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Abstract
In this paper we describe Quorum: a new non-invasive software
approach to scalable quality-of-service provisioning that uses
traffic shaping, admission control, and response monitoring at
the borders of the Internet hosting site to ensure throughput and
response time guarantees.

We compare Quorum both to over-provisioning and to Nep-
tune – a research and now commercially successful middle-
ware system that implements QoS for Internet services. Our
results show that Quorum can enforce the same QoS guaran-
tees as Neptune for Neptune-enabled services, but without re-
quiring the additional development overhead required by Nep-
tune. We also detail Quorum’s flexibility by using it to pro-
vide QoS guarantees for an Internet service benchmark that is
not ready to be used with Neptune or any other invasive soft-
ware approach. In this case, Quorum achieves the same results
a over-provisioning (which is the only other feasible solution)
using one-half of the site resources.

1 Introduction

With the current importance of and dependence upon In-
ternet services, it is imperative for companies relying
on web-based technology to offer (and potentially guar-
antee) predictable, consistent, as well as differentiated
quality of service to their consumers. For example, a
search engine such as Google may want to guarantee a
different service quality for the results served to America
On-Line (AOL) than the quality it can guarantee to Stan-
ford University searches. Internet services are commonly
hosted using clustered architectures where a number of
machines, rather than a single server, work together in
a distributed and parallel manner to serve requests to all
interested clients. Implementing service quality guaran-
tees scalably in such a distributed setting is a difficult
challenge.

Both research and commercial Internet service com-
munities have explored hardware-based and software-
based approaches to meeting this QoS challenge. A sim-
ple and effective hardware-based approach is to rely on
an over-provisioning and physical partitioning of clus-
ter nodes, each partition dedicated to a different class of
service. Unfortunately, the necessity to handle large and
unpredictable fluctuations in load cause these techniques
to incur in potentially high cost (enough resource must
be available in each partition to handle load spikes) and
low resource utilization (the extra resources are idle be-
tween spikes). Moreover, such a static approach does
not offer much flexibility in the event services are added
or upgraded, or more problematically, QoS guarantees
are changed. A change in conditions frequently re-
quires hardware reconfiguration, which may be expen-
sive and/or error prone.

As a result, software-based approaches have been sug-
gested that embed the QoS logic into the internals of
the operating system [7, 10, 30, 5], distributed middle-
ware [24, 25, 33], or application code [2, 8, 32] running
on the cluster. Operating System techniques have been
shown to provide a tight control on the utilization of re-
sources (e.g., disk bandwidth or processor usage) while
techniques that are closer to the application layer are able
to satisfy QoS requirements that are more important to
the clients. However the majority of existing software
approaches offer guarantees within the scope of a sin-
gle machine or for an individual application, and fail to
provide global service quality throughout the site. Most
current Internet sites are composed of a myriad of dif-
ferent hardware and software platforms which are con-
stantly evolving and changing. The largest drawback to
software-based approaches is the high cost and complex-
ity of reprogramming, maintaining, and extending the
entirety of the complex software system such that it can
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provide QoS guarantees for all hosted services.
In addition, the source code for many service compo-

nents hosted at a site may not be available for propri-
etary reasons, making software reprogramming by the
entity maintaining the site impossible. Since it is the site
operator and not the author of the service software that
must make and honor QoS guarantees, invasive software-
based QoS approaches may not be feasible unless the site
has access to the source code of all services it supports.

In this paper, we propose Quorum: a new non-invasive
software approach that uses traffic shaping and admis-
sion control at the entrance to an Internet site, and mon-
itors service at the exit, to ensure reliable QoS guaran-
tees. We describe the Quorum architecture and the way
in which our realization of it ensures both throughput and
response time guarantees together for multiple classes
of service. Our approach treats the cluster and the ser-
vices it is hosting as an unknown “black-box” system
and uses feedback-driven techniques to dynamically con-
trol how and when each of the requests from the clients
must be forwarded into the cluster. Because the system
uses only the observed request and response streams in
its control algorithms, new services can be added, old
ones upgraded, and resources reconfigured without en-
gineering or re-engineering the necessary QoS mecha-
nisms into the services themselves.

We compare Quorum both to over-provisioning and
to Neptune [24, 25] – a research and now commercially
successful middleware system that implements QoS for
Internet services, but which requires the services them-
selves to be re-written to use Neptune primitives. Using
the Teoma [26] search engine, which is built on top of
Neptune, we show that Quorum can enforce the same
QoS guarantees as Neptune for Neptune-enabled ser-
vices, but without requiring the additional engineering
overhead associated with modifying the services that it
supports. We also detail Quorum’s flexibility by using it
to provide QoS guarantees for an Internet service bench-
mark that cannot be modified and, thus, cannot be used
with Neptune.

As such, we demonstrate Quorum’s ability to achieve
the same level of performance as one of the best and
most successful software approaches, while providing
the ability to support a wider range of Internet services
with a greater degree of flexibility. At the same time, be-
cause it is a software-only approach, Quorum does not
require hardware reconfiguration when the QoS guaran-
tees made by the site operator change. Quorum improves
the flexibility with which scalable Internet services can
be hosted while avoiding the resource waste associated
with over-provisioning.

Figure 1: System Model for Internet Services

1.1 Contributions
This paper makes four main contributions:

• We present Quorum as a novel approach to QoS
provisioning for large-scale Internet services that
uses only observed input request and output re-
sponse streams to control the load within the site
so that quality guarantees are met.

• We build a prototype implementation and demon-
strate its viability using a large cluster system host-
ing commercial and community benchmark ser-
vices.

• We compare the efficiency Quorum with the best
state-of-the-practice approaches in the cases where
comparisons are feasible.

• We demonstrate that the flexibility provided by
Quorum enables more efficient Internet service de-
ployments than can currently be supported by exist-
ing approaches.

The remainder of this paper is organized as follows.
Section 2 briefly describes the QoS model we use to illus-
trate Quorum and evaluate it with respect to competitive
approaches. In Section 3 we detail the Quorum architec-
ture. Section 4 demonstrates, using a contrived example,
the features and capabilities of Quorum that are relevant
to the performance evaluation presented in Section 5. In
Section 6 we discuss related work, and we conclude in
Section 7.

