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Abstract

With rapidly advancing graphics hardware available,

real-time graphics techniques have become significantly

more capable of handling photorealistic effects. The ap-

plication of these techniques to augmented reality is cre-

ating new possibilities for the seamless integration of vir-

tual and physical objects. We demonstrate two methods

for simulating light transport. The first renders virtual

objects of arbitrary Phong material with light from the

physical environment. The second adds virtual light onto

real-time camera imagery of the physical world. Both

techniques yield fully dynamic results at interactive fram-

erates with a minimum of offline preparation.
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1 Introduction

One of the goals of augmented reality research is to pro-

vide a user experience in which virtual objects are per-

ceived as coexisting with the physical world. A hard

problem to address towards this goal is maintaining con-

sistent geometric registration between the virtual and

physical geometry - in order to look real, a virtual object

must stay aligned with the physical geometry, unless the

user is specifically manipulating it. Now that the field is a

bit more developed and research into geometric registra-

tion is well underway, the second hard problem of seam-

lessly integrating virtual and physical worlds is real-time

photorealistic rendering.

The majority of today’s augmented reality applica-

tions are wrought with wireframe geometry and Gouraud

shaded polygons. Lighting is handled completely by ba-

sic models in standard 3D graphics APIs. The differences

between virtual and physical objects are very pronounced

because the illumination, materials, and visual quality are

radically different.

In recent years, research has begun to address this

problem. For static environments, with considerable

amounts of preparation using both human time and com-

pute cycles, photorealistic results are achievable at low

framerates [10, 13]. Precapturing of the lighting environ-

Figure 1: A virtual teapot and spotlight. The teapot has a

gold metal material and is lit by both the environment and

a blue spotlight overhead. The spotlight also illuminates

the physical table below.

ment can yield realistically illuminated virtual geometry

[1], and extensive knowledge of environment geometry

can even produce virtual shadowing of physical objects

[10].

Two major problems remain unaddressed however.

One is the dynamic capture of illumination data for real-

time rendering in a dynamic lighting environment. Most

current techniques require that lighting data is acquired

beforehand, so rendering is tied to a static set of lights

[10, 1]. If the actual environment illumination changes

during rendering, the virtual objects will no longer appear

to be illuminated by the physical world. To address this

problem, we dynamically capture an environment map

from a small silvered sphere placed in the scene, and

use this dynamic data for rendering in real-time. The

acquired environment map can be used as is for mirror

reflections, or it can be filtered to provide diffuse and

glossy reflections. The result is virtual geometry that will

respond appropriately in real-time to changes in the phys-

ical lighting.



The second open issue is dynamic virtual lighting of

the physical environment. Current state of the art uses

detailed knowledge of the environment geometry to cast

shadows from virtual occluders onto the physical envi-

ronment in real-time [10], or, with a significantly lower

framerate, a complete global illumination solution can

account for all virtual and physical light transfer [13].

Our architecture takes very limited scene geometry in-

formation and casts direct lighting from virtual objects,

to provide a reasonable approximation of interaction of

the virtual light with the surrounding physical scene. A

programmable fragment shader enables the real-time cal-

culation of of this lighting information. These simplifi-

cations allow us to achieve thirty frames per second on

commodity graphics hardware. To create the effect addi-

tional lighting would have on the brightness of the cam-

era’s image, we post-process the video frame to simulate

a shorter exposure, darkening the scene.

The contribution of this paper is a single system that

achieves the effects of consistent illumination in real-

time, with the flexibility to respond to dynamic changes

in the physical environment. We implemented this sys-

tem as an extension to ARWin [7], an augmented real-

ity research architecture which allows for quick proto-

typing and testing of new concepts in applications, in-

terfaces and rendering techniques. ARWin uses the AR-

ToolKit [16] for registration and marker-based interac-

tion, to manage the manipulation and display of generic

3D applications in the volume over an office desk.

2 Related Work

While there is not a clear-cut answer to the issue of how

to make a virtual object appear to have greater presence

in the physical world, a number of studies have been con-

ducted to address this very question. The general con-

sensus is that while visual realism may not be related to

productivity in virtual environments, it does increase the

virtual world’s sense of presence [23, 25]. Certain real-

istic rendering effects such as shadows have been stud-

ied in particular, to show their importance in determin-

ing the presence of virtual objects [19, 21]. However, re-

search into perceptually based rendering has shown that

there are certain visual effects that humans are insensi-

tive to [8]. Clearly, there is still a need for further study

of the effects of realism on user’s perception of virtual

and augmented reality, but there is a significant amount

of evidence suggesting enhanced realism gives the user

a greater sense of presence of virtual objects in the real

world.

