
DiSenS: Scalable Distributed Sensor Network
Simulation

UCSB Computer Science Technical Report Number CS2005-30

Ye Wen, Rich Wolski, and Gregory Moore
Department of Computer Science

University of California, Santa Barbara, 93106
Email: {wenye,rich}@cs.ucsb.edu, gmoore@umail.ucsb.edu

Abstract—Simulation can be a very useful tool for developing,
evaluating and analyzing sensor network applications, especially
when deploying a large scale sensor network remains an ex-
pensive and labor intensive endeavor. However, the difficulty of
achieving both fidelity and scalability has limited its use as a
design and analysis tool.
In this paper, we describe DiSenS (DIstributed SENsor net-

work Simulation) – a complete scalable and extensible distributed
simulation system for sensor networks. DiSenS provides a cycle-
accurate device emulator that is extendable by various fidelity-
enhancing models (radio, power, etc.) for tunable simulation
accuracy. A key distinguishing feature of DiSenS is that it is
implemented for distributed-memory parallel cluster systems. To
achieve efficiency in this computational setting we have designed
a simple and efficient distributed synchronization protocol and
coupled it with a sophisticated node partitioning algorithm (not
of our design) to achieve new scalability and performance levels.

I. INTRODUCTION
Sensor networks make possible the instrumentation and

actuation of potentially a large variety of environmental phe-
nomena. By making the provisioning of computing power non-
invasive and inexpensive, the ability to apply computation
as a way of analyzing “the world” ubiquitously becomes a
possibility, the potential impact of which cannot be overstated.
However, despite the potential for transformative scientific

and even social change that sensor networks seem to promise,
their development is, at present, still nascent. While various
technological and economic obstacles exist, a key impediment
to their development is the lack of a scalable simulation
capability that provides the fidelity necessary to support both
coherent design and efficient engineering of sensor network
systems. State-of-the-art sensor network research and devel-
opment relies on labor and resource intensive trial-and-error
using physical devices and in situ deployments. Few other
systems of similar complexity and potential expense (e.g.
computational processors, embedded systems, network archi-
tectures, etc.) are investigated and engineered in the same way:
without high-quality and multi-fidelity simulation support.
To accelerate possible research and development advances

for sensor networks, our work focuses on the development of a
sensor network simulation capability in the form of DiSenS – a
distributed software infrastructure for scalable sensor network
simulation. DiSenS is intended to serve as a research tool

for the development of simulation models targeting different
fidelity levels, and to allow these investigations to take place
at scales unattained by previous systems.
There are two general approaches to sensor network simu-

lation that have been explored previously. Discrete-event sys-
tems such as those described in [16], [26], [40] model device
functionality and communication as a set of partially ordered
events modifying distributed state. Often, these systems have
focused on communication interactions (which takes place
via unreliable and difficult-to-model communication radios)
and only roughly approximate the behavior of the constituent
devices themselves. By sacrificing device fidelity, discrete
event simulators can achieve very high performance and have
good scalability.
Full-system simulators [33], [38], [43], [27] take an alter-

native approach. They simulate the internal device function-
ality in detail and allow ensemble behavior to emerge from
the interactions of independent-but-communicating simulated
devices. These systems achieve good fidelity levels, but the
need to coordinate multiple simulated devices has limited their
scalability.
Our work attempts to extract and combine the benefits

of both approaches. DiSenS supports high-fidelity and high-
performance emulation of individual sensor devices as well
as a basic radio communication simulation that scales. The
infrastructure is designed to use dedicated clusters of commod-
ity “PC” class machines interconnected by high-performance
local-area networking technology (heretofore termed “cluster
computing” technology). Because the processing and network
elements of clusters are so much more powerful than the cor-
responding device and radio technologies for sensor networks
(without the power constraints) it should be possible to achieve
useful simulation performance levels.
In addition, DiSenS admits “pluggable” augmenting models

for power consumption and radio behavior. Indeed, our orig-
inal motivation for developing DiSenS has been to provide
a simulation capability for our own use in developing high-
quality statistical characterization of radio communication
behavior. The infrastructure is thus parameterizable by models
which characterize different forms of component performance
response. This flexibility is intended to allow users of DiSenS

to experiment with the tradeoff between simulation fidelity and
simulation performance explicitly.
To support sensor network design system architecting activ-

ities, we have taken the need for simulation transparency as a
primary design goal in developing DiSenS. That is, sensor net-
work software (including the operating system) should be able
to run unmodified on both a DiSenS virtual sensor network and
a corresponding physical (actual) network of sensor devices.
That is, the simulations should be complete enough so that the
software cannot “see” the difference between executing on a
real sensor network or a DiSenS virtual simulation of a sensor
network.
Thus our ultimate goal in developing DiSenS is to build

a simulation framework that permits exploration of fidelity,
completeness, scalability, and bridging, as outlined in [16].
We report on the degree to which we currently achieve this
goal with DiSenS using both benchmarks designed to exercise
various component features, and publically available sensor
network operating system and application code that we treat
as inviolate. In so doing, we believe that this work makes the
following research contributions.

• We describe the distributed implementation methodology
we have chosen for DiSenS, with a particular emphasis
on the protocol we use to synchronize the emulated
device clocks, and the partitioning strategy for mapping
simulation components to cluster processors.

• We report on the fidelity that our full-system device
emulations are able to achieve.

• We describe and demonstrate how different “plug-in”
models can be incorporated by the infrastructure.

• We provide a detailed exposition and analysis of DiSenS’s
efficacy in terms of simulation performance, complete-
ness, and scalability.

As a whole, we believe these contributions extend the state-
of-the-art in distributed sensor network simulation. We do not,
however, claim to similarly extend the state-of-the-art in other
important research areas such as power modeling or radio
communication modeling. Rather, our intention is to show how
previous results in these areas can be applied with greater scale
and efficiency than has been previously reported.
In rest of paper, Section II discuss the device simulation

framework, including the hardware emulation core and the
pluggable models. Section III studies the synchronization
problem and presents DiSenS distributed simulation algo-
rithms. We present measurements and analysis of DiSenS
functionality in Section IV, survey the related work in Sec-
tion V and finally conclude in Section VI.

II. PARAMETERIZABLE DEVICE SIMULATION
FRAMEWORK

We first introduce the device simulation framework, which
faithfully emulates the sensor device hardware and lays the
foundation for distributed simulation. The core of the frame-
work is a cycle-accurate hardware emulator. It is parameterized
by a set of pluggable fidelity enhancing models, e.g. radio

model, power model, etc., to allow experimentation with
different fidelity levels and modes of investigation.

A. Cycle-Accurate Hardware Emulator

As the basis for accurate simulations, we have stressed the
development of simulation tools that achieve timing accuracy.
While accurate power and radio simulation techniques are
the subject of much current research activity, we believe that
successful approaches will depend, ultimately, on the ability
to simulate device cycle timings correctly.
At the core of our device simulation framework is a

hardware emulator with extensive support for various popular
sensor network devices. In the current implementation, we
emulate the Mote [23] devices (the Mica2 and MicaZ plat-
forms), Stargate devices [39], and iPAQ devices [13] and we
are adding the support of other devices, like Telos [42]. Thus,
the system is capable of heterogeneous sensor network sim-
ulations. In this work, however, we focus only on simulating
ensembles of Mica2 and MicaZ devices exclusively.
The emulation core supports the following sensor node

functionality and components by emulating
• the AVR instruction set,
• the ATmega128L microcontroller, including most on-chip
functions: program memory, RAM, EEPROM, timers,
serial devices (UARTs), SPI (Serial Peripheral Interface),
ADC (Analog/Digital Converter), Watch Dog Timer and
fuse bit setting (for boot loader and self programming),

• the 512KB on-board flash,
• the Serial ID chip,
• the CC1000 (Mica2) and CC2420 (MicaZ) radio chips,
• the LEDs and the sensor boards.
The heart of hardware emulator is a cycle-accurate AVR

instruction interpreter. Hardware emulation is a mature area
yielding several good technologies for simulating one archi-
tecture on another with high efficiency [33], [5]. However,
we choose to use a fairly simple switch-based interpreter,
that is similar to SimpleScalar [1]. The biggest reason is for
portability. Since we intend to implement simulations using
collections of machines, the ability to run on a broad range
of architectures is essential. Moreover, the relatively simple
nature of the AVR architecture and the high clock speeds
available from commodity powered workstations makes it
possible to achieve faster-than-real time emulations of many
sensor devices. For example, our system is able to emulate
Motes using a 3.2GHz x86 processor at approximately 9 -times
real-time speed.
The interpreter emulates each instruction, changes the state

of microcontroller and drives an internal clock cycle by cycle,
which in turn fires the asynchronous events in an event queue,
generated by hardware components like timers, USARTs and
ADCs. The collection of emulated devices is rich enough and
accurate enough to boot and execute unmodified TinyOS [11]
binaries. Thus applications and operating systems cannot dis-
tinguish execution on the emulator from execution on the
actual hardware.