2 The QoS Model and Evaluation Criteria

We model Internet services (Figure 1) as a stream of re-
quests coming from clients that are received at the en-
trance of the site, processed by the internal resources,
and returned back to the clients upon completion. In the
case of system overload or internal error condition, re-
quests can be dropped before completion and thus may
not be returned to the client. Requests can be classified
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Figure 2: The architecture of Quorum

or grouped into different service classes according to a
combination of service (e.g., URL, protocol, port, etc.)
and client identity (e.g., source IP address, cookies, etc.)

We view the QoS challenge as the ability to guarantee,
at all times, a predefined quality for each service class as
measured at the output of the cluster. A particular qual-
ity for a service class is guaranteed only under certain
restrictions on its incoming workload. Thus, we define
a QoS class as a set of output guarantees (throughput
and response times) in terms of the input workload re-
strictions (compute requirements) of a particular service
class. For example, a QoS class for a typical e-commerce
site could specify a minimum throughput guarantee of
200 requests per second (req/sec) and a maximum re-
sponse time of 500 ms, given that the resource consump-
tion for calculating a single incoming request requires
an average of 10 ms. Notice that the guarantee includes
both throughput and service time requirements. Often it
is possible to meet one QoS demand at the expense of the
other. A good solution can accommodate both.

In addition to ensuring quality guarantees, any solu-
tion to the QoS problem should also have other desir-
able properties. A solution should achieve good resource
utilization (i.e. be efficient), support QoS for a a broad
range of hosted services, tolerate varying workloads and
resource changes, and degrade gracefully when over-
loaded. These properties, while not strictly necessary to
implement QoS, make give a solution possessing them
greater utility, particularly in a commercial setting. Flex-
ibility with respect to service hosting, for example, al-
lows e-commerce sites to change, upgrade, and extend
their services rapidly in response to market and/or cus-
tomer demands. While difficult to quantify, ease of de-
ployment and maintenance certainly adds practical util-
ity. Thus we consider both the quantitative capabilities
of the QoS methodologies we investigate as well as the
qualitative properties that make them practically viable.

3 The Quorum Architecture

Our approach to implementing QoS for Internet services
uses a single policy-enforcement engine to intercept and
control in-bound traffic at the entrance of the site (typ-

ically a cluster of machines) hosting the services. By
tracking the responses to requests that are served within
the site, our system – called Quorum – automatically de-
termines when new requests can be allowed entry such
that a specified set of QoS guarantees will be enforced.
The desired QoS policy is specified to the Quorum en-
gine in the form of definitions for different QoS classes
of service. Each definition must

• specify how the engine can identify the QoS class
associated with each request, and

• the capacity and response time guarantees that must
be maintained.

Rather than relying on instrumentation of the services
and resources within the site, Quorum continually ob-
serves the relative request and response rates for each
QoS class and reacts adaptively to changes in input re-
quest frequency, internal service compute times, etc. As
such, it permits new levels of flexibility. New services
can be added, existing services can be upgraded, clus-
ter resources can be changed, added, decomissioned, etc.
and Quorum automatically adjusts its behavior to the new
conditions so that the specified QoS guarantees can be
met.

Figure 2 depicts the architecture of Quorum, con-
sisting of four different modules each of which imple-
ments a functionality that is necessary to support QoS.
The Classification module categorizes the intercepted re-
quests from the clients into one of the service classes de-
fined in the QoS class. The Load Control module deter-
mines the pace (for the entire system and all client re-
quest streams) in which Quorum releases requests into
the cluster. The Request Precedence module dictates the
proportions in which requests of different classes are re-
leased to the cluster. The Selective Dropping module
drops requests of a service class to avoid work accumu-
lation that would cause a QoS violation and maintains
responsiveness when the incoming service demands for
that class exceed the processing capacity that has guaran-
teed. In the next sections we detail further the implemen-
tation of the Quorum modules. We explicitly exclude the
details associated with Classification since it is a well
understood problem that has already been studied in the
literature [18] and the implementation we use does not
extend the state-of-the-art.

3.1 Load Control
The functionality of the Load Control module is two-
fold. First, it maintains the resources within the clus-
ter at a high level of utilization to achieve good system
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performance. Second, it prevents large amounts of in-
coming traffic from overloading the internal resources of
the cluster. The goal of the Load Control module is to
have the cluster operate at maximum capacity so that the
largest possible capacity guarantees can be met, but to
prevent overload conditions that would cause response
time guarantees to be violated.

Our implementation exploits the direct correlation be-
tween the amount of work accumulation and the time it
takes for requests to be computed in any general purpose
operating system. In general, higher parallelism corre-
sponds to longer compute times for each service given a
fixed amount of limited resources. With this in mind, the
Load Control module externally controls the load in the
cluster by appropriately forwarding or holding the traf-
fic received from the clients, according to current perfor-
mance metrics measured at the output of the cluster. By
controlling how much traffic is accumulated in the cluster
at any time, this module can directly affect the amount of
time that requests take to be computed inside the cluster
(i.e. compute time).

Similar to TCP, our implementation uses a sliding win-
dow scheme that defines the maximum number of re-
quests that can be outstanding at any time. The basic
operation of the Quorum engine consists of successively
incrementing the size of the window until the compute
times of the QoS class with the most restrictive response
times approaches the limits defined by its guarantees. In
our implementation, the algorithm increments the win-
dow until it observes a maximum compute time that is
half the most restrictive of all the guarantees. The choice
of ’half’ is a compromise between maintaining the clus-
ter occupied and running out of queuing space to absorb
peaks of traffic. We are currently working on an opti-
mized version that can dynamically adapt the threshold
to allow longer queuing space without hurting the overall
system performance.

3.2 Request Precedence
The function of Request Precedence is to partition vir-
tually the cluster resources among each of the service
classes. Capacity isolation is a necessary functional-
ity that allows each service class to enjoy a minimum
guaranteed capacity, independent of potential overload
or misbehavior of others. This module is able to par-
tition externally the service delivered by the cluster, by
controlling the proportions in which the input traffic for
each class is forwarded to the internal resources.

