
FLUX: Fuzzy Content and Structure Matching of XML
Range Queries

Hua-Gang Li
Department of Computer Science

University of California
Santa Barbara, CA 93106.

huagang@cs.ucsb.edu

S. Alireza Aghili
Department of Computer Science

University of California
Santa Barbara, CA 93106.

aghili@cs.ucsb.edu

Divyakant Agrawal
Department of Computer Science

University of California
Santa Barbara, CA 93106.

agrawal@cs.ucsb.edu

Amr El Abbadi
Department of Computer Science

University of California
Santa Barbara, CA 93106.

amr@cs.ucsb.edu

ABSTRACT
Range queries seek the objects residing in a constrained re-
gion of the data space. An XML range query may impose
predicates on the numerical or textual contents of the el-
ements and/or their respective path structures. In order
to handle content and structure range queries efficiently, an
XML query processing engine needs to incorporate effective
indexing and summarization techniques to efficiently par-
tition the XML document and locate the results. In this
paper, we describe a dynamic summarization and index-
ing method, FLUX, based on Bloom filters and B+-trees
to tackle these problems. We present the results of exten-
sive experimental evaluations which indicate the efficiency
of the proposed system.

1. INTRODUCTION
In recent years, XML has gained wide acceptance as an

emerging standard and is being employed as a key tech-
nology for data exchange, integration and storage of semi-
structured data. The XML data model, due to its rich pre-
sentation (content and semi-structuredness) poses unique
challenges to effectively support complex queries. Numerous
research efforts have been conducted [1, 2, 6, 8, 13, 16, 17,
18, 19, 20, 22] to provide powerful and flexible query capabil-
ities to extract patterns from XML documents. Queries on
such ordered trees generally impose predicates on the con-
tent of ELEMENT labels (keyword search) and/or their corre-
sponding structural relationships (structure pattern search).
These queries require the presence of some keywords in the
document tree along with the conformation of the result
with some structural predicates, which might be a specific
linear path structure (path expression query, e.g. Q1) or a
subtree pattern structure (twig query, e.g. Q2) in the un-
derlying data. For instance, Q1 = /dblp//article[/year

= ’2005’] represents a simple path expression query which
matches all the journal articles published in the year 2005

from the dblp [15] bibliography database.

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

XML query languages [7, 11] provide support for content-
and-structure (CAS) class of queries. Additionally, full-text
keyword search techniques [5] have been added to XML
query languages to support more sophisticated full-text con-
tent retrieval. Furthermore, the XQuery and XPath query
languages provide support for exact range queries which are
one of the basic functionalities supported by general data-
base query processing engines.

In this paper, the class of content-and-structure (CAS)
single path queries are extended to include (i) range pred-
icates, and (ii) fuzzy content-and-structure predicates and,
furthermore, efficient techniques are proposed for process-
ing them. We call this class of holistic queries Fuzzy-Range
(FuR), since they provide efficient support for exact and
fuzzy (approximate) matching of queries with path, content
and range predicates. The fuzzy/approximate matching fea-
ture is supported without requiring any specific instructions
from the user. For example, the query

Q2 = /dblp//article[2004 ≤ /year ≤ 2005]

matches the journal articles published in the year range
[2004-2005] from dblp database. Fuzzy structure match-
ing feature of the system additionally reports those instances
that match the range predicate of the query, but whose
structure resembles the query’s structure, for instance

p1 = /dblp/article/year/2005, and
p2 = /dblp/articles//year//2004.

Due to the heterogeneity of the XML data, it is essential
to provide the support for fuzzy matching in current XML
query engines. In the real world, users may pose a query
such as Q2 on a collection of bibliography XML databases.
However, the datasets of the collection may neither have nor
conform to a common DTD (Document Type Definition).
There may exist journal article records in the database pub-
lished in the year 2004 to 2005, however, not necessarily
conforming to the order and the structure imposed by the
Q2. An XML query system should be able to hide the details
and complexity of the underlying data from the user while

returning both the exact answers to Q2, as well as, approx-
imate answers assuming that the user might not have had
complete/exact knowledge of the low-level representation of
the underlying data in the database.

The efficient evaluation of such FuR queries is determined
by the choice of an efficient execution and data access plan
which is one of the critical responsibilities of the database
optimizer. For instance, consider a possible query plan for
Q2 where the query engine has to perform the FuR query

Q′2 = /dblp//article[/year = 2004 OR /year = 2005]

to find all the journal articles published in the year 2004 or
2005. The dblp dataset contains 111,609 instances of the
[/article/year] path structure and only 259 instances of
[/year/2005] (see Figure 4). That is the [/year = ’2005’]

predicate will return 259 instances while the structure pred-
icate [/dblp//article/year] results in 111,609 instances.
Hence, it is essential to utilize the selectivity1 of the struc-
tural elements and their contents for efficient evaluation of
the FuR queries. As a result, an efficient query execution
plan should apply the evaluation starting at the more se-
lective segments of the query. However, one of the main
challenges involved in such execution plans for FuR queries
is that numerical predicates, which happen to be more selec-
tive in this case, typically involve the leaf level of the XML
document tree. Therefore, pushing the evaluation down to
the leaves of the tree should be accompanied with the ap-
propriate leaf indexing techniques to avoid inspecting a large
number of leaf nodes. It is clear that plans such as Q′2 do
not utilize the common optimization technique of pushing
down the selection operation down to the leaves of the
query plan tree. Ignoring the selectivity of the path ele-
ments results in the exponential growth of the intermediate
result set which must be retrieved from the database. We
argue that it is essential to utilize effective summarization
and indexing techniques to eliminate the space based on the
numerical and most selective attributes of the XML docu-
ment collections.

In this paper, we develop an XML query processing sys-
tem for FuR queries named FLUX. FLUX employs an effi-
cient B+-tree based index structure to locate the leaf matches
ni to the range predicate of a query in its initial stage. Each
leaf match ni of the document tree stores a compact path
signature of the root-to-leaf path structure of ni, using the
notion of Bloom Filters [4]. In the next step, the path signa-
tures of each matched leaf instance ni is compared with the
query’s path signature to eliminate those instances whose
path signature is very different from that of the query. To
the best of our knowledge, this is the first work to specifi-
cally address exact and approximate matching of FuR class
of queries in XML document collections. The main features
of FLUX are summarized as follows:

• FLUX is an efficient and effective system for exact and
approximate matching of Fuzzy-Range (FuR) class of
queries with range and fuzzy structure predicates on
XML document collections.