B. Pluggable Models

Our device simulation framework provides a set of common
interfaces for integrating the core hardware emulator to various
extensions for power and communication. Our intention is to
provide a platform for experimentation with different “plug-
in” models, both to support the development of new models as
well as to provide a way to trade simulation speed for fidelity
using a suite of models. Thus researchers using the system
can plug in the best models according to their simulation
needs. In this work, we demonstrate this flexibility using a
small set of candidate models from the literature. We make
no claims regarding the relative value of these models. Rather,
we attempt to show how they can be incorporated into the
framework and can subsequently be used in scalable device
simulations.
1) Radio Models: The system includes a “simple” or

“ideal” radio model in which radio packets are sent losslessly
to all the neighbor nodes within its radio range. While the ideal
model is typically highly inaccurate, it is often used for initial
code development and debugging as well as to achieve an
upper bound on potential performance. Under this model, each
sensor node buffers the packets sent to it even if it is not in
receiving mode. Packets are time stamped and when a sensor
node receives, it checks the packet buffer and reads the packets
that match its current clock time. In addition, packets from
different nodes may conflict with each other. When conflicting
transmissions interfere, the ideal model performs a bit-wise OR
of the bits received during the conflict period. As a result, this
basic radio model is able to simulate transmission conflicts and
thus the “hidden terminal” effect [44]. Also, packet loss due to
the partial reception of packet preamble (because of the mis-
synchronization of packet receiving and packet transmitting)
is naturally modelled as part of the radio chip emulation logic.
The ideal model can be made more realistic through the

addition of channel loss models. There are different ways to
model the channel loss. Analytical techniques use a math-
ematical description of a physical electromagnetic radiation
propagation. Thus, loss or signal perturbation is based on the
“physics” of the intervening communication medium. There
are is large body of literature on such physical models [30].
Despite their accuracy, however, their complexity and potential
computational expense make them difficult to use in sensor
network simulations.
A more popular approach is based a statistical descrip-

tion of channel loss, often derived from measurement trace
data [6], [49], [48]. In this approach, a large set of radio
transmission data is collected using different parameters. The
trace data is then “mined” using statistical methods to derive
distributional descriptions of characteristics such as reception
rate. Cerpa et al. [6] explored this approach and achieved
some noteworthy results. They have also proposed methods of
generating realistic network instances based on the discovered
feature distribution. In our work, we have developed a plug
in that uses a loss rate distribution generated from our own
measurement trace data using a similar methodology as in [6].

Thus, using the basic model and the trace-derived loss model,
our system can incorporate both deterministic models based on
mechanism and statistical models based on off-line analysis of
trace data.
2) Power and Battery Models: At present, perhaps the most

active area of sensor network simulation research focuses on
modeling power dissipation. Sensor network simulators are
required to provide accurate energy consumption estimation
for any reasonable study based on simulation. A number of
power models for sensor network devices have been proposed
and investigated in the literature [15], [36], [35]. These models
are typically based on the measurements obtained by using
benchmarks to exercise the sensor device in various modes
yielding different levels of fidelity. In this work, we incorpo-
rate one such model [15] in our simulator.
We also provide a simple linear battery model. Several

battery models have been proposed in the literature[41], [4],
[31]. Linear model is the simplest, again representing the
ideal case in debugging and “back-of-the-envelope” settings.
Moreover, in fast, lower-fidelity simulations of “steady-state”
a linear model is often preferred [17] since the middle of the
discharge curve is often close to linear.

C. Debugging and Profiling Facility
As mentioned previously, one of the main motivations for

scalable sensor network simulation is debugging. While many
programming errors only manifest themselves in situ, often
more systematic problems can be most effectively exposed in
simulation. Moreover, a critical advantage offered by software
device emulation (the method of simulation we have chosen) is
that the software emulator can be more easily and completely
instrumented than the actual hardware.
To support these activities, we have developed two comple-

mentary functionalities for the simulator: a distributed debug-
ger and a virtualized instrumentation package. The debugger is
able to connect to any sensor node in our distributed simulator
and debug the node on the fly. The debugger can also broadcast
commands to multiple nodes for coordinated debugging.
However, our goal in this work has been to develop a

simulation environment that is completely transparent to the
application and operating system under study. As such, we
have not yet explored solutions that would allow the pro-
grammer to embed debugging functionality in the simulation
version that would then need to be removed or altered when the
application is executed in native mode. Indeed, we believe it
is important to be able to execute and debug the same binaries
without modification in both environments.
This transparency goal limits the debugging options that

are available, however, since the actual sensor devices have
fairly restricted I/O capabilities. Typically, sensors can only
display internal status through a set of LEDs in a way
that is tedious and error-prone to decode. That is, there is
no easy way to include print statements (still a debugging
staple) in a typical sensor application. Moreover, because the
emulator works at the hardware level, in cannot “see” into
the application or operating system code that is using it. We

TABLE I
VIRTUAL REGISTERS FOR DEBUGGING AND PROFILING

Virtual Register
Address Name Functionality
0x75 VDBCMD Command Register
0x76 VDBIN Input Register
0x77 VDBOUT Output Register

have included typical machine-level debugging functionality
(e.g. break-points, memory interrogation, etc.) but without
intimate knowledge of the emulator it would be difficult for
a programmer to associate the state of the emulated machine
with high-level program behavior. We approach this problem
by introducing virtual debugging and profiling hardware into
the simulated device in a way that allows unmodified execution
of the instrumented code on the native sensor hardware.
1) Virtual Hardware Based Debugging and Profiling:

We introduce three virtual registers that are allocated in the
reserved I/O register space of ATmega128L microcontroller.
Table I shows the functionalities of these registers.
The VDBCMD register is used to issue debugging and

profiling commands. The VDBIN is for reading data from
simulator and the VDBOUT is for output. These virtual reg-
isters comprise a “channel” that sensor programs can use to
communicate with simulator and/or the simulator user which,
while it is not available on the native devices, is none the
less transparent. For example, it is possible to print debugging
information through the virtual registers by first sending an
ASCII character output command through VDBCMD register
and then continously writing debugging text (a character at
a time) to the VDBOUT register. The simulator is instructed
to interrogate VDBCMD and, when it is loaded with the
command indicating ASCII output, to direct the output stream
appearing in VDBOUT to the simulator console. Through the
virtual registers, it is also possible to access simulator’s status
in sensor program. Thus, the availability of these additional
virtual registers provides developers with more powerful de-
bugging capabilities than the simple breakpoint and memory
interrogation facilities discussed previously.
To provide transparency, all the functionalities of virtual

hardware are coded into high level access functions provided
as part of the AVR glibc library. Since the virtual registers
are located in reserved I/O space and read/write operations
performed on them has no effect on a real device, instrumented
programs can also be run directly on the real hardware with
only slight performance loss. In this way, a program with
debugging instrumentation compiled into it can be moved
between the simulator and the actual hardware without change,
thereby speeding the debug and test cycle.

III. DISTRIBUTED SIMULATION
One of the primary motivations for the development of

our system is the ability to simulate “large” ensembles of
sensors so that potential problems of scale can be studied.
While previous work [43], [16], [25], [2] has addressed the
issue of scalability using different approaches (cf. Section V
for a review of related work), our goal is to support binary

transparency with respect to the applications and operating
system (similar to Avrora [43]) in a way that maximizes the
size of the ensemble that can be simulated.
There are two measures of scalability DiSenS attempts

to maximize. The first, analogous to the standard notion of
speedup used to characterize parallel programs, is to maximize
the ratio of wall-clock time that elapses for a complete sensor
network simulation on a single processor to that for the
same simulation running on multiple processors. This ratio
characterizes the benefit of parallelism in terms of reduced
execution time for a given simulation.
In addition, we also consider speedup (or more probably

slowdown) in terms of the clock periods of the sensor network
devices under study. By calculating the number of device clock
cycles that have been simulated in a given wall-clock period,
we can compute the speedup or slowdown of the simulation
relative to the clock cycles that the real device experiences in
real time.
Notice that these two notions of speedup are related but

distinct. For example, it is possible for our system to achieve
excellent speedup using the first measure (the parallel time
is much faster than the sequential time) but poor speedup
or even large slowdown using the second measure (devices
are simulated only a small fraction of their real time speeds).
While we have designed DiSenS to attempt to optimize both
measures, we focus on the latter measure – the relationship to
real time device speed – in this work as we believe it is the
more challenging of the two.
Clearly, the degree to which these measures can be opti-

mized depends on both the structure, constituent devices, and
topology of the ensemble simulation and the characteristics of
the computational resources. For the latter, we believe a dis-
tributed memory cluster computing environment has the largest
potential. However, the typically close coupling of simulation
systems makes distributed implementation challenging.