In addition to allocating a guaranteed capacity for each
class, the Request Precedence module also reassigns un-
claimed capacity to other QoS classes that have input

demands exceeding their output guarantees. This func-
tionality allows the QoS engine to take full advantage of
the available cluster resources when the input load from
one or more QoS classes can be serviced with fewer than
the maximum number of resources necessary to meet the
associated guarantees. In this way Quorum differs from
an approach that relies on physical partitioning of the re-
sources where temporary reassignment cannot be imple-
mented dynamically.

Under Quorum, Request Precedence is implemented
through the use of modified Weighted Fair Queuing [14,
23, 11] techniques that function at the request level. By
factoring the input restrictions of each class into the fair
queuing weights, Quorum transforms throughput guar-
antees into capacity guarantees. Capacity is a fungible
metric that links output throughput and input restrictions
such that an increment of one results in a decrement of
the other. For example a capacity of 4000 ms/s corre-
sponds to 400 req/s at a compute cost of 10ms/req, but
also to 800req/s if the compute cost is only 5ms/req. Us-
ing this fungible capacity, the request precedence safely
protects the service classes even when one or more of
them violate the input restrictions specified in the QoS
class. At the same time, the module automatically reas-
signs all of the surplus capacity in a way that is propor-
tional to the capacities of the needed QoS classes.

3.3 Selective Dropping
The function of Selective Dropping is to discard the ex-
cessive traffic received for a QoS class in the situations
where there is not enough available capacity to fulfill its
incoming demands. A dropping module is necessary to
prevent large delays from occurring in overloaded situ-
ations for the requests that are to be served. That is,
the QoS guarantees will be observed for all requests
that are serviced, but if input load exceeds the maxi-
mum level that can be supported for the given guaran-
tee, some requests will be dropped. Our Selective Drop-
ping implementation ensures that the guarantees will be
met for all requests that can be serviced. It does so
by independently observing each of the QoS queues of
the engine and discarding the requests that have been
sitting in the queue for too long. In our implementa-
tion, a request has been sitting in the queue for too long
if the time left for completion once it gets at the head
of the queue is less than the expected time of compu-
tation of its class. In other words, a request will be
dropped if (queue time + observed compute time >

max response time allowed).
In Quorum, Selective Dropping works closely with the

Load Control module by signaling ahead of time when
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Figure 3: Setup and QoS requeriments for the controlled
experiments.

a service class is likely to become overloaded. This
module leverages the queuing inside Quorum to absorb
safely peaks of traffic during transient overload condi-
tions without violating the response time guarantees. For
efficiency reasons, the module delays the dropping of re-
quests to prevent discarding traffic in transient situations
only to realize a moment later that the requests could
have been served within the allowed response time lim-
its. The implementation of independent dropping tech-
niques, coupled with strong capacity guarantees given by
the Request Precedence, allow this module to isolate re-
sponse times of one class against misbehavior of others.

Combined, the functions of all four Quorum modules
(Classification, Load Control, Request Precedence and
Selective Dropping) enable cluster responsiveness, ef-
ficient resource utilization, capacity isolation and delay
differentiation, thus guaranteeing capacity and response
times for each independent service class.

4 Understanding How Quorum Works

Before evaluating how Quorum performs under realistic,
large-scale systems, we first present results from a small-
scale, specially-crafted experiment that helps us illustrate
how Quorum and its different modules behave and inter-
act with each other. This illustration is intended to help
describe in greater detail the different specific properties
of Quorum as well as to introduce the terminology and
concepts that will be used when analyzing the large-scale
experiments of Section 5.

The testbed used for the experiments in this section
consists of 2 client machines, accessing 4 server nodes
through a gateway machine implementing the Quorum
engine (Figure 3). The gateway machine includes a
load-balancer module that balances the requests being re-
leased by Quorum into the 4 server machines in a Round-
Robin fashion. Each of the server nodes runs the Tomcat
application server [27], providing a “CPU-loop service”
consisting of a servlet that loops a number of times so
that it utilizes a certain amount of CPU (as specified in
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Figure 4: Traffic characteristics of the experiment.

Table 1: QoS policy for the controlled experiment

the HTTP parameters of each incoming request). Re-
quests are classified into two different QoS classes (i.e.
A and B) according to the host field name found in the
HTTP header of the request (i.e. host: A or host: B).
Details on the QoS policy can be found in Table 1.

Figure 4 shows the incoming traffic characteristics
chosen for the experiment so that we can illustrate the
behavior of Quorum under different operating regimes
of the cluster. Throughputs are presented in average re-
quest per second over 2 second intervals. As depicted in
the figure, we deliberately increase the demands for class
B such that the combined traffic is able to make the clus-
ter 100% busy by second 50. Between seconds 50 and
120 the cluster remains fully utilized but the demands of
class A are still below its guarantees (i.e. 200 req/sec).
Finally, after second 120, both class A and class B gen-
erate input demands that exceed the guaranteed service
specified in their respective QoS classes.

In the rest of this section we analyze the results from
the experiment as a way of illustrating the precision with
which each of the Quorum modules operates to enforce
both capacity and response time guarantees.

4.1 Limiting the Load in the Cluster

Figure 5 shows how the Load Control module of Quorum
manages the amount of outstanding requests during the
experiment, and the direct effect that this control has on
the time it takes the cluster to compute them (i.e. com-
pute times). At the bottom of the figure we include the
total input and serviced traffic to show how the cluster
becomes fully utilized at second 50 of the experiment.
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In the figure, as soon as the input demand surpasses the
total capacity, the load control module allows the number
of outstanding requests to start increasing in an attempt
to exploit the parallelism in the cluster and achieve a bet-
ter overall throughput. However, as soon as the addi-
tional parallelism causes requests to take 200 ms to be
computed in the cluster (which is one-half of the maxi-
mum allowable service time of 400 ms) the Load Con-
trol module stops increasing the window of outstanding
requests.

