Efficient Computation of Frequent and Top-k£ Elements in Data Streams *

Ahmed Metwally

Divyakant Agrawal

Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara
{metwally, agrawal, amr}Q@cs.ucsb.edu

Abstract

We propose an approximate integrated approach for solv-
ing both problems of finding the most popular k& elements,
and finding frequent elements in a data stream coming
from a large domain. Our solution is space efficient and
reports both frequent and top-k elements with tight guar-
antees on errors. For general data distributions, our top-
k algorithm returns k elements that have roughly the
highest frequencies; and it uses limited space for calcu-
lating frequent elements. For realistic Zipfian data, the
space requirement of the proposed algorithm for solving
the exact frequent elements problem decreases dramati-
cally with the parameter of the distribution; and for top-k
queries, the analysis ensures that only the top-k elements,
in the correct order, are reported. The experiments, us-
ing real and synthetic data sets, show space reductions
with no loss in accuracy. Having proved the effectiveness
of the proposed approach through both analysis and ex-
periments, we extend it to be able to answer continuous
queries about frequent and top-k elements. Although the
problems of incremental reporting of frequent and top-k
elements are useful in many applications, to the best of
our knowledge, no solution has been proposed.

1 Introduction

More than a decade ago, both the industry and the re-
search communities realized the benefit of statistically
analyzing vast amounts of historical data in discovering
useful information. Data mining emerged as a very ac-
tive research field that offered scalable data analysis tech-
niques for large volumes of historical data. Data mining,
a well established key research area, has its foundations
and applications in many domains, including databases,
algorithms, networking, theory, and statistics.

However, new challenges have emerged as the data ac-
quisition technology evolved aggressively. For some ap-
plications, data is being generated at a rate high enough
to make its long-term storage cost outweighs its benefits.
Hence, such streams of data are stored temporarily, and
should be mined fast before they are lost forever. The
data mining community adapted by devising novel ap-

*This work was supported in part by NSF under grants EIA
00-80134, NSF 02-09112, and CNF 04-23336.

TPart of this work was done while the first author was at Val-
ueClick, Inc.

proximate stream handling algorithms that incrementally
analyze arriving data in one pass, answer approximate
queries, and store summaries for future usage [4].

There is a growing need to develop new techniques to
cope with high-speed streams, and answer online queries.
Currently, data stream management systems are used
for monitoring click streams [31], stock tickers [11, 46],
sensor readings [7], telephone call records [15], network
packet traces [17], auction bidding patterns [2], traffic
management [3], network-aware clustering [12], and secu-
rity against DoS [12]. [27] reviewed the literature.

Complying with this restricted environment, and mo-
tivated by the above applications, researchers started
working on novel algorithms for analyzing data streams.
Problems studied in this context include approximate fre-
quency moments [1], differences [20], distinct values esti-
mation [22; 33, 45], bit counting [16], duplicate detec-
tion [42], approximate quantiles [28, 38, 40], histograms
[30, 29], wavelet based aggregate queries [25, 41], corre-
lated aggregate queries [23], elements classification [32],
frequent elements [8, 13, 14, 17, 18, 19, 26, 35, 36, 39, 43|,
and top-k queries [5, 10, 17, 24, 43]. Earlier results on
data streams were presented in [9, 21].

This work is primarily motivated by the setting of Inter-
net advertising. As the Internet continues to grow, the In-
ternet advertising industry flourishes as a means of reach-
ing focused market segments. The main coordinators in
this setting are the Internet advertising commissioners,
who are positioned as the brokers between Internet pub-
lishers and Internet advertisers. In a standard setting, an
advertiser provides the advertising commissioner with its
advertisements, and they agree on a commission for each
action, e.g., an impression (advertisement rendering) to
a surfer, clicking an advertisement, bidding in an auc-
tion, or making a sale. The publishers, being motivated
by the commission paid by the advertisers, contract with
the commissioner to display advertisements on their Web
sites. Every time a surfer visits a publisher’s Web page,
after loading the page on the surfer’s Browser, the pub-
lisher’s Web page has script that refers the Browser to the
commissioner’s server that loads the advertisements, and
logs the advertisement impression. Whenever a surfer
clicks an advertisement on a publisher’s Web page, the
surfer is referred again to the servers of the commis-
sioner, who logs the click for accounting purposes, and
clicks-through the surfer to the Web site of the advertiser,
who loads its own Web page on the surfer’s Browser. A
commissioner earns a commission on the advertisers’ pay-

ments to the publishers. Therefore, a commissioners are
generally motivated to show advertisements on publish-
ers’ Web pages that would maximize publishers’ earnings.
To achieve this goal, the commissioners have to analyze
the traffic, and make use of prevalent trends. One way to
optimize the rendering of advertisements is to show the
right advertisements for the right type of surfers.

Since publishers prefer to be paid according to the ad-
vertising load on their servers, there are two main types
of paying publishers, Pay-Per-Impression, and Pay-Per-
Click. The revenue generated by Pay-Per-Impression ad-
vertisements is proportional to the number of times the
advertisements are rendered. On the other hand, ren-
dering Pay-Per-Click advertisements does not generate
any revenue. They generate revenue according to the
number of times surfers click them. On average, one
click on a Pay-Per-Click advertisement generates as much
revenue as rendering 500 Pay-Per-Impression advertise-
ments. Hence, to maximize the revenue of impressions
and clicks, the commissioners should render a Pay-Per-
Click advertisement when it is expected to be clicked.
Otherwise, it should use the chance to display a Pay-Per-
Impression advertisement that will generate small but
guaranteed revenue.

To know when advertisements are more likely to be
clicked, the commissioner has to know whether the surfer,
to which the advertisement is displayed, is a frequent
“clicker” or not. To identify surfers, commissioners assign
unique IDs in cookies set in the surfers’ Browsers. Before
rendering an advertisement for a surfer, the summariza-
tion of the clicks stream should be queried to see if the
surfer is a frequent “clicker” or not. If the surfer’s is not
found to be among the frequent “clickers”, then (s)he will
probably not click any displayed advertisement. Thus, it
can be more profitable to show Pay-Per-Impression ad-
vertisements. On the other hand, if the surfer is found
to be one of the frequent profiles, then, there is a good
chance that (s)he will click some of the advertisements
shown. In this case, Pay-Per-Click advertisements should
be displayed. Keeping in mind the limited number of
advertisements that could be displayed on a Web page,
choosing what advertisements to display entails retrieving
the top advertisements in terms of clicking.

This is one scenario that motivates solving two fa-
mous problems simultaneously. The commissioner should
be able to query the click stream for frequent users
and top-k advertisements before every impression. Ex-
act queries about frequent and top-k elements are not
scalable enough to handle this problem. An average-
sized commissioner has around 120M unique monthly
surfers, 50,000 publisher sites, and 30,000 advertisers’
campaigns, each of which has numerous advertisements.
Storing only the unique IDs assigned to the surfers re-
quires 2 to 8 Gigabytes of main memory, since the IDs
used are between 128 and 512 bits.

The size of the motivating problem poses challenges
for answering exact queries about frequent and top-k el-
ements in streams. Approximately solving the queries
would require less space than solving the queries exactly,
and hence, would be more feasible. However, the traf-
fic rate entails performing an update and a query every
50 microseconds, since an average-sized commissioner re-

ceives around 70M records every hour. The already exist-
ing approximate solutions for frequent and top-k elements
could be relatively slow for online decision making. To al-
low for online decisions on what advertisements to be dis-
played, we propose that the commissioner should keep a
cache of the frequent users and the top-k advertisements.
The set of frequent users and the top-k£ advertisements
can change after every impression, depending on how the
user reacts to the advertisements displayed. Therefore,
the cache has to be updated efficiently after every user re-
sponse to an impression. We propose updating the cache
only whenever necessary. That is, the cache should serve
as a materialization of the queries’ answer sets, which is
updated continuously.

The problems of approximately finding frequent! and
top-k elements are closely related, yet, to the best of
our knowledge, no integrated solution has been proposed.
In this paper, we propose an integrated online stream-
ing algorithm for solving both problems of finding the
top-k elements, and finding frequent elements in a data
stream. Our Space-Saving algorithm reports both fre-
quent and top-k elements with tight guarantees on errors.
For general data distributions, Space-Saving answers top-
k queries by returning k elements with roughly the highest
frequencies in the stream; and it uses limited space for cal-
culating frequent elements. For realistic Zipfian data, our
space requirement for the exact frequent elements prob-
lem decreases dramatically with the parameter of the dis-
tribution; and for top-k queries, we ensure that only the
top-k elements, in the correct order, are reported. We
are not aware of any other algorithms that solves the ex-
act problems of finding frequent and top-k elements un-
der any constraints. In addition, we slightly modify our
baseline algorithm to answer continuous queries about
frequent and top-k elements. Although answering such
queries continuously is useful in many applications, we
are not aware of any other existing solution.

The rest of the paper is organized as follows. Section 2
highlights the related work. In Section 3, we introduce
the Space-Saving algorithm, and its associated data struc-
ture, followed by a discussion of query processing in Sec-
tion 4. We report the results of our experimental evalua-
tion in Section 5. We describe how the proposed scheme
can be extended to handle continuous queries about fre-
quent and top-k elements in Section 6, and finally, con-
clude in Section 7.

2 Background and Related Work

Formally, given an alphabet, A, a frequent element, E;, is
an element whose frequency, or number of hits, F;, in a
stream S whose current size is IV, exceeds a user specified
support [¢N], where 0 < ¢ < 1; whereas the top-k ele-
ments are the k elements with highest frequencies. The
exact solutions of these problems require complete knowl-
edge about the frequencies of all the elements [10, 17], and
are hence, impractical for applications with large alpha-
bets. Thus, several relaxations of the original problems
were proposed.

IThe term “Heavy Hitters” was also used in [12].

2.1 Variations of the Problems

The FindCandidateTop(S, k,) problem was proposed
in [10] to ask for [elements among which the top-k ele-
ments are concealed, with no guarantees on the rank of
the remaining (I — k) elements. The FindApproxTop(S,
k, €) [10] is a more practical approximation for the top-k
problem. The user asks for a list of k elements such that
every element, F;, in the list has F; > (1 — €)F}, where
€ is a user-defined error, and Fy > Fyp > --- > F|A|, such
that Ej, is the element with the k** rank. That is, all the
reported k elements have frequency very close to the k"
element. The Hot Items? problem is a special case of the
frequent elements problem, proposed in [44], that asks
for k£ elements, each of which has frequency more than
%. This extends the early work done in [9, 21] for iden-
tifying a majority element. The most popular variation
of the frequent elements problem, finding the e-Deficient
Frequent Elements [39], asks for all the elements with fre-
quencies more than [¢N], such that no element reported
can have a frequency of less than [(¢ — ¢)N7.

Several algorithms [10, 14, 17, 18, 35, 36, 39] have been
proposed to handle the top-k, the frequent elements prob-
lems, and their variations. In addition, a preliminary ver-
sion of this work has been published in [43]. These tech-
niques can be classified into counter-based, and sketch-
based techniques.

2.2 Counter-based Techniques

Counter-based techniques keep an individual counter for
each element in the monitored set, a subset of A. The
counter of a monitored element, E;, is updated every time
E; is observed in the stream. If the observed ID is not
monitored, i.e., there is no counter kept for this element, it
is either disregarded, or some algorithm-dependent action
is taken.

The Sticky Sampling algorithm [39] slices S into rounds
of non-decreasing length. The probability an element is
added to the list of counters, i.e. being monitored, de-
creases as the round length increases. At rounds’ bound-
aries, for every monitored element, a coin is tossed un-
til a success occurs. The counter is decremented for
every unsuccessful toss, and is deleted if it reaches 0,
thus, the probability of adding undeleted elements is con-
stant throughout S. The simpler, and more famous Lossy
Counting algorithm [39] breaks S up into equal rounds of
length % Throughout every round, non-monitored items
are added to the list. At the end of each round, r, every
element, E;, whose estimated frequency is less than r is
deleted. When a new item is added in round r, it is given
the benefit of doubt, its initial count is set to r—1, and the
maximum possible over-estimation, r — 1, is recorded for
the new item. Both algorithms are simple and intuitive,
though they zero too many counters at rounds’ bound-
aries. In addition, answering a frequent elements query
entails scanning all counters, and reporting all elements
whose estimated frequency is greater than [(¢ —¢)N].