A. Background and Approach

Our approach is to simulate ensembles of sensor devices by
executing individual cycle-accurate device simulations which
communicate via simulated radios. Notice that this approach is
distinct from an event-driven methodology in that we do not
decompose the collection of simulations into explicit events
that must then be time ordered. Rather, we use individ-
ual device emulations and a simulated radio communication
environment as a virtual deployment of a complete sensor
network, and run the same operating system and applications
on the virtual sensor network as if they were running on an
actual deployment1. To coordinate between individual device
emulations, when radio communication occurs, the two com-
municating sensor devices must be synchronized with respect
to their relative internal clocks.

1Our style of simulation might more properly be termed an “emulation”
as a way of emphasizing the distinction between our approach and an event-
driven one. Because the radio environment is purely simulated, however, we
have chosen to term our approach as a “simulation” since we believe that
term to be more general.

Previous work that takes a similar approach includes
ATEMU [27] and Avrora [43]. ATEMU [27] is a cycle-
accurate sensor network simulator. It maintains a global clock
and emulates one instruction a time for each simulated device.
In this way, the sensor nodes are automatically synchronized
and no extra facility is necessary to maintain the correct order
of radio events. However, ATEMU is limited to a single
process and can not scale to larger systems. Avrora [43]
extends the simulation to a multi-threaded shared memory
system. It scales on multi-processor machines. In Avrora,
each device is simulated in a separate thread. Avrora loosens
ATEMU’s cycle-to-cycle synchronization requirement by ex-
tending the synchronization period to the length of a byte
transfer time – 3 0 7 2 ATmega128L cycles – since packets are
always transmitted in byte unit. A thread barrier is used to
achieve its lock-step style synchronization, which stops all the
threads periodically to ensure every radio byte will be correctly
received during the correct time period.
In a clustering computing environment, relatively large and

variable network latencies make direct extensions of these
two approaches difficult. Cluster network latency is measured
in milli-seconds while a desktop PC can easily emulate one
device instruction in the 0.1 micro-second range. If lock-
step global synchronization is used, the simulated clock speed
will be determined by the all-to-all network communication
latency.

B. Synchronizing Ensemble Emulations
Our approach to synchronizing multiple device emulations

relies on an abstraction of the radio communication protocol.
To illuminate the nature of this abstraction, we begin by
discussing sensor network radio behavior in some detail.
Currently two types of radio chips are emulated in our

device emulator, the CC1000 chip and CC2420 Zigbee radio
chip [7], both manufactured by Chipcon. The CC1000 is the
radio chip used by the Mica2 senor mote [21] and the CC2420
is used in the more recent MicaZ [22] platform. The CC1000
is a rather simple radio chip. It has two working modes:
transmitting and receiving (ignoring power saving features of
the chip for the moment). In transmitting mode, data bits are
pumped in from the SPI line, modulated, and emitted through
the antenna. In receiving mode, the radio signal is amplified,
demodulated and converted into digital bits which will be
assembled into radio packets by software protocol stack. The
mode transition is controlled by the software. CC1000 also
has a receive signal strength indication (RSSI) measurement
function. This analog value of the signal strength is output
via a chip pin, and converted into digital value by the ADC
module of the microcontroller. The RSSI value is used by the
software MAC layer to perform collision detection.
CC2420 is a more advanced radio chip that implements

the low level function of Zigbee (IEEE 802.15.4) standard.
The major difference between CC1000 and CC2420 from the
simulation point of view is that CC2420 performs the packet
assembly in the chip and has a much faster transmission
speed. CC2420 has a similar signal sampling function and also

measures RSSI value. However CC2420 uses a pin called CCA
(clear channel access) to indicate whether the radio channel
is clear based on a preset threshold. This provides a simpler
interface for MAC layer collision detection.
The typical radio activity paradigm of TinyOS sensor ap-

plications can be described as follows. Normally, the radio
stays in receiving mode (it may be turned off for power
saving). When a preamble of a packet is recognized, the
complete packet payload is to be assembled and uploaded to
the application. When a packet needs to be sent, the MAC
layer checks the channel using RSSI value or CCA value. If
the channel is busy, it backs off for a random period of time
and tries again. Otherwise, the radio chip is switched into
transmitting mode and a complete packet is sent out.
Thus, packet receiving and signal sampling are very similar

operations: they both read a value from the channel. The only
difference is the length of time they use to access the channel.
As a result, radio communication behavior can be abstracted
into two operations: read channel and write channel. The
read channel represents the packet receiving and the signal
sampling. The write channel represents the packet transmit-
ting.
As discussed previously, global clock is not feasible in

a distributed environment since every clock access needs to
traverse the network thereby incurring a large overhead. In-
stead, we use a peer-to-peer design in which each sensor node
maintains its own local clock, clocks are synchronized before
message rendezvous, and each node is otherwise simulated
independently.
When a communication between nodes occurs, the causal

relationship that exists between sender and receiver is rectified
at the receiver so that packets are received in order, and that
local clock values roughly correspond to arrival timings. We
formalize this synchronization problem in abstract terms and
then discuss our proposed solution.
We first define the simulation:
Definition 1 (Simulation): If we define a radio node Ni

as a tuple (clocki, read channel, write channel) , where
clocki is the internal clock of node Ni, read channel and
write channel are the only two operations performed on a
shared resource, C, representing the channel, we can define a
simulation S as a set: (N0, N1, ..., Nk, C) .
We have to distinguish the simulation time and simulated time.
The former is the wall clock time in real world that is used to
measure the simulation. The latter is the virtual clock time in
simulated world that is shared by simulated Motes. Then we
define the correctness of a simulation:
Definition 2 (Correctness): A simulation is correct if the

following relationship is ensured: ∀ simulated time period
[vti1 , vti2] (corresponding simulation time period [rti1 , rti2]),
at which node Ni is scheduled to write channel (C) , and its
neighbor node Nj is to read channel (C) during [vtj1 , vtj2]
(simulation time [rtj1 , rtj2]); if [vti1 , vti2] ∩ [vtj1 , vtj2] #= ∅,
[rti1 , rti2] ∩ [rtj1 , rtj2] #= ∅.
Intuitively, a correct simulation requires any receiver to receive
any data that it is meant to receive according to the causality

in simulated time space. In our simulation structure, given that
sent data is transferred in byte unit and buffered at the receiver
side, correct simulation can be achieved if each receiving
node delays the delivery of each message byte until the local
clock on the receiver is past the local clock on the sender.
Conservatively,
Property 1 (Safe Receive): if whenever a node Ni invokes

operation read channel, it waits until synchronized with its
neighbors, which means ∀k, if Nk and Ni are neighbors,
clockk > = clocki, the simulation S is correct.
Note that we have to be conservative by waiting all the neigh-
bors since we can not predict which neighbor will transmit at
the time when we receive. We term this property the safeness
property.