It is worth noting that in this example, both QoS
classes have the same observed compute time given that
they use the same underlying service (i.e. CPU-loop ser-
vice). In the cases where QoS classes correspond to ser-
vices with different cluster requirements (e.g. with light
vs. heavy resource consumption per request), the load
control module would independently track the computa-
tion times of each class and will stop increasing the win-
dow of outstanding requests as soon as the compute time
of one of them reaches half of its service time guarantee.

4.2 Ensuring Capacity Isolation
In this section we illustrate how Quorum virtually parti-
tions the resources of the cluster among the different QoS
classes in such a way that their guaranteed capacities are
fully isolated when the request load for one or more of
the classes exceeds its allowable level.

To illustrate this property, we observe the evolution of
the service given to QoS class A during the experiment.
Figure 6 depicts the incoming, served and dropped traf-
fic for classes A and B during the run. There are two
interesing observations to extract from the figure. The
first one is that requests for class A are only dropped
when the incoming demand exceeds the guarantee (i.e.
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Figure 6: Achieved throughput and request drops for each
class in the experiment.

there are no drops before second 120). The second ob-
servation is that while incoming demands of class A are
below its guarantee, all the incoming request are imme-
diately forwarded into the cluster avoiding any queuing
time in the engine. This phenomenon can be seen by
observing how the incoming and served traffic closely
follow each other during the first 120 seconds of the run.
Note that even though the cluster reached full utilization
in second 50, there are no detrimental effects on how fast
the requests for QoS class A are handled showing that ca-
pacity agreements are independently guaranteed for each
QoS regardless of resource utilization or incoming traffic
demands.

4.3 Reassiging Excess Capacity

In this section we show how Quorum reassigns the unuti-
lized capacity from one class to other QoS classes that
can use it. To illustrate its behavior we focus on the
throughput achieved by class B during the experiment.
Consider the incoming and served traffic for both class
A and class B in Figure 6. From the figure one can see
that the guaranteed resources for class A that are not used
are committed to class B when the input traffic of the lat-
ter input exceeds its guarantee (seconds 50 to 120). Note
the symmetry between the throughputs of class A and B
during this interval. However, this surplus capacity re-
ceived by customers of class B does not cause class A
to experience a deterioration of service. Class A’s input
and throughput values closely track each other indicating
that all input request are immediately serviced. As soon
as demands for class A exceed their guarantee (i.e. af-
ter second 120) there is no spare capacity to reassign to
class B. Quorum quickly reassigns the excess resources
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that were temporarily committed to class B back to class
A so that both services are maintained at exactly their
capacity guarantee of 200 req/sec.

4.4 Response Time Isolation
We now show how Quorum effectively isolates the re-
sponse times of each QoS class by selectively queuing
and potentially dropping requests that cannot meet the
guarantees. To illustrate this case, we show the evolution
of response times for both A and B QoS classes in Fig-
ure 7. We also specify the measured compute time during
the run (the shaded area) in order to better observe which
portion of the displayed response time corresponds to the
time the requests spend in the cluster versus portion that
is spent queued inside Quorum. In the figure, we can see
that while the cluster is underloaded, all requests are re-
leased as fast as possible from the engine and promptly
computed by the cluster (seconds from 0 to 50). Queu-
ing or dropping is not necessary during this time interval.
As soon as the cluster becomes overloaded at second 50
the engine starts queuing the excess of incoming requests
that cannot be immediately computed by the cluster in
an attempt to absorb transient peaks of traffic and avoid
unnecessary “early” drops. Moreover, class B is the only
class that sees an increase in queuing times – it is the only
class that has incoming demands exceeding the guaran-
tees. At the same time, class A is isolated from such
effects given that its input demands are still below the
guarantees. We should note that the increase in response
times for class A from seconds 30 to 80, is due uniquely
to the underlying increase of compute times triggered by
the Load Control module. Before the guarantees are ex-
ceeded, Quorum is gradually introducing work in an ef-
fort to drive up utilization, as shown in Section 4.1. As
soon as both QoS classes have input demands that exeed

their guarantee, the system begins enqueuing the incom-
ing requests causing delays up to the maximum of what
their respective guarantees allow. For example, the de-
mands for class A exceed the feasible guaranteed capac-
ity at second 123 (denoted with an arrow in the figure).
The sudden widening of the space between the response
time and the compute time for class A that occurs after
that point indicates the magnitude of the queuing delay
deliberatly introduced by Quorum. Notice, though, that
the sum of both delays never exceed the response time
guarantee for the class.

5 Performance Evaluation

In this section we demonstrate that Quorum, even though
it treats the cluster resources and Internet services as a
“black-box,” can provide QoS guarantees under realistic
conditions. In addition, we compare Quorum to Nep-
tune [24, 25] – a successful research and now commer-
cially deployed QoS system for Internet service provi-
sioning that relies upon a tight integration with the im-
plementation of each service it supports. The goal of
this comparison is to determine what effect on perfor-
mance and capability Quorum’s black-box approach in-
troduces. Our investigation is empirical and is based
on the deployment of an Internet search service used by
Teoma [26] using a 68-CPU cluster. We analyze how five
different techniques offer differentiated quality to dis-
tinct groups of customers by generating message traffic
based on web-search traces and then observing the qual-
ity of service delivered to each group.

We also examine how well Quorum’s flexibility sup-
ports multiple hosted services with distinct QoS require-
ments. In this experiment, we add the TPC-W [28, 29] e-
commerce benchmark to the cluster and detail how well
the different QoS methodologies support both services
simultaneously.

5.1 Experimental Testbed

Our experimental setup consists of several client ma-
chines accessing a cluster system through an interme-
diate gateway/load-balancer machine. Accessing the
services through a load balancer machine is the most
commonly used architecture in current Internet services.
For example, Google [17] funnels traffic through sev-
eral Netscaler [20] load-balancing systems to balance the
search load presented to each of its internal web servers.
For our experiments, we use a cluster of 2.6 MHz Intel
Xeon processors each with 3 gigabytes of main memory
organized into nodes with either two or four four proces-
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Figure 8: Experimental Testbed.

sors per node. The network interconnect between proces-
sors is switched gigabit ethernet and the host operating
system is RedHat Linux/ Fedora Core release 1, using
kernel version 2.4.24.