[17] proposed the Frequent algorithm to solve the Hot
Items problem. Frequent, a re-discovery of the algorithm

2The term “Hot Items” was coined later in [14].

proposed in [44], outputs a list of k elements with no
guarantee on which elements, if any, have frequency more
than The same algorithm was proposed indepen-

dently in [36]. Frequent extends the early work done
in [9, 21] for finding a majority item, using only one
counter. The algorithm in [9, 21] monitors the first item
in the stream. For each observation, the counter is in-
cremented if the observed item is the monitored one, and
is decremented otherwise. If the counter reaches 0, it is
assigned the next observed element, and the algorithm
is then repeated. When the algorithm terminates, the
monitored element is the candidate majority element. A
second pass is required to verify the results. Frequent [17]
keeps k counters to monitor k£ elements. If a monitored
element is observed, its counter is incremented, else all
counters are decremented. In case any counter reaches 0,
it is assigned the next observed element. [17] also pro-
posed a lightweight data structure that can decrement
all counters in O(1) operations. The sampling algorithm
Probabilistic-InPlace [17] solves FindCandidateTop(S, k,
%) by using m counters. The stream is divided into
rounds of increasing length. At the beginning of each
round, it assigns all empty counters to the first distinct

I elements. At the end of each round, it deletes the
m

N
k+1°

2
least 3 counters. The algorithm returns the largest 3

counters, in the hope that they contain the correct top-
k. Although the algorithm is simple, deleting half the
counters at rounds’ boundaries is Q(distinct values of the
deleted counters), and thus, trades precision and constant
per-item processing for counters’ accuracy.

In general, counter-based techniques have fast per-item
processing, and provable error bounds.

2.3 Sketch-based Techniques

Sketch-based techniques do not monitor a subset of ele-
ments, but rather provide, with less stringent guarantees,
frequency estimation for all elements by using bit-maps
of counters. Usually, each element is hashed into the
space of counters using a family of hash functions, and
the hashed-to counters are updated for every hit of this
element. The “representative” counters are then queried
for the element frequency with expected loss of accuracy
due to hashing collisions.

The probabilistic CountSketch algorithm, proposed in
[10], solves the FindApproxTop(S, k, €) problem. The
space requirements of CountSketch decreases as the data
skew increases. The algorithm keeps a sketch structure
to approximate, with probability 1 — §, the count of any
element up to an additive quantity of -y, where v is a
function of Fyy1 ... Fj4). The family of hashing functions
employed hashes every ID to its representative counters,
such that, some counters are incremented, and the others
are decremented, for every occurrence of this element in
the stream. The approximate frequency of the element
is estimated by finding the median from its representa-
tive counters. A heap of top-k elements is kept, and if
the estimated frequency of the observed element exceeds
the smallest estimated counter in the heap, the smallest
element is replaced by the observed element.

The GroupTest algorithm, proposed in [14], answers
queries about Hot Items, with a constant probability of

failure, §. A novel algorithm, FindMajority, was first de-
vised to detect the majority element, by keeping a system
of a global counter and [log(]A|)] counters. Elements’
IDs are assumed to be 1...|A|. A hit to element E is
handled by updating the global counter, and all counters
whose index corresponds to a 1 in the binary representa-
tion of E. At any time, counters whose value are more
than half the global counter correspond to the 1s in the
binary representation of the candidate majority element,
if it exists. A deterministic generalization for the Hot

k elements keeps [log (IQ\)] counters, with elements’ IDs
mapped to superimposed codes. A simpler generalized so-
lution, GroupTest, is proposed that keeps only O(% Ink)
of such systems, and uses a family of universal hash func-
tions to select the elements in each FindMajority system.
When queried, the algorithm discards systems with more
than one, or with no Hot Items. Also proposed is an el-
egant scheme for suppressing false positives by checking
that all the systems a Hot Item belongs to are hot. Thus,
GroupTest is, in general, accurate. However, its space
complexity is large, and it offers no information about
elements’ frequencies or order.

The Multistage filters approach, proposed in [18], which
was also independently proposed in [35], is similar to
GroupTest. Using the idea of Bloom’s Filters [6], the Mul-
tistage filters algorithm hashes every element to a number
of counters, that are updated every time the element is
observed in the stream. The element is considered to be
frequent if the smallest of its representative counters sat-
isfies the user required support. The algorithm in [18]
judges an element to be frequent or not while updating
its counters. If a counter is estimated to be frequent, it
is added to a specialized set of counters for monitoring
frequent elements, the Flow Memory. To decrease the
false positives, [18] proposes some techniques to reduce
the over-estimation errors in counters. Once an element
is added to the Flow Memory, its counters are not moni-
tored anymore by the Multistage filters. In addition, [18]
proposed incrementing only the counter(s) of the mini-
mum value.

The hCount algorithm [35], does not employ the error
reduction techniques employed in [18]. However, it keeps
a number of imaginary elements, which have no hits. At
the end of the algorithm, all the elements in the alphabet
are checked for being frequent, and the over-estimation
error for each of the elements is estimated to be the av-
erage number of hits for the imaginary elements.

Sketch-based techniques monitor all elements. They
are less affected by the ordering of elements in the stream.
On the other hand, they are more expensive than the
counter-based techniques. A hit, or a query entails calcu-
lations across several counters. They do not offer guar-
antees about frequency estimation errors, and thus, can
answer only a limited number of query types.

3 Summarizing the Data Stream

The algorithms described in Section 2 handle individual
problems. The main difficulty in devising an integrated
solution is that queries of one type cannot serve as a pre-
processing step for the other type of queries, given no in-

formation about the data distribution. For instance, for
general data distribution, the frequent elements receiving
1% or more of the total hits might constitute the top-100
elements, some of them or none. In order to use frequent
elements queries to pre-process the stream for a top-k
query, several frequent elements queries have to be issued
to reach a lower bound on the frequency of the k" ele-
ment; and in order to use top-k queries to pre-process the
stream for a frequent elements query, several top-k queries
have to be issued to reach an upper bound on the number
of frequent elements. To offer an integrated solution, we
have generalized both problems to accurately estimate the
frequencies of significant® elements, and store these fre-
quencies in an always-sorted structure. We, then, devise
a generalized algorithm for the generalized problem.

The integrated problem of finding significant element
is intriguing. In addition to applications like advertis-
ing networks, where both the frequent elements and the
top-k problems need to be solved, the integrated problem
serves the purpose of exploratory data management. The
user does not always have a panoramic understanding of
the application data to issue meaningful queries. Many
times, the user issues queries about top-k elements, and
then discovers that the returned elements have insignif-
icant frequencies. Sometimes, a query for frequent ele-
ments above a specific threshold returns very few or no
elements. Having one algorithm that solves the integrated
problem of significant elements using only one underlying
data structure facilitates exploring the data samples and
understanding prevalent properties.

3.1 The Space-Saving Algorithm

In this section, we propose our counter-based Space-
Saving algorithm and its associated Stream-Summary
data structure. The underlying idea is to maintain par-
tial information of interest; i.e., only m elements are mon-
itored. The counters are updated in a way that accurately
estimates the frequencies of the significant elements, and
a lightweight data structure is utilized to keep the ele-
ments sorted by their estimated frequencies.

In an ideal situation, any significant element, F;, with
rank 7, that has received F; hits, should be accommodated
in the i*" counter. However, due to errors in estimating
the frequencies of the elements, the order of the elements
in the data structure might not reflect their exact ranks.
For this reason, we will denote the counter at the it posi-
tion in the data structure as count;. The counter count;
estimates the frequency f;, of some element e;. If the
it" position in the data structure has the right element,
i.e., the element with the " rank, F;, then e¢; = E;, and
count; is an estimation of Fj.

The algorithm is straightforward. If a monitored el-
ement is observed, the corresponding counter is incre-
mented. If the observed element, e, is not monitored,
give it the benefit of doubt, and replace e,,, the element
that currently has the least estimated hits, min, with
e. The new element, e, could have actually occurred be-
tween 1 and min + 1 times. We assign count,, the value

3The significant elements are interesting elements that can be
output in meaningful queries about top-k or frequent elements.

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, e, in S{
If e is monitored{
let count; be the counter of e
Increment-Counter(count;);
telse{
//The replacement step
let e, be the element with least hits, min
Replace en, with e;
Increment-Counter(countm);
Assign gy, the value min;

}
}// end for

end;

Figure 1: The Space-Saving Algorithm

min + 1, since we designed the algorithm to err only on
the positive side, i.e., to never miss a frequent element.

For each monitored element e;, we keep track of its
maximum over-estimation, &;, resulting from the ini-
tialization of its counter when it was inserted into the
list. That is, when starting to monitor e;, set ; to the
counter value that was evicted. Keeping track of the over-
estimation error for each elements is only useful for giving
some guarantees about the output of the algorithm, as
will become clear in Section 4. The algorithm is depicted
in Figure 1.

In general, the top elements among non-skewed data
are of no great significance. Hence, we concentrate on
skewed data sets, where a minority of the elements, the
more frequent ones, get the majority of the hits. The
basic intuition is to make use of the skewed property of the
data by assigning counters to distinct elements, and keep
monitoring the fast-growing elements. Frequent elements
will reside in the counters of bigger values, and will not be
distorted by the ineffective hits of the infrequent elements,
and thus, will never be replaced out of the monitored
counters. Meanwhile, the numerous infrequent elements
will be striving to reside in the smaller counters, whose
values grow slower than those of the larger counters.

In addition, if the skew remains, but the popular ele-
ments change over time, the algorithm adapts automat-
ically. The elements that are growing more popular will
gradually be pushed to the top of the list as they receive
more hits. If one of the previously popular elements loses
its popularity, it will receive less hits. Thus, its relative
position will decline, as other counters get incremented,
and it might eventually get dropped from the list.

Even if the data is not skewed, the errors in the coun-
ters are inversely proportional to the number of coun-
ters, as shown later. Keeping only a moderate number
of counters guarantees very small errors, since as proved
later and illustrated through experiments, Space-Saving
is among the most efficient techniques in terms of space.
The reason is that the more counters are kept, the less it
is probable to replace elements, and thus, the smaller the
over-estimation errors in counters’ values.

To implement this algorithm, we need a data structure
that cheaply increments counters without violating their
order, and that ensures constant time retrieval. We pro-
pose the Stream-Summary data structure for these pur-
poses.

Algorithm: Increment- Counter(counter count;)
begin
let Bucket; be the Bucket of count;
let Bucketzr be Bucket;’s neighbor of larger value
Detach count; from Bucket;’s child-list;
count; +-+;
//Finding the right bucket for count;
If (Buck:et?' does exist AND count; = Bucket?‘)
Attach count; to Bucket?"s child-list;
else{
//A new bucket has to be created
Create a new Bucket Bucketpew;
Assign Bucketnew the value of count;;
Attach count; to Bucketnew’s child-list;
Insert Bucketpew after Bucket;;

}

//Cleaning up

If Bucket;’s child-list is empty{
Detach Bucket; from the Stream-Summary;
Delete Bucket;;

end;

Figure 2: The Increment-Counter Algorithm

(Value = 1 Yo(Value =2)
Ao Moo b oew b e 2 M2,
(a) Stream- (b) Stream- (c) Stream-
Summary, Summary, Summary,
5=X,Y 5=X,Y,Y s =

XYY, Z

Figure 3: Example of updates to Stream-Summary with
m =2

In Stream-Summary, all elements with the same
counter value are linked together in a linked list. They all
point to a parent bucket. The value of the parent bucket
is the same as the counters’ value of all of its elements.
Every bucket points to exactly one element among its
child list, and buckets are kept in a doubly linked list,
sorted by their values. Initially, all counters are empty,
and are attached to a single parent bucket with value 0.