• An efficient B+-tree based indexing scheme is con-
structed on the indexable (e.g., textual, numerical, date,

1The fraction of the structural elements that satisfy the
predicate.

etc.) attributes of the XML document for effective re-
trieval and matching of the query’s range predicate.

• FLUX incorporates a novel bit-wise hashing scheme
based on the notion of Bloom Filters [4] on ELEMENT

and ATTRIBUTE contents of XML document trees. A
family of hash functions are applied on the path con-
tent components where each path is summarized to
a compact bit vector signature. As a result, the fuzzy
path matching is performed very efficiently through the
comparison of path signature bit vectors.

• Extensive experimental evaluations depict the effec-
tiveness of FLUX for complex FuR queries on real and
synthetic XML document datasets.

The rest of the paper is organized as follows: Section 2
presents the problem definition. Sections 3 and 4 provide
the descriptions of range matching and path matching pro-
cedures, respectively. Section 5 finalizes the FLUX algo-
rithm followed by Section 6 which provides the experimental
analysis and results. Section 7 concludes the work.

2. PROBLEM FORMULATION
XML documents are rooted and ordered tree structures

where each node in the document tree corresponds to the
document’s ELEMENT, ATTRIBUTE, or TEXT nodes. The TEXT

nodes represent the values of their parent ELEMENT nodes,
and ATTRIBUTE nodes introduce branches off their parent
ELEMENT nodes. For now, we only consider simple Numerical-
Path expressions (NaP) which are defined as follows:

Definition 1. (Numerical-Path2 Expression, NaP).
A simple path expression p = e1t1e2t2 . . . ekN is called a
Numerical-Path expression (NaP), where each ei denotes
an Ancestor-Descendant (AD, //) or Parent-Child (PC, /)
edge, ti denotes the tag of an ELEMENT or ATTRIBUTE, and
N represents a range predicate or a numerical value, respec-
tively.

Example 1. q1 = /dblp//article/[2004≤year≤2005],
and q2 = /management//employee/salary/72,000 represent
NaP expressions on dblp [15] and an employee database, re-
spectively. For instance in q1: e1 = /,t1 = dblp,e2 = //,

t2 = article, e3 = /, and N = [2004≤year≤2005].

Given an XML dataset and a numerical-path expression,
we need to locate and retrieve all the qualifying matching in-
stances. Matching the query against an NaP instance of the
dataset involves comparing their corresponding path struc-
ture and the numerical sentinels of the their path expres-
sion (range or single value, N). The numerical predicate
match of the sentinel N of the query expression seeks all the
corresponding instances in the database having numerical
sentinel N ′ such that: N ′ = N or N ′ ∈ N . For instance
considering the query Q1, this phase corresponds to locat-
ing all the instances of the year attribute being equal to
2004. Furthermore, the path structure signatures of all the
matching instances are compared against the query’s path

2The techniques proposed in this paper are generally ap-
plicable to all indexable (e.g., numerical, textual, date, ...)
attributes. The term “Numerical” is solely used for better
explanation of the examples and the comparison schemes.

structure signature. The exact and approximate (fuzzy) in-
stances are finally reported based on their level of similarity
to the query. In an offline phase, a hash function f maps
each tag of each individual path structure of the database
onto a hash value. The hash values of the element tags of
each path are collectively combined to construct a single
bit-vector signature for the path structure. The similarity
among the bit-vector signatures pi of path structures of the
database and the path structure signature of the query, is
used to measure the similarity of the path structures of the
database pi to the query.

Definition 2. (Matching Instance). Given the query
expression q = e1t1e2t2 . . . etN, and any NaP matching in-
stance p = e′1t

′
1e

′
2t

′
2 . . . e′tN

′ of the database, let hash() de-
note a hash function which maps a path structure onto a
bit-vector. Moreover, let h:u → 2 ℵ denote a function on
bit-vectors which returns the set of all the “set” bit indices
of any bit-vector u. Then, the NaP matching instance p is
called a matching instance to q, if

h(hash(e1t1 . . . et)) ⊆ h(hash(e′1t
′
1 . . . e′t)),

and [N = N ′or N ∈ N ′].

where hash(e1t1e2t2 . . . et) and hash(e′1t
′
1e

′
2t

′
2 . . . e′t) denote

the hash bit-vector signatures of the path structures of the
query and the database matching instance p, respectively.
For instance, given two path structures q and p, where hash(q)
= 100001 and hash(p) = 101101, then p is called a matching
instance of q because h(hash(q)) = {1, 6} ⊆ h(hash(p)) =
{1, 3, 4, 6}.

Consider searching for matching instances to the NaP q2

of Example 1. The NaP expression

p = /management//employee/salary/72,000

is the only form of matching instance that can result from
an exact path matching scheme. However, in construct-
ing the path structure signature, a fuzzy choice of matching
functions f and hash() from the family of Locality Sensi-
tive Hashing schemes [4] would not only help identifying
the exact match instances such as p but also the approxi-
mate matches simply resembling the query, such as

p′ = /management//employee//salary//72,000, and

p′′ = //manager/employee//salary/value/72,000.

Notation 1. (Path Components). Any NaP path ex-
pression p = e1t1e2t2 . . . ekN consists of two main compo-
nents, a path expression component denoted by Qρ =
e1t1e2t2 . . . ek and a numerical predicate (sentinel) com-
ponent Qη = N.

For instance, the NaP expression

P = /management//employee[65,000≤/salary≤73,580]

consists of two components: the path expression com-
ponent P ρ = /management//employee/salary and the nu-
merical predicate component P η = 65,000 ≤ /salary ≤
73,580. Given an NaP query Q, FLUX proceeds in two
different phases, (i) finding the regions in the database sat-
isfying the numerical predicate component Qη of the query
(range matching), and (ii) matching the query path com-
ponent Qρ against the range-matched instances of the data-
base (path matching). Numerical matching is the initial

step and the results of this stage are passed to the path
matching phase for structure matching and refinement of
the answers. The following sections provide the details of
the range and path matching procedures.

