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Abstract

Discovering associations between elements occurring in
a stream is applicable in numerous applications, in-
cluding predictive caching and fraud detection. These
applications require a new model of association be-
tween pairs of elements in streams. We develop an
algorithm, Streaming-Rules, to report association rules
with tight guarantees on errors, using limited process-
ing per element, and minimal space. The modular de-
sign of Streaming-Rules allows for integration with cur-
rent stream management systems, since it employs exist-
ing techniques for finding frequent elements. The pre-
sentation emphasizes the applicability of the algorithm
to fraud detection in advertising networks. Such fraud
instances have not been successfully detected by current
techniques. Our experiments on synthetic data demon-
strate scalability and efficiency. On real data, potential
fraud was discovered.

1 Introduction

Recently, online monitoring of data streams has emerged
as an important data management problem. This re-
search topic has its foundations and applications in many
domains, including databases, data mining, algorithms,
networking, theory, and statistics. However, new chal-
lenges have emerged. Due to their vast sizes, some stream
types should be mined fast before being deleted forever.
In general, the alphabet is too large to keep exact in-
formation for all elements. Conventional database, and
mining techniques are deemed impractical in this setting.

In this paper, we develop the notion of association rules
in streams of elements. To the best of our knowledge,
this problem has not been addressed before. The data
model in recent dependency detection research, [8, 35, 38],
is that of the classical dependency detection mining [2,
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4], with the exception that the techniques are applied to
data streams, rather than stored data. That is, the data
model is that of a stream of customers’ transactions with a
large number of customers and a limited number of items
per transaction. A pattern is determined based on the
occurrence of its subsets within one or more transactions
of the same customer. The significance of a pattern still
follows the classical notion, which is the percentage of the
customers or transactions conforming to this pattern.

We develop a new data model in which we consider find-
ing associations between pairs of elements. The proposed
model and problem are directly applicable to a range of
applications including predictive caching; and detecting
the previously undetectable hit inflation attack [5] in ad-
vertising networks. The attack in [5], which our proposal
detects, has been an open problem since it was proposed
by Anupam et al.. We are not aware of any work that suc-
ceeded in detecting it. The Streaming-Rules algorithm is
developed to report association rules with tight guaran-
tees on errors, using minimal space, and limited process-
ing per element.

The classical transaction-based model is not applica-
ble for the aforementioned applications. In such applica-
tions, it is very difficult to know the number of customers
available in the system at any given point of time. For in-
stance, in a hierarchical network setting, like the Internet,
a Network Address Translation (NAT) box normally hides
hundreds to thousands of computers under the same IP
address, and those computers cannot be tracked individu-
ally from the outer-hierarchy. In other predictive caching
applications, the transaction concept is not applicable in
the first place, since the servers do not keep track of the
operations performed by individual customers. There-
fore, the classical notion of counting the frequency of a
pattern as the percentage of the customers’ transactions
following this pattern, is no more applicable. A new no-
tion of patterns, along with methods for their identifica-
tion in data streams, needs to be developed.

The rest of the paper is organized as follows. The re-
lated work is reviewed in Section 2, followed by the moti-
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vating applications in Section 3. In Section 4, we formal-
ize the problem of mining associations between elements
in data streams. The building blocks of our proposed
Streaming-Rules algorithm are explained in Section 5,
and the algorithm is discussed and analyzed in Section 6.
We report the results of our experimental evaluation in
Section 7, and conclude in Section 8.

2 Related Work

Our work touches on two main domains, dependency de-
tection in databases and specifically in streams.

2.1 Dependency Detection

There has been substantial work done on dependency de-
tection. The seminal work of [2] laid the foundation for
association rules. The motivating application in [2] is
finding associations between sets of items in market bas-
ket. An association rule of the form X → Y has a sup-
port of s, if s% of the transactions contain the items in
X ∪ Y , and is frequent if s > φ, where φ is a user speci-
fied threshold. The rule has a confidence of c, if c% of the
transactions that contain the items in X also contain the
items in Y , given that the item-sets X , the antecedent,
and Y , the consequent, are disjoint.

Several algorithms have been proposed to discover as-
sociation rules efficiently. he Apriori algorithm [3] makes
a pass on the database to discover frequent elements, a
second pass to discover frequent item-sets of size 2, and
so on. Those item-sets are then used to discover asso-
ciation rules using in-memory hash trees. The DIC [7]
was proposed to count item-sets of different sizes within
one pass. Since once all the subsets of an item-set were
counted to be frequent, the algorithm does not need to
wait until the end of the path to start counting its fre-
quency. Sampling was used in [36], to fit the data set un-
der consideration in main memory. In the main memory,
the sample frequent elements are discovered, along with
the negative border, which consists of the non-frequent
elements whose all subsets are frequent. Another pass is
needed on the whole data set to verify the results. In [39],
several algorithms have been proposed to discover asso-
ciation rules in one scan on the data set, using the same
negative border concept proposed by [36]. However, those
algorithms assume a vertical representation of data, i.e.,
each item has a list of the transactions containing it. In
addition, they assume that all the item-sets of size k are
known, where k ≥ 2. Unfortunately, the latter assump-
tion entails an extra scan on the data set. The algorithms
in [39] are very suitable for the cases when the number of
items is limited. The reason is that the algorithms model
item-sets as edges in a graph of frequent items, and they
look for maximal cliques that represent maximal frequent
item-sets, whose frequencies can be counted in one scan

using the vertical layout of the data. Notice that if k > 2,
item-sets are modeled as hyper-edges, and hyper-cliques
need to be found in a hyper-graph of frequent items.

Several variations of the classical association mining
have been proposed. Mining inter-transaction association
rules [37] searches for associations between item-sets that
belong to different transactions performed by the same
user in a given time span. The antecedent of a rule can be-
long to transactions that happened after the consequent.
In contrast, mining sequential patterns, [4], considers the
relative order of the transactions of one customer. In [4],
a frequent sequence is defined to consist of frequent item-
sets taking place in separate consecutive transactions of
the same user. Mining sequential patterns is widely ap-
plied in Web log Mining. The most recent works are
[13, 34], which exploit the algorithm in [19] for discover-
ing frequent item-sets in a limited number of scans on the
data set.

In between these two extremes, the notion of episodes
was introduced in [27]. The data model from which
episodes are mined is a sequence of elements, where
the inter-element causality happens within a window of
a given size. This is very close to our data model.
An episode is a partially ordered collection of elements.
Given a set of episodes, the problem is to find which of
them is frequent. The frequency of an episode is the num-
ber of windows that contain the episode. Thus, the same
episode instance can be counted several times in different
windows. The bigger the window, the more this duplicate
counting of the same episode occurs. The problem is suit-
able for applications with a limited number of elements,
and with predictable relationships among elements.

2.2 Mining in Data Streams

Recent work has applied mining techniques in streams
context. The work most related to ours is Dependency
detection [35, 38].

Clustering on streams was explored in [6, 17], and Clas-
sification in [1, 15, 18, 20, 22].

Teng et al. [35] developed methods for identifying tem-
poral patterns in data streams. The model is based on the
traditional inter-transaction association rules [37]. The
stream is divided into several disjoint sub-streams [35],
each representing the transactions of one customer. At
any time, a sliding window [11] scans disjoint sub-streams
of distinct customers. The algorithm, FTP-DS [35], needs
to scan the data only once. The support of a pattern is
the number of customers conforming to this pattern as
a ratio of the total number of customers in the window.
In this model, expired transactions are not accounted for
in the counts. Counting within a window is exact, and
the source of error is due to the delayed pattern recogni-
tion, since the frequency of a pattern is not counted until
all its subsets are found frequent. The goal is to reduce
the number of generated candidate. This exact counting



technique makes it expensive to handle long windows.
Yu et al. [38] focuses on frequent item-sets in a stream

of transactions of limited size. The stream is assumed
to be static, for the Chernoff bound to apply through
the entire stream. Devised is a probabilistic algorithm,
FDPM, which raises support by the permissible error, to
output false negative errors only. The goal is producing
less candidates to count. FDPM needs to stop at points
in the stream for freeing counters assigned to insignificant
elements. To reduce these expensive bookkeeping stops,
the algorithm sacrifices some accuracy by freeing more
counters than needed.

