
Duplicate Detection in Click Streams ∗

Ahmed Metwally † Divyakant Agrawal Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara
{metwally, agrawal, amr}@cs.ucsb.edu

Abstract

We consider the problem of finding duplicates in data
streams. Duplicate detection in data streams is utilized
in various applications including fraud detection. We de-
velop a solution based on Bloom Filters [9], and discuss
the space and time requirements for running the proposed
algorithm in both the contexts of sliding, and landmark
stream windows. We run a comprehensive set of exper-
iments, using both real and synthetic click streams, to
evaluate the performance of the proposed solution. The
results demonstrate that the proposed solution yields ex-
tremely low error rates.

1 Introduction

Recently, online monitoring of data streams has emerged
as an important data management problem. This re-
search topic has its foundations and applications in many
domains, including databases, data mining, algorithms,
networking, theory, and statistics. However, new chal-
lenges have emerged. Due to their vast sizes, some stream
types should be mined fast before being deleted forever.
In general, the alphabet is too large to keep exact in-
formation for all elements. Conventional database, and
mining techniques, though effective with stored data, are
deemed impractical in this setting.

There is a growing need to develop new techniques to
cope with high-speed streams, and answer online queries.
Currently, data stream management systems are used
for monitoring click streams [37], stock tickers [13, 58],
sensor readings [10], telephone call records [19], network
packet traces [21], auction bidding patterns [4], traffic
management [5], network-aware clustering [16], and secu-
rity against DoS [16]. Golab and Ozsu review the litera-
ture in [33].

∗This work was supported in part by NSF under grants EIA
00-80134, NSF 02-09112, and CNF 04-23336.

†Part of this work was done while the first author was at Val-
ueClick, Inc.

1.1 Motivating Application

This work is primarily motivated by the setting of Inter-
net advertising commissioners, who represent the middle
persons between Internet publishers, and Internet adver-
tisers. In a standard setting, an advertiser provides the
publishers with its advertisements, and they agree on a
commission for each user action, e.g., clicking an adver-
tisement, filling out a form, bidding on an item, or making
a purchase. The publisher, motivated by the commission
paid by the advertiser, displays advertisements, text links,
or product links on its page; and uses a form of tracking
code for these advertisements on their sites to keep logs of
the traffic it drives to each advertiser’s site. On the other
end, the advertiser keeps track of the traffic that is gen-
erated by each of its publishers. Inconsistencies between
the size of the driven traffic as measured by the advertiser
and the publisher are resolved by a third tracking entity,
the advertising commissioner. Whenever a customer uses
a link, the customer is referred from the publisher’s Web
site to the servers of the advertising commissioner, who
logs the click and clicks-through the customer to the Web
site of the advertiser. The model is Illustrated in Figure 1.

Advertiser
A

Customer
C

2

P
ageP.htm

l

1

R
equest to

PageP.htm
l 6

PageA.html

5

Request to PageA.html

Cookie

Publisher
P

4
R

e
d

ir e
ct

i o
n

t o
P

a
ge

A
.h

t m
l

3
C

l ic
k

+
 C

oo
ki

e
 I

D

Advertising
Commissioner

AC

Figure 1: The Advertising Networks Model.

Since the publishers earn revenue on the traffic they
drive to the advertisers’ Web sites, there is an incentive
for them to falsely increase the number of clicks their
sites generate. This process is referred to, in [3], as click
inflation.

One of the advertising commissioner’s roles is to de-
tect any fraud taking place on either the publisher’s side

1

or the advertiser’s side. Thus, the advertising commis-
sioner should be able to tell whether the clicks generated
at the publisher’s side are authentic, or are generated by
a script running on some machines on the publisher’s end,
to claim more traffic, and thus, more revenue. In order
to do that, the advertising commissioner should be able
to track each click by the advertisement ID, and the cus-
tomer ID. The advertising commissioner tracks individual
customers, by setting cookies. Duplicate clicks within a
short period of time, a day for example, raise suspicion
on the commissioner’s side.

Classically, advertising commissioners run queries to-
wards the end of the month, when calculating the pub-
lishers’ commissions, to capture duplicate clicks within
a short period of time. Due to the large size of click
streams, such queries degrade the performance of their
databases considerably. Hence, due to monthly account-
ing constraints, this problem has to be solved on a real-
time basis.

From the above example we are motivated to solve the
problem of finding duplicates occurring in a very fast data
channel, the click stream. To the best of our knowledge,
this problem has not been addressed before.

A similar problem, the frequent elements [48], has been
proposed to search for all elements which have occurred
more than a user specified ratio of the stream. However,
the stream properties that are assumed in the context of
finding frequent elements are different from those that are
assumed for duplicate detection. In the context of dupli-
cate detection, the majority of the elements occurring in
the data stream are supposed to be distinct. That is, the
skew in the data stream is very weak. On the other hand,
in the context of finding frequent elements, the underly-
ing assumption is that a few elements, the frequent ones,
are supposed to have much higher frequencies than the
other elements. Thus, the number of distinct elements
observed in the data stream is much smaller than the size
of the stream; and the data is supposed to be more skewed
than in the case of streams queried for duplicates. The
theoretical space bound for finding frequent elements is
inversely proportional to the error, which is one tenth to
one hundredth of the user required ratio [11]. Thus, us-
ing these algorithms for duplicate detection is costly and
inefficient.

The problem could be partially solved using the algo-
rithms proposed for estimating distinct values [26, 39, 56].
However, The commissioner will have no way to prove
which clicks were fraudulent. Only through identifying
duplicate clicks and storing them for future auditing the
commissioner can be standing strong on solid ground.

We develop an efficient solution based on Bloom Filters
[9], and consider both types of stream windows, the slid-
ing, and the landmark windows. We analyze the space
and time requirements, and run a set of experiments to
evaluate the performance of our proposed solution.

1.2 Roadmap

The rest of the paper is organized as follows. Section 2
highlights the related work. In Section 3, we formalize
the problem, followed by a discussion of the preliminary
solutions in Section 4. The more efficient, and approxi-
mate solution, is presented in Section 5. We report the
results of our experiments in Section 6, and conclude in
Section 7.