3. RANGE MATCHING
Any range query may benefit from efficient indexing mech-

anisms to quickly locate and retrieve the interesting portions
of the database satisfying the range predicate. Popular in-
dexing techniques such as B+-trees and R-trees have been
extensively applied to alleviate such problems in the general
context of numerical predicate queries. The range match-
ing phase of FLUX employs an indexing technique based on
B+-trees on the numerical predicate component Qη of the
query for the effective reduction of the search space.

An offline procedure constructs a B+-tree index on the in-
dexable attributes (e.g, numerical, textual, date, ...) of the
XML document dataset. Figure 1[2] depicts a portion of
one such an index tree, constructed on the age attribute of
a typical XML employee database. Given the constructed
B+-tree of height L, level 0 of the index represents the range
index for the root node and the corresponding range index
information for the leaves are present in level L − 1. Level
L stores the leaf buckets of the actual contents of the des-
ignated numerical attribute. For instance, the last bucket
stores the age content information for two existing age val-
ues 65 and 66 in the database. Each instance (e.g. age

= 66) also holds the bit-vector signature of the actual path
component leading to this node (details provided in the next
section), and its corresponding ELEM-ID information. The
ELEM-ID is the preorder traversal rank of the corresponding
node in the actual XML document. For instance, the node
instance with age = 66 has preorder rank of 72, which is
shown in the document tree of Figure 1, named as the node
7266. Note that, each individual occurrence of an internal
or leaf node has a unique preorder value.

Various numbering schemes have been proposed [1, 6, 11,
16] which, instead, associate interval/regional encoding with
every node, based on the document order. For instance,
each label may consist of (start, end, level) values for each
node, acquired from the preorder traversal of the document,
which is used to (i) help identify PC or AD relationships,
and (ii) impose a logical document order among the nodes.
We argue that, it is enough to use the preorder ranks of
the nodes to impose the document order. Moreover, each
node is associated with a parent pointer in order to locate
its parent node. Given a leaf instance node ni, the parent
pointer parent(ni) is used to construct the complete leaf-to-
root path originating from ni. This complete path structure
is constructed in the last stage of the path matching phase
as the final round of path comparison.

4. PATH MATCHING
Given a NaP query Q and the range-matched instances

pi of the database, the path matching phase performs the
necessary steps to identify those path structure instances pi

whose path component pρ
i matches the path expression com-

ponent Qρ. In the offline phase, each path expression of the
database is hashed-mapped and summarized by a compact
bit-vector signature through collectively applying a family
of hash functions on the element contents of each path. The
following section describes the notion of Bloom filters [4]

management

employee

name age

64Helmut Newton

1

2

3 7

4 8

ID

0050412358

5

6

employee

name age

66Richard Avedon

66

ID

1102874008

...

67 69 71

68 70 72

employee

name age

65Burton Bloom

10 ID

0007414349

9

title

Scientist

12 14 16

11 13 15 17

...

Pe
rs

on
ne

l
do

cu
m

en
t t

re
e

T

4

63
64

65
66

63

65

32

50

8 0 0 01 1 1 01
Bloom Filter

17 0 0 01 1 1 00
Bloom Filter

72 0 0 01 1 1 10
Bloom Filter

.

.

.

age B+-tree index

Q = //management // employee/[64 <= age <= 66] 1

2

3

R1 = management /employee/ age/64
R2 = management/employee/age/64
R3 = management/employee/age/64

O
ut

pu
t

5Q
ue

ry

Leaf
Buckets

ELEM-ID

ELEM-ID

ELEM-ID

Figure 1: FLUX Search model.

// employee

B+-tree index

00 0 0 01 11

0 0 01 1 111

0 01 0 01 1 1 0 1 0 1 0 001

h1 h2 h1 h2 h1 h2

m bits

Bloom filter

P =
n 2n 1 n 3

1 2 3 4 5 6 7 8

Bn1 Bn2 Bn3

BS

 / management / salary / 72,000

Figure 2: A Bloom filter example.

which is used to map the dataset’s path components into
bit-vector signatures. It introduces the theory of bloom fil-
ters and the motivations behind incorporating them.

4.1 Bloom Filter: Preliminaries
Bloom filter is a space-efficient data structure to proba-

bilistically represent a set and its elements to support highly
accurate set membership queries [4]. The bloom filter B con-
sists of a bit vector of length m, and a family of k indepen-
dent hash functions. Given a set S = {n1, n2, . . . , n|S|}, a
family of hash functions is used to construct a bit-vector
signature for S. Figure 2 depicts the construction of a
bloom filter bit-vector signature using k = 2 independent
m = 8-bit hash functions h1 and h2, on the path set S = {
management, employee, salary} , where n = |S| = 3, from
an employee database.

In general, given each element ni ∈ S, the family of hash
functions hj (1 ≤ j ≤ k) are used to map ni into a bit-vector.
All the entries of the bit vector are initially set to zero. In
order to construct the desired bloom bit-vector Bni , all the k
hash functions hj are applied to ni. The application of each

hj on ni results in “setting” some entries of Bni to 1. For in-
stance in Figure 2, the application of hash function h1 on n1,
h1(n1 = management) sets the 1st and 8th bits of the corre-
sponding bit-vector Bn1 . Similarly, h2(management) sets the
3rd and 5th bits of Bn1 . To construct the bloom bit-vector
for the whole set S = {n1, n2, . . . , n|S|}, the resulting bit-
vectors Bni are combined to form the bloom bit-vector BS.
The combination of the bit vectors Bni may be performed
through a simple logical OR operation. That is, the bit vec-
tors resulting from the application of h1 and h2 on the path
element management, employee, and salary of Figure 2,
are combined using a logical OR function to construct the
bloom bit-vector signature BP ρ (=BS) for the path compo-
nent P ρ = /management//employee/salary. The ith entry
of BP ρ is set to 1 if and only if the ith bit vector entry of
at least one of the path components Bn1 , Bn2 or Bn3 has
been set to 1. For instance, in Figure 2 the 8th-bit of the
final bloom filter BS is set because the 8th-bit of Bn1 (or
similarly Bn2) is set. Note that, such application of bloom
filter relaxes the edge requirement as imposed by the query.
This feature helps to additionally identify and report those
instances whose path structure components are very similar
to the query, yet having different edge structure.