The elements can be stored in a hash table for constant
amortized access cost, or in an associative memory for
constant worst case access cost. Stream-Summary can be
sequentially traversed as a sorted list, since the buckets’
list is sorted.

The algorithm for counting elements’ hits using Stream-
Summary is straightforward. When an element’s counter
is updated, its bucket’s neighbor with the larger value is
checked. If it has a value equal to the new value of the
element, then the element is detached from its current
list, and is inserted in the child list of this neighbor. Oth-
erwise, a new bucket with the correct value is created,
and is attached to the bucket list in the right position;
and this element is attached to this new bucket. The
old bucket is deleted if it points to an empty child list.
With some optimization, the worst case scenario costs
10 pointer assignments, and one heap operation. The
Increment-Counter algorithm is sketched in Figure 2.

Example 1 Assuming m = 2, and A = {X,Y,Z}. The
stream S = X, Y will yield the Stream-Summary in Fig-
ure 3(a), after the two counters accommodate the observed

elements. When another Y arrives, a new bucket is cre-
ated with value 2, and Y gets attached to it, as shown
in Figure 3(b). When Z arrives, the element with the
minimum counter, X, is replaced by Z. Z has ez = 1,
since that was the count of X when evicted. The final
Stream-Summary is shown in Figure 3(c).

Stream-Summary is motivated by the work done in [17].
However, to look up a value of a counter using the data
structure proposed in [17], it takes O(m), while Stream-
Summary look-ups are in ©(1), for online queries about
specific elements. Online queries about specific elements
is crucial for our motivating application, to check whether
an element is frequent or not. Moreover, looking up the
frequencies of specific elements in constant time makes
Space-Saving more efficient when answering continuous
queries, as shown later in Section 6.

3.2 Properties of the Space-Saving Algo-
rithm

To prove the space bounds in Section 4, we analyze some
properties of Space-Saving, which will help establish its
space bounds. The strength behind the simplicity of the
algorithm is that it keeps information until the space is
absolutely needed, and that it does not initialize counters
in batches like other counter-based algorithms. These
characteristics are key to proving the space saving prop-
erties of the proposed algorithm.

Lemma 1 The length, N, of the stream is equal to the
sum of all the counters in the Stream-Summary data
structure. That is, N =)., (count;)

Proof. Every hit in S increments only one counter
among the m counters. This is true even when a replace-
ment happens, i.e., the observed hit e was not previously
monitored, and it replaces another counter e,,. This is
because count,, was incremented. Therefore, at any time,
the sum of all counters is equal to the length of the stream
observed so far. O

A pivotal factor in the analysis is the value of min.
The value of min is highly dynamic since it is dependent
on the permutation of elements in S. We give an illus-
trative example. If m =2, and N =4. S = X, Z,Y,Y
yields min = 1, while S = XYY, Z yields min = 2.
Although it would be very useful to quantify min, we do
not want to involve the order in which hits were received
in our analysis, because predicating the analysis on all
possible stream permutations will be intractable. Thus,
we establish an upper bound on min.

Assume the number of distinct elements in S is more
than m. Thus, all m counters are occupied. Otherwise,
all counts are exact, and the problem is trivial. Hence,
from Lemma 1 we deduce the following.

Lemma 2 Among all counters, the minimum counter
value, min, is no greater than [|.

Proof. Lemma 1 can be rewritten as:

N =3 i< m(count; —min)

min =
m

All the terms in the summation of Equation 1 are non-
negative, i.e., all counters are no smaller than min, hence
; N
min <[] 0
We are interested in min since it represents an upper
bound on the over-estimation in any counter in Stream-
Summary. This relation is established in Lemma 3.

Lemma 3 For any element e; in the Stream-Summary,
0 <e; <min, ie., f; <(fi +&;)=count; < f; + min.

Proof. From the algorithm, the over-estimation of e;,
€i, is non-negative, because any observed element is al-
ways given the benefit of doubt. The over-estimation ¢;
is always assigned the value of the minimum counter at
the time e; started being observed. Since the value of
the minimum counter monotonically increases over time
until it reaches the current min, then for all monitored
elements ¢; < min. O

Moreover, any element FE;, with frequency F; > min,
is guaranteed to be monitored, as shown next.

Theorem 1 An element E; with F; > min, must exist
in Stream-Summary.

Proof. The proof is by contradiction. Assume E; is
not in the Stream-Summary. Then, it was evicted previ-
ously. Since F; > min, then F; is more than the minimum
counter value at any previous time, because the minimum
counter value increases monotonically. Therefore, from
Lemma 3, when FE; was last evicted, its estimated fre-
quency was greater than the minimum counter value at
that time. This contradicts the Space-Saving algorithm
that evicts the element with the least counter to accom-
modate a new element. O

From Theorem 1 and Lemma 3, we can infer an inter-
esting general rule about the over-estimation of elements’
counters. For any element F;, with rank ¢ < m. The fre-
quency of E;, F;, is no more than count;, the counter oc-
cupying the i*" position in the Stream-Summary. For in-
stance, countyg, the counter at position 10 of the Stream-
Summary, is an upper bound on Fjg, even if the tenth
position of the Stream-Summary is not occupied by Fig.

Theorem 2 Whether or not E; occupies the ith position
in the Stream-Summary, count;, the counter at position
i, is no smaller than F;, the frequency of the element with
rank i, E;.

Proof. There are four possibilities for the position of
E;.

e The element F; is not monitored. Thus, from Theo-
rem 1, F; < min. Thus any counter in the Stream-
Summary is no smaller than Fj.

e The element E; is at position j, such that j > q.
From Lemma 3, the estimated frequency of E; is
no smaller than than F;. Since j is greater than
i, then the estimated frequency of e; is no smaller
than count;, the estimated frequency of E;. Thus,
count; > Fj.

e The element E; is at position i. From Lemma 3,

count; > f; = F;.

e The element F; is at position j, such that j < 1.
Thus, at least one element E, with rank x < i is
located in some position ¥y, such that y > i. Since
the estimated frequency of E, is no smaller than its
frequency, F, from Lemma 3, and = < i, then the es-
timated frequency of F, is no smaller than F;. Since
y > i, then the count; > count,, which is equal to the
estimated frequency of E,. Therefore, count; > Fj.

Therefore, in all cases, count; > F;. O

Theorem 2 is significant, since it enables estimating an
upper bound on the rank of an element. The rank of an
element e; has to be less than j if the guaranteed hits of e;
are less than the counter at position j. That is, count; <
(count; — €;) = rank(e;) < j. Conversely, the rank of an
element e; is greater than the number of elements having
guaranteed hits more than count;. That is, rank(e;) >
Count(ej|(countj—e;) > count;). Thus, Theorem 2 helps
establishing the order-preservation property among the
top-k, as discussed later.

In the next section, we use these properties to derive a
bound on the space requirements for solving the frequent
elements and the top-k problems.

4 Processing Queries

In this section, we discuss query processing using the
Stream-Summary data structure. We also analyze the
space requirements for both the general case, where no
data distribution is assumed, and the more interesting
Zipfian case.

4.1 Frequent Elements

In order to answer queries about the frequent elements,
we sequentially traverse Stream-Summary as a sorted list
until an element with frequency less than the user sup-
port is reached. Thus, frequent elements are reported in
O(|frequent elements|). An element, e;, is guaranteed
to be a frequent element if its guaranteed number of
hits, count; — €;, exceeds [¢N], the minimum support. If
for each reported element e;, count; — e; > [¢N], then
the algorithm guarantees that all, and only the fre-
quent elements are reported. This guarantee is con-
veyed through the boolean parameter guaranteed. The
number of counters, m, should be specified by the user
according to the data properties, the required error rate
and/or the available memory. The QueryFrequent algo-
rithm is given in Figure 4.

Next, we determine the value of m that guarantees a
user specified error rate, €.

4.1.1 The General Case

We will analyze the space requirements for the general
case of any data distribution.

Theorem 3 Assuming no specific data distribution,
Space-Saving uses a number of counters of min(|A], %)
to find all frequent elements with error €. Any element,
ei, with frequency f; > ¢N is guaranteed to be reported.

Algorithm: QueryFrequent(m counters, support ¢)
begin
Bool guaranteed = true;
Integer i = 1;
while (count; > [¢N] AND i < m){
output e;;
If ((count; —€;) < [¢N])
guaranteed = false;
it
}// end while
return(guaranteed)
end;

Figure 4: Reporting Frequent Elements

Proof. From Theorem 1, any element e; whose f; >
min is guaranteed to be in the Stream-Summary; and
since the upper bound of g; is min, from Lemma 2, it
follows that ¢; < min < L%J If we set min = €N,

then m > % guarantees an error rate of e. Since ¢ > ¢,
from Theorem 1, any element with frequency greater than
¢N is monitored in the Stream-Summary, and hence is
guaranteed to be reported. O

The bound of Theorem 3 is tight. For instance, this
can happen if all the IDs in the stream are distinct. In
addition, Theorem 3 shows that the space consumption
of Space-Saving is within a constant factor of the lower
bound on the space of any deterministic counter-based
algorithm, as shown in Theorem 4.

Theorem 4 Any deterministic counter-based algorithm
uses a number of counters of at least min(|A|, &) to find
all frequent elements with error €.

Proof. The proof is similar to that given in [8]. Given
two streams S; and S, of length L(m + 1) + 1 for an
arbitrary large multiple L. The two streams have the
same first L(m + 1) elements, where m + 1 elements oc-
cur L times each. After Observing the L(m + 1) stream
elements, any counter-based algorithm with m counters
will be monitoring only m elements. The last element is
the only difference between S; and S3. S; ends with an
element e; that was never observed before, and S ends
with an element eq that has occurred before but is not
monitored by the algorithm. Any deterministic algorithm
should handle the last element of S; and Ss in the same
manner, since it has no record of its previous hits. If the
algorithm estimated the previous hits of the last element
to be 1, then the algorithm will have an error rate of #ﬂ
in case of S3. On the other hand, if the algorithm esti-
mated the previous hits of the last element to be L, then
the algorithm will have an error rate of #H in case of
S1. The estimation that results in the least error in both
cases is m Therefore, the least number of counters

to guarantee an error rate of € is % d

4.1.2 Zipf Distribution Analysis

A Zipfian [47] data set, with parameter «, has the fre-
quency, F;, of an element, F;, with the i*" rank, such that
|A|

F; = =~ where ((a) = Y. L
ERE 2

constant inversely proportional to «, except for a < 1.

converges to a small

For instance, (1) ~ In(1.78|A|). As |A| grows to infinity,
¢(2) = 1.645, and ¢(3) ~ 1.202. We assume « > 1, to
ensure that the data is skewed, and hence, is worth an-
alyzing. As noted before, we do not expect the popular
elements to be of great importance if the data is uniform
or weakly skewed.

To analyze the Zipfian case we need to introduce some
new notation. Among all the possible permutations of
S, the maximum possible min is denoted min,,q., and
among all the elements with hits more than min,.., the
element with least hits is denoted E,., for some rank r.
Thus, we can deduce from Theorem 1 that:

Lemma 4 An element E;, has F; > minme., and re-
gardless of the ordering of S, is guaranteed to be moni-
tored, if and only if i <.

Now, minmqaz, and F,. can be used to establish an upper
bound on the space requirements for processing Zipfian
data.

Theorem 5 Assuming noiseless Zipfian data with pa-
rameter «, to calculate the frequent elements with error

1
rate €, Space-Saving uses only min(|A|, (%) , %) coun-

ters. This is regardless of the stream permutation.