2 Background and Related Work

This work touches on three main domains: management
of data stream, approximate duplicate detection, and the
security of web advertising schemes. We briefly outline
the literature in these three domains.

2.1 Management of Data Streams

Recently, data streams management has emerged as an
active research area. There have been several works for
analyzing data streams. Problems studied in this context
include approximate frequency moments [1], differences
[25], distinct values estimation [26, 39, 56], bit count-
ing [20], approximate quantiles [34, 44, 49], histograms
[36, 35], wavelet based aggregate queries [30, 50], corre-
lated aggregate queries [28], elements classification [38],
frequent elements [11, 17, 18, 21, 22, 24, 31, 41, 42, 48, 51],
and top-k queries [7, 12, 21, 29, 51].

2.2 The Security of Web Advertising
Schemes

The problem of hit shaving has been studied in [54]. Hit
shaving is another type of fraud performed by advertisers,
who do not pay commission on some of the traffic received
from publishers. Reiter et al. [54] presented a new scheme
to click-through the customers from the publisher to the
advertiser, so that the publisher can keep a more accurate
record of the traffic driven to the advertiser.

Anupam et al. [3] proposed a click inflation attack on
the pay-per-click scheme described above. The attack re-
quires the cooperation of more than one publisher to fraud
an advertiser. The attack is relatively difficult to detect,
though it leads to a relatively high click-through-rate1,
which should still raise the suspicion of the advertising
commissioners.

2.3 Duplicate Detection

The problem of finding approximate duplicate items has
been researched before in both the contexts of data
management, and Web applications. The work done in

1The click-through-rate of a publisher is the number of users
who click advertisements on the publisher’s Web site, as a ratio of
all the visitors to the Web site.

2

[2, 8, 27, 40, 46, 52, 53, 55] focused on detecting fuzzy du-
plicate records in databases. These works were primarily
motivated by data cleaning in the process of loading data
into a data warehouse. On the other end of the spec-
trum, [14, 15, 43, 45, 47, 57] were interested in detecting
duplicate documents and Web pages. This is directly ap-
plicable to eliminating duplicate pages reported by search
engines.

A work that is very close to ours was done in 1979
[6]. The work focused on using specialized hardware to
implement projection and join operators in the context
of relational databases. Duplicate elimination, a crucial
intermediate step in data processing, was implemented
using a technique very similar to ours.

3 Formalizing the Problem

The problem of duplicate detection has two basic varia-
tions, depending on the way the stream is handled. The
Duplicate Detection on a Sliding Window asks for dupli-
cate elements that have occurred in the last N elements.
An example of this query asks for the duplicate clicks
that occurred in the last 1,000,000 clicks. The Duplicate
Detection on a Landmark Window asks for duplicate ele-
ments that have occurred since the occurrence of a specific
landmark. For instance, a query could ask for the dupli-
cate clicks that have occurred since the beginning of the
current day or week.

3.1 Duplicate Detection on Sliding
Windows

The model for sliding window processing in data streams
was first introduced in [20]. The goal is to make the query
answer relevant to the last observed part of the stream.
Applying the sliding window concept to our motivating
application, N could be set large enough so that even if
duplicates occur on intervals which are more than N clicks
apart, they would have negligible effect on the commission
paid to the publisher. In addition, it is still acceptable,
from a practical perspective, that a user might click the
same advertisement, a few number of times in the span
of a long time period.

From a practical point of view, in order to slide the
window, for every new entry arriving, an old entry has to
be evicted. It is necessary to keep the latest N clicks in a
circular queue, in order to know which entry to evict [32].
In addition, the entire window has to be summarized in
a data structure that supports fast search, incorporation,
and deletion of entries.

3.2 Duplicate Detection on Landmark
Windows

Processing a stream based on landmark windows requires
handling disjoint portions of the streams, which are sepa-
rated by landmarks. Landmarks can be defined either in
terms of time, e.g., on daily or weekly basis, or in terms of
the number of elements observed so far since the previous
landmark, e.g., every 1,000,000 elements.

In this model, it is not necessary to keep the entire
window, rather a summary may be sufficient, since none
of the elements will be deleted. On the other hand, at the
beginning of every landmark window, all the structures
that hold the clicks have to be re-initialized. In addition,
the window size is not fixed, in contrast to the sliding
window model, since the window grows as more clicks are
observed.

The classical landmark window model facilitates the
computation of duplicates at the expense of the effec-
tiveness of the query. Although the landmark window is
expected to require less space, since it does not store the
entire window, but only a structure that can be queried
for duplicate clicks, it could always happen that two du-
plicate clicks, that are very close in time, are missed, be-
cause they did not occur in the same window. This can
happen if one of them is towards the end of a window,
and the second click is towards the beginning of the next
window. This is the reason landmark windows are usu-
ally set to grow in size slightly more than that of sliding
windows.

3.3 Duplicate Detection on Jumping
Windows

The jumping window model [58] is a compromise between
the landmark and the sliding window models. The basic
idea is to slide the window in jumps rather than in in-
dividual elements. The window is divided into smaller
disjoint sub-windows of size n, and a summary of each
sub-window is stored in a separate data structure. When
the data structure of the latest sub-window is populated,
its results are combined with the results of the jumping
window; and the data structure of the eldest sub-window
is deleted, and its results are deleted from the jumping
window.

The basic advantage of the jumping window model is
that it guarantees the freshness of the results, since the
queried portion of the stream is of fixed length N , and is
at most (n−1) elements behind the most recent observed
element in the stream. In addition, this model does not
require storing the whole window. However, it entails
using data structures whose results can be combined, and
subtracted efficiently.

3

4 Preliminary Algorithms

To find duplicates in a click stream, the obvious solution
is to store all the clicks, and when observing a new click,
just compare it to all the entries already stored. If the
new click is found to be a duplicate, then do not count it
towards the corresponding publisher’s commission.