C. Distributed Synchronization Protocol
Based on the safeness property we design the complete

synchronization protocol for distributed simulation. We first
introduce a primitive, wait on sync.
Definition 3 (wait on sync): wait on sync is a primitive op-

eration. If it is called by a node Ni, it waits until ∀k, Nk is a
neighbor of Ni, clockk > = clocki.
wait on sync has to be called every time the radio channel is
accessed (receiving or sampling).
Since wait on sync relies on the clock information of neigh-

boring nodes, each node has to be informed of its neighbors’
local clock value. We use a simple clock update protocol in
which each node broadcasts its local clock time periodically.
The length of update interval does not affect correctness
but does have effect on performance. There are two special
requirements on when to send updates. First, clock updates can
not be sent during the transmission of a byte. This is because
if it is sent, a neighbor waiting on a receive will believe it is
time to proceed (if it does not wait for others) and will miss
a partial byte. Updates, then, can only be sent between bytes
during a transmission. Second, before a node starts to wait
by calling wait on sync, it must first send an update. Without
notifying its neighbors of it intention to wait, a node’s silent
wait will cause a deadlock if some other nodes are going to
wait for it.
In summary, any receiver wait on syncs to block and wait

for neighbors’ clock updates before it receives a message or
samples the radio medium. Before blocking, however, it must
reliably inform its neighbors of its local clock value to prevent
deadlock.
Using the above synchronization protocol, we implement

our distributed simulation system. Given a set of nodes, we
first partition them into groups. Each group is simulated on
one machine and each node is simulated in one thread. In
each group, a clock table is maintained to keep the updated
clock time for all local nodes and their neighbor nodes.
Whenever an clock update is sent, it first updates the local
neighbors and then multicasts to the remote neighbors if it
has. Our synchronization protocol treats the local and remote
synchronization in the same way. The following pseudo code
demonstrates the synchronization algorithm of a sensor node.

do_for_every_byte_transfer_time() {
switch (mode) {
case RECEIVING:

send my clock update;
wait_on_sync();
retrieve data byte from packet buffer;
break;

case TRANSMITTING:
send my clock update and data byte;
break;

default:
send my clock update;
break;

}
}

The above code doesn’t show the algorithm for signal
sampling operation, which is the same as receiving (the
“RECEIVING” section in switch statement). The code shows
that we send at least one clock update for every byte transfer
time regardless of radio modes. For transmission, data byte is
“piggy-backed” on the clock update messages to reduce the
message traffic. Notice that there is no constraint for senders.
Senders send data bytes at any time they want. The sent
data bytes are buffered at receivers’ side. And it is receiver’s
responsibility to ensure the correct reception of radio packets.
Notice also that there is a great deal of overhead in this
protocol. If this overhead cannot be amortized or ameliorated
by the performance of the network interconnect within the
cluster, the overall performance of the ensemble simulation
will be low. Our results seem to indicate that these issues are
addressable, however.
Here is the code for wait on sync:

wait_on_sync(nodei) {
for (all nodej as a neighbor of nodei) {

if (nodej’s time < nodei’s time) {
put nodei on nodej’s waiting list;

}
}
if (nodei waits on any node)

wait();
}

The following code shows what happens when a clock
update is received, regardless locally or remotely.

update_clock(nodei, clock) {
nodei.clock = clock;
for (all nodej waiting on nodei) {

if (clock >= nodej’s time) {
decrease nodej’s waiting count;
if (its waiting count is 0)

wake up nodej;
}

}
}

D. Node Partitioning for Parallel Execution

As indicated, the major potential source of overhead comes
from the network synchronization necessary to keep the vari-
ous emulations synchronized. To get maximal performance, we
must reduce the remote synchronization as much as possible.

Thus partitioning the sensor nodes into groups plays an
important role in the making of an efficient simulation.
The amount of remote network synchronization is deter-

mined by the number of remote neighborhood links between
sensor nodes. Local updates to neighbors co-located on the
same machine are relatively inexpensive (because they can
use a shared data structure in memory) compared to remote
clock update synchronization. As such our nodes partition
algorithm has two goals. First, we need to evenly distribute
the node workload among groups if we are running simulation
on a homogeneous system like a dedicated cluster. This need
for load balancing is because any slow host will become
the bottleneck of the whole simulation due to the implicit
dependency among nodes. Second, we want to minimize the
number of links among remote neighbors that are assigned to
processors that can only communicate via network messages.
We find that we can actually convert this optimization

problem into a “classical” graph partition problem that is well
studied in parallel computing area [34], [37], [28]. Formally,
the partition problem is as follows. Given a weighted, undi-
rected graph G = (V, E) , the k-way graph partition problem
is to split the vertices of V into k disjoint subsets such that
each subset has roughly equal amount of vertex weight while
the sum of the weights of the edges whose incident vertices
belong to different subsets (an edge cut) [34].
In our case, given a node map, which specifies the node

coordinates in a 2D or 3D space, and the maximal transmission
range of a typical sensor node, we can build up a graph called
potential neighboring graph (PNG). Each vertex of the graph
is a node. Each edge represents that the connected two nodes
have the potential to communicate. Then the node partition
problem is exactly a graph partition problem with both edge
and vertex weights to be unitary.
The graph partition problem is known to be NP-complete

in general. A large body of research explores heuristic algo-
rithms. There are geometric algorithms, like recursive inertial
bisection that uses coordinate axes to partition the graph;
combinatorial algorithms, like K-L algorithm that optimizes
an partition locally; spectral methods, which transform the
discrete optimization into a continuous one using linear alge-
bra; and multilevel algorithms featuring a coarsening-refining
process. In our simulator, we use a general graph partitioning
package for parallel computing from Sandia National Lab,
called Chaco [10], which combines these techniques based on
graph topology and vertex and edge weights. We use Chaco
without modification and plan to report on its effectiveness in a
future effort. Anecdotally, however, we are quite pleased with
the quality of the partitions it generates for the simulations we
have investigated.

E. Scalability Analysis
Before looking at the experimental results generated by our

implementation, we attempt to describe the potential scala-
bility of the system analytically. The simulation performance
is determined by the pure device simulation speed and the
synchronization overhead. Ultimately, the computational and

memory cost of emulating individual devices will dominate
performance, but the machine and memory speeds of the
cluster hosts are so much more powerful than the devices
simulated on them, it is the network synchronization that poses
the greatest impediment to scalability.
We define the following property that describes the scala-

bility of our algorithm in the ideal case.
Property 2 (Scalability): Given fixed map density d and

node density D and node number Nh on each host, when the
number of hosts H increases, and thus the simulated nodes N
increase, the communication cost for each host is constant if
the partition of nodes to hosts is optimal.
Here the map density d is defined as the ratio between the sum
of areas of node range circles (the circle centered at the node
with maximal radio range as radius) and the area of the map
(maximal area that the nodes occupy). It is a good indication
of nodes’ average number of neighbors.

R

R + r

R - r

Map density: d

Total nodes: N

sensor node map

Group

Node density: D

Fig. 1. Illustration of Property 2

The property is illustrated in Figure 1. The circle with radius
R represents a group. We can use circle is because, assuming
an optimal partition, the group should have minimal contact
with others and a circle is a good estimation of its boundary.
Since the map density d is fixed and the number of nodes
per group is also fixed, the area of a group and thus radius
R is constant. Moreover the ring area corresponding to the
area between circles having radius R − r and radius R + r
both having the same center is the area which nodes may
have cross-group edges, if r defined to be the maximal radio
transmission range. Then the number of cross-group edges for
a group can be calculated as follows:

Numedge ≈ Arearing∗Densitynode∗Densitymap = 4 πRrdD
(1)

Since R, r, d and D are all constant with respect to the
total number of nodes, the number of cross group edges is
fixed. Thus the communication cost of each host is fixed.
Although Property 2 corresponds to an ideal upper bound
on communication overhead, it predicts that scalability will
be affected most by the number of nodes assigned to each
processor rather than the total number of nodes simulated or
the total number of processors employed. Our experimental

results described in the next section seem to reflect this
outcome.

IV. EVALUATION
In this section, we examine the fidelity and scalability of

DiSenS. As a measure of fidelity, we compare cycle counts
generated by our simulator to those observed from individual
real devices (using an oscilloscope to maximize measurement
accuracy). This cycle count comparison is for full-device
emulation (CPU and memory, flash storage, radio, etc.) using
a set of benchmarks designed to exercise all sensor hardware
subsystems.
We also investigate the transparency and completeness of

our system by booting unmodified TinyOS images on the
simulator and executing popular large sensor network appli-
cations: TinyDB, Surge and Deluge [12]. Finally we examine
the scalability of DiSenS using a single benchmark (employed
previously in the literature for such studies) and compare the
results to those generated by previous efforts.
As part of these evaluations, we show how different models

can be incorporated into simulations for the purposes of
experimentation. We do not make an evaluation of these
model plug-ins in terms of their accuracy or their effects on
simulation fidelity, using them only to demonstrate flexibility.
We do assert, however, that the underlying timing accuracy
achieved by our system at scale constitutes an important
capability necessary for the development and evaluation of
such constituent models.