As depicted in Figure 8, we use a pool of 12 “client”
machines within the cluster to generate requests emu-
lating customer traffic. The client software we use is
a custom-made application that can accurately replay
server traces by issuing HTTP 1.1 requests using orig-
inal inter-arrival frequency as specified in the trace.

Our gateway node is a 4-CPU dedicated machine that
can function in two different modes: as a load-balancer
or as the Quorum engine. When running in load-balancer
mode, the machine is configured to implement the typical
(Weighted) Round Robin, least connections, and maxi-
mum connections options available in most commercial
hardware [16, 21, 20]. When running as Quorum en-
gine, the gateway is configured to enforce the QoS policy
defined for the experiment. Both the load-balancer and
Quorum engine are entirely implemented in user-level
software. The load-balancer is implemented as a multi-
threaded java application which makes extensive use of
the new NIO libraries for improved I/O performance.
We use Sun’s 1.5 java virtual machine with low-latency
garbage collection settings. Our performance tests show
that our implementation can handle slightly more than
2000 requests/second with approximately 50% CPU uti-
lization. Thus the performance of our base-level system
is comparable to that of a commercial solution for the
levels of load presented in this paper. Note that these
levels of traffic are close to the service rates of some of
the most popular sites (e.g. Google reports around 2500
req/sec [19], Ask Jeeves around 1000 req/sec [6]). Both
our implementation of a load-balancer and the Quorum
engine are based on the same core software for fielding
and forwarding HTTP requests.

5.2 Differentiating Quality of Service by
Client

In our first experiment, we compare Quorum to other
QoS methodologies in terms of its ability to deliver spec-
ified service qualities to separate and potentially compet-
ing groups of clients.

5.2.1 Internet Search Benchmark

We use the main index search component of the Teoma
commercial Internet search service [26] as a benchmark
Internet service. The index search component consists
of traversing an index database and retrieving the list
of URLs that contain the set of words specified in the
search query. The total size of the index database used
is 12GB and is fully replicated at each node. The index
search application from Teoma is specifically built for
the Neptune middleware [25], a cluster-based software
infrastructure that provides replication, aggregation and
load balancing for network-based services. The version
of Neptune we use also provides QoS mechanisms al-
lowing the specification of proportional throughput guar-
antees and response times constraints through the def-
inition of yield functions [24]. As it is the case with
commercial search engines, our system accesses the ser-
vice through a set of front-end machines which trans-
forms the received URL into an internal query that can
be sent to the Neptune middleware servicing the search
database for processing. To mimic the setup used by
Teoma, we implement the front-end with an Apache web
server [4] and a custom-built Apache module which can
interface with the Neptune infrastructure. This module
is able to utilize the middleware functionality to locate
other Neptune-enabled nodes and appropriately balance
the requests based on the current load of the available
servers.

In order to benchmark Quorum and the other consid-
ered QoS methodologies, client requests are replayed
from a request trace supplied by Teoma that spans 3
different days of commercial operation. We also use
Temoa-supplied traces of word sequences to generate
real search queries. The levels of incoming traffic are de-
signed so that the input demands of the different clients
are far below (for class A) far above (for class B) and
coinciding with (class C) the capacity constraints spec-
ified in their respective QoS classes. Clients for each
QoS class use different interarrival times, corresponding
to one of the three different days of the original traces.
Table 2 further depicts the details of each experiment
including the capacity and response time guarantees for
each QoS class.
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Table 2: QoS guarantees and traffic workload of the Teoma
search engine benchmark.

5.2.2 Experimental Methodology

For this experiment our methodology consists of using
the previously described testbed to recreate search traffic
and to explore the effectiveness with which five differ-
ent approaches can enforce a particular QoS policy for a
single service with multiple client groups. The five com-
pared approaches are:

Load Balancer The gateway machine is configured as
a load balancer and tuned to match common high
performance settings of Internet sites. Specifically,
we configure it to use the least connections load-
balancing algorithm and limit the maximum num-
ber of open connections for each front-end to match
their configured maximum (i.e. 250 processes for
Apache server and 150 for the Tomcat servlet en-
gine).

Physical Partitioning A separate group of machines are
dedicated for each of the existing QoS classes. We
configure the load-balancer to forward requests of a
particular class only to its restricted set of reserved
nodes.

Overprovisioning The size of each physical partition is
increased such that the resulting capacity and re-
sponse time guarantees can be achieved as specified
by the QoS policy (possibly at the expense of under
utilized resources).

Neptune QoS The gateway is configured as a load bal-
ancer and the QoS mechanisms of Neptune are en-
abled to implement the QoS policy under study.

Quorum QoS The gateway runs the Quorum engine
which implements QoS and the internal cluster re-
sources implement only the Internet service. (i.e.
QoS functionality in Neptune is disabled)

We evaluate the effectiveness of each technique in
terms of response time and capacity guarantees as mea-
sured at the client.

Table 3: Experimental results for Teoma search engine.

5.2.3 QoS Results

Figure 9 presents the results in terms of achieved
throughput and average response times of the five QoS
methodologies using the same input request streams. The
upper portion of the figure shows how the totality of in-
coming traffic for a class (represented by the height of a
bar) has been divided into traffic that is served and traffic
that is dropped. Horizontal marks delimit the minimum
amount of traffic that has to be served if the QoS guaran-
tees are met. The lower part of Figure 9 presents the re-
sults in terms of response times. For response times, we
use horizontal marks to denote the maximum response
times allowed by the QoS policy and denote with a darker
color the classes that do not meet the guarantees. We
present these response time results using a logarithmic
scale for better visual comparison since the delays differ
substantially. Table 3 summarizes these results in tabular
form to further detail their comparison.

We begin by analyzing the quality of the service
achieved by a load-balancer technique. Throughput re-
sults show that amount of traffic served in this case are
directly dependent on the levels of incoming traffic rather
than driven by the specified QoS policy. In this case we
see that the dominance of class B traffic provokes drops
in A and C, even though the demands for these classes
are always below (in the case of class A) or never exceed
(for class C) the input constraints associated with each
class. At the same time, observing response time results
in the lower figure, we can see that simple connection
limiting techniques employed by the load-balancer are
not enough to prevent large delays in response times (e.g.
up to 14 seconds per request), rendering this technique
inadequate to provide timing guarantees.