The basic disadvantage of this solution is the need
to scan the entire window to tell whether a newly ob-
served click is a duplicate, or not. Thus processing a
stream/window of size N requires O(N2) comparisons to
detect duplicates. Building an index on the elements,
would reduce the search cost to O(log(N)) per element,
but on the other hand, would increase the element in-
sertion cost to O(log(N)), instead of just appending an
element in constant time.

The straightforward solution described above solves
the exact problem, but suffers from slow processing of
the data stream. The best estimate of the complex-
ity is O(N log(N)), which will not be practical for large
streams. We propose another efficient technique, which
has a constant amortized cost, does not need more space,
detects all duplicates, and produces very few false positive
errors. By false positive errors, we refer to non-duplicate
elements erroneously identified by the algorithm as dupli-
cates. We will start by proposing simpler algorithms that
will lead to the development of the efficient solution. We
will limit the discussion to handling landmark windows,
and then will extend our solution to sliding and jumping
windows in Section 5.2.

Bits 0 - 31

ID

Bit Vector

Figure 2: The bit vector solution. The ID is 32 bits long,
and the bit vector is of length 232 bits.

The first improvement on the index-based solution for
detecting duplicates in a data stream is to use a bit vec-
tor. Assume the elements of the data stream, the clicks,
are coming from an alphabet A. Then keeping a bit for
every element in A is enough to keep track of which ele-
ments have been observed in the stream by flagging their
corresponding bits to 1. Figure 2, clarifies the solution by
giving an example for the case where the ID has 32 bits,
which entails keeping a bit vector of length 232 bits. A
new element is a duplicate if its bit has been flagged 1, be-
fore. The algorithm is simple, exact, and takes O(1) steps
and space to insert a new element into the bit vector, or
to check it for duplication.

However, this simple scheme cannot be implemented
in our case. The alphabet we are dealing with in our
application is the domain of IDs of clicks. Each click

ID

Bits 0 - 15

Bits 1 - 16

Bits 15 - 30

Bits 16 - 31

Bit Vector 1 Bit Vector 16

Bit Vector 2 Bit Vector 17

Figure 3: The overlapping bit-substrings solution. The
ID is 32 bits long, and 17 bit vectors is of length 216 bits
are kept.

ID is represented by a pair of an advertisement ID, and a
user cookie ID. Click IDs are represented by 64 characters.
Thus, keeping a bit for every ID entails keeping 2512 bits
≈ 1.676 ∗ 10153 bytes, which is infeasible.

The next modification is to keep partial information,
rather than all the combinations of the alphabet. Assum-
ing an element is represented by b bits, where b is 512 in
our application, we can keep less than 2b bits, and still
get approximate results with a very low error rate. The
basic idea is to keep a bit vector of size 2p for all the
combinations of the first p bits, another bit vector for the
second p bits, and so forth, where 1 ≤ p ≤ b.

Assuming the bits of an element are labeled 0 . . . (b−1),
the first bit vector has bits for all the combinations of bits
0 . . . (p − 1). The second bit vector has bits for all the
combinations of bits 1 . . . p. Notice that the first and the
second bit vectors correspond to bits that largely overlap
in the element ID. In general, the nth bit vector has bits
for all the combinations of bits (n − 1) . . . (n + p − 2).
There are b − p + 1 bit vectors utilized.

As the stream is observed, for each element, its first p
bits will be checked if they have occurred before in the
first bit vector, then, the bit corresponding to those first
p bits will be flagged 1. The focus will be shifted by
1 bit to the bits 1 . . . p, and those bits will be checked
against the second bit vector in the same manner, and
so on. An element which has at least one substring of p
bits that never occurred before is guaranteed not to be
a duplicate. On the contrary, there is a high probability
that an element is a duplicate if it has collided on all its
substrings of length p bits.

If p = b, then this is the exact bit vector solution dis-
cussed above. Otherwise, the space requirements will
drop from 2b to 2p(b − p + 1) bits. An example of the
solution where b = 32, and p = 16 is given in Figure 3.
There are (b − p + 1) = (32 − 16 + 1) = 17 bit vectors.
The number of bits used in this solution, as a percent-
age of the number of bits used in the exact solution is
2p(b−p+1)

2b ∗100 = 216∗17
232 ∗100 = 111411200/4294967296≈

0.026%.

4

There is a tradeoff here between the rate of false pos-
itive errors reported as duplicates and the space usage.
The larger the value of p, the smaller the rate of false
positive errors, and the larger the space requirements.

Any two elements picked at random have a probability
of 2−p that they will collide in any bit vector of length
p, given that the bits are distributed uniformly. The un-
derlying idea of the algorithm is that when viewing the
ith element, it has a probability of

(
1 − (1 − 2−p)i−1

)
that

it, by chance, collides with any of the previously observed
i − 1 elements on the first p bits. It is even less probable
that an element collides with others on the first and the
second p bits. The probability gets smaller as more sub-
strings of length p bits are taken into consideration. Thus,
if the algorithm finds out that an element has collided on
all its bit-substrings of length p, for a reasonable length
of p, then most probably, this element is a duplicate.

Unfortunately, a probabilistic analysis of this scheme is
intractable. The main problem is that an element a that
collides with another element b in a bit vector n is more
likely to collides with the same element b than the rest of
the elements in the bit vectors (n− p + 1) to (n + p− 1).
For example, given that the two elements a, and b have
the same values in bits (n− 1) to (n + p− 2), then there
is a probability of 1

2 that the values of the bits starting
at n to (n + p − 1) will be equal, using the basic condi-
tional probability rule. This probability is much higher
than the probability of 2−p given above, which is the gen-
eral probability of collision between two elements in one
bit vector. We modify the algorithm once more to serve
both purposes of achieving better results, and facilitating
the probabilistic analysis. We will use the same idea of
shrinking the size of the bit vector to less than 2b. How-
ever, instead of using overlapping bit-substrings of the
IDs, we will use independent hash functions.

Utilizing independent hash functions eliminates the risk
of correlated collisions discussed above, and thus yields
better results, and facilitates the probabilistic analysis.
Interestingly, using independent hash functions makes our
solution another development of Bloom Filters [9].