A. Experimental Framework
The results presented in the following exposition have been

generated using two different machine clusters to which we
have access at UCSB. CLUSTER1 is a 1 6 host 2 dual-
processor 3.2GHz Intel Xeon cluster that uses switched gigabit
Ethernet as its communication interconnect. CLUSTER2 is
a larger, departmental cluster composed of 6 4 dual-processor
2.6GHz Intel Xeon hosts, again interconnected via a gigabit
Ethernet switch. Both systems are used in dedicated mode
to remove the effects of network or host contention by other
executing applications.
For all the scalability experiments, we use TinyOS applica-

tion CntToRfm as the the comparison benchmark. CntToRfm
periodically sends out radio packets and makes the radio
channel busy. Note that although it does not actually receive
packets, the radio chip is still in receiving mode when it is not
transmitting so it does in effect exercise all radio activities.
For this reason, CntToRfm has been used as the touchstone in
previous scalability studies [16], [43]; we follow suit.
For most of the experiments, we use Mica2 as the target

sensor device. At the end of this section, however, we briefly
discuss scalability results for MicaZ to show how the effect
of radio transfer speed on simulation performance.
2The term “node” is rather unfortunately common to both the sensor

network and cluster computing communities occasionally leading to confusion
when discussing sensor network emulation on clusters. In the remainder of
this paper, we will use the term “host” to refer to a node in a cluster, and the
term “node” to refer to a sensor network device.

B. Cycle-Accuracy
We use four benchmarks to test the cycle-accuracy, exercis-

ing important components on the Mote device. cpu benchmark
runs CPU intensive computations. flash read performs small
reads from the on-board flash chip. flash write writes to the
on-board flash. radio exercises the CC1000 radio chip and
transfers a small amount of data.
The execution time on real device is measured using an

oscilloscope, Agilent 54621A (accurate up to 10 nanoseconds).
Each benchmark starts by writing an “1” to a pin in I/O port
C and ends by writing a “0” to the pin. The pin is connected
to the oscilloscope probe. The oscilloscope measures the pulse
width. The measured time is then converted into cycle numbers
using a division with ATmega128L’s clock speed (7 3 7 2 8 0 0
Hz). The numbers are compared with our simulation result.
To eliminate the effects of noise and communication channel

instability on cycle timings we attempt to implement the ideal
radio model (clean channel, no contention) for real devices
by putting the antennas of two Motes in direct contact. That
is, to compare simulation results and real timings when two
Motes communicate, the simulator uses the ideal radio model,
and the corresponding Mote configuration has the antennae in
physical contact.

cpu flash_read flash_write radio

Ex
ec

ut
io

n
cy

cle
s

no
m

al
ize

d
to

 re
al

tim
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Fig. 2. Normalized average cycles for benchmarks.

Figure 2 gives the average of 20 measurements as the ratio
of simulated execution cycles to cycles measured from the
actual devices (a ratio of 1 .0 would indicate perfect accuracy).
That is, we normalize the data using actual measured cycle
counts. For CPU emulation, the simulator closely approxi-
mates empirical measurement. Flash and radio emulation have
slightly larger errors, but the size of these errors is of limited
statistical significance. In [45] we provide a more complete
statistical analysis of this comparison which we omit from this
work due to space considerations. Instead, by way of summary,
we note that in general the simulation error is relatively small.

C. Transparency and Completeness
To test the transparency and completeness of our simulator,

we install TinyOS version 1.1.14 and then load and execute
the version of TinyDB, Surge and Deluge that comes with the

release. TinyDB [18] is a sensor query engine providing a SQL
language interface to the sensor network. Surge is a multi-hop
routing algorithm for sensor network. Its protocol builds a
dynamic spanning tree rooted from a single node. Deluge [8]
is an epidemic data dissemination program. It is used to
reprogram a sensor network using radio transferred program
images. In each case, we use the binary image produced by
the TinyOS cross-compilation system without modification.
That is, the same binary for the operating system and each
application loads and runs on the native Mica2 devices.
We test TinyDB and Surge using a 4x4 sensor grid. These

two applications exhibit typical sensor network workflow by
sequentially sensing, logging and transferring data. In addition,
each application can use the serial interface of one of the
Motes to forward program events to a powered device or
workstation for visualization. Either the visualizer opens the
serial port on the workstation and reads the events directly,
or the events are read by a proxy (the serial forwarder) and
forwarded across an attached network via the Internet proto-
cols. Our emulation includes this serial-forwarding capability.
A serial device is exposed by the emulator that can be read
in the same way as the real serial forwarder. Figure 3 and
Figure 4 show the screenshots of their GUI interfaces while the
respective applications execute on the simulator. In developing
and testing the system, we have found this level of software
compatibility to be a valuable debugging aid.

Fig. 3. Screenshot of TinyDB in execution, on 4x4 grid.

We also test Deluge using sensor grids from size 2x2
to 7x7. In each experiment, the sensors are arranged in a
rectangular grid with 5 0 meter spacing. We take the maximal
radio range for the Mica2 to be 6 0 meters so this test
emulates a sparse sensor network deployment. Deluge heavily
uses the internal flash and external flash memories of each
Mote. It also exercises the self-programming function in the
microcontroller. Again, the full-system emulator is transparent
enough to support all of the communication and storage
activities exercised by Deluge as well as the microcontroller
functionality necessary to allow Deluge to perform a complete
operating system installation and reboot.
In Figure 5, we show the dissemination time for the grids

using both a lossless ideal radio model and also a model that

Fig. 4. Screenshot of Surge in execution, on 4x4 grid.

incorporates channel loss, and we compare these two curves
to data reported in [8]. To model channel loss, we conducted
a repeated radio survey using a pair of Mica2 motes on the
UCSB sports fields at various times over a 3 month period.
We varied the time of day, weather conditions, and Motes
used for the survey and recorded communication performance
as a function of distance and geographic orientation. Off-line,
we analyze this data to produce a loss probability for each
packet that is parameterized by the orientation of the sending
and receiving Motes and their intervening distance. When the
emulator sends a packet between Motes, it uses this probability
to decide whether the packet should be dropped in transit or
delivered successfully. This methodology is inspired by not
identical to the technique used to generate the TOSSIM [16]
radio model.
As expected, the introduction of channel loss dramatically

affects the simulated completion time. We are, at present,
attempting to quantify the error produced by this method of
survey-based simulation for the geographic area we have sur-
veyed. In this study, however, using radio packet traces as the
basis for channel loss is intended to demonstrate the flexibility
of the simulation approach. Indeed, as indicated, because we
have verified the accuracy of the individual device emulations,
we are now using the simulator to explore new, potentially
higher-fidelity radio models that incorporate analysis of survey
measurements.

D. Scalability
For each scalability experiment, we vary two experimental

parameters independently: the number of sensor nodes simu-
lated on each host in a cluster, and the number of hosts used
for each experiment. Thus, for example, the value in row 2 ,
column 4 shows the results for two nodes per host and four
hosts. For each node-count-host-count pair, we run CntToRfm
for 6 0 seconds and record the average simulated clock speed.
Except where noted explicitly, all the experiments are run on
CLUSTER1.
1) Best Case: One Dimensional Topology: Our first experi-

ment simulates a one dimensional topology. All the nodes are

2 3 4 5 6 7

20
0

40
0

60
0

80
0

Grid size

Co
m

pl
et

e
tim

e
(s

)
lossy
lossless
tossim lossy

Fig. 5. Dissemination complete time for Deluge. X -axis is the size of grid.
Y -axis is complete time. lossless is for the ideal radio model and lossy is for
a lossy model based on radio survey data. The TOSSIM data tossim lossy is
taken from figure 11 on page 11 in [8].

TABLE II
SIMULATED CLOCK SPEED FOR 1 -D TOPOLOGY. EACH ROW HAS FIXED

NUMBER OF NODES PER HOST AND EACH COLUMN HAS FIXED NUMBER OF

HOSTS. ALL VALUE IS NORMALIZED TO REAL TIME CLOCK SPEED.

Nodes Hosts number
number 1 2 4 8 16
1 9.28 2.26 1.96 1.72 1.67

2 6.68 2.12 1.82 1.68 1.68

4 2.18 1.83 1.70 1.68 1.67

8 1.20 1.21 1.18 1.16 1.15

16 0.78 0.61 0.60 0.60 0.60

32 0.35 0.36 0.31 0.31 0.31

64 0.18 0.15 0.17 0.15 0.14

128 0.09 0.09 0.09 0.08 0.08

laid on a straight line, 5 0 meters apart (again assuming the
maximal radio range is 6 0 meters). This gives us the minimal
cross group edges (given an optimal partition). It constitutes
the best possible case for the distributed simulation and as
such provides a rough upper bound on the performance.
Table II presents the results. Each cell of the table shows

the ratio of the simulated average clock speed to the real
time clock speed, of 7 3 7 2 8 0 0 cycles per second. To compute
the average simulated clock speed, the simulator records the
number of clock cycles each Mote executed during the 6 0
second execution run. The sum of the cycles is divided by the
number of Motes, and that number is divided by 6 0 . Thus each
cell depicts the average slowdown or speedup factor relative
to native execution speed.
From the table, the best performance is a speedup of 9.28

times real time speed when simulating one node on one
host (the upper lefthand corner in the table). Notice that as
expected, simulating more nodes on a single host (column 1)
yields a slower rate of decay in the speedup factor than does
simulating one node on each of a successively larger number
of hosts (row 1). When two nodes are co-located in the same
host, the speedup factor drops to 6.68 whereas two nodes each
located on a separate host generates a speedup factor of only
2.26.

