph (a) shows the correlation of each metric with energy and (b)
with power.

(a) VS Energy (b) VS Power

Figure 6: Correlation of HPM metrics for the RAM drive. Graph (a) shows the correlation of each metric with energy and (b) with
power.

Figure 7: Correlation across benchmarks for the EXT2 file system. The table shows the average (row 2) as well as the minimum
and maximum correlation across benchmarks. Above each minimum and maximum correlation value, we include the name of the
benchmark for which the minimum or maximum occurred.



HPM metrics with energy. The right graph in each figure shows the
correlation of the HPM metrics with power.

The data indicates that across benchmarks, for either storage de-
vice, the relationship between HPM metrics and power and en-
ergy is widely varied. GSMEncode shows the weakest relationship
across all metric will all correlation values less than0.2. All metric
values that are near 0 (between−0.2 and0.2) indicate very weak
correlation.

For particular benchmarks, we can identify certain metricsthat
correlate well. For example, data stalls and data TLB missescor-
relate well with both energy and power for MPEGEncode. Other
trends are less clear and are very particular to the benchmark and
device type.

Across all benchmarks, the cycle based metrics (IPC and cycles –
the first two bars for each benchmark) exhibit the largest correlation
to energy. IPC correlates negatively for most programs, as is intu-
itive – an increase in IPC decreases energy or power. However, for
JPEGEncode and MPEGDecode, IPC correlates positively. When
a metric correlates positively with one benchmark and negatively
for another, it indicates that the metric will be difficult touse accu-
rately as part of a full-system power or energy model. That is, such
metrics do not explain the variance in the power or energy data in
the same way for all benchmarks. Most of the metrics produce such
results (positive and negative values for different benchmarks).

We present the average correlation as well as the minimum and
maximum correlations in Figures 7 (for EXT2) and 8 for (RAM).
By showing the minimum and maximum, we can see which met-
rics produce both positive and negative correlations across bench-
marks. The top half of each table shows the correlation of HPMs
versus energy and the bottom half is versus power. The columns
present the data for each metric. The first row of each section(top
and bottom) shows the average correlation across all benchmarks
for each metric. Below this, we show the minimum and the max-
imum correlation across benchmarks and identify the benchmark
responsible for the minimum and maximum values. GSMEncode
and GSMDecode are never the minimum or the maximum. This is
because, all of the metrics are near 0 (uncorrelated) as the previous
figures show.

Figure 9 shows theR2 value which is also known as thevari-
ation explained. We compute this value by squaring the average
correlation (shown in the previous tables) and multiplyingby 100.
This value indicates what percentage of the variance in the energy
and power data, respectively, is explained by each HPM metric.
The left graph shows the data for the EXT2 file system and the
right graph shows the data when we use the RAM drive. The data
shows that across benchmarks, each HPM metric explains a very
low percentage of the variance in either energy or power behavior
and for either storage device. The clock cycle metrics explain the
largest percentage of variance, i.e., cycles and IPC, for the reasons
we articulate above.

3.4 Further Analysis
In general, running the benchmarks on the RAM device reduces

the variability in performance and energy data when compared to
running the programs on the compact flash. Our evaluations indi-
cate that the effect of the latter is most visible when large files are
written. For example, the JPEGDecode, which generates an out-
put file of almost≈ 30MBytes uses 50% more energy when run
on compact flash. This cost does not include the post-execution
effect that we described above. Table 3 that we presented earlier,
shows the differences in the average energy consumption foreach
benchmarks.

The MPEGEncode and MPEGDecode applications are the only

benchmarks that include significant amount of floating pointoper-
ations. The PXA-255 processor does not have a floating point co-
processor thus, floating point instructions generates undefined in-
struction exceptions and the kernel acts as a software floating point
emulator. As we are more interested in the applications effect on
the whole system and to be able to compare our results across dif-
ferent processors and simulators such as Simplescalar, we decided
to shut down performance counters during the undefined instruction
exceptions. In this execution mode, the intervals that include heavy
floating point operations are correctly identified as much more ex-
pensive (in terms of energy) phases than the others. Inevitably, each
floating point instruction looks as if it is a conventional instruction
with an extremely long clock cycle and much higher energy cost.