Proof. From Equation 1, and Lemma 3, minm,., >

N*Zigm fi
m

, from which it can be ascertained that

. N-Y._ F)
MiNmaz > % From Lemma 4, substitute
F. > minm... Rewriting frequencies in their Zipfian

|A]
1 1 1
R DI
t=m-+1

form yields: This can be approxi-

mated to

ro

1 1
|A|/m o [Al/m «
m>rx| Y | .Since | Y & does not have

i=2 i=2
a closed form, m is set to satisfy a stronger constraint,
which is m > r(¢(a) — 1)a.
Since Fi.41 = %(a) < MiNmaz < €N, then the smaller

the error bound, €, the smaller the value of min,,q.., the
larger r should be, and the larger m should be. Therefore,
1

L | Alm _ o
e > o * ZQ 7&, which can be simplified to
1=

r is chosen to satisfy r = (Wla)) . Combining this re-

sult with the relation bletween m and r established above
¢(a)—1
eC(a)
bound by e. If > 1, the upper bound on € will be en-

implies m > () * will guarantee an error which is

forced by satisfying m = (%) %. Otherwise, the bound of

m > 1 will apply from the general case discussed previ-
€

ously in Theorem 3. a
Having established the bounds of Space-Saving for both

the general, and the Zipf distributions, we compare these

bounds to other algorithms. In addition, we comment on

some practical issues, that can not be directly inferred

from the theoretical bounds.

4.1.3 Comparison with Similar Work

The bound of Theorem 3 is tighter than those guar-
anteed by the algorithms in [18, 35, 39]. Sticky Sam-
pling [39] has a space bound of %ln(ﬁ), where ¢ is the

failure probability. Lossy Counting [39] has a bound
of 1In(eN). Both the hCount algorithm [35], and
the Multistage filters [18] require a number of counters

bounded by £ 14|

€ s
has a tighter bound than GroupTest [14], whose bound

is O(% ln(ﬁ) In(|Al)), which is less scalable than Space-

Saving. For example, for N = 1010, |A| =107, ¢ = 107},
€ = 1072, and § = 107!, and making no assumptions
about the data distribution, Space-Saving needs only 100
counters, while Sticky Sampling needs 922 counters, Lossy
Counting needs 1843 counters, hCount and Multistage fil-
ters need 4155 counters, and GroupTest needs C x 743
counters, where C' > 1.

Frequent [17] has a similar space bound to Space-Saving
in the general case. Using m counters, the elements’
under-estimation error in Frequent is bounded by %
This is close to the theoretical under-estimation error
bound, as proved in [8]. However, there is no straight-
forward feasible extension of the algorithm to track the
under-estimation error for each counter, since the current
form of the algorithm does not support estimating the
missed hits for an element that is starting being moni-
tored. In addition, every observation of a non-monitored
element increases the errors for all the monitored ele-
ments, since their counters get decremented. Therefore,
elements of higher frequency are more error prone, and
thus, it is still difficult to guess the frequent elements,
which is not the case for Space-Saving. Even more, the
structure proposed in [17] is built and queried in a way
that does not allow the user to specify an error thresh-
old, e. Thus, the algorithm has only one parameter, the
support ¢, which increases the number of false positives
dramatically, as will be clear from the experimental re-
sults in Section 5.

* In (Furthermore, Space-Saving

The number of counters used in GroupTest [14] de-
pends on the failure probability, §, as well as the sup-
port, ¢. Thus, it does not suffer from the single-threshold
drawback of Frequent. However, it does not output fre-
quencies at all, and does not reveal the relative order of
the elements. In addition, its assumption that elememts’
IDs are 1...|A| can only be enforced by building an in-
dexed lookup table that maps every ID to a unique num-
ber in the range 1...]|A|. Thus, in practice, GroupTest
needs O(|A|) space, which is infeasible in most cases. The
hCount algorithm makes a similar assumption about the
alphabet. In addition, it has to scan the entire alpha-
bet domain for identifying the frequent elements. This
is true even if a small portion of the IDs were observed
in the stream. This is in contrast to Space-Saving, which
only requires the m IDs to fit in memory.

For the Zipfian case, we are not aware of a similar anal-
ysis. For the numerical example given above, if the data
is Zipfian with a = 2, Space-Saving would need only 10
cour21ters, instead of 100, to guarantee the same error of
107=.

Algorithm: QueryTop-k(m counters, Integer k)
begin
Bool order = true;
Bool guaranteed = false;
Integer min-guar-freq = oo;
fori=1...k{
output e;;
If ((count; — ;) < min-guar-freq)
min-guar-freq = (count; — €;);
If ((count; — ;) < countiy1)
order = false;
}// end for
If (countyyi < min-guar-freq){
guaranteed = true;
telse{
output eg1;
fori=k+2...m{
If ((count;—1 — €;—1) < min-guar-freq)
min-guar-freq = (count;—1 —€;_1);
If (count; < min-guar-freq){
guaranteed = true;

break;
}
output e;;
}
return(guaranteed, order)
end;

Figure 5: Reporting Top-k

4.2 Top-k Elements

For the top-k elements, the algorithm can output the first
k elements. An element, e;, is guaranteed to be among
the top-k if its guaranteed number of hits, count; — ¢;,
exceeds countyy1, the over-estimated number of hits for
the element in position k + 1. Since, from Theorem 2,
county1 is an upper bound on Fj1, the hits of the ele-
ment of rank k+1, Ej41, then e; is in the top-k elements.

We call the results to have guaranteed top-k if by
simply inspecting the results, the algorithm can deter-
mine that the reported top-k elements are correct. Space-
Saving reports a guaranteed top-k if for all 4, (count; —
€;) > countpi1, where i < k. That is, all the reported k
elements are guaranteed to be among the top-k elements.

All guaranteed top-i subsets, for all 4, can be reported
in ©(m), by iterating on all the counters 1...m—1. Dur-
ing each iteration, i, the first ¢ elements are guaranteed to
be the top-i elements if the minimum value of (count;—e ;)
found so far is no smaller than count;y;, where j < i.
The algorithm guarantees the top-m if in addition to this
condition, &, = 0; which is only true if the number of
distinct elements in the stream is at most m.

Similarly, we call the top-k to have guaranteed order
if for all 4, where ¢ < k, count; — €; > count;+1. That is,
in addition to having guaranteed top-k, the order of ele-
ments among the top-k elements are guaranteed to hold,
if the guaranteed hits for every element in the top-k are
more than the over-estimated hits of the next element.
Thus, the order is guaranteed if the algorithm guarantees
the top-i, for all i« < k. The algorithm QueryTop-k is
given in Figure 5.

The algorithm consists of two loops. The first loop
outputs the top-k candidates. At each iteration the order
of the elements reported so far is checked. If the order is
violated, order is set to false. At the end of the loop, the

top-k candidates are checked to be the guaranteed top-k,
by checking that all of these candidates have guaranteed
hits that exceed the overestimated counter of the k +
1 element, countyyi. If this does not hold, the second
loop is executed for as many iterations such that the total
inspected elements k' are guaranteed to be the top-k’,
where k' > k.

The algorithm can also be implemented in a way that
only outputs the first k elements, or that outputs &’ ele-
ments, such that k' is the closest possible to k, regardless
of whether k' is greater than k, or vice versa. Through-
out the rest of the paper, we assume that the algorithm
outputs only the first k£ elements, i.e., the second loop is
not executed. Next, we look at the space requirements of
the algorithm.

4.2.1 The General Case

For the guaranteed top-k case, it is widely accepted that
the space requirements are ©(]A]) [10, 17] for solving the
exact problem, with no assumptions on the data distribu-
tion. Since, for general data distribution, we are not able
to solve the exact problem, we restrict the discussion to
the relaxed version, FindApproxTop(S, k, €) [10], which
is to find a list of £ elements, each of which has frequency
more than (1 — €)Fy.

We deal with skewed data later, in Section 4.2.2, where
we provide the first proven space bound for the guaran-
teed solution of the exact top-k problem, for Zipfian data
distribution.

Theorem 6 Regardless of the data distribution, to solve
the FindApproxTop(S, k, €) problem, Space-Saving uses
min(| 4], %) counters. Any element with frequency more
than (1 — €)Fy, is guaranteed to be monitored.

Proof. This is another form of Theorem 3, but min
€F}, instead of e N. By the same token, we set m = % *

so that ; < eF}, is guaranteed. O

N
Fy,

4.2.2 Zipf Distribution Analysis

To answer exact top-k queries for Zipf distribution, € can
be automatically set to less than Fj, — Fy11. Thus, Space-
Saving guarantees correctness, and order.

Theorem 7 Assuming the data is noiseless Zipfian with
parameter « > 1, to calculate the exact top-k, Space-

1
Saving uses min(|A|, O((£)™k)) counters. When o =
1, the space complezity is min(|A|, O(k*In(|Al))). This
is regardless of the stream permutation. Also, the order
among the top-k elements is preserved.

Proof. From Equation 1, Lemma 3, and Lemma 4,
we can deduce that for the maximum possible value of
AT, MiNmay, and the least frequent element that is guar-

anteed to be monitored, E,., it is true that min,e.. <
N=% <, (Fi—minmaaz)

p— . With some simplification, and sub-
stituting £ 11 < Minmqq, from Lemma 4, it follows that,

N-=Y ... F;
e

—t=——_ Rewriting frequencies in their Zipfian

4]
form yields: m —r < (r+1)* Y. -. This relation can

1=r+1
|A]/(r+1)
be approximated to m —r < (r+1)* > i%, which
i=1
simplifies to £ < m(fzzral)

To guarantee that the first k slots are occupied by the
top-k, we have to make sure that the difference between
Fy, and Fj41 is more than min,,.,, since from Lemma 3,
0 < g; < MiNmaz, for all monitored elements. That is,
the condition min,,.. < Fy — Fr+1 has to be enforced.

% * % Enforcing a tighter

condition, F,. is set to satisfy F,. < % * m
ing an even tighter condition by combining this with the

relation between m, and r established above, it is essential
o N L@+ _ N
to satisfy oy * () <

Thus, mingme: <

Enforc-

m=C(a) o) * TR After some

manipulation, a lower bound is reached on m to guarantee
top-k correctness: [(C(a) +1) (&) (k+ 1)} + (o) < m.

If @« = 1, then ((a) = ¢(1) = In(1.78| 4]), and the com-
plexity reduces to min(|A|, O(k*In(]A|))). If & > 1, then
¢(a) converges to a small constant inversely proportional

1

to o, and the complexity reduces to min(|4|, O((£)* k)).

We now prove the order-preserving property. If the
data distribution is Zipfian, then, (F; — F;11) > (Fi41 —
Fi+2). Since Minmaz < (Fk — Fk+1), then, Vigk,
MiNmaz < (F; — Fiy1). Since Vi<m, € < MinNmaz,
then, the over-estimation errors are not effective enough
to change the order among the top-k elements. O

In addition to solving the e-Deficient Frequent Ele-
ments problem in Section 4.1.2, from Theorem 7, we can
establish a bound on the space needed for the exact solu-
tion of the frequent elements problem in case of Zipfian
data. Given noise-free Zipfian data with parameter oo > 1,
Space-Saving can report the elements that satisfy the user
support [¢N], with very small errors in their frequencies.

kS
=

Corollary 1 Assuming Zipfian data with parameter o >

1, to calculate the exact frequent elements, Space-Saving
atl

uses only min(|A|, O((%) o)) counters. When a = 1,
the space complexity is min(|A|, O(m + In(]4)))).
This is regardless of the stream permutation.

Proof. Assuming Zipf distribution, it is possible to map
a frequent elements query into a top-k elements query.
Since the support is known, it is possible to know the rank
of the least frequent element that satisfies the support.
That is, if [¢N] = @) where 4 is the rank of the

least frequent element that satisfies the support, then i =
1

1
Les * -
From Theorem 7, the number of coun-
ters needed to calculate the exact top-
Y
i elements is [(C(oz) +1) (L) (i + 1)} +
¢(a). Substituting ¢ = LC(éMEJ’ yields
1
Y
RorkiA N z
[@(a)ﬂ)(=) () 1) +)

If « =1, then {(a) = ¢(1) = In(1.78| 4]), and the space
complexity reduces to min(|A|, O(m + In(|A]))).

If & > 1, then {(«) converges to a small constant in-
versely proportional to «, and the space complexity re-

a+1
2

duces to min(| 4|, O((%)). m

To the best of our knowledge, this is the first work to
look at the space bounds for answering exact queries, in
the case of Zipfian data, with guaranteed results. Having
established the bounds of Space-Saving for both the gen-
eral, and the Zipf distributions, we compare these bounds
to other algorithms.