Subsequently, to test whether the query’s path compo-
nent Qρ is similar to an instance path component BP ρ of
the database, the same set of hash functions are applied to
BQρ and all the corresponding bit-vector entries are set to
1. If all the “set” entries of BQρ match with their counter-
part in BP ρ (that is h(BQρ) ⊆ h(BP ρ)), it implies that the
database path component BP ρ is identical to BQρ with some
probability. The set of all such path structure instances is a
superset of the actual (exactly-matched) answer set.

However, there is a chance of BP ρ and BQρ being identical
while the actual path components P ρ and Qρ are different
(e.g. by-chance collisions/similarity of the “set” entries of
Qρ and P ρ). In such a case, a filter error (false positive) is

Input: 1. XPath Range Query Q of the form QP/Qn or QP//Qn where
QP = Internal path component and,

 Qn = Range predicate component on the RangeAttribute in
 the form: RangeAttribute = value or

 LB <= RangeAttribute <= UB.
 2. The B+-Tree index on the values of RangeAttribute in the
 database along with the corresponding bloom filter
 bit-vector signature of the path from root to the

RangeAttribute.

01: Procedure CandidateSelection
02: /* search the RangeAttribute's B+Tree to find the qualifying
03: candidate bucket nodes satisfying the range predicate */

04: candidateSet = RangeQuery(B+Tree T,
05: double LB, double UB);
06: queryBloomFilter = ConstructBloomFilter(QP);
07: /* initialize result set to empty */
08: resultSet = EMPTY;
09:
10: while (candidateSet.hasMoreElement) {
11: curElement = candidateSet.getNext();
12:
13: /* filter irrelevant paths by using bloom bit-vector */
14: if (BloomFiltration(curElement.bloomFilter,
15: querybloomFilter, t)) then
16:
17: /* load the actual path ending at the document tree
18: node whose preorder rank is equal to
19: curElement.ID, for comparison */

20: candidPath = loadPathFromDocTree(docTreeFile,
21: curElement.ID);
22: if (compare(QP, candidPath) then
23: resultSet.add(candidPath);
24: end if
25: end if
26: end while
27: return resultSet;
28:
29:
30: Procedure BloomFiltration(BitVector u, BitVector v,
31: Threshold t)
32: /* Find out the similarity of the bloom filter u and v */

33: if (u == v OR d(u,v) >= C)
34: return true;
35: else
36: return false;

Algorithm RangeQuery

Figure 3: FLUX Algorithm.

said to have occurred. The performance of the hash func-
tions of the bloom filter depends on the filter error ratio,
which is proven by B.H. Bloom [4] to be as follows. Let n
be the number of nodes (or elements) in the set S (or path
component P ρ), m the size of the bit vector and k the total
number of hash functions. Filter error ratio (α) is defined:

α =

�
1 −

�
1 − 1

m

�nk
�k

≈
�
1 − e−

kn
m

�k

.

For instance, the formula suggests that the filter error for
a set of n = 3 nodes and a Bloom filter of m = 8 bits with
k = 2 hash functions, calculates to α = 0.028. That is a filter
error would occur with a probability of 2.8%. Moreover, one
of the most interesting features of the bloom filter is that
it guarantees not to incur any false negatives while being
highly accurate and very space-efficient.

One of the shortcomings of this approach is the lack of
support for updates. To tackle this problem, Fan et al. [10]
propose Counting Bloom Filters, where each entry i of the
signature BP ρ of path components in the database is asso-
ciated with a counter ci where the counter of the ith entry
of BP ρ is equal to ci, which means that there are exactly ci

element nodes in P ρ which set the ith bit of the bloom sig-
nature vector BP ρ . Hence, deletion of a node et in the path
component (e.g., et = management) would be reflected on
the bloom signature of the path component P ρ, by simply
decrementing all those corresponding counters which were
incremented by 1 when applying the hash functions hi on
the node et. This procedure removes the contribution of the
node et (∈ P ρ) to the bit-vector signature of the path com-
ponent P ρ. These counters may also be used to estimate
the selectivity of the element contents along each path.

4.2 Usage of Bloom Filter in FLUX
Given an XML document, in the offline phase, all the

root-to-leaf path structures of the document tree are ex-
tracted. Next, the bloom bit-vector signature of the path
component of each such path structure is constructed and
stored in an offline profile for each given document tree. The
bloom representation of each path structure facilitates an ef-
ficient mechanism to compare each path component of the
document tree against their counterpart in the query. We
now introduce the overall procedure of the FLUX algorithm
which combines the features of range matching and path
matching schemes.

5. FLUX ALGORITHM
Given the document tree T , the offline phase starts by

performing a preorder traversal on T and assigns preorder
ranks (ELEM-ID) to each node of T (the number on the
top-left of each node in Figure 1). These preorder ranks
create a virtual document order. Figure 3 depicts the algo-
rithmic details of the FLUX procedure which consists of five
individual phases, described in the following.

1) Offline Index Creation. The FLUX offline manager
constructs a B+-tree index structure on the indexable at-
tributes of the XML document collection (e.g. age, salary,
year, and date). The leaves of each such B+-tree store
the attribute content (e.g., age value), ELEM-ID, and the
bloom bit-vector signature of the root-to-leaf path structures
of the corresponding nodes. For instance, the node corre-
sponding to age = 64 at the leaf bucket level of B+-tree of
Figure 1[2] stores the preorder rank ELEM-ID (e.g. 8 in this
instance) of the actual node of the document tree whose age

attribute has the value 64. Moreover, it stores the bloom bit-
vector signature of the root-to-leaf path structure ending at
that particular node. For instance, for the node age = 64 lo-
cated at the B+-tree leaf bucket of Figure 1[2], the bit-vector
00101110 represents the bloom signature of the root-to-leaf
path structure /1management/2employee/7age of the node
864 of the document tree in Figure 1[4], where the num-
bers 1,2 and 7 denote the ELEM-IDs of the element tag
instances of management, employee and age element nodes,
respectively.

2) Query Segmentation. This phase segments the query
expression Q = //management//employee/[64≤age≤66] into
the path component Qρ = //management//employee/age and
the numerical predicate component Qη = [64 ≤ age ≤ 66].

3) Range Lookup. The search part of this phase cor-
responds to the lines 2-5 of the algorithm in Figure 3. The
corresponding B+-tree of the age range attribute is searched
for potential candidate bucket nodes matching the predicate
in Qρ (e.g. nodes 64, 65 and 66 in Figure 1[2] for [64 ≤
age ≤ 66]).