JPEGDecode and JPEGEncode, as mentioned previously, highly
variable in their performance behavior. JPEGEncode reads alarge
file, and JPEGDecode writes a similar sized file, exploiting the be-
havior of file system. Figure 10 shows the energy consumption
and instruction miss correlation for JPEGDecode (file write) and
JPEGEncode (file read) on EXT2 and RAM devices. On datasets
collected from EXT2 drive, the effect of heavy file system access
(towards the initialization for JPEGEncode, and towards the final
part for JPEGDecode) are easily visible. The increasing filesystem
access increases the energy consumption. Furthermore, theI-Miss
rate also increases with more file system calls due to more context
switches, suggesting the reason for high correlation between these
two parameters. Another interesting result is high negative correla-
tion of energy and IPC. This is also due to the same reason: A high
number of instruction misses reduces IPC, so more time and energy
is needed to complete the execution of an interval. The JPEGEn-
code on EXT2 is not effected in the same way.

MPEG (both Encode and Decode), by far, exhibit the largest cor-
relation between HPM metrics and both power and energy. Thatis
because MPEG shows large variations in energy consumption:One
reason is the existence of software floating point emulation. When
these intervals are entered, the energy cost of an instruction sud-
denly explodes, however, IPC decreases, introducing largenegative
correlations. Another reason is the characteristics of MPEG. MPE-
GEncode, reads an input frame, encodes, writes the encoded data
and moves to the next frame. The investigation of run-time data re-
veals very efficient processing phases where instruction cache and
TLB misses are almost zero, and data stalls are at a minimum. Con-
sequently, these intervals have the largest IPC, and smallest energy
consumption. Even though a reduction in energy consumptionap-
pears nonintuitive, it is possible since each interval is 10million
instructions, any event increasing the IPC rate, can reducethe en-
ergy consumption.

3.5 Using RPM to Study Phase Behavior
We also use RPM to evaluate the efficacy of code-based phase

characterization in capturing power and energy phases. A phase
characterization attempts to group periods with similar execution
characteristics together so that observed behavior is uniform within
a phase and each phase represents a distinct behavior in the pro-
gram’s execution. Much prior research has focused on capturing
and exploiting phase behavior, especially in runtime prediction and
optimization. Recent studies show that phase behavior captured at
the basic block level is indicative of a variety of executionchar-
acteristics at the architectural level. We perform a preliminary in-
vestigation to study the correlation between code-based and energy
phases in this section.

As a first step, we generate similarity matrices from the per-
interval basic block vector trace and per-interval energy measure-
ments. Similarity matrices present a visual representation of time



Figure 8: Correlation across benchmarks for the RAM drive. The table shows the average (row 2) as well as the minimum and
maximum correlation across benchmarks. Above each minimumand maximum correlation value, we include the name of the
benchmark for which the minimum or maximum occurred.

(a) (b)

Figure 9: R2 Correlation Statistic: Correlation squared times 100. This value shows the percent of the variability in energy (first
bar) or power (second bar) that is explained by the metric (x-axis). (a) shows the data for the EXT2 file system; (b) shows the data
for the RAM drive.
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Figure 10: Correlation of Instruction Miss and CPU energy Consumption. JPEG was the only application that showed a correlation
between energy consumption and instruction cache misses. Surprisingly this correlation is very obvious when we run theapplication
on EXT2, but non-existent when we execute in RAM, (a) and (b) graphs, respectively. Most instruction cache misses occur during
heavy file system read/write operations. (c) File system write operation has almost no effect on instruction cache misses.



varying behavior. Each entry in a row or column represents anin-
terval. We list intervals in each row or column in the order inwhich
they occur in the program. An entry in the matrix at position (x,y)
is a pixel colored to represent the similarity between interval x and
interval y (black is similar, white is completely dissimilar). Fig-
ure 11(a) shows the similarity matrices for four benchmarks(one
per column). The first row of is the BBV-baseed matrices; the sec-
ond row shows those computed using real energy data. GSMEn-
code and GSMDecode show very little variation for either type of
matrix. JPEGEncode and JPEGDecode however, do show some
differences; in particular, the energy matrices show more detail and
resolution, i.e., differences between intervals. This is because the
differences in energy data is more pronounced than the differences
in the code executed during the intervals in the last 1/3 of execution
for JPEGDecode and the initial 1/4 of execution for JPEGEncode.
The changes in energy are due to the use of the file system for file
writes and reads for JPEGDecode and JPEGEncode, respectively,
as we explained in the previous section.