When resources are physically dedicated through
Physical Partitioning, the system is able to serve the ex-
pected amount of traffic for each of the classes and drop
requests only in the cases when the incoming demand
exceeds the input constraint. Throughput guarantees are
met, however, if we observe the results in terms of re-
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Figure 9: Benchmark results using Teoma’s search engine

sponse time, we can see that the overloaded partition B
experiences a delay more that 30 times higher than the
maximum allowed by the QoS policy. Thus while phys-
ically partitioning resources is able to provide capacity
guarantees, it fails to ensure response times constraints
for arbitrary incoming demands. It is worth noting that
the reason for partition B serving more throughput than
its guarantee is that the raw performance of the cluster
is slightly higher than the combined QoS guarantees de-
fined in the policy.

When each of the partitions is augmented with enough
resources (i.e. Overprovisioning) all requests are suc-
cessfully served. The response times are reduced below
the maximum allowed delay. In this case, class B and
class C required an additional 5 and 1 nodes respectively
in order to meet the specified response time guarantees.
Thus Overprovisioning is the first of the techniques that
can successfully provide both throughput and response
time guarantees. However the cost of such over provi-
sioning can be very high given the extreme load fluctu-
ations that most Internet services have shown to exhibit.
In particular, between load “spikes” the extra resources
needed to serve these surges in load lay idle.

Neptune and Quorum both meet both the specified
throughput and response time guarantees. Both tech-
niques serve at least the necessary amount of traffic and
are able to keep response time below the maximum de-
lays. Furthermore, both techniques are able to success-
fully reassign the capacity not utilized by class A to the
greedy clients of class B. We observe that the direct con-
trol the resources and services in the cluster allows Nep-
tune to achieve a slightly better throughput than Quo-
rum (i.e. 3%). Also, the resulting response times from
Neptune are somewhat lower than Quorum. We ex-
pected these slight performance advantages of Neptune
over Quorum for two reasons. First, as a purely ex-

ternal implementation, Quorum should incur some per-
formance penalty. Secondly, the current implementation
of Quorum is only designed to enforce maximum delay
constraints and it is not concerned about minimizing the
overall delay of service times. However, given the purely
user-space java implementation of the current Quorum
prototype, we were surprised by how closely our system
matched the performance achieved by the integrated and
commercially developed Neptune system. Encouraged
by these results, we are currently working on a new pro-
totype that can both ensure response time constraints and
lower response delays when possible.

5.3 Differentiating Service by Service Type
Another important type of commercial scenario requires
differentiated QoS based on service type rather than cus-
tomer identity. To explore this case, we deploy an e-
commerce service benchmark in addition to the Teoma
search service within the test cluster and the apply the
QoS methodologies described in Section 5.2.2.

5.3.1 e-Commerce Service Benchmark

The e-commerce service benchmark we use is a freely
available implementation [28] of TPC-W – a transac-
tional Web-based benchmark specifically designed for
evaluating e-commerce systems by the Transaction Pro-
cessing Council [29] (TPC). It models a typical e-
Commerce site in the form of an online bookstore. Web-
based e-Commerce transactions following the TPC-W
specification are required to exercise 14 different inter-
actions that are designed to capture the typical tasks of
an online bookstore customer. Each interaction requires
access to a database that contains information such as
book titles, customers, orders and credit card informa-
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tion. TPC defines the benchmark specification for TPC-
W but provides no reference implementation or source
code. For our investigation, we have chosen the pub-
lically available implementation from [28] in which the
application logic is implemented using servlets. We use
the Tomcat servlet engine as the front-end to our online
bookstore and deploy a MySql database on an additional
4-CPU machine within the cluster. Our test database
contains 100,000 books and 288,000 customers with a
total size of 495MB.

5.3.2 Experimental Methodology

We follow a methodology that is similar to the one we
used for the previous search experiment. In this case,
we deploy both the Teoma search and the e-Commerce
application on top of the same 10 machines and con-
figure 12 client machines to generate requests compet-
ing for both services. For the search traffic we use the
same traces from the previous experiment. To gener-
ate requests for the e-Commerce service we use client
software from [28] which emulates the behavior of an
e-Commerce customers as specified by the TPC-W stan-
dard. A particularly noteworthy behavior of this client
application is that it stops generating load if any of the
requests fails. We speculate that this design feature
has been included to implement fail-stop in hardware-
partitioned settings when a partition is not sufficiently
provisioned. For Quorum and other software-based ap-
proaches, however, it introduces the requirement that the
QoS methodology guarantee enough capacity at all times
to prevent requests from being dropped. Thus it forms
an especially stringent test of QoS provisioning by ser-
vice type since the TPC-W service will not function if
the QoS it requires cannot be guaranteed.

We also note that as a standard and comparative refer-
ence implementation of the TPC-W benchmark, we were
not free to modify the source code. Doing so introduces
the possibility that such modifications would skew the re-
sults in favor of one methodology or another, and would
also eliminate the possibility of comparison to previously
published results [13, 3, 15]. As such, the benchmark is
an example of an Internet service for which the site op-
erator must provide QoS, but for which it is not possible
or desirable to modify the service to meet this need.

As a result, the techniques that we compare in this ex-
periment do not include load-balancer or physical par-
titioning since these cannot enforce both capacity and
response time guarantees without dropping requests as
demonstrated in the previous experiment. Drops cause
the the TPC-W benchmark to fail. In addition, we cannot
present results using the QoS facilities of Neptune given

Table 4: QoS guarantees and traffic workload of for the
experiment with Search and e-Commerce services.

that benchmark implementation is not programmed to
use the middleware QoS primitives. As Neptune gains
in popularity, we expect a Neptune-enabled version of
TPC-W will become available, but at present the need
to modify the source code illustrates a drawback of in-
vasive QoS approaches. Indeed, we considered altering
the TPC-W benchmark to use Neptune as an aid to fur-
ther comparison but doing so requires modification to the
benchmark code itself, the Tomcat servlet engine it uses,
and the MySql back-end database, all of which must ob-
serve the internal Neptune protocols for QoS to be en-
sured. The possibility for error in these modifications
combined with the difficulty in ensuring that their in-
clusion did not inadvertently alter the performance and
functionality of each component deterred us from this ef-
fort.