Number of hosts

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16

0.
01

0.
10

1.
00

10
.0

0

1 nodes
2 nodes
4 nodes
8 nodes

16 nodes
32 nodes
64 nodes
128 nodes

Fig. 6. Scalability of 1 -D topology. X -axis is number of hosts and Y -axis
is clock speed. Each curve represents the performance with a fixed number
of nodes per host. Dashed line shows real time speed.

Total number of nodes

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16 32 64 128 256 512 1024

0.
01

0.
10

1.
00

10
.0

0

best performance
host number

1
2

4
8

16
Nu

m
be

r o
f h

os
t

Fig. 7. Gold curves for 1 -D topology. X -axis is total number of nodes
simulated. The left Y -axis is normalized performance and the right one
is number of hosts. The decreasing curve is the fastest speed curve. The
increasing curve gives the corresponding host number at each point.

What is perhaps the most remarkable, however, is the
similarity between the values for 2 through 1 6 hosts. While
we expected a substantial fall off in speedup in moving from
one host to two hosts, we expected that fall off to continue as
the number of hosts increases. Indeed, starting with 8 nodes
per host (the fourth row in the table) the speedup factors
are remarkably similar regardless of host count. Further, the
tipping point with respect to speedup and slowdown (the point
where the ratio falls below 1 .0) is between 8 and 1 6 nodes per
host for all host counts.
Figure 6 shows this relationship graphically using a log-log

scale. The speedup drops for small node counts from one host
to two, but for the other data points, the number of nodes per
host (and not the number of hosts) is the determining factor
up to 1 6 hosts. This relationship is predicted by the analysis of
Theorem 2 presented in the previous section but none the less,
we found the degree to which it holds somewhat surprising.
By way of comparison to previous work, in this best case

scenario 2048 nodes can be simulated at nearly a tenth of
the real time speed using 1 6 hosts (lower righthand corner of

Total number of nodes

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed
1

1

1 2 4 8 16
16

16

16

16
16

1 2 4 8 16 32 64 128 256 512 1024

0.
01

0.
10

1.
00

10
.0

0
best performance
Avrora

Fig. 8. Best performance curve comparison. X -axis is total number
of nodes simulated. The Y -axis is normalized performance. Compare our
best performance (1 -D topology) with Avrora’s performance. The annotated
number is the corresponding number of hosts.

Table II), which is almost 8 times better than results reported
for TOSSIM [16]. Also, nearly 160 nodes can be simulated in
real time speed using 1 6 hosts, and improvement of almost a
factor of 5 over previous TOSSIM results.
In Figure 7, we plot the best performance of simulating 1 , a

total of 2 , 4 , ..., and 2 0 4 8 nodes respectively. The units of the
y-axis on the lefthand side of the graph are for the ratio shown
in Table II. For each point, we also plot the corresponding
“host number” at which the best performance is achieved
(the host count is shown on the y-axis at the righthand side
of the graph). We call the two curves “gold curves” since
they show the number of hosts necessary to obtain the fastest
simulation of a specific number of nodes. Note that the fall
off in the best performance curve occurs when the number of
hosts reaches 1 6 (the maximum number in CLUSTER1) and
the total node count is increased beyond 6 4 . Thus, in this best
case example, scalability is limited by host availability through
2 0 4 8 simulated nodes.
We compare Avrora [43]’s best performance curve with our

“gold curve” in Figure 8. We run Avrora on a single host from
CLUSTER1 (using both processors on that host) for up to 1 6
nodes (the implementation of Avrora we ported to our machine
did not execute correctly with more than 1 6 nodes). Recall that
Avrora is not designed to use distributed memory parallelism
and message passing but it can take advantage of multiple
processors in a single hosts that share memory. Despite the
extra overhead we have in our system that is necessary to take
advantage of multiple hosts, the performance comparison is
favorable to our work. For up to 8 hosts, our system and Avrora
achieve similar speedup factors. For the 8 node comparison,
however, we require 2 hosts, using both processors on each
host (the small integers next to each triangular graph feature
in Figure 8 indicate how many hosts our system requires to
achieve the corresponding speedup factor) where Avrora is
using only one. Beyond 8 nodes, however, our methodology,
using successively larger host counts, achieves a considerable
scalability improvement over Avrora.

TABLE III
SIMULATED CLOCK SPEED FOR 2 -D TOPOLOGY. EACH ROW HAS FIXED

NUMBER OF NODES PER HOST AND EACH COLUMN HAS FIXED NUMBER OF

HOSTS. ALL VALUE IS NORMALIZED TO REAL TIME CLOCK SPEED.

Nodes Hosts number
number 1 2 4 8 16
1 9.14 2.52 1.83 1.66 1.64

2 6.65 2.12 1.58 1.38 1.18

4 2.09 1.49 1.27 1.12 1.10

8 1.25 1.07 1.01 0.96 0.92

16 0.82 0.63 0.62 0.59 0.57

32 0.32 0.38 0.31 0.30 0.30

64 0.16 0.17 0.16 0.15 0.15

128 0.10 0.08 0.07 0.07 0.07

2) Common Case: Two Dimensional Topology: A two
dimensional topology is more realistic for sensor network
applications. Using the same configurations, we perform the
experiments on a two dimensional node map. The nodes are
again 5 0 meters apart and fill a grid whose shape is as close
to a square as possible. Table III provides the results. The
performance for a 2 -D space is somewhat worse than for the
1 -D case when the number of nodes per host is below 3 2 .
However comparing Tables II and III for node-per-host counts
above 3 2 shows surprising similarity. Again, as the number
of simulated nodes increases, the number of available hosts
becomes the scalability limiting factor – not the node count.
In the 2 -D case, however, performance equivocates between
1 6 and 3 2 nodes per host corresponding to a slowdown factor
of between 0 .6 and 0 .3 . That is, while it is possible for our
system to achieve scalable 2 -D simulation of the benchmark,
it is not possible to do so and to run in faster-than-real time.

Total number of nodes

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16 32 64 128 256 512 1024

0.
01

0.
10

1.
00

10
.0

0

best performance
host number
Avrora

1
2

4
8

16
Nu

m
be

r o
f h

os
t

Fig. 9. Gold curves for 2 -D topology. X -axis is total number of nodes
simulated. The left Y -axis is normalized performance and the right one
is number of hosts. The decreasing curve is the fastest speed curve. The
increasing curve gives the corresponding host number at each point. The
dashed curve is Avrora’s speed curve.

We present the “gold curves” in Figure 9 but combine the
node count and Avrora comparison curves onto a single graph.
Again, our system performs similarly to Avrora (this time on
the 2 -D problem) but in this case, it requires more hosts to
achieve the same results. For example, the simulator requires
8 hosts to duplicate Avrora’s 8 node performance (using a

Total number of nodes

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16 32 64 128 256 512 1024

0.
01

0.
10

1.
00

10
.0

0
one dimension
two dimensions

Fig. 10. Best performance comparison of 1 -D and 2 -D topology. X -axis is
total number of nodes simulated. The Y -axis is normalized performance.

single host). Surprisingly, however, the 2 -D gold curve and
the 1 -D gold curve have similar shape. Figure 10 shows both
on the same graph (note the log-log scale). Between 3 2 and
1 2 8 simulated nodes there is a reduction in speedup factor
for the 2 -D case, but apart from that region, the curves track
almost exactly.

TABLE IV
SIMULATED CLOCK SPEED FOR “ALL-TO-ALL” COMPLETE GRAPH. EACH
ROW HAS FIXED NUMBER OF NODES PER HOST AND EACH COLUMN HAS

FIXED NUMBER OF HOSTS. ALL VALUE IS NORMALIZED TO REAL TIME

CLOCK SPEED.