5 The Bloom Filter-Based
Solution

In this section we will describe the classical Bloom Filters
and their motivating application of testing approximate
membership of elements. Then, we will discuss how to
utilize Bloom Filters in our context.

5.1 The Classical Bloom Filters

A Bloom Filter [9] is a data structure that was proposed
to detect approximate membership of elements. Given
two sets, X , and Y , the Bloom Filter algorithm would
loop on every element in set X , to check if it belongs

to set Y , too. The algorithm is probabilistic, requires
O(|X |) operations, and O(|Y |) space. A Bloom Filter
can assert that an element in X does not belong to Y ,
but cannot assert that an element in X belongs to Y .
That is, its errors are only false positive, and never false
negative. On the whole, the number of elements that
are erroneously found to belong to Y , and that actually
do not, is very small, and is inversely proportional to
the hidden constant in the big-O of the space and time
requirements.

An empty Bloom Filter is an array of M cells, with
addresses 0 . . .M − 1, that are initially zeroed. Each el-
ement, y, in Y is hashed using d independent hash func-
tions to addresses y1, y2, . . . , yd, which are set to 1, such
that 0 ≤ yi ≤ M − 1, ∀i. For each element, x, in X , its d
hash results, x1 to xd, are generated in the same manner,
and checked against the Bloom Filter that represents the
set Y . If any of the cells x1 to xd is not set to 1, then it
can be asserted that x /∈ Y . However, if all the cells x1

to xd are set to 1, there is a good probability that x ∈ Y .
The intuition is very simple, and is similar to that dis-

cussed in Section 4. The probability of a false positive is
inversely proportional to d, the number of hash functions
used, given that the space utilized grows proportionally
with d. The more hash functions used, the less it is prob-
able that a non-duplicate element will collide with other
elements on all its d hash functions.

The interesting thing about Bloom Filters is that they
do not store the elements of the set whose membership
is tested. This is very useful in cases were the IDs of
the elements are huge, like in our case. However, it is
not possible to regenerate the original set from its Bloom
Filter representation.

We summarize now the original analysis given in [9].
Assuming the d hash functions are distinct, and each al-
most uniformly distributes the hashed elements, then the
probability that a certain cell has not been set by any
of the hash functions after inserting one element in Y is
(1 − 1

M)d. After inserting all the elements in Y , then
the probability that the cell has never been set to 1 is
(1 − 1

M)d∗|Y |. Thus, the probability that it has been set
to 1 is 1 − (1 − 1

M)d∗|Y |.
When testing whether, or not, an element in X belongs

to Y , the probability that it collides on all its d hash func-
tions, without being a duplicate, is (1− (1− 1

M)d∗|Y |)d ≈
(1 − e−d∗|Y |/M)d. This probability clarifies the trade-
off. The false positive errors increase as the size of Y
increases, and decrease as the number of cells, M , in-
creases. Differentiating this probability with respect to
d, for a fixed array size, and a fixed size of Y , yields
the number of hash functions to be used to minimize the
probability, which is M

|Y | ∗ ln 2. Substituting this value
for d back in the probability of false positive errors yields
(2ln 2)M/|Y | ≈ (0.619)M/|Y |, which is a concise form for
the probability of false positive errors.

5

In the next section we will discuss how Bloom Filters
can be used to detect duplicates in data streams.

5.2 Using Bloom Filters for Duplicate
Detection in Data Streams

Bloom Filters can be used to detect duplicates in a data
stream, by assuming that set X is the last observed ele-
ment, and set Y is the rest of the data stream.

5.2.1 The General Framework

We start by allocating M bits, where M is O(N), and N is
the estimated size of the processed window. As illustrated
in Figure 4, using d = 17 independent hash functions,
we test every new element on the Bloom Filter structure
of the previously observed elements, and then insert it
into the Bloom Filter structure. Before setting any of
the d cells to 1, the cell is tested whether it has been
set before to 1, or not. The element is not counted as a
duplicate if at least 1 bit was switched from 0 to 1, and
is considered to be a duplicate otherwise. Both M and d
can be determined according to the required error rate,
and the expected window size.

ID

Hash Function 1

Hash Function 2

Hash Function 16

Hash Function 17

Bit Vector

Figure 4: The classical Bloom Filters. The ID is 32 bits
long, and 17 hash functions are used.

Bloom Filters are very concise when compared to the
basic solution using indexed storage. It does not store the
excessively long IDs of the clicks, and its false positive
errors are almost negligible. Bloom Filters’ errors do not
depend on the nature or distribution of the duplicated
elements. That is, the number of elements erroneously
identified as duplicates is the same whether one element
was duplicated a lot of times, or a lot of elements were
duplicated a few times.

The probability of outputting false positive errors can
be made very low using very limited storage. For in-
stance, based on the previous analysis, using 9.6 bits per
element in the data stream reduces the probability of out-
putting false positive errors to 1%; and using 2 bytes per
element reduces this probability to 0.046%, which is a
great achievement from a practical point of view. In ad-
dition, the IDs that are output as false positive errors
can be stored in a separate cache to verify that they are
duplicated frequently.

ID

Hash Function 1

Hash Function 2

Hash Function 16

Hash Function 17

Bit Vector 1 Bit Vector 16

Bit Vector 2 Bit Vector 17

Figure 5: Another Variation of Bloom Filters. The ID is
32 bits long, and 17 hash functions are used.

The original Bloom Filters use one hash space and
hashes all the elements onto it. However, when we de-
veloped this solution, independently of Bloom Filters, we
used separate hash spaces for different hash functions, as
sketched in Figure 5. This scheme of using hash functions
perfectly replaces the scheme of bit vectors substrings de-
scribed in Section 4, and has a similar analysis to Bloom
Filters.

Assuming d hash functions, the hash space for each
hash function will be M

d . Assuming each hash function
almost uniformly distributes the hashed elements, then
the probability that a certain cell has not been set by
any of the hash functions after inserting one element is
(1− d

M). When inserting the ith element, the probability
that the cell has never been set to 1 is (1− d

M)(i−1). Thus,
the probability that it has been set to 1 is 1−(1− d

M)(i−1).
The probability that the ith element is identified by

mistake as a duplicate, i.e., it collides on all its d hash
functions, is (1 − (1 − d

M)(i−1))d ≈ (1 − e−d∗(i−1)/M)d.
This is the same as the probability of the original Bloom
Filter.