3 Motivating Applications

In this section, we describe our motivation behind mining
association rules in a stream of elements.

3.1 Predictive Caching

A file server can utilize associations discovered between
requests to its stored files for predictive caching. For in-
stance, if it discovered that a file A is usually requested
after a file B, then caching A after a request for B could
reduce the average latency, especially if this pairing holds
in a large percentage of file requests.

Caching can be utilized in another context that is differ-
ent from the classical file server situation. A search engine
likes to know which keywords are usually searched after
what keywords. It could be beneficial to know, for exam-
ple, that the keyword “heavy hitters” is usually searched
after the keyword “data streams”. The search engine can
reduce its response time by caching indexes, if there is a
good probability that they will be accessed.

Recent work on search engine caching has focused on
the caching architecture [32]; paging and replacement
policies [23, 24]; or incremental techniques for fetching
the results [25].

3.2 Fraud Detection

The main motivation behind this work is detecting fraud
in the setting of Internet advertising commissioners, who
represent the middle persons between Internet publishers,
and Internet advertisers. In a standard setting, an adver-
tiser provides the publishers with its advertisements, and
they agree on a commission for each customer action, e.g.,
clicking an advertisement, filling out a form, bidding on
an item, or making a purchase. The publisher, motivated
by the commission paid by the advertiser, displays ad-
vertisements, text links, or product links on its Web site.
Whenever a customer clicks a link on the publisher’s Web
page, the customer is referred to the servers of the adver-
tising commissioner, who logs the click and clicks-through
the customer to the Web site of the advertiser.

Since the publishers earn revenue on the traffic they
drive to the advertisers’ Web sites, there is an incentive
for them to falsely increase the number of clicks their sites
generate. This phenomenon is referred to as click infla-
tion [5]. The complementary problem of hit shaving has
been studied by Reiter et al. [31]. Hit shaving is another
type of fraud performed by an advertiser, who does not
pay commission on some of the traffic received from a
publisher. One of the advertising commissioner’s roles is
to detect fraud that takes place on either the publishers’
or the advertisers’ sides.

3.2.1 A Simple Inflation Attack

The advertising commissioner should be able to tell
whether the clicks generated at the publisher’s side are
authentic, or are generated by an automated script run-
ning on some machines on the publisher’s end, to claim
more traffic, and thus, more revenue. To achieve this
goal, advertising commissioners should be able to track
each click by the advertisement ID, and the customer ID.
Advertising commissioners track individual customers by
assigning distinct customer IDs in cookies set in the cus-
tomers’ Browsers. Duplicate clicks within a short period
of time, a day for example, raise suspicion on the com-
missioner’s side. In [29], we developed a solution that
effectively identifies duplicates in click streams to detect
such fraud. The results on real data collected at Com-
mission Junction, a ValueClick company, were revealing.
The experiments were run on a clicks stream that was
collected on August 30, 2004. The stream was of size
5,583,301 clicks, among which 4,093,573 clicks were dis-
tinct, and 1,489,728 were duplicates. That is, 27% of the
clicks were fraudulent, which is extremely high. Interest-
ingly, the most duplicated element occurred 10,781 times.
That is, one advertisement was clicked 10,781 times by
the same customer in one day. Even more shocking is the
fact that the fraud was practiced using a primitive attack.

3.2.2 An Undetectable Inflation Attack
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Figure 1: The Hit Inflation Attack



Anupam et al. [5] identified a more sophisticated at-
tack for conducting hit inflation fraud, which is consid-
ered extremely difficult to detect. In order to avoid clicks
with the same customer ID, the publisher can construct
its Web page to automatically click the advertisement,
whenever the page is loaded on any customer’s Browser.
This can be done by incorporating, in the publisher’s Web
page, a script that runs on the customer’s machine just
after the page loads. The whole operation can be hidden
from the customer. Hence, the advertising commissioner
will not detect this fraud using a duplicate detection tech-
nique, since all the customers’ IDs will be distinct. How-
ever, the advertising commissioner could detect this fraud
by periodically visiting the publishers’ pages and making
sure that its customer ID is not logged as a click. Other-
wise, the publisher is using the advertising commissioner’s
visit to fraudulently generate an extra click.

Now, let us consider an even harder to detect attack
scenario. The attack is depicted in Figure 1. The attack
involves a coalition of a dishonest publisher, P , with a
dishonest Web site, S. The Web site, S, could be any
Web site on the Web. This makes the attack very diffi-
cult to detect. S’s page will have a script that runs on the
customer’s machine when it loads, and automatically re-
directs the customer to P ’s Web site. This scenario can
be hidden from the customer. P will have two versions
of its Web page, a non-fraudulent page; and a fraudulent
page. The non-fraudulent page is a normal page that
displays the advertisement, and the customer is totally
free to click it or not. The fraudulent page has a script
that runs on the customer’s machine when it loads, and
automatically clicks the advertisement in a way that is
hidden from the customer. P selectively shows the fraud-
ulent or the non-fraudulent pages according to the Web
site that referred the customer to P . P can know this
information through the Referer field, that specifies the
site from which the link to P was obtained. If the site
that referred the customer to P is S, then P loads the
fraudulent page onto the customer’s Browser, the fraudu-
lent script runs on the customer’s machine, and simulates
a click on the advertisement. All this is automatic and
hidden from the customer.

This attack will silently convert every innocent visit
to S to a click on the advertisement in P ’s page. Even
worse, P can establish a coalition with several dishonest
Web sites, each of which can be in coalition with several
dishonest publishers. The attack is classified as almost
impossible to detect [5]. If the advertisement commis-
sioner visits the Web site of P , the non-fraudulent page
will be displayed, and thus P cannot be accused of being
fraudulent. Without a reason for suspecting that such
coalitions exist, the advertisement commissioner has to
inspect all the Internet sites to detect such attacks, which
is infeasible.

Although P ’s click-through-rate1 will be noticeably
high, the advertisement commissioner has no way of prov-
ing that P is fraudulent, and will have to pay P the full
commission for his inflated number of hits.

This hit inflation attack scenario was described in [5],
and to the best of our knowledge, no solution has been
proposed. In Section 3.2.3, we will propose the coalition
of the advertisement commissioners with the ISPs to de-
tect such hit inflation attacks.

3.2.3 Detecting the Undetectable Attack

An advertisement commissioner cannot know the values
in the Referer fields in the HTTP requests to the pub-
lishers’ Web sites, and thus it cannot detect such attacks.
The only entity that can detect the association between
the dishonest publisher, P , and the dishonest Web site, S,
is the Internet Service Provider (ISP), through which the
customer logs on to the Internet. The advertising com-
missioner can financially motivate the ISP to help with
detecting this fraud.

The solution for this problem requires analyzing the
stream of HTTP requests that have been made by the
customers in a specific time interval. Bearing in mind the
size and the speed of HTTP requests made to the ISP, the
problem boils down to identifying associations between
elements in a stream of HTTP requests. Since the severity
of P ’s attack is proportional to the number of HTTP
requests of P from customers visiting the dishonest Web
sites, the ISP will be interested in knowing what Web
sites usually precede a popular Web site.

4 Formalizing the Problem

In this section we formalize our assumptions, and build a
model for the aforementioned applications.