4.2.3 Comparison with Similar Work

These bounds are tighter than the bounds guaranteed by
the best known algorithm, CountSketch [10], for a large
range of practical values of the parameters |A|, €, and k.
CountSketch solves the relaxed version of the problem,
FindApproxTop(S, k, €), with failure probability 4, using

14|
space of O(log(&)(k+ ﬁ S F;?)), with a large con-
=kt

stant hidden in the big-O notation [10, 14]. The bound

of Space-Saving for the relaxed problem is %, with a
0-failure probability. For instance, assuming no specific
data distribution, for N = 100, |4| = 107, k = 100,
and € = § = 1071, Space-Saving requires 10° counters,
while CountSketch needs C * 3.6 * 10'° counters, where
C > 1, which is more than the entire stream. In addi-
tion, Space-Saving guarantees that any element, e;, whose
fi > (1 —€)F}, belongs to the Stream-Summary, and does
not simply output a random & of such elements.

In the case of a non-Zipf distribution, or a weakly
skewed Zipf distribution with o < 1, for all i > k,
we will assume that F; > % * % This assumption is
justified. Since we are assuming a non-skewed distribu-
tion, the top few elements have a less significant share
in the stream than in the case of Zipf(1), and less fre-
quent elements will have a higher share in S than they
would have had if the distribution is Zipf(1). Using this
assumption, we rewrite the bound of Space-Saving as

O(M); while the bound in [10] can be rewritten as

2

O(log(X) * (k+ & (k_;l - ﬁ))) ~ 0(% log(X)). Even
more, depending on the data distribution, Space-Saving
can guarantee the reported top-k, or a subset of them, to
be correct, with weak data skew; while CountSketch does
not offer any guarantees.

In the case of Zipf Distribution, the bound of [10] is
O(klog(X)). For a > 1, the bound of Space-Saving is

1
O((%)Ek‘) Only when a = 1, the space complexity is
O(k*In(|Al)), and thus, Space-Saving requires less space
for cases of skewed data, long streams/windows, and has a
0-failure probability. In addition, Space-Saving preserves
the order of the top-k elements.

To show the difference in space requirements, consider
the following example. For N = 1010, |4] = 107, k = 100,
a=2,and 6§ = 10~! Space-Saving’s space requirements
are only 708 counters, while CountSketch needs C' * 3655
counters, where C' > 1.

This is the first algorithm that can give guarantees
about its output. For top-k queries, Space-Saving speci-
fies the guaranteed elements among the top-k. Even if it
cannot guarantee all the top-k elements, it can guarantee
the top-k’ elements.

5 Experimental Results

To evaluate the capabilities of Space-Saving, we con-
ducted a comprehensive set of experiments, using both
real and synthetic data. We tested the performance of
Space-Saving for finding both the frequent and the top-k
elements, under different parameter settings. We com-
pared the results against the best algorithms known so
far for both problems. We were interested in the recall,
the number of correct elements found as a percentage of
the number of correct elements; and the precision, the
number of correct elements found as a percentage of the
entire output [14]. Tt is worth noting that an algorithm
will have a recall, and a precision of 1 if it outputs all
and exactly the correct set of elements. Superfluous out-
put reduces precision, while failing to identify all correct
elements reduces recall.

We also measured the run time and space used by each
algorithm, which are good indicators of its capability to
handle high-speed streams, and to reside on servers with
limited memories. Notice that we included the size of the
hash tables used in the algorithms for fair comparisons.

For the frequent elements problem, we compared Space-
Saving to GroupTest [14], and Frequent [17]. For
GroupTest, and Frequent, we used the C code available
on the web-site of the first author of [14]. For the top-k
problem, we implemented Probabilistic-InPlace [17], and
CountSketch [10]. For CountSketch [10], we implemented
the median algorithm by Hoare [34] with Median-of-three
partition, which has a linear run time, in the average case
[37]. Instead of maintaining a heap as suggested in [10],
we kept a Stream-Summary of fixed length k. This guar-
antees constant time update for elements that are in the
Stream-Summary, while a heap would entail O(log(k))
operations. The difference in space usage between a heap
and a Stream-Summary of size k is negligible, when com-
pared to the space used by CountSketch. For the hid-
den constant of the space bounds given in [10], we ran
CountSketch several times, and estimated that a factor of
16 would enable CountSketch to give results comparable
to Space-Saving in terms of precision and recall. For the
probabilistic algorithms, GroupTest and CountSketch, we
set the probability of failure, §, to 0.01, which is a typical
value for 4. All the algorithms were compiled using the
same compiler, and were run on a Pentium IV 2.66GHz
PC, with 1.0GB RAM, and 80GB Hard disk.

5.1 Synthetic Data

We generated several synthetic Zipfian data sets with the
Zipf parameter varying from 0.5, which is very slightly
uniform, to 3.0, which is highly skewed, with a fixed in-
crement of % The size of each data set, N, is 10® hits,
and the alphabet was of size 5 * 10%. We conducted two
sets of experiments. In the first set, we varied the Zipf

parameter, «, and measured how the algorithms’ perfor-
mances change, for the same set of queries. In the second
set of experiments, we used a data set with a realistic
skew (o = 1.5), and compared the algorithms’ results as
we varied the queries’ parameters.

5.1.1 Varying the Data Skew

In this set of experiments, we varied the Zipf parame-
ter, o, and measured how the algorithms’ performances
change, for the same set of queries. This set of experi-
ments measure how the algorithms adapt to, and make
use of the data skew.

The Frequent Elements Problem The query issued
for Space-Saving, GroupTest, and Frequent was to find all
elements, with frequency at least %. For Space-Saving,
we assigned enough counters to guarantee correct results
from Corollary 1. When the Zipf parameter is 0.5, we
assign the same number of counters as in the case when
the Zipf parameter is 1.0. The results comparing the re-
call, precision, time and space used by the algorithms are
summarized in Figure 6.

Although Frequent ran up to six times faster than
Space-Saving, and has a constant recall of 1, as reported
in Figures 6(a), and 6(c), its results were not compet-
itive in terms of precision. Since it is not possible to
specify an e parameter for the algorithm, its precision
was very low in all the runs. When the Zipf parameter
was 0.5, the algorithm reported 16 elements, and actu-
ally there were no elements satisfying the support. For
the rest of the experiments in Figure 6(b), the precision
achieved by Frequent ranged from 0.049 to 0.158. The
space used ranged from one tenth to four times the space
of Space-Saving, as shown in Figure 6(d). It is interesting
to note that as the data became more skewed, the space
advantage of Space-Saving increased, while Frequent was
not able to exploit the data skew to reduce its space re-
quirements. Frequent did not always output exactly 100
elements for each experiment. In this case, when it decre-
ments the lowest counter, more than one element sharing
that counter could potentially be deleted if it reaches 0.

From Figure 6(a), the ratio in run time between Space-
Saving and GroupTest changed from 1 : 0.73, when the
Zipf parameter was 0.5, to 1 : 1.9 when the data was
highly skewed. When the Zipf parameter was 0.5, there
were no frequent elements, and both algorithms identified
none. We report this fact for both algorithms as having a
precision and recall of 1 in Figure 6(b), and Figure 6(c),
respectively. However, when the Zipf parameter was 1,
the difference in precision between the two algorithms was
14%, since GroupTest was not able to prune out all the
false positives due to the weak data skew. For values of
the Zipf parameter larger than 1.0, the precisions of both
algorithms were constant at 1, as reported in Figure 6(b).
The recalls of both algorithms were constant at 1 for all
values of the Zipf parameter, as is clear from Figure 6(c).
The advantage of Space-Saving is evident in Figure 6(d),
which shows that Space-Saving achieved a reduction in
the space used by a factor ranging from 8 when the Zipf
parameter was 0.5 up to 200 when the Zipf parameter

(a) Run Time for FE 0.01 (Synthetic Data)

‘l Space-Saving B GroupTest [JFrequent ‘

1000
900 -
800 -
700
600 4
500
400
300 A
200
100 +

Run Time (s)

0.5 1 15 2 25 3
Zipf Alpha

(c) Recall for FE-0.01 (Synthetic Data)

‘I Space-Saving W GroupTest [JFrequent ‘

0.9 A
0.8
0.7 4
0.6
0.5 -
0.4+
0.3
0.2 A
0.1 A

Recall

0.5 1 15 2 25 3
Zipf Alpha

(b) Precision for FE-0.01 (Synthetic Data)

‘I Space-Saving W GroupTest [JFrequent ‘

0.9 A
0.8
0.7 4
0.6
0.5 -
0.4+
0.3 A
0.2 A
0.1 4

Precision

0.5 1 15 2 25 3
Zipf Alpha

(d) Space for FE-0.01 (Synthetic Data)

‘I Space-Saving W GroupTest [JFrequent ‘

0.5
0.45 -
0.4 1
0.35 4
0.3 1
0.25 4
021
0.15 4
0.1+
0.05 4

Space Used (MB)

0.5 1 15 2 25 3
Zipf Alpha

Figure 6: Performance Comparison for the Frequent Elements Problem Using Synthetic Zipfian Data - Varying Data

Skew

was 3.0. This shows that Space-Saving adapts well to the
data skew.

The Top-k Problem Space-Saving, CountSketch, and
Probabilistic-InPlace were used to identify the top-50 ele-
ments. Space-Saving monitored enough elements to guar-
antee that the top-50 elements are correct and reported in
the right order as illustrated in Theorem 7. For o = 0.5,
the same number of counters were monitored as in the
case of @ = 1.0. Both Space-Saving, and Probabilistic-
InPlace were allowed the same number of counters. We
were not able to make Probabilistic-InPlace produce re-
sults comparable to the quality of the results of Space-
Saving. If Probabilistic-InPlace is given 2k counters so
that, it outputs only k£ elements, its recall is unsatisfac-
tory. If it is allowed a large number of counters, its re-
call increases, due to tighter estimation; but the precision
drops dramatically, since a lot of superfluous elements are
output. Thus, we allowed it to run using the same num-
ber of counters as Space-Saving, and the time, precision,
and recall were measured. The results are summarized in
Figure 7.

From Figure 7(b), the output of Probabilistic-InPlace
was not comparable to the other two algorithms in terms
of precision. On the contrary, from Figure 7(c), the re-
call of Probabilistic-InPlace was constant at 1 through-
out the entire range of . On the whole, the run time
and space usages of both Probabilistic-InPlace and Space-
Saving were comparable. Nevertheless, from Figure 7(a),
we notice that the run time of Probabilistic-InPlace was
longer than that of Space-Saving for o > 1.5, due to the

unnecessary deletions at the boundaries of rounds.
Although we used a hidden factor of 16, as indicated
earlier, CountSketch failed to attain a recall and preci-
sion of 1, for all the experiments*. CountSketch had
precision and recall varying between 0.98 and 1.0, as is
clear from Figures 7(b), and 7(c). From Figure 7(d), the
space reductions of Space-Saving become clear only for
skewed data. The ratio in space used by Space-Saving
and CountSketch ranged from 10 : 1 when the data is
weakly skewed, to 1 : 10 when the data was highly skewed.
This is because Space-Saving takes advantage of the skew
of the data to minimize the number of counters it needs
to keep, while the proved bound on the space used by
CountSketch is fixed for o > 1 [10]. The reductions of
Space-Saving in time, when compared with CountSketch,
are significant. From Figure 7(a), Space-Saving run time,
though almost constant, was 22 times smaller when the
data was not skewed, and 33 times smaller when the data
was skewed. The run time of CountSketch decreased as
« increased, since the number of times CountSketch has
to estimate the frequency of an element decreased, which
is the bottleneck in CountSketch. However, the run time
of Space-Saving dropped faster as the data became more
skewed, since the gap between the significant buckets’ val-
ues increased, and it grew less likely that any two elements
in the top-k share the same bucket. This reduced the
number of operations to increment the top-k elements.
We can easily see that running on a 2.66 GHz machine
enables CountSketch to handle streams with a rate not

4 CountSketch, and Space-Saving have the precision equal to re-
call, for any query, since exactly k elements are output.