However, having different hashing spaces assigned for
different functions results in increased server parallelism,
since the memory activation latency is minimized. The
memory activation latency, τ , is the idle time between
two accesses to the same memory module. Assuming the
availability of D memory modules, when using separate
hash spaces for different hash functions, the time wasted
for memory access latency is �d∗τ

D �. However, when using
one shared hash space for all the hash functions, the time
wasted for memory access latency is between �d∗τ

D �, and
d∗τ , depending on how the hashed-to flags are distributed
throughout the hash space.

5.2.2 Using Bloom Filters for Landmark
Windows

When used for landmark windows, the Bloom Filter
structure is re-initialized at the beginning of each land-
mark window. Interestingly, Bloom Filters are more ef-
fective when used for duplicate detection on landmark
windows than when used for approximate membership

6

testing. The basic argument is that superimposing the
last observed element on the set X and the rest of data
stream window, whose size in growing, on set Y reduces
the false positive errors dramatically. For instance, when
inserting the first element in the stream into the Bloom
Filter, the probability that it is found to be a duplicate
is 0. When inserting the second element into the Bloom
Filter, the probability that it is found to be a duplicate is
(1 − e−d/M)d. In general, when inserting the ith element
into the Bloom Filter, the probability that it is found to
be a duplicate is (1− e−d∗(i−1)/M)d. Therefore, the prob-
ability that an element is found to be a duplicate is pro-
portional to the number of elements previously inserted
into the Bloom Filter. This is because the more elements
accommodated in the Bloom Filter, the higher the prob-
ability that a hash collision occurs, and the higher the
chance that an element is identified as a duplicate.

It is easy to show that the expected number of dupli-

cates found in a landmark window of size N is
N∑

i=1

(1 −
e−d∗(i−1)/M)d, which is less than N ∗ (1− e−d∗N/M)d, the
expected error rate of Bloom Filters when testing approx-
imate set membership.

Although we have assumed that the hash functions dis-
tribute the elements uniformly, which is a difficult to re-
alize assumption, we expect this will be balanced by the
fact that the probability of false positive errors is lower in
the early parts of the stream than the estimated bound.
The practical performance of the Bloom Filters will be
compared to its expected theoretical bound in Section 6.

5.2.3 Using Bloom Filters for Sliding Windows

The main challenge when applying Bloom Filters to slid-
ing window streams is that the structure does not store
the IDs of the elements observed so far in the stream, and
thus, it is difficult to delete elements which have been al-
ready inserted into the Bloom Filter, and is now expiring,
i.e., sliding out of the sliding window.

We use a modification of Bloom Filters2. The purpose
of this modification is to enable Bloom Filters to imple-
ment the delete operation, without necessarily storing the
IDs of the elements inserted into a Bloom Filter structure.
The underlying idea is to replace the array of bits with
an array of counters, of the same size. For every element
that is inserted, increment the d counters to which the
element hashes. To delete an element, decrement the d
counters to which the element hashes.

An integer in a cell represents the number of elements
which hash to this cell. A cell is decremented to 0, only if
all the elements that hashed to this cell expire, i.e., slide
out of the current sliding window, which is equivalent
to deleting all those obsolete elements from the Bloom
Filter structure. Therefore, we will call this solution the

2The same idea was proposed by [23] to modify Bloom Filters
for implementing a scalable distributed cache sharing protocol.

counting Bloom Filters. Thus, it is possible to update the
Bloom Filter structure as new elements are added to the
sliding window, and as aging elements are deleted.

5.2.4 Using Bloom Filters for Jumping Windows

Bloom Filters have the following nice property that makes
them usable to detect duplicates in jumping window
streams. Two Bloom Filter structures are, in abstract,
two bit arrays. Thus, it is possible to perform some ba-
sic binary operations on them, such as OR, given that
they use the same hash functions. OR-ing two Bloom
Filter structures results in a new one that accommodates
all the elements that were inserted into the two original
structures.

Similarly, the counting Bloom Filter structures pro-
posed in Section 5.2.3 can be added and subtracted.
Adding two Bloom Filter structures, A and B, results in
a new one, (A + B), that accommodates all the elements
originally inserted into A and B. Since the hash space
consists of counters, rather than bits, each counter in A
(B) corresponds to all the occurrences of elements that
hash to this counter in A (B). Similarly, each counter in
the Bloom Filter structure (A+B) corresponds to all the
occurrences of elements that hash to this counter in both
A and B. Notice that the operation A−B is meaningless,
unless all the elements in B have also occurred in A.

Thus, it is possible to represent every sub-windows as
a Bloom Filter structure. When a new sub-window is
populated, its Bloom Filter representation is combined
with the main Bloom Filter structure that represents the
entire jumping window, and the eldest window is sub-
tracted from the main Bloom Filter structure. Combining
the two Bloom Filter structures is carried out by adding
their counters; and deleting the Bloom Filter structure
that correspond to the expiring sub-window is performed
by subtracting its counters from the main Bloom Filter
structure. Thus, the Bloom Filter representation of the
jumping window is always correct.

6 Experimental Results

In order to evaluate how effective the proposed solution
is, we ran a comprehensive set of experiments. The ex-
periments used a real click stream data collected at Com-
mission Junction, a ValueClick company. In addition we
ran a set of experiments on synthetic data. The results
are analyzed in this section.

6.1 Experimental Setup

In a preliminary phase of experiments, we used a combi-
nation of the user IP address and the advertisement ID,
as the click ID. Both components of the click ID were
represented as 32-bit integers, and thus, the click ID was
represented as 64-bit integers.