Thus in this experiment, we are only able to compare
Overprovisioning with Quorum. We show the details
of the complete QoS policy in Table 4. In the exper-
iment, the levels of incoming traffic are designed such
that the amount of Teoma search traffic always exceeds
the maximum input that can be supported by the output
guarantees. That is, the input for the search service at-
tempts to overload the capacity available for searching.
The amount of TPC-W traffic is always below its mini-
mum necessary such that the QoS guarantees can be met.
That is, there is always sufficient capacity for the TPC-W
requests to be serviced without requests being dropped.

5.3.3 QoS Results

Figure 10 presents the results of this experiment using the
same format as the previous one. As discussed above,
three of the techniques (Load-Balancer, Physical Parti-
tioning and Neptune QoS) cannot run the TPC-W bench-
mark successfully, thus are not shown. As Figure 10
shows, Overprovisioning with enough resources allows
the cluster to serve enough traffic such that both through-
put and response time guarantees are within the lim-
its defined by our QoS policy. In this case, the Teoma
search partition was augmented to 15 nodes and the
e-Commerce service to 4 Tomcats and one additional
database, using 100% more resources than the size of the
cluster used by Quorum. Thus the efficiency with which
Quorum reassigns unused capacity allows our system to
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meet the QoS demands while using only half of the hard-
ware resources used by the over-provisioning approach.

Figure 10: Benchmark results using Search and e-
Commerce.

5.4 Discussion
The results from these experiments illustrate several im-
portant points. First, static Load-Balancer methods and
simple Physical Partitioning without over provisioning
are not adequate techniques to provide both through-
put and response time guarantees. Secondly, Overprovi-
sioning can provide QoS guarantees, but at the expense
of wasted resources. Perhaps unsurprisingly (given the
commercial success of Teoma) an integrated approach
that requires modification of the Internet services them-
selves, such as Neptune, both meets the QoS targets and
makes efficient use of the resources at hand, but only
when a considerable engineering effort has been made to
perform the integration. Without this effort, it is not pos-
sible to extend or change the services that are supported
by the cluster. Our prototype implementation of Quo-
rum, however, is able to achieve nearly the same level
of performance as the integrated system for the services
it can support, but Quorum can also support new ser-
vices and extensions transparently, without modification
to the service implementation or the cluster resources. At
the same time, the efficiency of our Quorum prototype
makes it possible to redirect unused capacity automati-
cally thereby limiting resource waste and under utiliza-
tion.

6 Related work

There are many approaches that address different aspects
of the QoS problem, yet very few exist that have focused
on providing a complete solution for large-scale Internet

services. In this section we briefly introduce some of the
most relevant work done in each area and show how each
addresses a different aspect of the problem.

In the network community the study of QoS has
mainly been focused on ensuring reliable and predefined
communication between two endpoints. Protocols such
as [9, 12] leverage the existing routing infrastructure to
provide bandwidth allocation and packet delay guaran-
tees over the Internet. Other approaches such as Con-
tent Distribution Networks [1] provide similar features
by appropriately managing their own overlay network
and pushing content closer to the end-user. These ap-
proaches only tackle the network component and do not
address the computational part involved in servicing re-
quests. On the other hand, Quorum is an approach that
provides QoS guarantees only at the boundaries of an In-
ternet site. Thus we see the existing network approaches
as a necessary complement to Quorum such that end-to-
end QoS in Internet services can be realized.

Load balancers [16, 21, 20] can also enhance the qual-
ity of the service offered by a cluster system. Basic tech-
niques can successfully balance the load across a num-
ber of internal nodes to achieve higher resource utiliza-
tion. Also, most load balancing routers allow to im-
plement physical partitioning by defining the groups of
nodes where requests of a particular type should be for-
warded. Similarly, products such as [22] offer the traf-
fic shaping functionality such that minimum bandwidth
guarantees can be allocated to distinct clients or applica-
tions. More sophisticated techniques such as [20] apply
intelligent connection management that shield the inter-
nal nodes from becoming overloaded in front of large
bursts of incoming traffic. Quorum differs from these
approaches in that it is a non-invasive and self-adapting
QoS solution that does not need to be configured or tuned
for the specifics of the hardware or software of the site.

In the operating systems area, the QoS challenge is
usually approached as a resource management problem.
Many research operating systems [7, 10, 30] have shown
to achieve a tight control on the utilization of resources
such that capacity isolation can be ensured between ser-
vice classes. Although these techniques have proven to
be effective in terms of capacity isolation, they are not
designed for providing response time guarantees. Fur-
thermore, these techniques are designed for managing
the resources of a single machine and fail to enforce the
QoS policy in the clustered environments of current In-
ternet services. Cluster reserves [5] is an approach that
extends single-node resource management techniques to
achieve cluster-wide QoS. Although this technique is
shown to provide resource isolation at the cluster level, it
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still fails to provide any response time guarantees.
Middleware systems such Neptune [25, 24] include

QoS functionality in their distributed infrastructure. By
programming the applications to use these primitives it is
possible to easily construct distributed services that offer
cluster-wide QoS guarantees. However in order for these
frameworks to be effective each of the constituents of a
service must be integrated with the middleware infras-
tructure. In a general way, this constitutes a very restric-
tive constraint given the heterogeneity and proliferation
of current Internet services.

Approaches that address the QoS problem at the appli-
cation level have also been proposed. For example, the
approach presented in SEDA [32] advocates the use of
a specific framework for constructing well-conditioned
scalable services and [31] shows the effectiveness of this
framework when explicit QoS mechanisms are used to
prevent overload in busy Internet servers. Rather than
building an application with QoS support, other work
has modified existing applications to include QoS capa-
bilities [2]. For example, the work done in [2] shows
how it is possible to modify the popular apache web
served to provide differentiated services without the use
of resource management primitives at the operating sys-
tem level. However, as it is the case with middleware
approaches, the large cost of modifying the application
code to include QoS mechanisms is only effective if the
entirety of the software deployment is able to function in
a concerted way towards providing QoS.