Filtration Study (Range Length)

0

10000

20000

30000

40000

50000

Range Length

T
u

p
le

s

Total Candidates 12913 19854 27178 34399 41530

Remaining Tuples 3123 4762 6448 8111 9781

Actual Answ ers 3073 4686 6343 7979 9622

2 3 4 5 6

False Positive Rate (Range Length)

1.60%
1.61%
1.61%
1.62%
1.62%

1.63%
1.63%
1.64%
1.64%
1.65%
1.65%
1.66%

Range Length

F
al

se
 P

o
si

ti
ve

 R
at

e
(%

)

FPR 1.63% 1.62% 1.65% 1.65% 1.65%

2 3 4 5 6

Timing Analysis (Range Length)

0

2

4

6

8

10

12

Range Length

R
es

p
o

n
se

 T
im

e
(i

n
 s

ec
o

n
d

s)

FLUX 0.111 0.161 0.206 0.261 0.306

PathStack w / Btree 6.003 6.002 6.071 6.089 6.124

PathStack w /o Btree 10.79 10.821 10.844 10.857 10.917

2 3 4 5 6

Filtration Study (Range Length)

0

200

400

600

800

Range Length

T
u

p
le

s

Total Candidates 120 180 306 434 551 668

Remaining Tuples 22 33 57 82 103 124

Actual Answ ers 19 29 51 73 92 111

1 2 4 6 8 10

False Positive Rate (Range Length)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Range Length

F
al

se
 P

o
si

ti
ve

 R
at

e
(%

)

FPR 13.60% 12.12% 10.52% 10.97% 10.67% 10.48%

1 2 4 6 8 10

Tim ing Analysis (Range Length)

1

10

100

1000

10000

Range Length

R
es

p
o

n
se

 T
im

e
(i

n
 m

ill
is

ec
o

n
d

s)
[

lo
g

ar
it

h
m

ic
 s

ca
le

]

FLUX 7 7 9 11 12 14

PathStack w / Btree 1911 1886 1911 1913 1907 1935

PathStack w /o Btree 3335 3292 3326 3435 3399 3362

1 2 4 6 8 10

(b) DBLP (c) DBLP(a) DBLP

(e) XMark (f) XMark(d) XMark

Figure 5: Effect of range length variation on the filtration, FPR and response time.

DBLP <year> distribution

0

5000

10000

15000

20000

25000

30000

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Key (Year)

F
re

q
u

en
cy

Figure 4: The 〈year〉 element distribution of dblp
dataset.

4) Path Matching and Filtration. Let Bp1 , . . . , Bpk

denote the bloom signatures of each of the k matches of
the database (e.g., the bloom filter of the path component
/1management/2employee/7age which end at node 864), whose
numerical contents have already been matched with the query’s
numerical predicate Qη. This stage is responsible for match-
ing the path component of the query BQρ against the path
components of the range-matched instances Bp1 , . . . , Bpk .
It ranks each matching instance Bpi based on its similar-
ity to BQρ . The path matching procedure corresponds to
the invocation of the BloomFiltration() function at lines
14-15 of Figure 3 where its definition is provided at lines 30-
36. After filtering out the false positives, the candidPath

holds the results of matches to Q in the database. The
function d in line 33 is the feature of the algorithm which
facilitates the fuzzy (approximate) matching of the bloom
filters. More specifically, the function d(u, v) returns the
number of “set” bit entries shared by u and v. For instance,
in Figure 2 d(Bn1 , Bn2) = 3 because these signature are
different in three bit entries, that is the 2nd, 3rd, and 5th

bits. Finally, the actual path structures of the non-filtered
matches are constructed (using the node pointers from leaf-

to-root), compared against the query and reported to the
user. Note that, the set of additional matching instances re-
ported through function d and the set of false positives con-
stitute the set of approximate answers which are reported to
the user at no extra cost. However, our experimental evalu-
ations are only focusing on the analysis of exact matching.

6. EXPERIMENTAL EVALUATIONS
We implemented the FLUX system using Java 1.4.2 and

ran our experiments on a Pentium M-2GHz processor with
2GB of main memory, using a page size of 1KB (determine
the number of indexed data items which a leaf node can have
and the number of key/pointers which an internal node can
have for the B+-tree.), cache size of 100KB, and LRU cache
replacement policy. We compared our proposed technique
with PathStack [6] which is the best in the literature for sim-
ple XPath queries. Also PathStack is implemented by using
Java 1.4.2. Two variations of PathStack are used when re-
trieving the XML document elements residing in the range
specified in the query for the structural join: one variation
is to use B+-tree index and the other variation is not to use
B+-tree index.

The experimental evaluations were performed on a set of
both synthetic (XMark [23] containing information about
an auction site) and real (dblp3) XML datasets. The dblp
dataset (sized of 127MB) constituted 3,332,130 element nodes
with an average and maximum depth of 2.9 and 6, respec-
tively. We generated a set of synthetic XMark datasets with
scaling factor ranging from 0.1 to 1.2 for the experimental
evaluation. The average depth for the XMark datasets is 5.
Moreover, different amount of random noise was imposed on
the dblp and XMark datasets to create path structure vari-
ation at the element names. The number of hash functions
used for constructing the bloom filter is 4. For each element

3Acquired from the University of Washing-
ton’s XML Data Repository accessible through
http://www.cs.washington.edu/research/xmldatasets/

Filtration Analysis (Bloom Filter Size)

0

5000

10000

15000

20000

25000

30000

Bloom Filter Size

T
u

p
le

s

Total Candidates 27178 27178 27178 27178 27178

Remaining Tuples 27178 6448 6404 6395 6346

Actual Answ ers 6343 6343 6343 6343 6343

10 12 14 15 20

Timing Analysis (Bloom Filter Size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 11 12 13 14 15 16 17 18 19 20

Bloom Filter Size

R
es

p
o

n
se

 T
im

e
(i

n
 s

ec
o

n
d

s)

False Positive Rate (Bloom Filterr Size)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Bloom Filter Size

F
al

se
 P

o
si

ti
ve

 R
at

e
(%

)

FPR (%) 76.60% 1.62% 0.95% 0.81% 0.04%

10 12 14 15 20

Filtration Analysis (Bloom Filter Size)