7

The preliminary thinking was that if some clicks on the
same advertisement come from the same IP address more
than once in a short period, then this reveals some kind
of fraud taking place at the publisher’s site. However,
since Network Address Translation (NAT) boxes can hide
hundreds to thousands of computers under the same IP
address, we found this scheme to be overly aggressive in
terms of detecting fraud. The other option was to use the
cookie ID, which is set on the user Internet Browser to
be able to track individual users. Hence, individual clicks
were identified using 64-byte identifiers.

We are interested in the accuracy of Bloom Filters when
detecting duplicates. To calculate the accuracy, we mea-
sure the error rate, the number of non-duplicate clicks
identified as duplicates, as a ratio of the number of non-
duplicate clicks in the entire stream. We evaluated the
effectiveness of Bloom Filters for solving the problem of
duplicate detection on data streams with different win-
dow models. We carried out the experiments on both
landmark and jumping windows. For landmark windows,
measuring the error rate is straightforward. However, for
jumping windows, we measure the error rate after each
jump, and calculate the mean error rate throughout the
whole stream.

We did not test the Bloom Filters approach on slid-
ing windows. It is infeasible to measure the accuracy of
the solution, since that would require exact identification
of all duplicates for every window. For instance, if the
stream size is 5,000,000, and the window size is fixed to
1,000,000 clicks, then the number of windows that cover
the given stream is 5,000,000 - 1,000,000 + 1 = 4,000,001
windows. Thus, to check the error rate for such solution,
the exact solution has to be run 4,000,001 times, and
the results should be compared to those of the approx-
imate solution. Thus, we only run experiments on the
landmark and jumping windows. For jumping windows,
using a small sub-window will result in an overwhelming
number of windows. To reduce this problem, we limit
the experiments to only a small number of overlapping
windows.

6.2 Goals of the Experiments

The underlying idea of using Bloom Filters is to exploit
the tradeoff between space and time on one hand, and the
error rate on the other hand. The more hash functions
used to test for duplicates, the larger the required space,
and the smaller the probability of producing false positive
errors. However, since the space usage of Bloom Filters is
a constant multiple of the number of hash functions used,
throughout the experiments, we use the number of hash
functions as the independent axis in our graphs, and will
report the ratio between the number of hash functions
and the size of the hash space used. Hence, the reader
can recognize the tradeoff between the space usage and
the error rate.

In addition, the experiments validate our arguments in
Section 5.2.2. As we mentioned above, we expect that the
practical error rate for duplicate detection, in landmark
and jumping windows, is close to the theoretical error rate
calculated in Section 5.1, if not better. The experiments
support this proposition.

6.3 Evaluating the Tradeoff Between
the Number of Hash Functions and
the Error Rate

In this subsection we sketch and discuss the results of
both the real and the synthetic data experiments.

6.3.1 Synthetic Data Results

We conducted experiments using both landmark and
jumping windows on streams of synthetic data to illus-
trate how the theoretical and the practical error rates
vary with the number of hash functions. We use a syn-
thetic stream of length 1,000,000 clicks for the landmark
window experiments. The clicks are distinct, i.e., there
are no duplicates in the data. Thus, all the duplicates
output by the algorithm are erroneous. For the jump-
ing window experiments, each jumping window consists
of 200,000 distinct clicks, and each sub-window is of size
50,000 clicks. Therefore, the number of overlapping win-
dows is 8.

A Comparison Between the Theoretical and Practical
Error Rates on Landmark Windows Using Synthetic

Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4 5 6 7 8 9 10

Number of Hash Functions

E
rr

o
r

R
at

e

Practical Error Rate Theoretical Error Rate

Figure 6: Comparing the Theoretical and the Practical
Error Rates of Bloom Filters for Duplicate Detection on
Landmark Window Using a Synthetic Click Stream

The experimental results of the jumping window, and
the landmark window are sketched in Figures 6 and 7, re-
spectively. For landmark windows, the ratio between the
hash function to the number of flags used is 1:1,442,695.
For jumping windows, the ratio between the hash func-
tion to the number of counters used is 1:288,539. The
hash space used is proportional to the size of the window
handled.

As is clear from Figure 6, the error rate of Bloom Fil-
ters is 4 to 8 times lower than the theoretical error rate.
The error rate ratio increased as the number of hash func-
tions increased. However, the tradeoff relation still exists
between the number of hash functions used and the error

8

A Comparison Between the Theoretical and Practical
Error Rates on Jumping Windows Using Synthetic Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4 5 6 7 8 9 10

Number of Hash Functions

E
rr

o
r

R
at

e

Practical Error Rate Theoretical Error Rate

Figure 7: Comparing the Theoretical and the Practical
Error Rates of Bloom Filters for Duplicate Detection on
Jumping Window Using a Synthetic Click Stream

A Comparison Between the Theoretical and Practical
Error Rates on Landmark Windows Using Real Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4 5 6 7 8 9 10

Number of Hash Functions

E
rr

o
r

R
at

e

Practical Error Rate Theoretical Error Rate

Figure 8: Comparing the Theoretical and the Practical
Error Rates of Bloom Filters for Duplicate Detection on
Landmark Window Using a Real Click Stream

rate of the Bloom Filters. The same results hold for the
jumping window experiments. From Figure 7, the error
rate of Bloom Filters is also 4 to 8 times lower than the
theoretical error rate.

6.3.2 Real Data Results

The experiments were run on a clicks stream collected on
August 30, 2004. The stream was of size 5,583,301 clicks.
Each click had a 64 character identifier, which is com-
posed of an advertisement ID, and a user cookie ID. The
stream has 4,093,573 distinct elements, and 1,489,728 du-
plicates. The duplicates were not uniformly distributed,
but rather some elements were duplicated more than oth-
ers. The most duplicated element occurred 10,781 times,
and understandably, was identified as fraudulent. The
second most duplicated element had 4,487 occurrences,
and was also flagged as being fraudulent.

To evaluate the tradeoff between the number of hash
functions and the error rate, we conducted a set of ex-
periments using both landmark and jumping windows.
For the landmark window experiments, we use the whole
stream as the dataset. For the jumping window exper-
iments, each jumping window is of size 2,000,000 clicks,
and each sub-window is of size 500,000 clicks, and we limit
the number of windows to 4.