(a) Run Time for Top-50 (Synthetic Data)

(b) Precision for Top-50 (Synthetic Data)

‘l Space-Saving W CountSketch [JProbabilistic InPlace

‘l Space-Saving B CountSketch O Probabilistic InPlace

25000

20000 -

15000 -

10000 -

Run Time (s)

5000 -

0
0.5 1 15 2 25 3
Zipf Alpha

(c) Recall for Top-50 (Synthetic Data)

14
0.9
0.8
0.7 4
0.6 §
0.5 o
0.4 4
0.3 1
0.2 4
0.1

0

Precision

0.5 1 15 2 25 3
Zipf Alpha

(d) Space for Top-50 (Synthetic Data)

‘l Space-Saving B CountSketch O Probabilistic InPlace

‘l Space-Saving B CountSketch O Probabilistic InPlace

1 _
0.9 4
0.8 4
0.7 4
0.6 4
0.5 4
0.4 4
0.3 4
0.2 4
0.1 4

04 L

0.5 1 15 2 2.5 3
Zipf Alpha

Recall

35
3
2.5 A
2
1.5 A
14

Space Used (MB)

0.5 1

04
0.5 1 15 2 25 3
Zipf Alpha

Figure 7: Performance Comparison for the Top-k Problem Using Synthetic Zipfian Data - Varying Data Skew

higher than 5 hits per ms, since when the data was al-
most uniform, CountSketch took 0.219 ms, on average, to
process each observation in the stream.

5.1.2 Varying the Query Parameters

This set of experiments measure how the algorithms per-
form under different realistic query parameters, keeping
the data skew parameter constant at a realistic value.
The data set with the Zipf parameter 1.5 was used for
this purpose.

The Frequent Elements Problem The query issued
for Space-Saving, GroupTest, and Frequent was to find all
elements with frequency at least (%] The support, ¢,
was varied from 0.001 to 0.01. The results are summa-
rized in Figure 8.

From Figure 8(c), Frequent was able to attain a recall of
1, for all the queries issued. From Figure 8(a), Frequent’s
run time was up to 5 times faster than Space-Saving. In
addition, the space usage of Frequent dropped to % that
of Space-Saving, as is clear from Figure 8(d). However,
Frequent has its precision ranging from 0.087 to 0.115, as
indicated by Figure 8(b), which is a significant drawback
of this algorithm. This is due to its inability to prune out
false positives.

Both GroupTest and Space-Saving were able to attain
a value of 1 for recall for all the values of support, as is
clear from Figure 8(c). However, from Figure 8(b), the
precision of GroupTest dropped to 0.952 when ¢ was ﬁ.
Figure 8(d) shows that Space-Saving used space ranging

from 8 to 18 times less than that of GroupTest, and ran
twice as fast, as shown in Figure 8(a).

In conclusion, we can see that Space-Saving combined
the lightweight advantage of Frequent, and the precision
advantage of GroupTest.

The Top-k Problem Space-Saving, CountSketch, and
Probabilistic-InPlace were used to identify the top-k ele-
ments in the stream, the parameter k was varied, and the
results are shown in Figure 9.

Probabilistic-InPlace had run time and space usage
that were very close to Space-Saving, as illustrated in
Figures 9(a) and 9(d). Probabilistic-InPlace was able to
attain a recall of 1 throughout this set of experiments,
as is clear from Figure 9(c). However, it had very low
precision, as shown in Figure 9(b). Its highest precision
was 0.133, and thus the algorithm seems impractical for
real life applications.

Space-Saving has a precision and recall of 1 for
the entire range of k, as is clear from Figures 9(b),
and 9(c). Meanwhile, CountSketch had recall/precision
values ranging from 0.987 for top-75 to 1 for top-10,
top-25, and top-50, which is satisfactory for real-life ap-
plications. However, Figures 9(a), and 9(d) show that
Space-Saving’s run time was 28 to 31 times less than that
of CountSketch, while Space-Saving’s space was up to 5
times smaller.

Again, Space-Saving combined the lightweight property
of Probabilistic-InPlace, and had better precision than
CountSketch.

(a) Run Time for FE on Zipf(1.5) Data

‘I Space-Saving B GroupTest [JFrequent

800
700 A
600 -
500 -
400 -
300
200 A
100 1

Run Time (s)

1/1000 1/750 1/500

Support

1/250 1/100

(c) Recall for FE on Zipf(1.5) Data

‘I Space-Saving B GroupTest [JFrequent

0.9 A
0.8 A
0.7 A
0.6
0.5 A
0.4 A
0.3 A
0.2
0.1 A

Recall

1/1000 1/750 1/500

Support

1/250 1/100

(b) Precision for FE on Zipf(1.5) Data

‘I Space-Saving B GroupTest [IFrequent

g 0.5
£ 0.4
0.3
0.2
0.1
0
1/1000 1/750 1/500 1/250 1/100
Support
(d) Space for FE on Zipf(1.5) Data
‘lSpaoe-Saving B GroupTest [JFrequent
35
3
2 25 1
B 2
173
=}
15 1
Q
©
Q1
[
0.5
0

1/1000 1/750 1/500

Support

1/250 1/100

Figure 8: Performance Comparison for the Frequent Elements Problem Using Synthetic Zipf(1.5) Data - Varying the

Support

5.2 Real Data

For real data experiments, we used a click stream from
Anonymous.com. The stream size was 25,000,000 hits,
and the alphabet size was 4,235,870. The data was fairly
skewed, but it was difficult to estimate the Zipf param-
eter. The sum of the counts of the frequent elements
was small compared to the length of the stream. For
instance, the most frequent element, the top-10, the top-
50, and the top-100 elements occurred 619,310, 1,726,609,
2,596,833, and 3,130,639 times, respectively. Thus, it was
very difficult to estimate the a from which we can a pri-
ori calculate a bound on the number of counters to be
used. Therefore, we made use of this set of experiments
to provide a simulation for the behavior of Space-Saving
when running in limited space. However, we did not fix
the space available for all experiments at the same size,
but made it a function of the query parameters, and ex-
amined how Space-Saving behaves under restricted condi-
tions. Surprisingly, in very restricted space, Space-Saving
achieved substantial gains in run time and space with
hardly any loss in precision and recall. On the whole, the
results were very similar to those of the synthetic data
experiments when the query parameters were varied. We
will start by comparing the algorithms’ behavior when
varying the query parameters, and will then comment on
how Space-Saving guarantees its output.

5.2.1 Varying the Query Parameters

This set of experiments measure how the algorithms per-
form under different realistic query parameters.

The Frequent Elements Problem For the frequent
elements, the algorithms were used to find elements with
minimum frequency [¢N]. The parameter ¢ was varied
from 0.001 to 0.01, and the number of elements moni-

tored by space saving was fixed at %. The results are

summarized in Figure 10

From Figure 10(a), the run time of Frequent was con-
sistently faster than Space-Saving, and Space-Saving used
5 times more space than Frequent, as is clear from Fig-
ure 10(d). However, because of the excessive number of
false positives reported by Frequent, its precision ranged
from 0.011 to 0.035, as indicated by Figure 10(b).

For GroupTest, all the IDs of the alphabet were mapped
to the range 1...4,235,870 so as to be able to compare it
with Space-Saving, though we did not account the map-
ping lookup table as part of GroupTest’s space require-
ments. Despite the restricted space condition we imposed
on Space-Saving, the algorithm was able to attain a value
of 1 for precision and recall for all support levels, as is
clear from Figures 10(b), and 10(c). However, Group Test
had a precision ranging from 0.486 to 1. On the other
hand, from Figure 10(d), Space-Saving used space up to
5 times less than GroupTest, and ran faster most of the
time, as shown in Figure 10(a).

The Top-k Problem Space-Saving, CountSketch, and
Probabilistic-InPlace were used to identify the top-k ele-
ments in the stream. The parameter k£ was varied, and
the number of elements monitored by Space-Saving and
Probabilistic-InPlace was fixed at 100« k. The results are
shown in Figure 11.

(a) Run Time for Top-k on Zipf(1.5) Data

(b) Precision for Top-k on Zipf(1.5) Data

‘l Space-Saving B CountSketch O Probabilistic InPlace ‘

‘l Space-Saving B CountSketch O Probabilistic InPlace

14000

12000

10000 -

8000

6000 -

Run Time (s)

4000 +

2000 -

04
10 25 50 75 100

(c) Recall for Top-k on Zipf(1.5) Data

‘l Space-Saving B CountSketch O Probabilistic InPlace

1

1=
0.9
0.8
0.7

c

S 06

(2]

2 05

o 4
5 0.4

0.3 A
0.2 A
0.1

04

(d) Space for Top-k on Zipf(1.5) Data

‘I Space-Saving B CountSketch O Probabilistic InPlace

0.9
0.8
0.7

= 06

[+
S 05 A

X 04
0.3
0.2
0.1

04 L

10 25 50 75 100
k

10 25 50 75 100
k

Figure 9: Performance Comparison for the Top-k Problem Using Synthetic Zipf(1.5) Data - Varying the k Parameter

Although Probabilistic-InPlace had good recall, as
shown in Figures 11(b), its precision, as clear from Fig-
ure 11(c), was not comparable to the two other algo-
rithms, since its highest precision was 0.020. The run
time of Probabilistic-InPlace was 4 to 5 times less tha
that of Space-Saving, and their space usages were very
comparable.

Interestingly, Figures 11(b), and 11(c) show that Space-
Saving, and CountSketch had very close recall and pre-
cision. The average precision and recall of Space-Saving
and CountSketch were 0.96 and 0.97, respectively. How-
ever, Figure 11(a) shows that Space-Saving’s run time was
25 times less than that of CountSketch. Space-Saving’s
space requirements were 1.1 to 1.6 times larger, as shown
in Figure 11(d).

5.2.2 Measuring the Guarantee of Space-Saving

We now introduce a new measure, guarantee. The guar-
antee metric is very close to precision, but is only measur-
able for algorithms that can offer guarantees about their
output. Guarantee is the number of guaranteed correct
elements as a percentage of the entire output. That is,
the percentage of the output whose correctness is guaran-
teed. For instance, if an algorithm outputs 50 elements,
from which it guarantees 42 to be correct, then the guar-
antee of this algorithm is 84%, even though some of the
remaining 8 elements might still be correct. Thus, the
guarantee of a specific answer set is no greater than the
precision, which is based on the number of correct, and
not necessarily guaranteed, elements in the output.

In the context of the frequent elements problem, the
guarantee of Space-Saving is the number of elements

whose guaranteed hits exceeds the user support, as a
percentage of the entire output. Formally, this is equal
t Count(ei|(count;—e;)>[¢pN])
0 Count(e;|count;>[¢N1]))

k problem, the guarantee of Space-Saving is the num-
ber of elements that are guaranteed to be in the top-
k. 1i.e., those whose guaranteed hits exceed countyyi,
as a percentage of the top-k. Formally, this is equal to

Count(e;|(count;—e;)>county1)

In the context of the top-

It is worthknoting that throughout the set of experi-
ments on synthetic data, the guarantee of Space-Saving
was always constant at 1. That is, Space-Saving always
guaranteed all its output to be correct.

Since it was not possible to estimate the o parameter
of the real data set, we ran Space-Saving in a restricted
space, and thus some of the experimental runs did not
have a precision of 1. For this reason, we report both
the guarantee and the precision of Space-Saving for both
the frequent elements and the top-k problems in Tables 1,
and 2.

The Frequent Elements Problem For the frequent
elements problem, both the guarantee and the precision
of Space-Saving were constant at 1.0, as is clear from Ta-
ble 1. That is, Space-Saving outputs only the correct el-
ements, nothing but the correct elements, and guarantees
its output to be correct.