0

50

100

150

200

250

300

Bloom Filter Size

T
u

p
le

s

Total Candidates 240 240 240 240 240 240 240 240

Remaining Tuples 240 206 80 67 54 43 43 43

Actual Answ ers 38 38 38 38 38 38 38 38

6 8 10 12 14 16 18 20

False Positive Rate (Bloom Filter Size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 8 10 12 14 16 18 20

Bloom Filter Size

F
al

se
 P

o
st

it
iv

e
R

at
e

(%
)

Tim ing Analysis (Bloom Filter Size)

0

2

4

6

8

10

12

14

6 8 10 12 14 16 18 20

Bloom Filter Size

R
es

p
o

n
se

 T
im

e
(i

n
 m

ill
is

ec
o

n
d

s)

(b) DBLP (c) DBLP(a) DBLP

(e) XMark (f) XMark(d) XMark

Figure 6: Effect of the size of bloom filter signature (in bits) on filtration, FPR, and response time.

of along the path which leads to an instance of the range
attribute, its MD5 digest (a 128-bit cryptographic message)
is computed. This 128-bit message is evenly divided into 4
groups. Each 32-bit group is further transformed into an
integer ranging from 0 to the bloom filter size - 1. Unless
otherwise stated, the bloom filter size was chosen to be 14
bits for dblp dataset and 16 bits for XMark datasets which
will be explained later in this section.

The results presented in this section were generated by av-
eraging the results from running a workload of 100 random
queries on dblp and XMark datasets. The dblp query tem-
plate was chosen as QD = /dblp/article[$LB ≤ /year

≤ $UB], for different random values of $LB and $UB.
Similarly, the XMark query template was selected as QX =

/regions//item//mail[$LB ≤ /date ≤ $UB]. The range
values [$LB,$UB] were chosen randomly from the <year>

and <date> domain space (e.g., Figure 4) in the year range
1945 to 2003 and date range 01/01/1998 to 12/28/2001. Fig-
ure 4 depicts the frequency distribution of the occurrence of
the <year> element in the incorporated dblp dataset. The
dblp dataset includes 328,831 path instances leading to the
year element, which is the reason behind using QD as the
query template for dblp dataset while it provides a large
candidate set. The richness of the path structure which lead
to the <date> element is the reason behind to choose QX

as the query template for XMark dataset (more structural
variations on QX can be applied for structure effect study).
Following are some notations used in the upcoming figures:

• Total Candidates: Number of all the possible year
instances (dblp) and date instances (XMark) in the data-
base for the inspected range resulting from the range query
search on the B+-tree index structure lookup phase.

• Remaining Tuples: The number of candidates left for
further inspection after pruning the intermediate results by
comparing their bloom filter signature against the bloom fil-
ter signature of the query.

• Actual Answer: The number of actual answers in the
database to the query.

• False Positive Rate (FPR): The FPR is calculated as
(RemainingTuples - ActualAnswers)/RemainingTuples,
which indicates how close the filtration gets to the actual
answer set.

Figures 5-9 analyze the effect of range length, bloom filter
size, the imposed noise, and the scalability analysis on the
Filtration , False Positive Rate (FPR) and Response
Time effectiveness of FLUX, on the dblp and XMark datasets,
respectively.

6.1 Effect of Range Length
Figure 5 depicts the effect of the range length r = |$UB−

$LB| on the performance of FLUX on dblp and XMark (scal-
ing factor = 1, size ≈ 113MB and noise = 30%) datasets.
The query’s range length/extent is varied from 2 (narrow)
to 6 (moderately wide), and 1 (narrow) to 10 (wide) on the
dblp4 and XMark datasets, respectively. FLUX succeeds
in pruning a substantial fraction of the candidate result set
in the bloom filter comparison phase. For instance, in Fig-
ure 5(a), the column pertaining to r = 3 indicates that the
application of bloom filtration reduces the number of total
candidates from 19854 tuples to 4762 tuples, or in other
words, to 24% of the total candidate result set. A consis-
tent invariance to the range length on the performance of
the filtration is observed on both dblp and XMark datasets
(Figure 5(a) and 5(d)). Figures 5(c) and 5(f) depict the to-
tal response time of performing the designated operations,
as a function of range length compared with PathStack [6]
(with and without using B+-tree index structure). The run-
ning time of FLUX consistently outperforms PathStack on
both dblp and XMark datasets. For instance, in Figure
5(f) FLUX performs 100-times faster on average when com-
pared to PathStack (with B+-tree index structure). Figures

4e.g. 1999 ≤ /year ≤ 2003 has the range extent of r =
|2003 − 1999| = 4

Filtration Analysis (Noise)

0

5000

10000

15000

20000

25000

30000

Noise Amount

T
u

p
le

s

Total Candidates 27178 27178 27178 27178 27178

Remaining Tuples 8231 7363 6448 5572 4703

Actual Answ ers 8197 7298 6343 5439 4531

0.1 0.2 0.3 0.4 0.5

False Positive Rate (Noise)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Noise Amount

F
al

se
 P

o
si

ti
ve

 R
at

e
(%

)

FPR 0.41% 0.88% 1.60% 2.30% 3.65%

0.1 0.2 0.3 0.4 0.5

Tim ing Analysis (Noise)

0

2

4

6

8

10

12

Noise Amount

R
es

p
o

n
se

 T
im

e
(i

n
 s

ec
o

n
d

s)

FLUX 0.247 0.229 0.207 0.201 0.181

PathStack w / Btree 6.418 6.301 6.071 6.061 5.779

PathStack w /o Btree 11.251 11.236 10.845 10.822 10.8

0.1 0.2 0.3 0.4 0.5

Filtration Analysis (Noise)

0

50

100

150

200

250

300

350

Noise Amount

T
u

p
le

s

FLUX 305 305 305 305 305 305

PathStack w / Btree 66 61 56 51 46 31

PathStack w /o Btree 64 57 50 42 36 14

0.1 0.2 0.3 0.4 0.5 0.8

Tim ing Analysis (Noise)

0

2

4

6

8

10

12

Noise Amount

R
es

p
o

n
se

 T
im

e
(i

n
 s

ec
o

n
d

s)

FLUX 0.247 0.229 0.207 0.201 0.181

PathStack w / Btree 6.418 6.301 6.071 6.061 5.779

PathStack w /o Btree 11.251 11.236 10.845 10.822 10.8

0.1 0.2 0.3 0.4 0.5

False Positive Rate (Noise)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Noise Amount

F
al

se
 P

o
si

ti
ve

 R
at

e
(%

)

FPR 0.41% 0.88% 1.60% 2.30% 3.65%

0.1 0.2 0.3 0.4 0.5

(b) DBLP (c) DBLP(a) DBLP

(e) XMark (f) XMark(d) XMark

Figure 7: The results of applying random noise with various intensity on the element names.