In the past few years, there has been a significant

amount of research into advanced lighting and rendering

techniques which are applicable to augmented reality. In

1998, Debevec raised interest in the concept of image-

based lighting [6], using an image of a light probe to cap-

ture environment illumination and then calculate shad-

ing based on this data in offline renderers. This concept

adapted the much older technique of sphere-mapping,

originally introduced in 1976 [4]. Since then, the tech-

nique has been adapted to include filtering – integrating

the incident light with BRDF material properties to pro-

duce environment maps for arbitrary material reflectances

[5, 12].

Environment maps have been directly applied in a

handful of augmented reality systems. At SIGGRAPH

’96, State et al [20] demonstrated a video of a silvered

sphere morphing into a teapot, environment mapped by

the captured video of the sphere. In more recent work,

Agusanto et al [1] acquire detailed high dynamic range

environment maps and filter them offline. The filtered

maps are blended together at run time to produce various

material properties. Kanbara and Yokoya [11] take a dif-

ferent approach, dynamically acquiring environment map

data to control a distribution of point lights around the vir-

tual geometry for diffuse lighting. Both groups produce

shaded virtual objects in real-time, but are limited either

by inability to respond to dynamic changes in lighting, or

inability to simulate many different material types.

Global illumination techniques have also been ap-

plied to photorealistic rendering of virtual objects in real

scenes. Fournier et al proposed an early system in 1993

[9], which would create a detailed scene model and use

a global illumination algorithm to add virtual objects and

lights. Because of the complex lighting calculations, each

frame took minutes to render. The technique was im-

proved by Loscos et al in 2000 [13] with the addition of

an incremental radiosity algorithm that sped up rendering

times to seconds per frame. Gibson and Murta [10] kept

real-time rendering a high priority and replaced a global

illumination solution with a number of fast approxima-

tions for simulating lighting and shadows. The shift away

from an accurate rendering solution limits their system to

a subset of actual light transport calculations - specifi-

cally, the paper does not address light transport from vir-

tual objects to the surrounding physical environment.

Finally, a different approach to the problem of illumi-

nating the physical world has been proposed by Raskar

et al [18] and Bimber et al [3]. Both groups use multi-

ple projectors and careful calibration to project real light

onto a real scene, to directly create virtual illumination ef-

fects on the physical geometry. The technique can create

convincing lighting and shadows based on the presence

of virtual objects and light sources. The work presented

by these projects is most applicable to hybrid projector-

based and optical see-through augmented reality systems.



Figure 2: An ARToolKit marker with our light probe at-

tached. The bullseye shows the marker has been recog-

nized.

3 Physical Illumination

Physical illumination of virtual objects is achieved using

image based lighting techniques pioneered by Debevec

[6]. The general technique is to acquire an image of a

light probe of the scene, and then process this light probe

and apply it as a texture map to geometry to create various

material responses.

3.1 Light Probe

Our light probe consists of a small (two and three quar-

ter inch diameter) silver sphere (a christmas ornament)

mounted on a marker (see Figure 2). For a desktop setup,

this could be a small paperweight or decoration. Calibra-

tion of the light probe consists of measuring the sphere’s

position with respect to the marker’s center. The screen

position of the sphere can be determined from the trans-

formation matrix for the marker as reported by the AR-

ToolKit [16], and these pixels can be copied from the

video stream into a texture.

The texture then contains a typical environment map,

which can be applied using regular OpenGL sphere map-

ping for mirror reflections of the environment. For more

general rendering of different materials, the environment

map texture must be filtered.

3.2 Filtering

Techniques have already been established to process en-

vironment maps to produce different material properties.

One possibility is to integrate the map with an arbitrary

BRDF to produce a map for an arbitrary shaded material

[12]. This technique increases in computation time with

the number of different materials. A less complex option

is to integrate the map with a standard Phong illumina-

tion model BRDF to create a set of varying glossy maps,

which can be blended at runtime [10]. However, this still

requires a significant amount of preprocessing.

In order to be able to dynamically update the fil-

tered environment maps, we adopted a technique from

Ashikhmin and Ghosh [2] that creates a rough estimate of

Phong integrated environment maps by using OpenGL’s

built-in mipmap generation capabilities. Before the envi-

ronment map texture is created, automatic mipmap gener-

ation is enabled to quickly create smaller, box filtered ver-

sions of the environment map. We can then select which

level to render with by specifying the minimum mipmap

level. This creates a rough approximation of a glossy ma-

terial (see Figure 3).