4.1 Assumptions in Modeling the Prob-
lem

We start by the assumptions made to build our model.

Assumption 1 All requests from different users are re-
ceived as a single stream.

This assumption broadens the applicability of the prob-
lem we are introducing. The session concept is not always
applicable. For instance, not all search engines keep track
of separate sessions through cookies.

In the case of ISPs, tracking the HTTP requests of a
customer violates his privacy2. Even from the technical

1The click-through-rate of a publisher is the number of customers
who click advertisements on the publisher’s Web page, as a ratio of
all the customers who visit the Web page.

218 U.S.C. § 2511(1) prohibits third parties from reading Inter-
net traffic. A provider of electronic communication service, whose



point of view, a session is usually too big to be considered
a holistic entity, since most customers log on to the ISP
through a Network Address Translation (NAT) box. NAT
boxes hide hundreds to thousands of computers under the
same IP address, and the ISP cannot track those comput-
ers individually. Even more, with the current widespread
use of wireless Internet connections, it is common that
a customer is in a location with more than one wireless
router, each with a different IP address. Two HTTP re-
quests from the same customer are routed through dif-
ferent routers, according to which signal is stronger at
the time each HTTP request is made. Those two HTTP
requests will belong to two different sessions in the ISP
logs.

In case of file servers, several machines can request files
from the same server. Correlations can hold between files,
requested by different machines, since one application can
be running in parallel on these multiple machines that
communicate through message passing.

Assumption 2 Associations between elements occur
within some span3 of elements.

For instance, a HTTP request has no effect on another
request several hours later. Associations can hold only
between elements that are temporally close to each other.
The span concept allows for interleaving requests of dif-
ferent customers; and accounts for the latency in commu-
nication between the server and the customer, as well as
on the customer’s machine.

Although, in our applications, an element in the stream
has almost no causality effect beyond the user specified
span, we accumulate the counts throughout the whole
stream, and never decrement our counters. This is differ-
ent from the sliding window model [11], where the coun-
ters are decremented as their elements expire, i.e., are no
more in the current sliding window.

For instance, in the application of hit inflation detec-
tion, the attacks are more difficult to detect if they are
waged at a slow rate, but on a longer time span. It is less
likely to detect such attacks in a sliding window model, es-
pecially if the window is of limited size, as in [35], because
once a pattern expires from the current sliding window,
it does not appear in the counts.

Assumption 3 The server will not store the entire
stream. Rather, the number of elements remembered is
a function of the span within which causality holds.

This is due to the vast size of the streams. For example,
if the associations between elements are assumed to occur

facilities are used in the transmission, is allowed by 18 U.S.C. §
2511(2)(a)(i) to intercept and utilize random monitoring only for
mechanical or service quality control checks; or by a court order, as
stated in 18 U.S.C. § 2518.

3Section 4.3 formalizes the notion of span. Informally, it is the
span within which an element has relationship with others.

within a range of 99 elements, then the current window
the server has to store is at least the most recent 100
elements, to be able to discover association. Although the
server might be physically able to store more elements,
we assume it can store only G(100) elements, where G is
linear or polynomial.

Assumption 4 Duplicates are independent.

In the application of hit inflation detection, we assume
that the dishonest site S will load the fraudulent page P
only once. Otherwise, there will be more than one hid-
den click on the advertisement from the same customer,
which can be caught using a duplicate detection tech-
nique [29]. If any duplicates occur, we assume they are
issued by different customers. For instance, if the HTTP
requests at any time are a, b, b, then the association be-
tween the sites a and b should be counted exactly once.
However, for the requests a, a, b, b, the association should
be counted exactly twice. Moreover, an element a, cannot
be associated with itself.

Assumption 5 No false negative errors are allowed.

The algorithm should output all the correct rules, but
can still output a small number of erroneous rules. Thus,
we give the benefit of doubt when counting.

4.2 Two Problem Variations

Assuming the stream elements are search keywords, if the
search engine notices that keyword y is usually requested
after keyword x, it would cache the search results for y,
when x is searched for. Thus, the server is interested
in the elements that push the rules. It is required to
discover what elements usually succeed interesting or fre-
quent elements. We call this kind of associations forward
association, since the element of interest is the cause of
the association.

Conversely, the second problem is motivated by detect-
ing the hit inflation attack [5]. If the ISP notices that page
x is usually requested before page y, it would suspect the
relationship between x and y. Thus, the server is inter-
ested in the elements that pull the rules. It is required
to discover what elements usually precede interesting or
frequent elements. We call the latter kind backward as-
sociation, since the element of interest is the result of the
association.

From the aforementioned motivating applications, we
can see that we are actually considering two variations of
associations between pairs of elements in a data stream.
Next, we formally define these problems. Most of our no-
tation is borrowed from the association mining literature
reviewed in Section 2.1.



4.3 Formal Problem Definition

Given a stream q1, q2, . . . , qI , . . . , qN of size N , we say
element qJ follows qI within a span of δ, if 0 < J − I ≤ δ.
We define the frequency of an element x as the number of
times x occurred in the stream; and we denote it F (x).
We call an element, x, frequent if its frequency, F (x),
exceeds a user specified threshold, �φN�, where 0 ≤ φ ≤
1. We define the conditional frequency of two distinct
elements, x and y, within a user specified span, δ, to be
the number of times distinct y’s follow distinct x’s within
δ; and we denote it F (x, y), since δ is always understood
from the context.

An association rule is an implication of the form x→ y,
where element x is called the antecedent, element y is
called the consequent, and x �= y.

The problem of finding forward association rules is to
find all rules that satisfy the following constraints.

1. The antecedent is a frequent element, i.e., F (x) >
�φN�, where 0 ≤ φ ≤ 1. We will call F (x) the
support of the rule.

2. The conditional frequency of the antecedent, and the
consequent, within the user specified span, δ, exceeds
a user specified threshold, �ψF (x)�, where 0 ≤ ψ ≤
1. That is, F (x, y) > �ψF (x)�.

The problem of finding backward association rules is to
find all rules that satisfy the following constraints.

1. The consequent is a frequent element, i.e., F (y) >
�φN�, where 0 ≤ φ ≤ 1. We will call F (y) the
support of the rule.

2. The conditional frequency of the antecedent, and the
consequent, within the user specified span δ, exceeds
a user specified threshold, �ψF (y)�, where 0 ≤ ψ ≤
1. That is, F (x, y) > �ψF (y)�.

In both forward and the backward cases, we call F (x, y)
the confidence of the rule. We call φ the minsup, ψ the
minconf, and δ the maxspan within which the user expects
the causality to hold.

4.4 An Illustrative Example

To illustrate the above definitions, we give an example.

Example 1 Assume we have a stream q1, . . . , q12 =
x, x, u, u, c, g, d, c, x, f, x, u. The frequencies of the ele-
ments x, u, f , denoted F (x), F (u), F (f), are 4, 3, 1, re-
spectively. The span between g and f , i.e., q6 and q10, is
4. The conditional frequency of c and d, within span 2,
F (c, d), is 1. Within span 3, F (u, g) = 1, since only one
of the two consecutive u’s can pair with g; F (c, x) = 1,
since the c at q8 can pair only with one x of q9 and q11.
For any span greater than 1 F (x, u) = 3, since there are
only 3 occurrences of u.

Assume the user queries for association rules within
δ = 3; φ = 0.2; and ψ = 0.3. The minimum frequency
requirement is �φN� = �0.2 ∗ 12� = 3. Thus, the only
frequent elements are x and u. For forward association
rules, the possible antecedents are x and u, since they
are the only frequent elements. Since ψ = 0.3, then for
rules with antecedent x, the minimum required confidence
is �ψF (x)� = �0.3 ∗ 4� = 2, and similarly, the minimum
required confidence for u is 1. Since δ = 3, then the only
forward association rules are x → u, u → c, u → g, and
u→ d.