Nodes Hosts number
number 1 2 4 8 16
1 9.28 2.36 1.66 1.60 1.36

2 6.68 1.41 1.07 0.81 0.66

4 2.04 0.94 0.75 0.62 0.42

8 1.22 0.65 0.54 0.43 0.29

16 0.62 0.44 0.32 0.23 0.14

32 0.29 0.20 0.14 0.08 0.04

64 0.12 0.08 0.04 0.02 0.01

128 0.05 0.02 0.01 0.002 0.0008

3) Worst Case: All-to-all Network: The previous scalability
results we have presented rely on the limited neighborhood
relationship imposed by radio range. For the worst case, we
simulate an “all-to-all” complete graph configuration in which
each simulated node must consider all of the other nodes to
be in radio range making communication overhead maximal.
Table IV and Figure 11 shows the speedup factors and scal-
ability curves respectively. In this worst case, communication
overhead increases as the square of the node density. For small
node-per-host and host counts, the speedup factors are similar
to the 1 -D and 2 -D grid cases, but as both are increased the
speedup factor is continually reduced.
4) Larger Scale Experiment: To test our simulator in a

larger scale, we perform the 2 -D experiment on CLUSTER2,
a 6 4 -node cluster. Table V presents the results. Comparing
Table V to Table III (which used CLUSTER1 for the same
configuration) CLUSTER2 achieves lower speedup factors for
the test cases they have in common (columns 1 through 5).

Number of hosts

No
rm

al
ize

d
sim

ul
at

ed
 c

lo
ck

 s
pe

ed

1 2 4 8 16

0.
01

0.
10

1.
00

10
.0

0

1 nodes
2 nodes
4 nodes
8 nodes

16 nodes
32 nodes
64 nodes
128 nodes

Fig. 11. Scalability of “all-to-all” complete graph. X -axis is number of
hosts and Y -axis is clock speed. Each curve represents the performance with
a fixed number of nodes per host. Dashed line shows real time speed.

TABLE V
SIMULATED CLOCK SPEED FOR SIMULATION OF 2 -D GRID OF MICA2
MOTES ON CLUSTER2. EACH ROW HAS FIXED NUMBER OF NODES PER

HOST AND EACH COLUMN HAS FIXED NUMBER OF HOSTS. ALL VALUES
ARE NORMALIZED TO REAL TIME CLOCK SPEED.

Nodes Hosts number
number 1 2 4 8 16 32 64
1 7.21 0.85 0.70 0.55 0.45 0.41 0.41

2 3.33 0.55 0.50 0.44 0.38 0.34 0.32

4 2.51 0.55 0.48 0.42 0.39 0.35 0.34

8 1.37 0.51 0.44 0.39 0.36 0.39 0.30

16 0.74 0.47 0.39 0.37 0.37 0.36 0.33

32 0.37 0.32 0.29 0.29 0.27 0.28 0.23

64 0.17 0.16 0.15 0.15 0.13 0.16 0.12

128 0.08 0.07 0.07 0.07 0.07 0.08 0.07

Both a slower processor speed in CLUSTER2 and, somewhat
curiously, higher network latency (even though CLUSTER1
and CLUSTER2 both use gigabit Ethernet as an interconnect)
contribute to this lower performance. However, as the size
of the sensor network being simulated scales, the overhead
is once again amortized. For example, using 6 4 hosts of
CLUSTER2 and 1 2 8 nodes/host our system can simulate 8192
nodes in total with a slowdown factor of 0 .0 7 representing an
almost 32 fold improvement over previously reported TOSSIM
results.

TABLE VI
SIMULATED CLOCK SPEED FOR SIMULATED 2 -D GRID OF MICAZ MOTES.
EACH ROW HAS FIXED NUMBER OF NODES PER HOST AND EACH COLUMN

HAS FIXED NUMBER OF HOSTS. ALL VALUES ARE NORMALIZED TO REAL

TIME CLOCK SPEED.

Nodes Hosts number
number 1 2 4 8 16
1 8.67 0.18 0.13 0.13 0.12

2 1.53 0.11 0.09 0.07 0.06

4 0.89 0.10 0.07 0.06 0.06

8 0.35 0.08 0.06 0.05 0.04

16 0.18 0.07 0.05 0.04 0.04

32 0.10 0.06 0.05 0.05 0.04

64 0.05 0.04 0.04 0.04 0.04

5) Faster Radio: MicaZ: Another important consideration
in measuring the scalability of our system is radio communica-
tion speed. In the previous subsections, our experiments are for
the Mica2 platform. The newer MicaZ Mote uses the CC2420
radio chip which is almost 1 3 times faster than CC1000 used in
the Mica2. A faster radio implies a slower simulation speed
due to the communication overhead since for the CC2420,
the simulator must wait and update 1 3 times more frequently.
Table VI shows the 2 -D experimental results for simulations
using the MicaZ Mote. As expected, the speedup factors are
considerably lower than for the Mica2 indicating that the
simulator cannot achieve faster-than-real time performance.
The scalability of the system is similar to that for Mica2 in
that once the nodes per host is larger than 3 2 the number of
available hosts becomes the scale-limiting factor.

V. RELATED WORK

There have been numerous previously successful efforts to
build sensor network simulation systems. Of these, Avrora [43]
is the most similar to our work. Avrora is a full-system sensor
network simulator supporting cycle-accurate emulation of the
Mica2 Mote platform. Avrora uses a multithreaded structure
in which each sensor node is simulated in a separate thread.
A lock-step style synchronization scheme that is coordinated
with the communication model is used to ensure the correct-
ness of radio simulation. Avrora has a “Wait for Neighbors”
operation that is similar to our wait on sync primitive, but it
is only used to implement correct signal sampling operation.
It also scales to multiple processors using shared memory.
DiSenS provides similar cycle-accurate hardware emulation
capability and some extra hardware support such as the Zigbee
radio emulation. By employing cluster resources that do not
share memory and carefully partitioning simulations between
cluster machines, DiSenS achieves significantly greater scala-
bility than has been reported for Avrora.
ATEMU [27] is another full-system sensor network simula-

tor. It focuses on the detailed bit-level hardware simulation.
It employs a very simple synchronization mechanism by
executing one instruction a time for each sensor node. It is
so simple that no extra facility and protocol is required to
ensure correct radio simulation because nodes are already syn-
chronized cycle-by-cycle using shared memory data structures.
However, it can only utilize one process and thus does not
scale to parallel computational resources.
Other simulators, include TOSSIM [16], SensorSim [26],

GTSNetS [25], OLIMPO [2] and Shawn [14], explore the
tradeoff between accuracy and performance by using discrete
event simulation to elide the complexity associated with cycle-
accurate hardware emulation. In addition, these systems do not
achieve the transparency of DiSenS in that application and
operating code must either be translated to, or compiled for,
their respect discrete-event environments.
TOSSIM is a popular event-driven simulator which models

not only the wireless network but also the application behavior.
TOSSIM is light weight and can simulate thousands of sensor
nodes on one host. None-the-less, we demonstrate how DiSenS

is able to achieve improved performance levels by leveraging
distributed cluster resources while achieving transparency and
cycle accuracy. SensorSim is a sensor network simulator based
on NS-2 [24] which is a discrete event wireless network
simulator. It does not model application itself as TOSSIM
does achieving even less transparency. A sensor network
simulator based on GTNetS [32] claims to be able to simulate
a sensor network at a scale of hundreds of thousands of nodes.
This scale exceeds what we have been able to test using
the resources at our disposal, but to achieve this level of
scalability, the operating system and application codes must
be represented in a high-level, abstract way. Thus it is not
possible to use this system to directly compare executions of
sensor network software in simulation and on real hardware,
as it is using DiSenS.
EmStar [9] is an environment that uses libraries and user-

space device drivers to emulate an embedded environment
for deploying advanced sensor devices, like the Stargate [39].
It is used, primarily, to simulate the behavior of embedded
applications but does not attempt to provide cycle-accurate
fidelity. Scalability is also not the primary focus of the EmStar
effort.
There are also a large body of literature on full-system

simulation [33], [47], [46], [19], [20], [3], [29], [5]. But these
efforts focus on the simulation of one architecture or device
or the study of individual hardware subsystems. The focus of
our work is complementary in that we implement ensemble
simulations of multiple devices. To achieve the individual
device fidelity and simulation performance we report, we
are indebted to these efforts for many of the optimization
techniques we have employed.