With a set of filtered environment maps, ranging from

specular to diffuse, we can simulate arbitrary material

properties by selecting the appropriate maps and blend-

ing them together. The material’s shininess factor deter-

mines which level of glossy specular map is blended with

the diffuse map. Samples from these textures modulated

by the material’s diffuse and specular responses represent

the material’s physical reflectance, which is then added

to any virtual lighting calculations and material texture

maps for the final reflectance value.

3.3 Discussion of Physical Illumination

While this technique is not physically accurate, it does

produce convincing results (see Figure 4). Artifacts arise

from inaccuracies in the sphere tracking, which result in

some jitter in the acquired environment map. Registra-

tion could be improved many ways - better calibration,

edge finding for image-space extraction, or even combin-

ing maps over a number of frames - to reduce this effect.

The technique used for simulating more diffuse mate-

rial properties causes an unusual effect around the edges

of the environment map - the background pixels are

blended in, subtly changing the color at silhouette edges.

This effect could be removed by masking out the non-

Figure 3: Left: The acquired specular environment map.

Right: The filtered environment map for diffuse lighting.



Figure 4: A virtual torus with an unpolished gold mate-

rial, illuminated by the physical environment.

sphere pixels from the map, but then the black values

would be filtered in, darkening the environment map.

The best solution would be to use a more accurate fil-

tering technique, such as suggested by Ramamoorthi and

Hanrahan [17] for converting the environment map into

spherical harmonics and performing the filtering quickly

in frequency space. This would also produce more accu-

rate diffuse reflections.

We are also limited by the fundamental assumptions

of environment mapping. For example, there is no self-

reflection. Environment maps also assume the environ-

ment is in the distance, but for our setup generally on

or near a desk, objects in the environment map are rel-

atively nearby. This means inaccuracies in reflections

become apparent for relatively small virtual object mo-

tion. This issue could be addressed by sweeping the sil-

ver sphere through the environment or by using multiple

silver spheres. Multiple light probe images could then be

combined using a combination of warping and blending

as in [5].

4 Virtual Illumination

While a conventional AR application does not in general

produce light to illuminate the surroundings, it is easy

to imagine applications were such a visual would be ap-

propriate. Household objects that produce light include

devices with backlights, such as calculators or watches -

a virtual digital watch could be made to become bright

and produce light when in active mode. A virtual lamp

object could be used to provide extra lighting in areas

where environment lighting is low, given a common il-

lumination model. However, creating a brighter area for

virtual objects without also illuminating the nearby phys-

ical environment creates a serious gap in the perception of

integrated virtual and physical objects. In order to create

a convincing illusion of reality for the virtual objects, it

is desirable that the virtual light emitted also illuminates

the physical objects nearby.

The added virtual light should also affect the expo-

sure of the camera image. Simple brightness adjustment

does not account for saturated regions that appear in low-

dynamic range images. Instead, we modify the brightness

adjustment based on the saturation of a region, so over-

exposed regions darken gradually rather than uniformly.

4.1 Assumptions

The obvious way to add lighting to physical geometry

is to create a replica of the physical objects in the vir-

tual world, calculate the lighting for this proxy, and then

add the difference into the image of the environment. An

exact solution requires a detailed scene geometry model

that takes a large amount of time and effort to acquire,

plus a complex global illumination renderer to properly

simulate light transfer to this geometry. However, the

priorities for our system are as little setup as possible

and a fully dynamic and real-time user experience, which

makes an exact solution prohibitive. Instead, we choose

to approximate the ideal result by reducing the scope of

the problem in two ways.

First, rather than calculate a full global illumina-

tion model of the light transfer, we rely on the regular

OpenGL Phong lighting model, simulating only the di-

rect illumination of nearby geometry. With proper use of

attenuation and color attributes, a reasonable approxima-

tion of a physical omnidirectional or directed point light

source can be created. Current graphics hardware can al-

ready handle many light sources of this type in real-time

with little effort, and avoiding a costly global illumination

solution ensures an interactive user experience. Shadows

are generated using a basic shadow map [24] algorithm,

which is also suitable for real-time rendering.

Second, acquiring detailed scene geometry can be a

lengthy and difficult process, and it must be repeated

whenever the environment changes. To address this is-

sue, our proposed technique approximates lighting of the

environment using a significantly simplified model of the

physical objects present. For example, the surface of a

desk is modelled as a flat plane, and low-profile objects

on the desk such as a mouse or keyboard do not need ad-

ditional modelling. A monitor can be approximated with

a single scaled cube. In fact, for most large objects, a

simple scaled box is sufficient – small objects generally

do not need modelling. Given the low complexity of this

sort of rough scene geometry, it is a much simpler task to

create a proxy of the physical environment in short order.