Assuming the stream elements are files IDs, the server
would cache the file u, when x is requested. Similarly, it
would cache the files c, g and d, whenever u is requested.

For backward association rules, the only possible con-
sequents are again x and u. Since ψ = 0.3, then the
minimum required confidences for x and u are 2 and 1,
respectively. Since δ = 3, then the only backward associ-
ation rules are x→ u, and f → u.

Assuming the stream elements are IPs of Web sites, the
ISP would associate the HTTP requests of u with those
of x and f .

Notice that in the formal definition, the support of a
forward (backward) rule is the support of its antecedent
(consequent). In contrast, in the classical notion of asso-
ciation [2], the support of a rule is the number of trans-
actions containing both the antecedent and consequent.
The deviation from the classical notion is motivated by
the hit inflation attack. If there are several frequent
fraudulent publishers, and they are in coalition with sev-
eral frequent Web sites, such that every Web site auto-
matically re-directs the customer to one of the publishers
in a round robin manner, the attack is more difficult to de-
tect using the old notion, since although all the sites and
publishers are frequent, the site-publisher combinations
might be infrequent. However, requiring that F (x, y) sat-
isfies minsup enforces the classical notion of support.

Throughout the rest of the paper, we will discuss the
forward association rules, and an analogous approach can
be used for backward association rules.

5 Streaming-Rules Building
Blocks

To discover associations between pairs of elements in a
data stream, we propose the Streaming-Rules algorithm.
We start by developing the building blocks of Streaming-
Rules. We propose the Unique-Count technique, to en-
force the assumptions of Section 4.1, so that the counting
is meaningful in our applications.



5.1 The Unique-Count Technique

From Assumptions 4, and 5 of Section 4.1, we can con-
clude the following. The association relation is not as-
sumed to be reflexive, i.e., a cannot be assumed to cause
itself again. For every two elements, a and b, we cannot
count one a for more than one b. In addition, we try to
count the maximum possible associations that could have
taken place in the stream. Thus, we have to give the ben-
efit of doubt when counting, i.e., count pairs in a way that
maximizes the count for any pair, a and b. For instance,
if the user span, δ, is 3, then a stream of a, a, b, c, b would
result in counting the association between a and b ex-
actly twice. That is, the b at q3 (q5) should be associated
with the a at q1 (q2), since otherwise it yields a count of
1. Although, counting in a way that satisfies the above
assumptions seems simple, we give an example to show
otherwise.

Example 2 Assume δ = 5, we only consider the associ-
ation between a and b, and that the elements observed so
far in the stream, q1, q2, q3, are a, a, b. Upon receiving the
b at q3, it will be counted for association with the a at q1,
so that there is a better chance to count the a at q2 with
another b that may arrive afterwards. The elements that
arrived afterwards, q4, q5, q6, are c, d, a. Upon receiving
another b, the current window that the server sees is only
q2, . . . , q7, which are a, b, c, d, a, b. The server will assume
it cannot associate the b at q7 with the a at q2, since the b
at q3 should have been counted before for this specific a at
q3. Thus it associates the b at q7 with the a at q6. On the
arrival of another b, The current window that the server
sees is q3, . . . , q8, which are b, c, d, a, b, b. The server as-
sumes that the b at q7 was counted for the a at q6, which
is correct. Thus, the b at q8 is not counted for any a.
The total count of the association between a and b is 2.
However, if the b at q7 was associated with the a at q2,
the total count would have been maximized to 3.

From the above example, it is clear that viewing only
the current window might violate Assumption 5. Keeping
more recent history will not help, since the problem can
be recursive, and the server will not know which elements
were paired together except by keeping the entire history,
as illustrated in the next example.

Example 3 Assume δ = 5, we are considering the asso-
ciation between a and b, and that the stream follows the
pattern a, (a, b, c, d)Lb, where L is arbitrarily large. To
keep a correct count of the number of b’s associated with
a’s, the server has to keep the entire history. In addition,
if the stream follows the pattern

(
a, (a, b, c, d)2b

)L, and the
window is of length δ + 1 = 6, only 2

3 of the association
pairs are counted.

For this counting problem, we propose the Unique-
Count technique. To enforce Assumption 4, the way we

count should maximize the count for any pair, a and b. In
case of HTTP requests, if the stream is a, a, b, then from
Assumption 4, b should be counted exactly once for as-
sociation with a. However, should the page b be counted
with the first or the second a? Although we consider them
almost equiprobable, we will count the page b for the first
a, to maximize the number of counting pages b’s with a’s.
The intuition is that if b is requested afterwards, it can
be counted for the second a. Care should be taken, since
b should not be counted for association with any of them,
if it was already counted for a previous a page.

Every b should not be counted for more than one in-
stance of a. Then, for the last element, qI , observed in
the stream, we associate an Antecedent Set, tI , of the ele-
ments that arrived before qI , with which qI was counted
for as a consequent. When qI is observed in the stream,
the set tI should be initialized to empty. Every element
qI was counted for, should be inserted into tI , to avoid
counting qI with identical elements.

To enforce Assumption 5, the older elements are given
higher priority than the new elements when counting qI
for association. Thus, the scanning of the current window
is done in the order of arrival.

To decide which elements are still free for association
with the last observed element, i.e., they were not counted
previously with the same element, we keep track of which
elements were associated with every element in the cur-
rent window. For each element, qJ , viewed by the server,
associate a Consequent Set, sJ , of the elements that ar-
rived after qJ , and were counted for qJ as a consequent.
When qJ is observed in the stream, the set sJ should be
initialized to empty. When the element qJ expires, i.e., it
is not in the current window any more, sJ is deallocated.

The algorithm scans the current window elements in
the order of arrival, from qI−δ to qI−1. For each scanned
element qJ , the algorithm checks if qI has been inserted
into sJ , and whether qJ has been inserted into tI . If either
condition holds, the algorithm skips to qJ+1. Otherwise,
qI is inserted into sJ ; qJ is inserted into tI ; and qI is
counted for association with qJ . Upon receiving a new
element qI+1, the set tI is deallocated.

For backward association rules, the only difference is
that qJ , the antecedent, is counted for association with
qI , the consequent.

Example 4 Assume δ = 3, and that the elements
qI , qI+1, qI+2 were a, a, b. When b arrives, sI+2 and tI+2

are empty. The algorithm scans the elements in the cur-
rent window in the order of arrival. For qI , the algorithm
inserts b into its sI , and inserts a into tI+2, then b is
counted for association with a. For qI+1, since tI+2 al-
ready contains the element a, and thus does not insert b
into sI+1, and does not count b again for association with
a. Upon the arrival of a new element c at qI+3, tI+2 is
deallocated, and an empty tI+3 is allocated. Similarly, c
will be inserted into sI , and not sI+1, since a was already



inserted in tI+3. Since sI+2 does not contain c, c will
be inserted into qI+2. When another b arrives at qI+4,
the element qI expires, and sI is deallocated. The current
window is now a, b, c, b. Although in the current window,
both a and b exist, the b that just arrived will be counted
for association with a and c, since both sI+1 and sI+3

do not contain the element b. This is in contrast with
Example 2.

If sets are implemented using hash tables, Unique-
Count requires O(δ2) space. The amortized processing
cost of a new element arrival is only O(δ) operations.

Given the Unique-Count technique, we know which el-
ements should be counted together for association. How-
ever, it is not feasible to keep a counter for every pair
of elements that occurred within δ in the stream. Thus,
we need an efficient algorithm to detect frequent elements
associated with other frequent elements, i.e., nested fre-
quent elements, in a data stream.