The Top-k Problem For the top-k problem, the guar-
antee of Space-Saving ranged from 0.80 to 1.0, and the
precision of Space-Saving ranged from 0.84 to 1.0, as is
clear from Table 2. In other words, Space-Saving was

(a) Run Time for FE on Real Data

‘l Space-Saving B GroupTest O Frequent

300

250
T 200
(]
E 1504
S
é 100 4
50
o4
1/1000 1/750 1/500 1/250 1/100
Support
(c) Recall for FE on Real Data
‘l Space-Saving B GroupTest [Frequent
1- .
0.9
0.8
0.7
_ 06
Sos
X 04
0.3
0.2
0.1
o4 L

1/1000 1/750 1/500

Support

1/250 1/100

(b) Precision for FE on Real Data

‘l Space-Saving W GroupTest [JFrequent

1/1000 1/750 1/500

Support

1/250 1/100

(d) Space for FE on Real Data

‘I Space-Saving B GroupTest O Frequent

35

B
N
o

15

Space Used (MB)

0.5

1/1000 1/750 1/500

Support

1/250 1/100

Figure 10: Performance Comparison for the Frequent Elements Problem Using a Real Click Stream

Support | Number of Frequent | Size of | Number of Guaranteed | Accuracy| Precision
Elements Output | Frequent Elements

1/1000 18 18 18 1.0 1.0

1/750 11 11 11 1.0 1.0

1/500 10 10 10 1.0 1.0

1/250 2 2 2 1.0 1.0

1/100 2 2 2 1.0 1.0

Table 1: Space-Saving Guarantee for the Frequent Elements Problem Using a Real Click Stream

able to guarantee 80% to 100% of its output to be cor-
rect. Throughout the experimental runs, the number of
non-guaranteed elements was at most 5.

6 Answering Continuous Queries

After validating the theoretical analysis by experimental
evaluation, using both real and synthetic data, we ex-
tend the proposed algorithm to answer continuous queries
about both frequent and top-k elements. Although incre-
mental reporting of the answer is useful in many appli-
cations for monitoring interesting elements, we are not
aware of any proposed solution for this problem. The
main goal is to incrementally report any changes taking
place in the answer set, without scanning all the mon-
itored elements. Since these changes can take place af-
ter any stream observation, the Increment-Counter al-
gorithm has to be modified to check for changes in the
answer set, so that the cache is updated before it is used
for the next advertisement rendering. The extensions to
Increment-Counter are discussed below.

6.1 Continuous Queries for Frequent El-
ements

Incremental reporting of frequent elements can be classi-
fied into two types of reporting. The first type is report-
ing an infrequent element that has become frequent. This
can happen when an element receives a hit that makes its
frequency satisfy the minimum support, [¢N]. This can
only happen for the observed element. The second type
of updates is reporting that a group of frequent elements
have become infrequent. This can happen because the
minimum support, [¢N], has increased as N gets incre-
mented. Several elements may become infrequent after
the last stream observation. Moreover, one stream obser-
vation can result in both types of updates.

Checking for updates of both types is more effective
than running the QueryFrequent algorithms after every
observation, i.e., after the call to Increment-Counter.
The subroutine ContinuousQueryFrequent that should be
called at the end of each call to Increment-Counter and
before the clean up step, is sketched in Figure 12.

ContinuousQueryFrequent should maintain a pointer,
ptre, to Buckety, the bucket of minimum value that sat-
isfies the support. Initially, this pointer points to the

(a) Run Time for Top-k on Real Data

‘I Space-Saving B CountSketch [JProbabilistic InPlace

6000

5000 -

4000 -

3000 +

2000 +

Run Time (s)

1000 -

0

10 25 50 75 100

(c) Recall for Top-k on Real Data

(b) Precision for Top-k on Real Data

‘l Space-Saving B CountSketch [JProbabilistic InPlace
1-

0.9 A
0.8
0.7 A

S 06
2 05 4
8 041
0.3 A
0.2 A
0.1 -
04

10 25 50 75 100

(d) Space for Top-k on Real Data

M Space-Saving M CountSketch [Probabilistic InPlace ‘

‘I Space-Saving B CountSketch [JProbabilistic InPlace

1
094
0.8 4
0.7 4

_ 06

S 05

& 04
03
02
01

04 |
10 25 50 75 100
k

0.8
0.7 4

o o
o o
L

Space Used (MB)
o o o o
o B N W b
P .

10 25 50 75 100
k

Figure 11: Performance Comparison for the Top-k Problem Using a Real Click Stream

Number | Size of | Number of Guaran- | Guarante¢ Precision
of top-k | Output | teed Top-k Elements

10 10 10 1.0 1.0

25 25 20 0.80 0.84

50 50 46 0.92 0.98

75 75 72 0.96 0.9867
100 100 98 0.98 0.99

Table 2: Space-Saving Guarantee for the Top-k Problem Using a Real Click Stream

Algorithm: ContinuousQueryFrequent(counter count;)
begin
//Incrementing the stream size
N ++;
//Reporting elements that are becoming infrequent
let Buckety be the bucket ptry points to
let Bucket! be Buckety’s neighbor of larger value
if (Buckety < [¢N]){
Report Buckety’s child-list as infrequent;
Move ptryg to Bucketl‘;

//Reporting e; if it becomes frequent

let Bucket, be the new bucket of count;

let Bucket ¢ be the new bucket ptry points to

if (Bucket; > [¢N] AND Bucket; < Bucket}){
let e; be the element of count;
Report e; as frequent;
Move ptrg to Bucket!;

end;

Figure 12: Incremental Reporting of Frequent Elements

initial bucket of the Stream-Summary. At the end of
each call to the Increment-Counter algorithm and before
deleting the empty bucket, it should invoke Continuous-
QueryFrequent. ContinuousQueryFrequent should check
if Buckety still satisfies the required support after the
stream size, N, has been incremented. If it does not sat-
isfy the support any more, all the elements in the child
list of Buckety should be reported as frequent elements
that have become infrequent, and ptr, should be moved

to Bucket;', the neighbor of Buckety with larger value.

When the observed element, e;, has its counter, count;,
incremented, ContinuousQueryFrequent should check the
new bucket of count;, Bucket. If count; has moved from
an infrequent bucket to another infrequent bucket, or
from a frequent bucket to another frequent bucket, then
there is no need to update the set of frequent elements.
Only if the new bucket of count; satisfies [¢N] and the
old bucket did not, e; should be reported as an infrequent
element that is now frequent. In this case, ptrg should
be moved to point to Bucket], the new bucket of count;,
since we are sure then that this is the bucket of minimum
value that satisfies the support. The algorithm Contin-
uousQueryFrequent checks for this condition by making

sure that Bucket} has a value which satisfies the support,
and its value is no greater than the value of the bucket
pointed to by ptrg.

Reporting an element that is becoming frequent
is O(1); and reporting a group of elements that
are becoming infrequent is O(|elements becoming
infrequent|). Thus, ContinuousQueryFrequent takes
O(Jupdated elements|) to update the cache.

In the Increment-Counter algorithm, the old bucket
of count; is deleted if its child list is empty. The Con-
tinuousQueryFrequent algorithm should be called before
deleting the old bucket of count;. Otherwise, ptry could
be pointing to a deleted bucket, and there would be no
efficient way to know which bucket is Bucket!, except

by scanning all the buckets in the Stream-Summary data
structure, which is not a constant time operation.

6.2 Continuous Queries for Top-k Ele-
ments

Answering continuous queries about top-k is similar to
answering continuous queries about frequent elements.
ContinuousQueryTop-k should maintain a pointer, ptry,
to Buckety, the bucket to which county belongs, where
county, is the counter at the k** position in the Stream-
Summary data structure. Hence, the top-k elements
should be elements that belong to all the buckets with
values no less than the value of Buckety,. However, there
might be more than k elements that belong to buck-
ets with values no less than that of county. For in-
stance, if k& = 100, and the buckets with values more
than county have 95 elements, and Bucket; has more
than 5 elements, then some elements that belong to
Bucket;, will not be reported among the top-k. In case
Buckety, has more elements than needed to report the
top-k, ContinuousQueryTop-k should report a subset of
the elements of Buckety, as being among the top-k. The
rest of the Bucket elements, though they have the same
value as county, are not reported as being among the top-
k. Thus, ContinuousQueryTop-k should maintain a set,
Sety, of elements that belong to Buckety, and have been
reported as Top-k. Initially, Sety is set empty, and ptry
points to the initial bucket of the Stream-Summary.

The underlying idea is to keep track of boundary ele-
ments that lie on the boundary between the top-k and
the non-top-k elements. Such elements can move from
outside the top-k to inside the top-k, if their frequency
increases. Only an element that belong to Bucket;, that
is not a member of Set; can be reported as an element
which is entering the top-k set of elements, if it receives
a hit. Elements which belong to Set will not change the
top-k if they received hits. Other elements that belong
to buckets other than Buckety, will not effect the top-k if
they receive hits.

The Stream-Summary data structure needs to be mod-
ified slightly, so that it can tell if k distinct elements have
been observed in the stream. This modification helps at
the transient start, when all distinct elements observed
are among the top-k.

Telling whether or not k& distinct elements have been
observed in the stream is an easy problem. It is enough to
keep a counter that is incremented every time an element

Algorithm: ContinuousQueryTop-k(counter count;)
begin
let e; be the element of count;
//Case 1: not all top-k have been reported
if less than k distinct elements are recieved
if (count; = 1)
Report e; as among the top-k;
//Case 2: e; is the k" element reported
if e; is the k' distinct element recieved{
Report e; as among the top-k;
let Bucket1 be the bucket of value 1
Move ptry to Bucketq;
Insert Buckety’s child-list into Sety;

//Case 3: The general case
//k elements have been already reported as top-k
let Buckety be the bucket ptrp points to
let Bucketz be Bucket’s neighbor of larger value
let Bucket; be the new bucket of count;
if (Bucket); = Bucket}l‘){
if (e; € Sety){
Delete e; from Sety;
telse{
Select any element e from Sety;
Delete e from Sety;
Report e as not among top-k;
Report e; as being among top-k;

if Sety, is empty{
Move ptry, to Bucket:;
Insert Bucketﬁ’s child-list into Sety;

}
}

end;

Figure 13: Incremental Reporting of Top-k

is deleted from the initial bucket in the Stream-Summary,
and is inserted into a bucket of value 1. However, for
simplicity, we will delete these details from the algorithm,
and assume an oracle that will answer the question for us.

After receiving more than k distinct elements, a new
element reported as being among the top-k, implies that
another element is no longer in the top-k. The algorithm
ContinuousQueryTop-k is responsible for this task, and
should be called at the end of each call to Increment-
Counter and before the clean up step, as sketched in Fig-
ure 13.

The first two cases in ContinuousQueryTop-k handle
the special cases when the distinct elements in the stream
are no more than k. In Case 1, the algorithm checks if the
number of distinct elements observed is strictly less than
k. If this is true, then e;, the observed element should be
reported among the top-k if this is the first occurrence of
e;. In Case 2, if e; is the k** distinct element reported,
then the number of distinct elements has changed from
k — 1 to k because of the last observation, e;. Thus,
in addition to reporting e; as being among the top-k,
ptr has to be moved to Buckety, the bucket of value 1.
Since e; is the kt* distinct element, the top-k are all the
elements in all the buckets with values no less than 1.
Thus, Sety should include all the elements that belong to
Bucket;.

Case 3 is the general case. This case is executed only
if e; moves from Bucket to Buck;et‘k"7 the neighbor of
Buckety, with larger value. If e; was already among the
top-k, i.e., it did belong to Sety, then the top-k elements

did not change, and it needs to be deleted from Sety, since
it does not belong to Bucket any more. However, if e; is
a boundary element, i.e., it did not belong to Sety, then
e; is moving from outside top-k to inside top-k. Thus, e;
has to be reported as being among the top-k. In addition,
an element has to be picked from Sety, deleted from Sety,
and reported as a non-top-k element.

Whether e; belongs to Sety or not, the deletion of an
element from Sety, might leave Set, empty. In this case,
we are sure that there are exactly k elements in the buck-
ets with values more than that of Bucket;. Those are the
top-k elements. Hence, ptry should be moved to point to
Bucketg, the neighbor of Bucket;, with larger value; and
Sety should be initialized to contain all the elements in
the child list of Buck‘et'k".