A Comparison Between the Theoretical and Practical
Error Rates on Jumping Windows Using Real Data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4 5 6 7 8 9 10

Number of Hash Functions

E
rr

o
r

R
at

e

Practical Error Rate Theoretical Error Rate

Figure 9: Comparing the Theoretical and the Practical
Error Rates of Bloom Filters for Duplicate Detection on
Jumping Window Using a Real Click Stream

The experimental results of the landmark window are
sketched in Figure 8, while those of the jumping window
experiments are sketched in Figure 9. For landmark win-
dows, the ratio between the hash function to the number
of flags used is 1:5,905,777. For jumping windows, the ra-
tio between the hash function to the number of counters
used is 1:2,177,154, on average, depending on the number
of distinct elements in the stream window. Notice that
the ratio between the hash function to the size of the hash
space is proportional to the number of distinct elements
in the stream/window.

From Figure 8, it is clear that the error rate of Bloom
Filters is much lower than the theoretical error rate,
though the tradeoff relation still exists between the num-
ber of hash functions used and the error rate.

From Figure 9, it is noteworthy that the practical error
rate of landmark window processing is lower than that for
handling jumping windows. Most probably this is due to
the nature of the real click stream, since that was not the
case for synthetic data.

7 Discussion

In this paper, we have introduced the problem of finding
duplicates in data streams, to detect fraud in advertise-
ment networks. To the best of our knowledge, no similar
work has been done before. A solution based on Bloom
Filters [9] was proposed, and was applied to the moti-
vating application of detection fraudulent hit inflation in
advertising networks.

Interestingly, the idea of independent hashing employed
in Bloom Filters is more effective when used for duplicate
detection than when used for approximate membership
testing, which is the motivating application for the origi-
nal Bloom Filter. We ran a set of experiments using both
real and synthetic data. The results demonstrated that
applying the scheme of independent hashing to duplicate
detection in click streams yields practical error rates that
are lower than the theoretical error rates. The reason
is that the Bloom Filter structure is not fully populated

9

throughout the landmark or jumping windows. Hence,
it can be deduced that using the theoretically optimum
number of hash functions does not necessarily yield the
least error rate. Thus, in the cases of landmark or jump-
ing windows, it could be advisable to use slightly more
hash functions than the theoretical optimum.

It could be argued that finding duplicates in click
streams in the way discussed above is not effective for de-
tecting the hit inflation attack. The fraudulent publisher
could modify the script to delete the cookies every time it
simulates a click on the advertisement. Thus, every time
the script simulates a click, the advertising commissioner
will detect no cookie, and will assign a new cookie ID.
Thus the proposed duplicate detection technique will not
detect this variation of attack, since the cookie ID is a
part of the click ID.

The solution for this attack variation is very simple. If
the publisher runs such a modified script, then the ad-
vertising commissioner will notice a suspicious number
of IDs being assigned to a specific IP address at a fast
rate, and for a long period of time. This could not be a
normal situation, since the number of computers behind
any NAT box is finite. Therefore, the advertising com-
missioner needs to keep track of the IP addresses that are
assigned extremely large numbers of cookie IDs. This is a
problem of detecting frequent elements in data streams,
which is already a solved problem, as discussed in Sec-
tion 2.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The Space
Complexity of Approximating the Frequency Mo-
ments. In Proceedings of the 28th ACM STOC Sym-
posium on the Theory of Computing, pages 20–29,
1996.

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating Fuzzy Duplicates in Data Warehouses.
In Proceedings of the 28th ACM VLDB International
Conference on Very Large Databases, pages 586–597,
2002.

[3] V. Anupam, A. Mayer, K. Nissim, B. Pinkas, and
M. Reiter. On the Security of Pay-Per-Click and
Other Web Advertising Schemes. In Proceedings
of the 8th International Conference on World Wide
Web, pages 1091–1100, 1999.

[4] A. Arasu, S. Babu, and J. Widom. CQL: A Language
for Continuous Queries over Streams and Relations.
In Proceedings of the 9th DBPL International Con-
ference on Data Base and Programming Languages,
pages 1–11, 2003.

[5] A. Arasu, S. Babu, and J. Widom. The CQL Con-
tinuous Query Language: Semantic Foundations and

Query Execution. Technical Report 2002-67, Stan-
ford University, 2003.

[6] E. Babb. Implementing a Relational Database by
Means of Specialized Hardware. ACM Transactions
on Database Systems, 4(1):1–29, 1979.

[7] B. Babcock and C. Olston. Distributed Top-k Mon-
itoring. In Proceedings of the 22nd ACM SIGMOD
International Conference on Management of Data,
pages 28–39, 2003.

[8] M. Bilenko and R. Mooney. Adaptive Duplicate De-
tection Using Learnable String Similarity Measures.
In Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 39–48, 2003.

[9] B. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[10] P. Bonnet, J. Gehrke, and P. Seshadri. Towards
Sensor Database Systems. In Proceedings of the
2nd IEEE MDM International Conference on Mo-
bile Data Management, pages 3–14, 2001.

[11] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds
for Frequency Estimation of Packet Streams. In Pro-
ceedings of the 10th SIROCCO International Collo-
quium on Structural Information and Communica-
tion Complexity, pages 33–42, 2003.

[12] M. Charikar, K. Chen, and M. Farach-Colton. Find-
ing Frequent Items in Data Streams. In Proceed-
ings of the 29th ICALP International Colloquium on
Automata, Languages and Programming, pages 693–
703, 2002.

[13] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A Scalable Continuous Query System for
Internet Databases. In Proceedings of the 19th ACM
SIGMOD International Conference on Management
of Data, pages 379–390, 2000.

[14] A. Chowdhury, O. Frieder, D. Grossman, and M. Mc-
Cabe. Collection Statistics for Fast Duplicate Docu-
ment Detection. ACM Transactions on Information
Systems, 20(2):171–191, 2002.

[15] J. Conrad, X. Guo, and C. Schriber. Online Dupli-
cate Document Detection: Signature Reliability in
a Dynamic Retrieval Environment. In Proceedings
of the 12th ACM CIKM International Conference
on Information and Knowledge Management, pages
443–452, 2003.