5.2 Nesting Frequent Elements Algo-
rithms

TAntecedent Data Structure
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Figure 2: Streaming-Rules Nested Data Structure

The modular design of Streaming-Rules allows for inte-
gration with current stream management systems, since
it uses existing techniques for counting frequent elements.
The idea of nesting a frequent elements algorithm, to de-
tect association, is novel. Finding exact counts of ele-
ments in a data stream entails keeping exact information
about all the elements in the stream [9, 12]. Hence, many
approximate proposals have been made for detecting fre-
quent elements in streams [10, 12, 14, 16, 21, 26, 30].

In our case, we need to find frequent elements to find
rules satisfying minsup.

The basic premise in our development is that if we have
an algorithm that finds, in a data stream, frequent ele-
ments satisfying minsup, then we can use it to discover the

antecedents of the rules. For every antecedent, to know
the consequents, we have to find which elements occurred
after the antecedent within maxspan, which satisfy the
minconf. Even more, this has to be done at streaming
time, since we cannot afford a second look at the data.
This is exactly the original frequent elements problem in
data streams, but with a user threshold of minconf.

Formally, assume an algorithm, Λ, exists that detects,
with some accuracy, frequent elements [26] in a data
stream. Assume Λ is a counter-based technique [29], i.e.,
it keeps a data structure, Γ, of a set of counters. Each
counter monitors the frequency of an element that is ex-
pected to be important. For each element, x, in the data
structure, Γ, we build another separate data structure,
Γx. When we observe an element x in the stream, its
counter is incremented in the outer data structure, Γ, us-
ing Λ. For forward association, using Λ, we insert into
the nested data structure of x, Γx, all the elements that
were observed in the data stream after x within a span
of maxspan, δ, as specified by the user. Those are the
elements expected to be associated with x. For backward
association, we insert into Γx all the elements that were
observed in the data stream before x within a span of δ.

We call the outer data structure, Γ, the antecedent data
structure; and we call the nested data structures, Γx, ∀x,
the consequent data structures. The concept of nested
data structures is illustrated in Figure 2

Given a stream q1, q2, . . . , qI , . . . , qN , and a user speci-
fied maximum span, δ; when a new element, qI , arrives,
data structure Γ updates its counters, if necessary. For
forward association, for each element, qJ arriving after
qI , where I < J ≤ (I + δ), data structure ΓqI updates its
counters, if necessary. Alternatively, we can update the
counts in a more eager way. When a new element, qI ,
arrives, data structure Γ updates its counters. For each
element, qJ that arrived before qI , where (I−δ) ≤ J < I,
data structure ΓqJ updates its counters for the arrival of
qI . Throughout the rest of the paper, we will use the
latter scheme, i.e., the data structures are fully updated
after each element.

For backward association, when a new element, qI , ar-
rives, Γ updates its counters, if necessary. For each ele-
ment, qJ that arrived before qI , where (I − δ) ≤ J < I,
data structure ΓqI updates its counters for qJ .

When the user queries for forward association rules,
the frequent elements in the antecedent data structure,
Γ, are the antecedents of the prospective rules. For each
discovered frequent element, x, the elements in its con-
sequent data structure, Γx, satisfying minconf are the
consequents of the rules with antecedent x.

Streaming-Rules is a general framework for nesting
data structures proposed for detecting frequent elements.
We apply it to Space-Saving [30], an already existing ef-
fective technique for solving the problem of frequent ele-
ments in data streams [26], where a frequent element is
any element with frequency exceeding the user specified



Algorithm: Space-Saving(Stream-Summary(m))
begin

for each element, x, in the stream S{
If x is monitored{

let Count(ei) be the counter of x
Count(ei) ++;

}else{
//The replacement step
let em be the element with least hits, min
Replace em with x;
Assign ε(x) the value min;
Count(x)++;

}
}// end for

end;

Figure 3: The Space-Saving Algorithm

threshold, �φN�. In Section 5.3, we describe the Space-
Saving algorithm, and its error bounds.

5.3 The Space-Saving Algorithm

In this section, we briefly describe the Space-Saving algo-
rithm. The reader is referred to [30] for a full description
and analysis of the algorithm.

The underlying idea is to maintain partial information
of interest; i.e., to keep counters for m elements only.
Each counter, at any time, is assigned a specific ele-
ment to monitor. The counters are updated in a way
that accurately estimates the frequencies of the signif-
icant elements. A lightweight data structure, Stream-
Summary, is utilized, to keep the monitored elements,
e1, e2, . . . , ei, . . . , em, sorted by their estimated frequen-
cies. Therefore, if any monitored element, ei, receives a
hit, then its counter, Count(ei), will be incremented, and
the counter will be moved to its right position in the list,
in amortized constant time. Among all monitored ele-
ments, e1 is the element with the highest estimated fre-
quency, and em is the element with the lowest estimated
frequency. If an element is not monitored, its estimated
frequency is 0.

Space-Saving is straightforward. The algorithm is
sketched in Figure 3. If there is a counter, Count(ei),
assigned to the observed element, x, i.e., ei = x, then
Count(ei) is incremented. If the observed element, x, is
not monitored, i.e., no counter is assigned to it, give it the
benefit of doubt, and replace em, the element that cur-
rently has the least estimated hits, min, with x; assign
Count(x) the value min+1. For each monitored element,
ei, keep track of its maximum possible over-estimation,
ε(ei), resulting from the initialization of its counter when
inserted into the list. That is, when starting to monitor
x, set ε(x) to the counter value that was evicted. When
queried, the elements of Stream-Summary are traversed
in order of their estimated frequency, and all the elements
are output, until an element is reached that does not sat-
isfy minsup.

The basic intuition is to make use of the skewed prop-
erty of the data, since usually a minority of the elements,
the more frequent ones, gets the majority of the hits. Fre-
quent elements will reside in the counters of bigger values,
and will not be distorted by the ineffective hits of the in-
frequent elements, and thus, will never be replaced out
of the monitored counters. Meanwhile, the numerous in-
frequent elements will be striving to reside in the smaller
counters, whose values will grow slower than those of the
larger counters.

We borrow some results proved in [30]. Assuming no
specific data distribution, and regardless of the stream
permutation, to find all frequent elements with a user
permissible error rate, ε, the number of counters used is
bounded by � 1

ε �. Thus, for any element ei in Stream-
Summary, 0 ≤ ε(ei) ≤ min ≤ εN ; and F (ei) ≤
Count(ei) ≤ (F (ei)+ε(ei)) ≤ F (ei)+min ≤ F (ei)+ εN .
An element x with F (x) > min, is guaranteed to be mon-
itored.

6 Streaming-Rules and Analysis

After describing the building blocks of Streaming-Rules in
Section 5, we now present the Streaming-Rules algorithm,
and analyze its properties.

6.1 The Streaming-Rules Algorithm

Formally, given a stream q1, q2, . . . , qI , . . . , qN , assume
that the user is interested in forward association rules,
and the maxspan is δ. The algorithm maintains a Stream-
Summary data structure for m elements. For each ele-
ment, ei, of these m counters, the algorithm maintains
a consequent Stream-Summaryei data structure of n ele-
ments4. The jth element in Stream-Summaryei will be de-
noted eji , and will be monitored by counter Count(ei, ej),
whose error bound will be ε(ei, ej). Each element, qI , in
the current window has a consequent set sI . In addition,
the last observed element has an antecedent set tI .

For each element, qI , in the data stream, if there is a
counter, Count(ei), assigned to qI , i.e., ei = qI , incre-
ment Count(ei). Otherwise, replace em, the element that
currently has the least estimated hits, min, with qI ; as-
sign Count(qI) the value min+ 1; set ε(qI) to min; and
re-initialize Stream-SummaryqI .