Query FLUX PSB PS

Q1 = regions//mail/date 7.9 1521 2937

Q2 = regions//item//mail/date 8 1901 3323

Q3 = regions//item/mailbox/mail/date 8.1 2307 3708

Table 1: Response time (in milliseconds) comparison
of FLUX v.s. PathStack on XMark dataset varying
the query structure. PSB = “PathStack with Btree”
and PS = “PathStack without Btree”.

8(a)-(b) further demonstrate the speedup achieved by using
FLUX against PathStack (with B+-tree index structure) as
the range length varies on both dblp and XMark datasets.
The speedup ranges from 54 times (at r = 2) to 19 times
(at r = 6) on the dblp dataset, and consistently around 100
times faster on the XMark dataset. Despite the declination
of the speedup5 as the range length increases, the observed
speedup depicts a 20-times faster response time in the worst
case. Figures 5(b) and 5(e) depict the stability of False Pos-
itive Rate (FPR), which stays within 2% of the remaining
tuples as the range length varies for dblp dataset and 14%
for the XMark dataset.

6.2 Effect of Bloom Filter Size
Figure 6 analyzes the effect of bloom filter size (in bits)

as it varies from 10 to 20 bits and 6 to 20 bits on dblp
and XMark datasets. The XMark dataset of this section
was generated with a scaling factor of 1, with about 113MB
in size and 30% imposed noise at the path element names.
Figures 6(a) and 6(d) validate the intuitive expectation that
the larger choice of the bloom signature length should result
in more effective filtration. Figures 6(b) and 6(e) depict the
response time analysis of FLUX when varying the bloom bit-
vector size in answering the same set of 100 random queries
on each respective dataset. The filtration (Figures 6(a) and
6(d)) and response time (Figures 6(b) and 6(e)) performance

5This artifact is because the larger range lengths/extents
need more bloom filter calculations.

of FLUX improves consistently as the size of the bloom bit-
vector increases from 10 to 14 bits for the dblp dataset and
10 to 16 bits for the XMark dataset. This is due to the fact
that, the chance of bloom signature collision6 reduces as the
size of the bloom signatures increases. When the bloom bit-
vector increases from 14 to 20 for the dblp dataset and 16
to 20 for the XMark dataset, the filtration effectiveness still
increases while the query response time does not due to the
fact that larger size of bloom filter will incur more time to
retrieve the corresponding data. Hence we choose 14 bits
and 16 bits for the dblp dataset and 16 bits for the XMark
datasets for constructing bloom filters in a timely manner.
Moreover, Figures 6(c) and 6(f) demonstrate the filtration
effectiveness of FLUX which is shown in the reduction of
FPR when increasing the size of bloom filter. This again
coincides with the intuitive expectation on the bloom filter
size as mentioned above.

6.3 Effect of Noise in Data
For this set of experiments, we introduced random noise at

the element names, varying from 1% to 5% on dblp dataset
and 1% to 8% on XMark dataset, respectively. Figure 7
depicts the effect of the imposed noise ratio on the over-
all performance of FLUX. As expected, the introduction of
more noise results in larger FPR as shown in Figures 7(b)
and 7(e). However, despite the introduction of noise, FLUX
performs very efficiently in filtration ratio and response time
as observed in Figures 7(a) and 7(d), and Figures 7(c) and
7(f), respectively. FLUX substantially outperforms Path-
Stack regardless of the amount of noise imposed on the data
as shown in Figures 7(c) and 7(f). Figures 8(c) and 8(d)
show the amount of speedup achieved by using FLUX ver-
sus PathStack (with B+-tree index structure) which ranges
from 26 times (at noise = 0.1) to 32 times (at noise = 0.5)
on dblp dataset. Similarly, FLUX consistently outperforms
PathStack on XMark dataset with an average of 100 times
faster response time. Relative to PathStack, FLUX per-

6The probability bloom hash functions assign an identical
bloom signature to two different path structures.

FLUX v.s. PathStack(w/ Btree) Speedup Ratio (Range Length)

0

10

20

30

40

50

60

2 3 4 5 6

Range Length

S
p

ee
d

u
p

 (
x)

FLUX v.s. PathStack(w / Btree) Speedup Ratio (Range Length)

0

50

100

150

200

250

300

1 2 4 6 8 10

Range Length

S
p

ee
d

u
p

 (
X

)

FLUX v.s. PathStack (w/ Btree) Speedup Ratio (Noise)

200

205

210

215

220

225

230

235

240

245

250

0.1 0.2 0.3 0.4 0.5 0.8

Noise Amount

S
p

ee
d

u
p

 (
x)

FLUX v.s. PathStack (w / Btree) Speedup Ratio (Noise)

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5

Noise Amount

S
p

ee
d

u
p

 (
x)

(b) XMark(a) DBLP

(d) XMark(c) DBLP

Figure 8: The speedups of FLUX v.s. PathStack (w/ B+-tree) when the range length and the imposed noise
amount varies.

forms even better when more noise is inherent in the dataset,
which is a very desirable feature when the query is posed on
datasets with variations in their representation or not nec-
essarily conforming to a unified schema or Document Type
Definition (DTD).

6.4 Query Structure Variation
Table 6.1 depicts the response time analysis when varying

the query structure in FLUX and PathStack (with and with-
out B+-tree index). From type Q1 to Q3, more structures
are imposed on top of the range attribute. The results were
acquired by averaging the running time of 100 random range
queries of type Qi (of Table 6.1). The range domain was se-
lected in the 01/01/1998 to 12/28/2001 date range and each
random range query has the length of 4. The bloom filter
size was selected to be 16 bits. The incorporated XMark
dataset was generated using a scaling factor of 1 with 30%
noise. In all the observed cases, FLUX consistently outper-
formed PathStack. The performance of FLUX is slightly
affected when the path structure of the query tends to get
more complicated due to the bottom-up computation ap-
proach. The set of the remaining tuples for each type of
query is the same after using the bloom filtration. Thus the
cost of retrieving the corresponding paths for the remaining
tuples for further inspection against the query is approxi-
mately the same. However, for PathStack, more structures
with the query will incur more document elements retrieved
from the disk for the structural join to produce the matching
instances of the query. Hence, the performance of PathStack
will decrease when more path structures are imposed on the
same range attribute.