Since Sety can have at most k elements at a time, we
assume it can be stored in an associative memory, and
thus, all the operation on Sety is O(1). Otherwise, it
can be stored in a hash table, and the amortized cost
of any operation will still be O(1). It is easy to see that
the amortized cost of ContinuousQueryTop-k is constant.
Although the step of inserting all the elements of one
bucket into Sety is not O(1), this cost will be amortized
since Sety will have exactly one element deleted every
time an element moves from Bucket;, to Bucket;. Thus
on average, one element will be inserted, and another
will be deleted from Set for every element moving from
Buckety, to Bucket;", which is O(1) per observation.

Like ContinuousQueryFrequent, ContinuousQueryTop-
k should be called before deleting the old bucket of count;.
Otherwise, ptry could be pointing to a deleted bucket, and
there would be no constant time method to know which
bucket is Bucketz.

7 Discussion

This paper has devised an integrated approach for solving
an interesting family of problems in data streams. The
Stream-Summary data structure was proposed, and uti-
lized by the Space-Saving algorithm to guarantee strict
bounds on the error rate for approximate counts of ele-
ments, using very limited space. We showed that Space-
Saving can handle both the frequent elements and top-
k queries because it efficiently estimates the elements’
frequencies. The memory requirements were analyzed
with special attention to the case of skewed data. More-
over, this paper introduced and motivated the problem of
answering continuous queries about top-k, and frequent
elements, through incremental reporting of changes to
the answer sets. Minor extensions were applied to use
the same set of algorithms to answer continuous queries.
We conducted extensive experiments using both synthetic
and real data sets to validate the benefit of the proposed
algorithm.

This is the first algorithm, to the best of our knowledge,
that guarantees the correctness of the frequent elements;
as well as the correctness and the order of the top-k ele-
ments, when the data is skewed.

In practice, if the alphabet is too large, like in the case
of IP addresses, only a subset of this alphabet is observed
in the stream, and not all the 232 addresses. Our space

bounds are actually a function of the number of distinct
elements which have occurred in the stream. However, in
our analysis, we have assumed that the entire alphabet is
observed in the stream, which is the worst case for Space-
Saving. Yet, our space bounds are still tighter than those
of other algorithms.

The main practical strengths of Space-Saving is that
it can use whatever space is available to estimate the
elements’ frequencies, and provide guarantees on its re-
sults whenever possible. Even when analysts are not sure
about the appropriate parameters, the algorithm can run
in the available memory, and the results can be analyzed
for further tuning. It is interesting that running the algo-
rithm on the available space ensures that more important
elements are less susceptible to noise. The underlying rea-
son is that it can be easily shown that the expected value
of the over-estimation, ¢;, increases monotonically with
the sum of the length of the stream sections when e; was
not monitored, which is inversely related to f;.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The Space
Complexity of Approximating the Frequency Mo-
ments. In Proceedings of the 28th ACM STOC Sym-
posium on the Theory of Computing, pages 20-29,
1996.

[2] A. Arasu, S. Babu, and J. Widom. CQL: A Language
for Continuous Queries over Streams and Relations.
In Proceedings of the 9th DBPL International Con-
ference on Data Base and Programming Languages,
pages 1-11, 2003.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Con-
tinuous Query Language: Semantic Foundations and
Query Execution. Technical Report 2002-67, Stan-
ford University, 2003.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream Sys-
tems. In Proceedings of the 21st ACM PODS Sympo-
sium on Principles of Database Systems, pages 1-16,
2002.

[5] B. Babcock and C. Olston. Distributed Top-k Mon-
itoring. In Proceedings of the 22nd ACM SIGMOD
International Conference on Management of Data,
pages 28-39, 2003.

[6] Burton H. Bloom. Space/Time Trade-offs in Hash
Coding with Allowable Errors. Communications of
the ACM, 13(7):422-426, 1970.

[7] P. Bonnet, J. Gehrke, and P. Seshadri. Towards
Sensor Database Systems. In Proceedings of the
2nd IEEE MDM International Conference on Mo-
bile Data Management, pages 3—14, 2001.

[8] P.Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds
for Frequency Estimation of Packet Streams. In Pro-
ceedings of the 10th SIROCCO International Collo-
quium on Structural Information and Communica-
tion Complexity, pages 33—42, 2003.

[9] R. Boyer and J. Moore. A Fast Majority Vote Algo-
rithm. Technical Report 1981-32, Institute for Com-
puting Science, University of Texas, Austin, 1981.

[10] M. Charikar, K. Chen, and M. Farach-Colton. Find-

[13]

[15]

18]

[19]

ing Frequent Items in Data Streams. In Proceed-
ings of the 29th ICALP International Colloquium on
Automata, Languages and Programming, pages 693—
703, 2002.

J. Chen, D. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A Scalable Continuous Query System for
Internet Databases. In Proceedings of the 19th ACM
SIGMOD International Conference on Management
of Data, pages 379-390, 2000.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Finding Hierarchical Heavy Hitters in Data
Streams. In Proceedings of the 29th ACM VLDB In-
ternational Conference on Very Large Data Bases,
pages 464-475, 2003.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Diamond in the Rough: Finding Hierar-
chical Heavy Hitters in Multi-Dimensional Data. In
Proceedings of the 23rd ACM SIGMOD International
Conference on Management of Data, pages 155-166,
2004.

G. Cormode and S. Muthukrishnan. What’s Hot and
What’s Not: Tracking Most Frequent Items Dynami-
cally. In Proceedings of the 22nd ACM PODS Sympo-
stum on Principles of Database Systems, pages 296—
306, 2003.

C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and
F. Smith. Hancock: A Language for Extracting Sig-
natures from Data Streams. In Proceedings of the 6th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 9-17, 2000.
M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining Stream Statistics over Sliding Windows.
In Proceedings of the 13th ACM SIAM Symposium
on Discrete Algorithms, pages 635—644, 2002.

E. Demaine, A. Lépez-Ortiz, and J. Munro. Fre-
quency Estimation of Internet Packet Streams with
Limited Space. In Proceedings of the 10th ESA
Annual European Symposium on Algorithms, pages
348-360, 2002.

C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the Ele-
phants, Ignoring the Mice. ACM Transactions on
Computer Systems, 21(3):270-313, 2003.

M. Fang, S. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. Ullman. Computing Iceberg Queries
Efficiently. In Proceedings of the 24th ACM VLDB
International Conference on Very Large Data Bases,
pages 299-310, 1998.

J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An Approximate L1-Difference Al-
gorithm for Massive Data Streams. In Proceedings of
40th FOCS Annual Symposium on Foundations of
Computer Science, pages 501-511, 1999.

M. Fischer and S. Salzberg. Finding a Majority
Among N Votes: Solution to Problem 81-5. Jour-
nal of Algorithms, 3:376-379, 1982.

P. Flajolet and G. Martin. Probabilistic Counting
Algorithms. Journal of Computer and System Sci-
ences, 31:182-209, 1985.

J. Gehrke, F. Korn, and D. Srivastava. On Com-
puting Correlated Aggregates Over Continual Data
Streams. In Proceedings of the 20th ACM SIGMOD

[25]

[32]

International Conference on Management of Data,
pages 13-24, 2001.

P. Gibbons and Y. Matias. New Sampling-Based
Summary Statistics for Improving Approximate
Query Answers. In Proceedings of the 17th ACM
SIGMOD International Conference on Management
of Data, pages 331-342, 1998.

A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries. In
Proceedings of the 27th ACM VLDB International
Conference on Very Large Data Bases, pages 79-88,
2001.

L. Golab, D. DeHaan, E. Demaine, A. Lépez-Ortiz,
and J. Munro. Identifying Frequent Items in Sliding
Windows over OnLine Packet Streams. In Proceed-
ings of the 1st ACM SIGCOMM Internet Measure-
ment Conference, pages 173-178, 2003.

L. Golab and M. Ozsu. Issues in Data Stream Man-
agement. ACM SIGMOD Record, 32(2):5-14, 2003.
M. Greenwald and S. Khanna. Space-Efficient Online
Computation of Quantile Summaries. In Proceedings
of the 19th ACM SIGMOD International Conference
on Management of Data, pages 58—66, 2001.

S. Guha, P. Indyk, M. Muthukrishnan, and
M. Strauss. Histogramming Data Streams with Fast
Per-Item Processing. In Proceedings of the 29th
ICALP International Colloquium on Automata, Lan-
guages and Programming, pages 681-692, 2002.

S. Guha, N. Koudas, and K. Shim. Data-Streams and
Histograms. In Proceedings of the 33rd ACM STOC
Symposium on the Theory of Computing, pages 471—
475, 2001.

S. Gunduz and M. Ozsu. A Web Page Predic-
tion Model Based on Click-Stream Tree Represen-
tation of User Behavior. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 535-540,
2003.

P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In Proceedings of the ACM SIG-
COMM International Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication, pages 147-160, 1999.

P. Haas, J. Naughton, S. Sehadri, and L. Stokes.
Sampling-Based Estimation of the Number of Dis-
tinct Values of an Attribute. In Proceedings of the
21st ACM VLDB International Conference on Very
Large Data Bases, pages 311-322, 1995.

C. Hoare. Algorithm 65: Find. Communications of
the ACM, 4(7):321-322, 1961.

C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dy-
namically Maintaining Frequent Items over a Data
Stream. In Proceedings of the 12th ACM CIKM In-
ternational Conference on Information and Knowl-
edge Management, pages 287-294, 2003.

R. Karp, S. Shenker, and C. Papadimitriou. A
Simple Algorithm for Finding Frequent Elements in
Streams and Bags. ACM Transactions on Database
Systems, 28(1):51-55, 2003.

P. Kirschenhofer, H. Prodinger, and C. Martinez.
Analysis of Hoare’s FIND Algorithm With Median-

[38]

[39]

[40]

[43]

[46]

[47]

Of-Three Partition. Random Structures Algorithms,
10(1-2):143-156, 1997.

X. Lin, H. Lu, J. Xu, and J. Yu. Continuously Main-
taining Quantile Summaries of the Most Recent N
Elements over a Data Stream. In Proceedings of the
20th IEEE ICDE International Conference on Data
FEngineering, pages 362-374, 2004.

G. Manku and R. Motwani. Approximate Frequency
Counts over Data Streams. In Proceedings of the
28th ACM VLDB International Conference on Very
Large Data Bases, pages 346-357, 2002.

G. Manku, S. Rajagopalan, and B. Lindsay. Ran-
dom Sampling Techniques for Space Efficient Online
Computation of Order Statistics of Large Datasets.
In Proceedings of the 18th ACM SIGMOD Interna-
tional Conference on Management of Data, pages
251-262, 1999.

Y. Matias, J. Vitter, and M. Wang. Dynamic Mainte-
nance of Wavelet-Based Histograms. In Proceedings
of the 26th ACM VLDB International Conference on
Very Large Data Bases, pages 101-110, 2000.

A. Metwally, D. Agrawal, and A. El Abbadi. Du-
plicate Detection in Click Streams. In Proceedings
of the 14th WWW International World Wide Web
Conference, pages 12-21, 2005. An extended version
appears as a University of California, Santa Barbara,
Department of Computer Sciemce, Technical Report
2004-23.

A. Metwally, D. Agrawal, and A. El Abbadi. Effi-
cient Computation of Frequent and Top-k Elements
in Data Streams. In Proceedings of the 10th ICDT
International Conference on Database Theory, pages
398-412, 2005. An extended version appears as a
University of California, Santa Barbara, Department
of Computer Sciemce, Technical Report 2005-23.

J. Misra and D. Gries. Finding Repeated Elements.
Science of Computer Programming, 2:143-152, 1982.
K. Whang, B. Vander-Zanden, and H. Taylor.
A Linear-Time Probabilistic Counting Algorithm
for Database Applications. ACM Transactions on
Database Systems, 15:208-229, 1990.

Y. Zhu and D. Shasha. StatStream: Statistical Mon-
itoring of Thousands of Data Streams in Real Time.
In Proceedings of the 28th ACM VLDB International
Conference on Very Large Data Bases, pages 358—
369, 2002.

G. Zipf. Human Behavior and The Principle of Least
Effort. Addison-Wesley, 1949.