Delete the consequent set, sI−δ−1, of the expired ele-
ment, qI−δ−1. Assign an empty consequent set sI to qI .
Delete the antecedent set tI−1, and create an empty an-
tecedent set tI for qI . Scan the current window qI−δ to
qI−1. For each scanned element qJ , the algorithm checks
if qI has been inserted into sJ , and whether qJ has been
inserted into tI . If both conditions do not hold, insert qI
into sJ ; and qJ into tI .

4The parameters m and n will be discussed in Section 6.3.3.



Algorithm: Streaming-Rules(nested Stream-Summary(m,n))
begin

for each element, qI , in the stream S{
If qI is monitored{

let Count(ei) be the counter of qI

Count(ei) ++;
}else{

//The replacement step
let em be the element with least hits, min
Replace em with qI ;
Assign ε(qI ) the value min;
Count(qI)++;
Re-initialize Stream-SummaryqI

;
}
Delete sI−δ−1 of the expired element, qI−δ−1;
Create an empty set sI for qI ;
Delete the set tI−1;
Create an empty set tI for qI ;
for each element, qJ , in the stream S, where (I − δ) ≤ J < I{

If qJ is monitored AND qI /∈ sJ AND qJ /∈ tI{
Insert qI into sJ ;
Insert qJ into tI ;
//The association counting step
let qJ be monitored at ej

If qI is monitored in Stream-Summaryej
{

let Count(ej , qI ) be the counter of qI

Count(ej , qI) ++;
}else{

//The nested replacement step
let en

j be the element with least hits, minj

Replace en
j with qI ;

Assign ε(ej , qI) the value minj ;
Count(ej , qI)++;

}
}

}// end for
}// end for

end;

Figure 4: The Streaming-Rules Algorithm

If qJ is monitored, say at ej , i.e., Stream-Summaryej

is Stream-SummaryqJ , then insert qI into Stream-
Summaryej as follows. If there is a counter, Count(ej , qI),
assigned to qI in Stream-Summaryej , increment it. If
Count(ej , qI) does not exist, let enj be the element
with currently the least estimated hits, minj in Stream-
Summaryej . Replace enj with qI ; set Count(ej, qI) to
minj + 1; and set ε(ej , qI) to minj .

If qI has been inserted into sJ , or qJ has been inserted
into tI , or qJ is not monitored in Stream-Summary, the
algorithm skips to qJ+1. Streaming-Rules is sketched in
Figure 4.

For backward association, qJ is inserted into Stream-
Summaryei in an analogous way.

6.2 The Find-Forward Algorithm

When the user queries for forward association rules, Find-
Forward scans Stream-Summary in order of estimated fre-
quencies, starting by the most frequent element, e1, until
it reaches an element that does not satisfy minsup. For
each scanned element ei, Find-Forward scans its Stream-
Summaryei , in order of estimated frequencies, starting
by the most frequent, e1j , until it reaches an element that
does not satisfy minconf, and outputs all the elements

Algorithm: Find-Forward(Stream-Summary(m, n))
begin

Integer i = 1;
while (Count(ei) > �φN� AND i ≤ m){

Integer j = 1;
while (Count+(ei, ej) > �ψ(Count(ei) − ε(ei))� AND j ≤ n){

output ei → ej ;
j++;

}// end while
i++;

}// end while
end;

Figure 5: The Find-Forward Algorithm

that satisfy minconf.
Outputting Count(x, y) as an approximation of the

number of times element y was counted for association
with element x violates Assumption 5, since we assume
we cannot under-estimate counts in order avoid false neg-
ative errors. If element x was deleted at one point of time
from Stream-Summary, then all the counts of Stream-
Summaryx were lost. When x was later re-inserted into
Stream-Summary, we know that y could never have been
counted before this re-insertion more than ε(x) times,
since any element could not be counted for association
with x more than once for each occurrence of x. There-
fore, we know the lost counts of y with x could never
exceed ε(x).

Hence, to guarantee that Find-Forward always ap-
proximates by over-estimation only, it reports the esti-
mated count of association x → y as Count(x, y) + ε(x),
and we denote it Count+(x, y). Any element y, whose
Count+(x, y) satisfies ψ(Count(ei)− ε(ei)) should be re-
ported as an association of the form x → y. As clear
from the Find-Forward sketch in Figure 5, to output
all correct rules, the minconf constraint is relaxed, since
(Count(ei) − ε(ei)) ≤ F (ei).

6.3 Properties and Error Bounds

In this section, we will discuss the properties and error
bounds of the proposed solution.

6.3.1 Limited Processing Per Element

From algorithm Streaming-Rules, we know that the pro-
cessing per element received involves mainly incrementing
its counter in the antecedent Stream-Summary, and incre-
menting multiple counters for associating it with elements
in the current window.

Notice that incrementing a counter in Stream-Summary
takes O(1) amortized cost if the Stream-Summary is
stored in a hash table, and O(1) worst case cost if it
is stored in associative memory [30].

Incorporating an element for association with the ele-
ments in the current window involves membership check-



ing in 2 ∗ δ sets, and incrementing a counter in δ conse-
quent Stream-Summary structures.

Theorem 1 The Streaming-Rules algorithm has a con-
stant processing time of O(δ) per element in the stream.
This is amortized complexity if the data structure is stored
in hash tables, and is worst case complexity if it was stored
in associative memory.

6.3.2 Guaranteed Output

An element, x, whose guaranteed hits [30], i.e.,
Count(x) − ε(x), exceed minsup is guaranteed to be fre-
quent. Similarly, a forward (backward) association rule,
x → y, is guaranteed5 to hold if x (y) is frequent, and
the guaranteed count of y with x satisfies minconf, i.e.,
Count(x, y) − ε(x, y) > �ψCount(ei)�.

6.3.3 Error Bounds

For finding frequent elements, Streaming-Rules inherits
from Space-Saving the fact that the number of counters
to guarantee an error rate of ε is bounded by � 1

ε �. Thus,
in estimating the frequency of the rule antecedents, the
error rate will be less than 1

m , where m is the number of
elements in Stream-Summary.

As discussed in Section 6.2, the uncertainty when
counting forward associations for the rule x → y arises
from two sources. The first source is the limited number
of counters in Stream-Summary. Since x could be deleted
at any time if has the minimum estimated frequency, we
loose all information stored in Stream-Summaryx, since
it gets deallocated. The second source of uncertainty is
the limited number of counters in Stream-Summaryx. An
element y can be replaced out of Stream-Summaryx if
Count(x, y) has the minimum value, minx. When y is
re-inserted into Stream-Summaryx, it will be given the
benefit of doubt, and thus the new value of Count(x, y)
could be an over-estimation. Hence, we can prove the
error bounds.

Theorem 2 Using m∗n counters, Streaming-Rules out-
puts association rules with an over-estimation rate in sup-
port of no more than 1

m . The over-estimation rate in con-
fidence is no more than 1

m + 1
n . This is true regardless of

stream distribution or permutation.

Proof. Streaming-Rules uses a Stream-Summary of size
m, and nests with every element, ei, a Stream-Summaryei

of size n. Then, the number of counters used is m ∗ n.
Since m,n > δ, then the O(δ2) space used by the sI and
tI sets is already included in the O(m ∗ n) space of the
counters.