We use the basic block distribution analysis based technique de-
scribed in [21] to generate code-based phases given an interval
length of 10 million instructions. We use the Simplerscalarsim-
ulator to generate per-interval basic block vector traces,and the
Simpoint framework [22] to obtain a phase classification. Togen-
erate energy phases, we cluster per-interval RPM power measure-
ments using the K-means clustering algorithm. The method above
has one caveat. Even though XScale and Simplescalar use ARM
ISA, the dynamic instruction counts in XScale and Simplescalar are
not 100% compatible. Furthermore due to the OS overheads (even
though the HPMs are disabled during interrupts and scheduling, it
is not possible to eliminate all the overhead), XScale counters tend
to increase a little faster. For most of our benchmarks, we found
the variation in instruction counts to be within 1%. We exclude
MPEG (encode and decode) from this study since its use of float-
ing point operations yields a larger variation across the simulated
environment and the real-time measurement system. For the four
benchmarks studied, we find a fixed number of phases (3 – chosen
arbitrarily) using both the basic-block-vector and K-means clus-
tering techniques. In addition to visual correlation, we quantify
the difference between the two by computing the error in estimat-
ing measured power using basic-block-vector phases. The table
in Figure 11 lists the percentage error in estimating power using
basic-block vector phases in column three. The error is a measure
of the deviation of estimated energy from measured energy and is
omputed as:PowerDevb, as:

Error =

s

PN

i=1
(Pi − Rji)2

N

wherePi is the measured energy for intervali, Rji is the repre-
sentative energy for the phase that intervalsi belongs to. The rep-
resentative energy for a phase is computed as an average overall
intervals belonging to that phase. The table also provides details
about the three phases found by each of the two clustering schemes.
We can see that basic-block-vector based phases and energy phases
not only yield different clusterings, but also differ in thecharacter-
istics of phases found. An important point to note is that, although
the estimation error is very low, basic-block-vector basedphases
do not necessarily yield distinct phases in terms of energy behavior
although variations in energy behavior do exist.

4. RELATED WORK
The work that we describe herein is a remotely accessible toolset

for highly accurate power and energy measurement and CPU-based

profiling of a target device. The toolset consists of an Agilent high-
end deep-memory oscilloscope, an Agilent programmable power
supply, and a software system that we developed to enable remote
access and programmable experimentation, that couples of power
and energy profile collection with HPM profile data. The target de-
vice that we currently have plugged into the RPM is a Crossbow
Stargate sensor network intermediate node. We are currently work-
ing on supporting a very similar device, the HP iPAQ hand-held.
The primary difference between these devices is the LCD display
and user interface (key pad, buttons, and touch screen).

We show the utility of the toolset and its importance for resource-
constrained and battery powered systems by using it to studycur-
rently open research questions in this area. In particular,we inves-
tigate how well HPM and phase behavior data correlate with power
and energy data. In addition, we investigate the impact of memory
devices and file system implementations on power and energy.

The most closely related work in this area include systems that
employ HPM data to estimate power and energy behavior and tech-
niques for measurement and characterization of power and energy
behavior using real devices. To our knowledge, extant approaches
to measurement and characterization of power and energy behav-
ior are different from ours in that they either consider onlyhigh-
end processors (e.g., the Intel Pentium class), or do not investigate
the full-system power consumption (i.e. they consider onlyCPU
power consumption). Another key difference is that many prior
studies use the terms power and energy interchangeably and focus
primarily on power. We focus on popular resource-constrained de-
vices with energy-efficient processors and show that it is important
to measure, understand, and characterize both to understand full
system battery consumption. No extant system provides remote ac-
cess for highly programmable experimentation with a set of remote
power and performance profiling tools.