6.5 Scalability Analysis
In this set of experiments, we generated a set of XMark

datasets with scaling factors ranging from 0.1 to 1.2 to study
the effects of document size on the effectiveness of FLUX.

Figure 9 depicts the filtration efficiency and response time
analysis of FLUX versus PathStack resulted from running
a set of the same 100 random range queries selected in the
01/01/1998 to 12/28/2001 date range. The performance of
both FLUX and PathStack suffers as the size of the dataset
increases, however, FLUX experiences from 98 times to 215
times slower performance degradation rate compared with
PathStack with B+-tree index structure. The comparison
with PathStack without B+-tree index structure, is even
more dramatic.

7. CONCLUSION
This paper proposed an efficient technique, named FLUX,

for answering complex range queries in a database of XML
documents. FLUX incorporated a B+-tree based index struc-
ture on the contents of range attributes. It uses the notion
of Bloom filters to associate a structure signature to each
range attribute instance. The filtration performed by the
bloom signatures of FLUX reduced the search space to a
minor fraction of the intermediate result set. Experimen-
tal results demonstrate that the filtration, response time,
false positive rate, speedup and scalability of FLUX consis-
tently outperforms PathStack [6] on both real and synthetic
datasets.

8. REFERENCES
[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N.

Koudas and D. Srivastava, Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
ICDE, 141–152 (2002).

[2] S. Al-Khalifa et al., Querying Structured Text in an
XML Database. SIGMOD, 4–15 (2003).

[3] S. Amer-Yahia, L.V.S. Lakshmanan and S. Pandit,
FleXPath: Flexible Structure and Full-Text Querying
for XML. SIGMOD, 83–94 (2004).

Filtration Analysis (Scalability)

0

50

100

150

200

250

300

350

Scaling Factor

T
u

p
le

s

Total Candidates 24 48 95 141 193 240 288

Remaining Tuples 5 8 17 26 35 43 52

Actual Answ ers 4 7 15 24 31 38 46

0.1 0.2 0.4 0.6 0.8 1 1.2

Timing Analysis (Scalability)

1

10

100

1000

10000

Scaling Factor

R
es

p
o

n
se

 T
im

e
(i

n
 m

ill
is

ec
o

n
d

s)
[

lo
g

ar
it

h
m

ic
 s

ca
le

]

FLUX 2 2 4 5 7 8 10

PathStack w / Btree 207 403 767 1161 1528 1901 2343

PathStack w /o Btree 354 692 1318 2999 2779 3323 4053

0.1 0.2 0.4 0.6 0.8 1 1.2

(b) XMark(a) XMark

Figure 9: The scalability analysis on XMark datasets

[4] B.H. Bloom, Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM
13(7), 422–426 (1970).

[5] C. Botev, J. Shanmugasundaram and S. Amer-Yahia,
A TeXQuery-Based XML Full-Text Search Engine.
SIGMOD, 943–944 (2004).

[6] N. Bruno, N. Koudas and D. Srivastava, Holistic twig
joins: optimal XML pattern matching. SIGMOD,
310–321 (2002).

[7] D. Chamberlin, Daniela Florescu, Jonathan Robie,
Jérôme Siméon and Mugur Stefanescu, XQuery: A
Query Language for XML. W3C Working Draft,
http://www.w3.org/TR/xquery (2001).

[8] S. Chien, Z. Vagena, D. Zhang, V.J. Tsotras and C.
Zaniolo, Efficient Structural Joins on Indexed XML
Documents. VLDB, 263–274 (2002).

[9] CiteSeer Scientific Literature Digital Library and
Search Engine, http://citeseer.ist.psu.edu

[10] L. Fan, P. Cao, J.M. Almeida and A.Z. Broder,
Summary Cache: A Scalable Wide-Area Web Cache
Sharing Protocol. SIGCOMM, 254–265 (1998).

[11] T. Grust, Accelerating XPath location steps.
SIGMOD, 109–120 (2002).

[12] L. Guo, J. Shanmugasundaram, K.S. Beyer and E.J.
Shekita, Efficient Inverted Lists and Query Algorithms
for Structured Value Ranking in Update-Intensive
Relational Databases. ICDE, (2005).

[13] H. Jiang, W. Wang, H. Lu and J. Xu Yu, Holistic
Twig Joins on Indexed XML Documents. VLDB,
273–284 (2003).

[14] R. Kaushik, P. Shenoy, P. Bohannon and E. Gudes,
Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data. ICDE, 129–140 (2002).

[15] DBLP Bibliography Server, http://dblp.uni-trier.de/

[16] Q. Li and B. Moon, Indexing and Querying XML Data
for Regular Path Expressions. VLDB, 361–370 (2001).

[17] J. Lu, T. Chen and T.W. Ling, Efficient Processing of
XML Twig Patterns with Parent Child Edges: A
Look-ahead Approach. CIKM, 533–542 (2004).

[18] J. Lu, T.W. Ling, C.Y. Chan and T. Chen, From
Region Encoding to Extended Dewey: On Efficient
Processing of XML Twig Pattern Matching. VLDB,
193–204 (2005).

[19] A. Marian, S. Amer-Yahia, N. Koudas and D.

Srivastava, Adaptive Processing of Top-K Queries in
XML. ICDE, (2005).

[20] P. Rao, B. Moon, PRIX: Indexing And Querying
XML Using Prüfer Sequences. ICDE, 288–300 (2004).

[21] F. Weigel, H. Meuss, K.U. Schulz and F. Bry, Content
and Structure in Indexing and Ranking XML.
WebDB, 67–72 (2004).

[22] H. Wang, S. Park, W. Fan and P.S. Yu, ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures. SIGMOD, 110–121 (2003).

[23] A. R. Schmidt et al., The XML Benchmark Project.
Technical Report INS-R0103, CWI (2001).