From [30], the error in estimating frequencies is at most
N
m , where N is the stream size. For a forward association

5Find-Forward can easily adapt to applications that permit only
false negative errors, by outputting guaranteed rules only.

rule, x → y, F (x, y) + ε(x, y) + ε(x) ≥ Count+(x, y) ≥
F (x, y). Then, the maximum possible overestimation in
Count+(x, y) over F (x, y) is ε(x, y) + ε(x). The value of
ε(x, y) is a function of the number of elements inserted
into the consequent Stream-Summary of x, which is at
most δ ∗F (x). The value δ ∗F (x) is no more than N δ

δ+1 .
Thus, ε(x, y) < N

n . Since that ε(x) < N
m , the maximum

possible overestimation in Count+(x, y) is
(
N
m + N

n

)
. The

same analysis holds for backward association. �

From Theorem 2, the user can specify two error pa-
rameters, ε and η, which are the maximum permissi-
ble over-estimation error rates for support and confi-
dence, respectively, such that ε < η. To guarantee the
error bounds, Streaming-Rules can allocate m counters
in Stream-Summary, and n counters in each consequent
Stream-Summary, where m = � 1

ε � and n = � 1
η−ε�. Thus,

Streaming-Rules can guarantee the error bounds using
O( 1

ε∗(η−ε) ) space. Interestingly, the maximum space us-
age is not affected by the maxspan, δ.

In addition to accurately estimating the support and
the confidence using limited space, Streaming-Rules can
guarantee that any association rule whose support ex-
ceeds the user permissible error, εN , and whose confi-
dence exceeds the user permissible error, ηN , will be mon-
itored in the consequent structures.

Theorem 3 An association rule x → y, is guaranteed
to be monitored in the consequent Stream-Summaryx if
F (x) > εN , and F (x, y) > ηN , where ε and η, are the
maximum permissible over-estimation error rate for sup-
port and confidence, respectively. This is true regardless
of stream distribution or permutation.

Proof. An element x whose F (x) > εN ≥ min is
guaranteed be monitored [30]. For forward association,
if the antecedent of x → y has F (x) > εN , a consequent
Stream-Summary is allocated for x.

Assume that F (x, y) > ηN times, then F (x, y) > ( 1
n +

ε)N . Since εx < εN then F (x, y) > N
n + εx. Thus, the

number of times y occurs within δ of x, since the last
time x was inserted into Stream-Summary, is more than
N
n , which exceeds minx. Again from [30], y is guaranteed
to be in Stream-Summaryx. The same analysis holds for
backward association. �

7 Experimental Results

We conducted a comprehensive set of experiments to
evaluate the efficiency and scalability of the proposed
Streaming-Rules algorithm. To show the strengths of
Streaming-Rules, we implemented Omni-Data, which uses
the same lightweight data structure, but keeps counts and
nested structures for every element in the data stream.
Although Omni-Data is not practical to implement for
large data sets, it provides all the association rules that



can be detected within a user specified δ, when used for
smaller data sets. Both algorithms were implemented in
C++, and were executed, on a Pentium IV 2.66 GHz,
with 1.0 GB RAM, against synthetic data for forward as-
sociation, and real data for backward association. For
both algorithms, we measured the run time, and space
usage. For Streaming-Rules, we measured the recall, the
number of correct elements found as a percentage of the
number of actual correct elements; precision, the number
of correct elements found as a percentage of the entire out-
put [10]; and guarantee, the number of guaranteed correct
elements as a percentage of the entire output [30].

7.1 Synthetic Data

For synthetic data experiments, we generated several Zip-
fian [40] data sets. We chose the Zipfian distribution since
it models the nature of many data flows on the Internet
[28, 30, 33]. The zipf parameter, α, was varied from 1,
which is moderately skewed, to 3, which is highly skewed,
on a fixed interval of 1

2 . This set of experiments measure
how Streaming-Rules adapts to, and makes use of data
skew. The streams were processed by both Streaming-
Rules, and Omni-Data for different δ’s. A query was
then issued, asking for forward associations with φ = 0.1,
and ψ = 0.1, and we recorded the run time and space
used by each algorithm, to estimate the gains achieved
by Streaming-Rules. Throughout the synthetic data ex-
periments, Streaming-Rules used a data structure with
m = n = 500, which yields ε = 1

500 , and η = 1
250 .

Interestingly enough, for all the synthetic data exper-
iments, Streaming-Rules achieved a recall, a precision,
and a guarantee of 1. That is, it guaranteed that it
output all the correct rules, and nothing but the correct
rules.

7.1.1 Streaming-Rules Efficiency
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Figure 6: Streaming-Rules Efficiency

To evaluate the efficiency of Streaming-Rules, we com-
pare the space usage, Figure 6(a), and the run time, Fig-
ure 6(b), of Streaming-Rules, and Omni-Data, using δ’s
of 10 and 20. In this set of experiments, the size of each
data set, N , is 3∗106. We did not experiment with larger

sets and did not increase δ beyond 20, since on the more
realistic data sets with Zipf α of 1 and 1.5, Omni-Data
executes excessively slow, due to thrashing.

As is clear from Figure 6(a), Streaming-Rules consumed
space that is 35 times smaller, for δ = 10; and 47 times
smaller, for δ = 20, when the Zipf α was 1. We expect
the performance gap to increase as δ increases, though
we were not able to run Omni-Data on bigger δ’s, due to
thrashing. When the data is moderately skewed, which is
the realistic case [30, 33], there is a higher probability that
more combinations of elements will occur in the windows,
and Omni-Data kept complete information about all the
pairs that occurred. Since not all such pairs are signifi-
cant, with much less space, Streaming-Rules reported all
correct rules. For α > 1, the performance gap decreased,
since smaller numbers of unique elements occurred in the
windows, and Omni-Data did not suffer any more from
keeping too many counters, unnecessarily.

As shown in Figure 6(b), the running time of
Streaming-Rules is much better than Omni-Data, espe-
cially for moderately skewed data, and bigger δ’s. The
performance gap decreased with higher skew.

From this set of experiments, we conclude that in ad-
dition to handling highly skewed data, Streaming-Rules
can handle weakly skewed data, which is the more realis-
tic case. Moreover, it uses very limited space with no loss
in accuracy.

7.1.2 Streaming-Rules Scalability

(a) The Space Scalability of Streaming-
Rules  Using Synthetic Data
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(b) The Time Scalability of Streaming-
Rules Using Synthetic Data
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Figure 7: Streaming-Rules Scalability

To demonstrate the scalability of Streaming-Rules, we
used data sets of size 107 for this set of experiments.
Thus, we did not compare with Omni-Data, because of
the thrashing problem. We were interested in the time
and space requirements of Streaming-Rules under differ-
ent α’s and δ’s. The maxspan, δ, was varied from 10 to
50, and the results are sketched in Figure 7.

From Figure 7(a), it is clear that the space requirements
of Streaming-Rules is not affected by δ, as pointed out in
Section 6.3.3, since all the curves are bundled together.
Still, the effect of α on the space usage is interesting. The
behavior when α ≥ 1.5 is predictable. Since as the skew
increases, less unique elements are expected to exist in the



windows, and thus less demand exists on antecedent and
consequent counters. The behavior when 1 ≤ α ≤ 1.5 is
due to the weak data skew. Owing to the high variability
of elements in windows, there is high contention on the
antecedent counters. Hence, when an element is assigned
a counter in the antecedent Stream-Summary, it gets re-
placed so quickly, before its consequent Stream-Summary
is highly populated. Thus, the space is not always fully
utilized, as shown in Figure 7(a). The space utilization
increases with the skew, until the demand on the counters
falls after α > 1.5.

Given the same number of counters, this trend is not
manifested in Figure 6(a), due to the smaller data size,
and thus, the fewer combinations between elements.

In Figure 7(b) the equal distances between the curves
is because the time complexity of Streaming-Rules is lin-
ear with δ, according to Theorem 1. All the run time
curves are inversely proportional to α, since as the skew
increases, more duplicate elements exist in the windows,
and thus less counting is needed.

From Figure 7, we can see that Streaming-Rules can
handle queries with large δ’s on long streams of moder-
ately skewed data, with a very limited space needs.