There is much work that makes use of HPM data to estimate,
characterize, and optimize performance (as opposed to power), e.g. [8,
19, 1]. However, those that consider how HPM data correlateswith
processor power and energy consumption is more related to our re-
search and goals. Bellosa et. al [24] first proposed the use ofof
CPU event counters to estimate power consumption and to guide
dynamic voltage scaling. The authors focus on memory and CPU
power only; these are the only components that they can monitor
via the counters. The authors make two observations: (i) Many
memory requests per second indicate heavy use of memory, so en-
ergy performance will benefit if CPU speed is reduced; and (ii)
The IPC indicates the sensitivity for performance loss. If the IPC is
low, the thread will be less sensitive to clock speed reduction. The
authors propose a modular system that samples HPM information
every timer interrupt and then uses the policies above for proces-
sor voltage switching. The support their case, they measured the
energy consumption of the CPU (using a current meter attached to
the CPU) for several applications, using different speed levels rang-
ing from 333MHz, 400MHz, 466MHz, 533MHz, 600MHz and 733
MHz. They maintain the same speed throughout the lifetime ofthe
program (i.e. they do not switch voltages during program execu-
tion). Their results show that most applications experience high
performance losses with lower CPU speeds.

Many other prior studies construct models of CPU power con-
sumption using HPM data. In [16], Kadayif et al. describe vEC,
a model that estimates energy consumption of memory on Ultra-
SPARC CPU. vEC uses HPMs to determine rate of use of each
component in the memory hierarchy, including as the bus, cache,
and main memory. They estimate energy using the analytical model
defined in [17] which models the energy consumption of CPU com-
ponents with an average 2.4% error relative to a circuit-level sim-
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Figure 11: (a) Visualization of bbv and energy phases using similarity matrices. The interval length used is 10 million instructions.
The number of intervals, n, vary and each graph is a n x n matrixwith the x and y axes representing the interval identifier. The
lower triangle is a mirror image of the upper one and is maskedfor clarity. Each point on the graph indicates the similarity between
the intervals represented by that point. Dark implies similar and light implies dissimilar. The diagonal is dark, sinceevery interval
is entirely similar to itself.



ulation. Similarly, the authors in [15], describe a generalscheme
for estimating runtime power of the CPU and its constituent com-
ponents using HPMs for the Pentium Pro processor. The authors
measure power via an external multi-meter and shunt resistor at-
tached to the CPU of the device.

Isci et al [12] build upon this scheme to estimate the power con-
sumed by a Pentium-IV processor. They identify 22 components
of the processor and estimate power cost of each of the component
using external power measurement tools attached to the processor.
They use the HPMs to compute the rate of use of each compo-
nent. The sum of power consumption of each component gives the
power consumption of CPU. Bricher et al [3] proposes a similar,
but much simpler model that uses only two performance counters
to estimate power consumption of Pentium-IV processors. Asa
high-end processor, Pentium-IV offers a large set of event counters
(i.e. 18 counters and 59 event classes). Embedded processors are
much more limited in terms of the number of counters supported.
This increases the difficulty of establishing an accurate power esti-
mation model. Contreras et al [4] investigates different model for
CPU and memory on a XScale development board. Their experi-
ences show that a model using five HPMs can correctly estimatethe
power. However, they also show that the error in their model can be
as high as 70%. This error is due to inaccurate modeling of mem-
ory accesses. Moreover, this model uses CPU HPM data to model
CPU power consumption, not full system power consumption.