Figure 5: Example physical scene containing a table,

modeled by a ground plane. The wire sitting on the ta-

ble is a complex object that is not included in the model.

4.2 Technique

Simulation of virtual illumination must calculate the con-

tribution from a virtual light source to the reflectance of

a bumpy physical surface. Flat polygons are used to ap-

proximate rough geometry, so we would like the virtual

illumination to properly account for the small fluctuations

in height. Simple OpenGL blending creates the appear-

ance of illumination of a flat surface, and so is not suffi-

cient for our purposes. However, the image of the scene

captured from the camera provides useful information

when projected on top of the simple scene model. Each

polygon in the model has a physically lit texture associ-

ated with it. If the physical illumination is known then

the pattern of highlights and shadows on the texture can

be associated with the direction of brightest light. This

information represents the bumps along that particular di-

rection. If the scene is ambiently lit, no bump information

can be extracted.

Given knowledge of bumps along one direction, we

can modify the virtual illumination to take them into ac-

count. If the virtual light is placed near the area of bright-

est physical illumination, then we know that the virtual

light will have the same highlights and shadows as are

present in the projected video texture. Conversely, if the

virtual light placed opposite the brightest physical illu-

mination, the highlights and shadows will be opposite.

Since we only know the physical bump data along one

axis (the direction of brightest illumination), if the virtual

light is placed orthogonal to this axis, we have no extra

bump information.

Therefore, we can calculate a more accurate bump-

mapped virtual illumination using the projected video

Figure 6: For a given environmental light direction, the

intensity profile includes shadows and highlights around

bumps. A coincident virtual light source should have the

same shadows and highlights, while an opposing virtual

light should have the inverse.

texture. We call the flat polygon shaded value the ”ad-

ditive factor”, and the intensity of the projected video

texture the ”multiplicative factor”. We then use the dot

product of the virtual light vector and the brightest phys-

ical lighting vector to determine the contribution of each

of these factors. When the dot product is close to one,

most of the contribution is from the multiplicative factor,

when it is close to zero, the contribution is from the addi-

tive factor, and when it is negative one, the inverse of the

multiplicative factor is used (see Figure 6).

To render the virtual illumination onto the video tex-

ture of the physical environment, we enable the virtual

light objects and pass to OpenGL the simplified scene

geometry. We perform the blend computations in cus-

tom vertex and fragment shaders, written in NVIDIA’s

Cg shader language [15]. Without programmable shader

capabilities, this technique would not be possible in hard-

ware, in which case we would have to resort to alpha

blending or a software technique. The shaders are repro-

duced in pseudocode here.

VertexShader {

VertColor = attenuation * Kd

TexCoord0 = screen space position

TexCoord1 = normal vector

TexCoord2 = light vector

TexCoord3 = dot(env light vector,

light vector)

}

FragmentShader {

video = sample(VideoTex,TexCoord0)



alpha = TexCoord3

additive = dot(TexCoord1,TexCoord2)

multiplicative = intensity(video)

response = (1.0-alpha)*additive +

alpha*multiplicative

FragColor = video +

response*VertColor

}

Vertex shaders are executed once per rendered vertex

in the rendering pipeline. The current OpenGL state is

passed in, including material properties and light proper-

ties. We manually pass in the environment light vector

as well. This data is then interpolated by the rasterizer

across the polygon for a particular fragment. To render

a fragment, the fragment shader is called with the inter-

polated values. Our fragment shader samples the video

texture to project the video onto the geometry. The addi-

tive factor is calculated via diffuse Phong shading, while

the multiplicative factor is obtained from the video’s in-

tensity. The response of the material is then the interpola-

tion between these factors, and the final color is the video

sample plus the attenuated response times the material’s

diffuse reflectance.

4.3 Exposure Adjustment

Exceptionally bright physical objects, such as light

sources or highly reflective materials, appear in low dy-

namic range images as uniformly saturated pixels. To

simulate the effect of a decreased camera exposure time,

brightness adjustment treats these pixels as having the

same value, when the reality is they cover a wide range

of intensities. To better simulate exposure adjustment of a

low dynamic range image, we adjust the factor by which

intensities are scaled, based on the average intensity of

surrounding pixels. The effect is that the center of over-

exposed regions will remain bright while the edges fade

with the rest of the image (see Figure 7). Extreme darken-

ing will eventually decimate the entire saturated region.