7.2 Real ISP Data
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Figure 8: Streaming-Rules on Real Data

We were able to get some ISP logs from an anony-
mous ISP. We were provided with a stream of the encoded
HTTP requests to html files, due to the privacy policy of
the ISP. The data size was 678, 191 requests.

We were interested in backward association to detect
potential hit inflation attacks. We carried out a set of
queries on the ISP data using Streaming-Rules and Omni-
Data, with a low φ of 0.002, a high ψ of 0.5. The
φ, and the ψ values are typical for detecting such at-
tacks, since we are interested in consequents, publishers,
which might not be frequent. Yet, we are searching for
very strong correlations. Throughout the ISP data ex-
periments, Streaming-Rules used a data structure with
m = 1000 amd n = 500, which yields ε = 1

1000 , and
η = 3

1000 .
The δ was varied between 10 and 100. The different

values of δ are suitable for different loads. The higher the

load on the ISP servers, the more interleaved the requests
of different customers are. To adapt for this situation, δ
should increase, to be able to detect the causality rela-
tions.

The performance of both algorithms is sketched in Fig-
ure 8. From Figure 8(a), it is clear that the space usage
of Streaming-Rules is consistently 2.5 to 2.8 times smaller
than that of Omni-Data, which is a great advantage. The
run times of both algorithms were very similar, since both
utilize the same data structure, the same Unique-Count
technique, and the data set was relatively small. The re-
call of Streaming-Rules was constant at 1, since its errors
are false positives only. The precision and guarantee both
varied between 0.974 and 0.989. Thus there was almost
no loss of accuracy.

The results are interesting. There was a set of sus-
picious sites A that are always being requested before
another set of sites B with confidence at least 0.5. This
held even when δ = 10, which is a very small value for
δ. Hence, we can guess that there is a direct relationship
between these two sets. Even more interesting is the fact
that the A sites did not have high frequency, as estimated
by the antecedent Stream-Summary.

It is not possible to check out the results, even if we
know the URLs. Internet Browsers record the referring
site, and not the referred to site, in the history. For in-
stance, if page a.com has an invisible frame of height 0,
where another page b.net gets loaded when a loads, the
Browser records only a.com in the history. Thus, visiting
a.com, and then looking for b.net in the history is not ef-
fective. Only an entity that monitors the HTTP requests
made, like ISPs, can test a relationship that Streaming-
Rules reported for being fraudulent.

8 Discussion

In this paper, the applications of predictive caching, and
detecting a difficult-to-detect hit inflation attack [5] were
described. The underlying applications entailed develop-
ing a new notion for association rules between pairs of
elements in a data stream. To the best of our knowl-
edge, this problem has not been addressed before. For-
ward and backward association rules were defined, and
the Streaming-Rules algorithm was devised. Streaming-
Rules reports association rules with tight guarantees on
errors, using minimal space, and it can handle very fast
streams, since limited processing is done per element. Our
experimental results on synthetic data demonstrate great
performance gains, and our runs on real ISP data discov-
ered suspicious relationships.
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Identifying Frequent Items in Sliding Windows over OnLine Packet
Streams. In Proceedings of the 1st ACM SIGCOMM Internet
Measurement Conference, pages 173–178, 2003.

[17] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering Data Streams: Theory and Prac-
tice. IEEE Transactions on Knowledge and Data Engineering,
15(3):515–528, 2003.

[18] P. Gupta and N. McKeown. Packet Classification on Multiple
Fields. In Proceedings of the ACM SIGCOMM International
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 147–160, 1999.

[19] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation. In Proceedings of the 19th ACM SIG-
MOD international conference on Management of data, pages
1–12, 2000.

[20] G. Hulten, L. Spencer, and P. Domingos. Mining Time-Changing
Data Streams. In Proceedings of the 7th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pages 97–106, 2001.

[21] R. Karp, S. Shenker, and C. Papadimitriou. A Simple Algorithm
for Finding Frequent Elements in Streams and Bags. ACM Trans-
actions on Database Systems, 28(1):51–55, 2003.

[22] D. Kifer, S. Ben-David, and J.Gehrke. Detecting Change in Data
Streams. In Proceedings of the 30th ACM VLDB International
Conference on Very Large Data Bases, pages 180–191, 2004.

[23] R. Lempel and S. Moran. Predictive Caching and Prefetching
of Query Results in Search Engines. In Proceedings of the 12th
WWW International World Wide Web Conference, pages 19–28,
2003.

[24] R. Lempel and S. Moran. Competitive caching of query results in
search engines. Theoretical Computer Science, 324(2-3):253–271,
2004.

[25] R. Lempel and S. Moran. Optimizing Result Prefetching in Web
Search Engines with Segmented Indices. ACM Transactions on
Internet Technology, 4(1):31–59, 2004.

[26] G. Manku and R. Motwani. Approximate Frequency Counts over
Data Streams. In Proceedings of the 28th ACM VLDB Inter-
national Conference on Very Large Data Bases, pages 346–357,
2002.

[27] H. Mannila, H. Toivonen, and A. Verkamo. Discovery of Frequent
Episodes in Event Sequences. Data Mining and Knowledge Dis-
covery, 1(3):259–289, 1997.

[28] M. Meiss, F. Menczer, and A. Vespignani. On the Lack of Typical
Behavior in the Global Web Traffic Network. In Proceedings of the
14th WWW International World Wide Web Conference, pages
510–518, 2005.

[29] A. Metwally, D. Agrawal, and A. El Abbadi. Duplicate Detection
in Click Streams. In Proceedings of the 14th WWW International
World Wide Web Conference, pages 12–21, 2005.

[30] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation
of Frequent and Top-k Elements in Data Streams. In Proceedings
of the 10th ICDT International Conference on Database Theory,
pages 398–412, 2005. An extended version appeared as a University
of California, Santa Barbara, Department of Computer Sciemce,
technical report 2005-23.

[31] M. Reiter, V. Anupam, and A. Mayer. Detecting Hit-Shaving
in Click-Through Payment Schemes. In Proceedings of the 3rd
USENIX Workshop on Electronic Commerce, pages 155–166,
1998.

[32] P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonseca, and
B. Riberio-Neto. Rank-Preserving Two-Level Caching for Scalable
Search Engines. In Proceedings of the 24th ACM SIGIR Interna-
tional Conference on Research and Development in Information
Retrieval, pages 51–58, 2001.

[33] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis
of a Very Large Web Search Engine Query Log. SIGIR Forum,
33(1):6–12, 1999.

[34] L. Sun and X. Zhang. Efficient Frequent Pattern Mining on Web
Logs. In Advanced Web Technologies and Applications, 6th AP-
Web Asia-Pacific Web Conference, pages 533–542, 2004.

[35] W. Teng, M. Chen, and P. Yu. A Regression-Based Temporal
Pattern Mining Scheme for Data Streams. In Proceedings of the
29th ACM VLDB International Conference on Very Large Data
Bases, pages 93–104, 2003.

[36] H. Toivonen. Sampling Large Databases for Association Rules. In
Proceedings of the 22nd ACM VLDB International Conference
on Very Large Data Bases, pages 134–145, 1996.

[37] A. Tung, H. Lu, J. Han, and L. Feng. Breaking the Barrier of
Transactions: Mining Inter-Transaction Association Rules. In Pro-
ceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 297–301, 1999.

[38] J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Neg-
ative: Mining Frequent Itemsets from High Speed Transactional
Data Streams. In Proceedings of the 30th ACM VLDB Inter-
national Conference on Very Large Data Bases, pages 204–215,
2004.

[39] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algo-
rithms for Fast Discovery of Association Rules. In Proceedings of
the 3rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 283–286, 1997.

[40] G. Zipf. Human Behavior and The Principle of Least Effort.
Addison-Wesley, 1949.