7 Conclusions

Commercial Internet service provisioning depends in-
creasingly on the ability to offer differentiated classes
of service to groups of potentially competing clients. In
addition, the services themselves may impose minimum
QoS requirements for correct functionality. However,
providing reliable QoS guarantees in large-scale Inter-
net settings is a daunting task. Simple over-provisioning
and physical partitioning of resources is effective but ex-
pensive as enough resource must be available to handle
the “worst-case” load conditions for any class. In steady-
state, these additional resources are idle and the expense
associated with them potentially wasted.

To address this problem, software-based approaches
have been developed to control the resource usage of
each hosted service. These approaches, such as is Nep-
tune [25, 24] or SEDA [32], require the hosted Internet
service to observe an explicit protocol when requesting
and using the resources within the site hosting it. As
such, they are invasive in that they require a reprogram-

ming and/or re-engineering of the services within a site
to implement QoS functionality.

In this paper we present an alternative, non-invasive
software approach called Quorum that uses traffic shap-
ing, admission control, and response feedback to treat
an Internet site as a “black-box” control system. Quo-
rum intercepts the request and response streams entering
and leaving a site to gauge how and when new requests
should be forwarded to the hosted services. As a result,
new services can be added, existing ones upgraded, de-
commissioned, etc. without a coordinated re-engineering
of the hosted service infrastructure.

We demonstrate the capabilities of a prototype Quo-
rum implementation by comparing it to Neptune using
a commercial Internet search service from Teoma [26].
The search service has been explicitly programmed to
use Neptune for QoS management by its authors. De-
spite its non-invasive approach, Quorum is able to im-
plement the same QoS guarantees that Neptune does in
the our experimental environment. Quorum is also able
to provide QoS to multiple services without their modifi-
cation, which is not possible with Neptune. We demon-
strate this capability using the TPC-W [28] Web trans-
action benchmark and the Teoma search service simul-
taneous in the same hosting environment. In this case,
Quorum is able to meet the necessary QoS requirements
using one-half of the resources required by a successful
over-provisioning solution.

Thus by treating the hosting site as a black-box, con-
trolling input traffic, and monitoring output traffic, Quo-
rum is able to achieve the same results as a leading in-
vasive approach while offering additional flexibility and
extensibility not previously possible. Encouraged by the
performance of our results we are currently working on
both enhancing the performance snd scalability of the
Quorum engine as well as studying its robustness in front
of highly dynamic scenarios including node failures and
hardware reconfigurations. Also we are currently explor-
ing its performance using a wider array of Internet ser-
vices and cluster architectures.
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[11] J. Blanquer and B. Özden. Fair Queuing for Aggregated
Multiple Links. In Proceedings of the ACM SIGCOMM,
San Diego, CA, August 2001.

[12] R. Braden, D. Clark, and S. Shenker. Integrated services
in the internet architecture: An overview. RFC 1633, July
1994.

[13] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfor-
mance and scalability of EJB applications. In Proceed-
ings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, Nov 2002.

[14] A. Demers, S. Keshav, and S. Shenker. Design and Sim-
ulation of a Fair Queuing Algorithm. In Proceedings of
the ACM SIGCOMM, Austin, Texas, September 1989.

[15] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and request
scheduling in e-commerce web sites. In Proceedings of
the 13th International World Wide Web Conference, New
York City, NY, USA 2004.

[16] Foundry Networks, Inc. Server Iron Internet Traffic Man-
agement. http://www.foundrynet.com.

[17] Google. Internet search engine. http://www.google.com.
[18] P. Gupta and N. McKeown. Algorithms for packet classi-

fication. IEEE Network Special Issue, march 2001.
[19] P. Hochmuth. Speedy returns are google’s

goal. Network World Fusion, Jan 2003.
http://www.nwfusion.com/news/2003/0901google.html.

[20] Netscaler, Inc. Request Switching Technology.
http://www.netscaler.com.

[21] F. Networks. Big/IP Load Balancer. http://www.f5.com.
[22] Packeteer, Inc. Application Traffic Management System.

http://www.packeteer.com/.
[23] A. K. Parekh and R. G. Gallager. A Generalized Proces-

sor Sharing Approach to Flow Control in Integrated Ser-
vices Networks-the Single Node Case. IEEE/ACM Trans-
actions on Networking, June 1993.

[24] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Re-
source Management for Cluster-based Internet Services.
In Proc. of the 5th USENIX Symposium on Operating
Systems Design and Implementation, Boston, MA, Dec.
2002.

[25] K. Shen, T. Yang, L. Chu, J. Holliday, D. Kuschner, and
H. Zhu. Neptune: Scalable Replication Management and
Programming Support for Cluster-based Network Ser-
vices. In Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco, CA,
Mar 2001.

[26] Teoma. Internet search engine. http://www.teoma.com.
[27] Apache Tomcat server. http://jakarta.apache.org/tomcat.
[28] TPC-W Servlet implementation. Tpc-w benchmark java

implementation http://mitglied.lycos.de/jankiefer/tpcw/.
[29] Transaction Processing Performance Council.

http://www.tpc.org.
[30] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Ker-

nel mechanisms for service differentiation in overloaded
Web servers. In Proceedings of the 2001 USENIX Annual
Technical Conference, Boston, Massachusetts, June 2001.

[31] M. Welsh and D. Culler. Overload management as a fun-
damental service design primitive, Saint-Emilion, France
Sept 2002.

[32] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. In
Proceedings of the Eighteenth ACM Symposium on Oper-
ating Systems Principles, Banff, Canada, Oct 2001.

[33] H. Zhu, H. Tang, and T. Yang. Demand-driven service dif-
ferentiation in cluster-based network servers. In Proceed-
ings of the IEEE INFOCOM, Anchorage, Alaska, April
2001.

14