To quickly compute average intensities of large re-

gions, an integral image is first computed. This allows

the sum of an arbitrary region of pixels to be computed

with four samples. The size of the region is determined

by the amount of darkening necessary, from 1x1 for 100

percent, linearly up to a maximum region limit at 0 per-

cent.

4.4 Discussion

Results of this algorithm compared to unenhanced

OpenGL alpha blending, can be seen in Figure 8 and Fig-

ure 9, for a virtual light coinciding with and opposing the

physical illumination, respectively.

Our technique for combining virtual illumination with

the physical scene suffers from many of the same lim-

Figure 7: A scene darkened to 50 percent. The left half

simply adjusted the image brightness. The right half uses

our algorithm.

itations as bump-mapping. Most notably, from shallow

angles the illumination looks as if it were flatly applied

on top of the real geometry, instead of being displaced by

the small fluctuations in height as it should be. The ap-

proximate scene geometry model handles large changes

in height to reduce this artifact - therefore, a more accu-

rate rendering can be created by increasing the complex-

ity of the scene geometry.

This technique provides a major advantage in aug-

mented reality however, since the bumped illumination

data is acquired from the projected video texture. The

algorithm is designed to light unmodeled surface rough-

ness, so illumination of minor changes in scene geometry

are accommodated without any additional work. If a sim-

ple scene that consists of a flat surface like a table has a

small object such as a pencil placed on it, the lighting

will automatically highlight and shadow the pencil’s ge-

ometry without requiring an update to the scene model.

This is very useful for dynamic environments like a desk,

where small objects are regularly moved around the area,

but larger objects like a keyboard and monitor are station-

ary.

Currently, our technique can account for one major

source of environment illumination, such as a single

lamp or window. The result is much less effective when

there are multiple significantly bright light sources, es-

pecially when they are spaced far apart on the environ-

ment map (as the illumination becomes more homoge-

neous). In these situations, the result is equivalent to nor-

mal OpenGL blending.

Our post-processing exposure adjustment operates on

an assumption about the distribution of actual intensities



Figure 8: A physical table and wire illuminated with a

virtual spotlight coincident with the physical illumina-

tion. The top half is using alpha blending, while the

bottom half is using alpha blending. Note tha with our

shader, highlights are brighter and shadows are darker.

Figure 9: A physical table and wire illuminated with a

virtual spotlight opposing the physical illumination. The

top half is using alpha blending, while the bottom half is

using our shader. Note that with our shader, highlights

stay white and shadows become illuminated.

of saturated pixels in an image. This assumption more

accurately models the reality in some cases than others.

Additionally, since the darkened pixels are all originally

saturated, more information about their intensities after

darkening cannot be generated – uniformly gray halos

will appear for heavy darkening. Bright illumination also

emphasizes the inaccuracies of the light model, making

them more obvious. For subtle lighting effects with soft

boundaries however, the particular insensitivities of the

visual system make these artifacts much less noticeable

[8].

5 Conclusions and Future Work

In this paper, we present a system which addresses a va-

riety of issues in the realm of consistent illumination.

The main contributions are a means of acquiring and

rendering with physical environment illumination, and a

method to integrate virtual illumination effects with phys-

ical geometry, all in real-time with minimal setup cost.

The first contribution is not a novel algorithm, but the ap-

plication of disparate techniques to a common problem to

create a single real-time system with dynamic response.

The second contribution is a pair of techniques that allow

for effective approximation of virtual lighting in complex

and dynamic physical scenes. Combined, this represents

a step forward in consistent illumination for augmented

reality systems.

Our system would clearly be improved by the incor-

poration of virtual shadowing of physical geometry, pos-

sibly through similar means as the virtual illumination.

Differential rendering can also subtract illumination from

an image, which would be necessary for shadow genera-

tion. The main obstacle to shadow generation is a reason-

able means of generating approximate soft shadows from

environmental lighting stored in an environment map.

More accurate rendering of environment illumination

on virtual objects, accounting for shadows from phys-

ical objects affecting virtual rendering, would also sig-

nificantly add to the perceived realism. Rough physical

shadow volumes could be generated from the simplified

scene geometry and environmental lighting data, which

could then be used in the traditional manner when ren-

dering the virtual geometry.

The biggest hardware based improvement to our sys-

tem would come from a high dynamic range camera.

As in most image based lighting systems, high dynamic

range imagery drastically improves the realism of ren-

dered images [6]. Techniques are being developed to cap-

ture high dynamic range image data in real-time [22, 14],

and graphics hardware is capable of rendering with high

dynamic range image data, so the addition of this tech-

nique is feasible in real-time and would create much more



realistic material reflectances.
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