VI. CONCLUSION
DiSenS is a complete sensor network simulation framework

providing high levels fidelity, extensibility and scalability. It
addresses the conflict between accuracy and performance.
Given enough computational resources, researchers do not
have to trade simulation quality for simulation efficiency.
DiSenS also provides a complete and transparent simulation

framework, including a cycle-accurate device emulator and
replaceable plugin models. Users of DiSenS are able to employ
customized models to explicitly control simulation quality.
Internally, DiSenS uses a peer-to-peer simulation design for
distributed clock synchronization. Individual node simulation
threads are glued together by a simple and efficient syn-
chronization protocol, which makes the complete simulation
scalable to a large size of distributed computation resources.
Using commodity cluster hardware, DiSenS can simulate one
node approximately 9 times faster than real time speed, 160
nodes in real time speed using 1 6 dual-processor machines
and 8192 nodes at nearly tenth of real time speed, which is
32 times of that reported previously [16].
We are actively improving DiSenS to make it a useful tool

for sensor network research. A big challenge is to look for
a dynamic node partition algorithm so that non-dedicated,
heterogeneous distributed systems can be used for simulation.

We are also interested to expand the hardware support list so
that the simulation can cover more platforms and can be used
more widely.

REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for

Computer System Modeling. IEEE Computer, 2002.
[2] J. Barbancho, F. Molina, C. Len, J. Ropero, and A. Barbancho.

OLIMPO, An Ad-Hoc Wireless Sensor Network Simulator for Optimal
SCADA-Applications. Communication Systems and Networks (CSN
2004), 450, Sept. 2004.

[3] R. C. Bedichek. Efficient Memory Simulation in SimICS. ACM
SIGMETRICS, 1995.

[4] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi.
A discrete-time battery model for high-level power estimation. In
Proceedings of Design, Automation and Test in Europe, 2000.

[5] The Bochs IA-32 Emulator Project. http://bochs.
sourceforge.net.

[6] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical
Model of Lossy Links in Wireless Sensor Networks. In the ACM/IEEE
Fourth International Conference on Information Processing in Sensor
Networks (IPSN’05), Apr. 2005. Los Angeles, California.

[7] RF Receivers from Chipcon. http://www.chipcon.com/index.
cfm?kat id=2.

[8] A. Chlipala, J. W. Hui, and G. Tolle. Deluge: Dissemination Protocols
for Network Reprogramming at Scale. Fall 2003 UC Berkeley class
project paper, 2003.

[9] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin. EmStar: a Software Environment for Developing and
Deploying Wireless Sensor Networks. USENIX Technical Conference,
2004.

[10] B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0.
Technical Report SAND94–2692, Sandia National Lab, 1994.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for network sensors. International Conference
on Architectural Support for Programming Languages and Operating
Systems, Oct. 2000.

[12] J. W. Hui and D. Culler. The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale. The 2nd ACM Conference
on Embedded Networked Sensor Systems (SenSys’04), 2004.

[13] iPAQ devices. http://welcome.hp.com/country/us/en/
prodserv/handheld.html.

[14] A. Kroeller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer.
Shawn: A new approach to simulating wireless sensor networks. eprint
arXiv:cs/0502003, Feb. 2005.

[15] O. Landsiedel, K. Wehrle, and S. Gtz. Accurate Prediction of Power
Consumption in Sensor Networks. In Proceedings of The Second IEEE
Workshop on Embedded Networked Sensors (EmNetS-II), May 2005.
Sydney, Australia.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. ACM Conference
on Embedded Networked Sensor Systems, Nov. 2003.

[17] D. Linden and T. B. Reddy. Handbook of Batteries(3rd edition).
McGraw-Hill, 2002.

[18] S. R. Madden, M. J. Franklin, J. M. Hellerstein, , and W. Hong. The
Design of an Acquisitional Query Processor for Sensor Networks. In
Proceedings of SIGMOD 2003, June 2003.

[19] P. Magnusson and B. Werner. Efficient Memory Simulation in SimICS.
Simulation Symposium, 1995.

[20] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson,
F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrm, and B. Werner.
SimICS/sun4m: A Virtual Workstation. USENIX Technical Conference,
1998.

[21] Mica2 sensor board. http://www.xbow.com/.
[22] MicaZ sensor board. http://www.xbow.com/.
[23] Mote hardware platform. http://www.tinyos.net/scoop/

special/hardware.
[24] NS-2 network simulator. http://www.isi.edu/nsnam/ns/.
[25] E. Ould-Ahmed-Vall, G. F. Riley, B. S. Heck, and D. Reddy. Simulation

of Large-Scale Sensor Networks Using GTSNetS. In Proceedings of the
13th IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS’05),
2005.

[26] S. Park, A. Savvides, , and M. B. Srivastava. SensorSim: a simulation
framework for sensor networks. ACM International workshop on
Modeling, analysis and simulation of wireless and mobile systems, pages
104–111, 2000.

[27] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras. ATEMU: A
Fine-grained Sensor Network Simulator. IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004.

[28] A. Pothen. Graph partitioning algorithms with applications to scientific
computing. Parallel Numerical Algorithms, pages 323–368, 1997.
Kluwer.

[29] QEMU: A Generic and Open Source Processor Emulator. http://
fabrice.bellard.free.fr/qemu/.

[30] Wireless Propagation Bibliography. http://w3.antd.nist.gov/
wctg/manet/wirelesspropagation bibliog.html.

[31] D. Rakhmatov and S. Vrudhula. Time-to-failure estimation for batteries
in portable electronic systems. In Proceedings of the International
Symposium on Low Power Electronics and Design, Aug. 2001.

[32] G. F. Riley. Large-scale network simulations with GTNetS. In
Proceedings of the 2003 Winter Simulation Conference, 2003.

[33] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete
Computer System Simulation: The SimOS Approach. IEEE Parallel
and Distributed Technology, winter:34–43, 1995.

[34] K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High
Performance Scientific Simulations. Draft to be included in CRPC
Parallel Computing Handbook, Morgan Kaufmann, Sept. 2000.

[35] V. Shnayder, M. Hempstead, B. rong Chen, and M. Welsh. Pow-
erTOSSIM: Efficient Power Simulation for TinyOS Applications. In
Proceedings of the Second ACM Conference on Embedded Networked
Sensor Systems (SenSys’04), Nov. 2004. Baltimore, MD.

[36] V. Shnayder, M. Hempstead, B. rong Chen, G. Werner-Allen, and
M. Welsh. Simulating the Power Consumption of Large-Scale Sensor
Network Applications. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys’04), Nov. 2004. Bal-
timore, MD.

[37] H. D. Simon. Partitioning of Unstructured Problems for Parallel
Processing. Computing Systems in Engineering, 2:135–148, 1991.

[38] Simulavr: A simulator for the Amtel AVR processor family. http:
//www.nongnu.org/simulavr.

[39] Stargate: a platform X project. http://platformx.
sourceforge.net/.

[40] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environment
and Network Simulator. The IEEE 37th Annual Simulation Symposium,
2004.

[41] K. C. Syracuse and W. Clark. A statistical approach to domain perfor-
mance modeling for oxyhalide primary lithium batteries. In Proceedings
of Annual Battery Conference on Applications and Advances, Jan. 1997.

[42] Moteiv Corporation. Telos Sensor Network Module. http://www.
moteiv.com/.

[43] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable Sensor
Network Simulation with Precise Timing. The Fourth International
Symposium on Information Processing in Sensor Networks, Apr. 2005.

[44] F. A. Tobagi and L. Kleinrock. Packet switching in radio channels:
Part II-The hidden terminal problem in carrier sense multiple-access
and the busy-tone solution. IEEE Transactions on Communications,
COM-23:1417–1433, 1975.

[45] Y. Wen, S. Gurun, N. Chohan, R. Wolski, and C. Krintz. Toward
Full-System, Cycle-Accurate Simulation of Sensor Networks. Technical
Report CS2005-12, University of California, Santa Barbara, 2005.

[46] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Machine Sim-
ulation. ACM SIGMETRICS Performance Evaluation Review, 24(1):68–
79, May 1996.

[47] Intel XScale XDB Simulator 2.0. http://www.intel.com/
design/pca/prodbref/250424.htm.

[48] J. Zhao and R. Govindan. Understanding packet delivery performance in
dense wireless sensor networks. In Proceedings of the 1st international
conference on Embedded networked sensor systems (SenSys’03), 2003.

[49] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio
irregularity on wireless sensor networks. In Proceedings of the 2nd
international conference on Mobile systems, applications, and services
(MobiSYS’04), 2004.