In [12], a runtime power monitoring methodology was proposed
for runtime microprocessors. Even though this setup is similar to
ours in terms of design; there are a couple of significant differences.
(i) The proposed system is designed for CPU power monitoringin
high-end systems, whereas our system is designed for monitoring
the energy consumption of the whole system in embedded devices.
(ii) The proposed methodology collects HPM data at run-timefrom
the monitored system, via ethernet. The run time data collection
and network connection perturb power, energy, and performance,
which is undesirable. Since the authors only monitor and estimate
CPU power consumption using a very fast processor, this pertur-
bation can be negligible. In our setup, we are monitoring theen-
ergy consumption of a whole system, thus, the overhead of such an
online monitoring system is not acceptable. The same authors, ex-
tended this system in [13, 14], to evaluate the correlation between
the CPU power consumed and that estimated by HPM and phase
profiles. Again, the studies are limited to CPU power only, not full
system power. They show that HPM-based estimations produce
accuracy errors of 2-7% and that phase-based estimations produce
errors of 3-12%.

Other work on phase-based power characterization have been
proposed to reduce energy via phase-guided dynamic cache and
processor bus width reconfiguration [23] and phase-aware remote
program profiling [20]. In the latter, we sample the program once
per phase to reduce profiling overhead. RPM, described herein, can
also do the same (sample the intervals of interest) via its user inter-
face. The user must specify which intervals to sample (collect data
for power, energy, and HPM performance). The user can generate
this interval list using our tools from this prior work. We use these
tools to do so to investigate the similarities between code-based
phases (i.e. periods of stability) and phases in power and energy
data. Most prior work on phase behavior employs simulation to
measure, estimate, and evaluate the efficacy of phase characteriza-
tion [20, 23, 22, 7, 6]. Our work herein, uses only real data, col-
lected online, using a remotely accessible, programmable,highly
accurate and and low overhead measurement system called RPM.

5. CONCLUSIONS AND FUTURE WORK

As resource-constrained, battery-powered devices and their soft-
ware continue to increase in complexity and capability, it is impor-
tant for us to understand full system energy and power behavior, if
we are to identify techniques that extend battery life. To facilitate
better understanding of the energy and performance characteristics
of these complex systems, we present RPM, the Remote Perfor-
mance Monitor.

RPM is a remotely accessible system to characterize anreal em-
bedded devices. We provide remote access via a user-friendly web
interface and hide most of the cumbersome lab equipment details
from the end user. We couple high-end external power and energy
measurement with device-level CPU performance monitors.

RPM characterizes the system in a number of different levels.
For example, users can monitor a single application or multiple
applications by including or excluding the effect of systemcalls. It
is also possible for users to change the characteristics of the remote
system. Moreover, an RPM user can evaluate the programs using
any of the valid five clock configuration options.

We use RPM to investigate a number of open research questions
regarding the correlation between CPU-based metrics and power
and energy consumption. The relation between HPM statistics and
CPU and memory power consumption has been investigated many
times, however, the correlation between HPM monitors and the en-
ergy consumption is generally overlooked.

We find that HPM metrics do not correlate well with full-system
energy and power consumption for most benchmarks. We also find
that it is important to consider system characteristics such as file
system type, system calls, I/O device types, etc., to capture energy
and power behavior. We also investigate how well code-levelphase
identification maps to the phases in power and energy. We find
that there are many more phases identified by code-level techniques
than are actually exhibited by full-system energy performance.

As part of future work, we are adding additional devices to RPM.
We are currently extending RPM to support two different types of
HP iPAQ handheld. We will provide a mechanism to switch be-
tween the devices as part of the web experiment request. RPM
supports any device that runs Familiar Linux. Since RPM couples
power and performance monitoring, devices that export hardware
performance monitors exercise all of the RPM functionality. We
are interested in understanding the full-system power behavior of
handheld with LCD displays and other types of I/O devices.

Also as part of future work, we are extending RPM to enable
automatic dynamic clock scaling and using RPM to investigate a
number of interesting questions. The most important is to identify
which set of device behaviors does correlate well with full sys-
tem energy and power. We are currently developing methodologies
to characterize the systems that infer application characteristics to
manage global resources. One such system is AutoDVS [9] thatwe
developed in prior work. AutoDVS uses application interactivity
to manage CPU clock speed. We are interested in combining these
behaviors and effectively predicting future patterns in full-system
power and energy consumption.
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