[16] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Finding Hierarchical Heavy Hitters in Data

10

Streams. In Proceedings of the 29th ACM VLDB In-
ternational Conference on Very Large Data Bases,
pages 464–475, 2003.

[17] G. Cormode, F. Korn, S. Muthukrishnan, and D. Sri-
vastava. Diamond in the Rough: Finding Hierar-
chical Heavy Hitters in Multi-Dimensional Data. In
Proceedings of the 23rd ACM SIGMOD International
Conference on Management of Data, pages 155–166,
2004.

[18] G. Cormode and S. Muthukrishnan. What’s Hot and
What’s Not: Tracking Most Frequent Items Dynami-
cally. In Proceedings of the 22nd ACM PODS Sympo-
sium on Principles of Database Systems, pages 296–
306, 2003.

[19] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and
F. Smith. Hancock: A Language for Extracting Sig-
natures from Data Streams. In Proceedings of the 6th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 9–17, 2000.

[20] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining Stream Statistics over Sliding Windows.
In Proceedings of the 13th ACM SIAM Symposium
on Discrete Algorithms, pages 635–644, 2002.

[21] E. Demaine, A. Lopez-Ortiz, and J. Munro. Fre-
quency Estimation of Internet Packet Streams with
Limited Space. In Proceedings of the 10th ESA
Annual European Symposium on Algorithms, pages
348–360, 2002.

[22] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the Ele-
phants, Ignoring the Mice. ACM Transactions on
Computer Systems, 21(3):270–313, 2003.

[23] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
Cache: a Scalable Wide-Area Web Cache Sharing
Protocol. IEEE/ACM Transactions on Networking,
8(3):281–293, 2000.

[24] M. Fang, S. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. Ullman. Computing Iceberg Queries
Efficiently. In Proceedings of the 24th ACM VLDB
International Conference on Very Large Data Bases,
pages 299–310, 1998.

[25] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An Approximate L1-Difference Al-
gorithm for Massive Data Streams. In Proceedings of
40th FOCS Annual Symposium on Foundations of
Computer Science, pages 501–511, 1999.

[26] P. Flajolet and G. Martin. Probabilistic Counting
Algorithms. Journal of Computer and System Sci-
ences, 31:182–209, 1985.

[27] V. Ganti, S. Chaudhuri, and R. Motwani. Robust
Identification of Fuzzy Duplicates. In Proceedings
of the 21st IEEE ICDE International Conference on
Data Engineering, 2005.

[28] J. Gehrke, F. Korn, and D. Srivastava. On Com-
puting Correlated Aggregates Over Continual Data
Streams. In Proceedings of the 20th ACM SIGMOD
International Conference on Management of Data,
pages 13–24, 2001.

[29] P. Gibbons and Y. Matias. New Sampling-Based
Summary Statistics for Improving Approximate
Query Answers. In Proceedings of the 17th ACM
SIGMOD International Conference on Management
of Data, pages 331–342, 1998.

[30] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries. In
Proceedings of the 27th ACM VLDB International
Conference on Very Large Data Bases, pages 79–88,
2001.

[31] L. Golab, D. DeHaan, E. Demaine, A. Lopez-Ortiz,
and J. Munro. Identifying Frequent Items in Sliding
Windows over OnLine Packet Streams. In Proceed-
ings of the 1st ACM SIGCOMM Internet Measure-
ment Conference, pages 173–178, 2003.

[32] L. Golab, S. Garg, and M. Ozsu. On Indexing Slid-
ing Windows over On-Line Data Streams. In Pro-
ceedings of the 9th EDBT International Conference
on Extending Database Technology, pages 712–729,
2004.

[33] L. Golab and M. Ozsu. Issues in Data Stream Man-
agement. ACM SIGMOD Record, 32(2):5–14, 2003.

[34] M. Greenwald and S. Khanna. Space-Efficient Online
Computation of Quantile Summaries. In Proceedings
of the 19th ACM SIGMOD International Conference
on Management of Data, pages 58–66, 2001.

[35] S. Guha, P. Indyk, M. Muthukrishnan, and
M. Strauss. Histogramming Data Streams with Fast
Per-Item Processing. In Proceedings of the 29th
ICALP International Colloquium on Automata, Lan-
guages and Programming, pages 681–692, 2002.

[36] S. Guha, N. Koudas, and K. Shim. Data-Streams and
Histograms. In Proceedings of the 33rd ACM STOC
Symposium on the Theory of Computing, pages 471–
475, 2001.

[37] S. Gunduz and M. Ozsu. A Web Page Predic-
tion Model Based on Click-Stream Tree Represen-
tation of User Behavior. In Proceedings of the 9th

11

ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 535–540,
2003.

[38] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In Proceedings of the ACM SIG-
COMM International Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication, pages 147–160, 1999.

[39] P. Haas, J. Naughton, S. Sehadri, and L. Stokes.
Sampling-Based Estimation of the Number of Dis-
tinct Values of an Attribute. In Proceedings of the
21st ACM VLDB International Conference on Very
Large Data Bases, pages 311–322, 1995.

[40] X. Jiang and D. Mojon. Filtering Duplicate Publica-
tions in Bibliographic Databases. In Proceedings of
the 1st NDDL International Workshop on New De-
velopments in Digital Libraries, pages 79–88, 2001.

[41] C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dy-
namically Maintaining Frequent Items over a Data
Stream. In Proceedings of the 12th ACM CIKM In-
ternational Conference on Information and Knowl-
edge Management, pages 287–294, 2003.

[42] R. Karp, S. Shenker, and C. Papadimitriou. A
Simple Algorithm for Finding Frequent Elements in
Streams and Bags. ACM Transactions on Database
Systems, 28(1):51–55, 2003.

[43] D. Lee and J. Hull. Duplicate Detection in Symbol-
ically Compressed Documents. In Proceedings of the
5th ICDAR International Conference on Document
Analysis and Recognition, pages 305–308, 1999.

[44] X. Lin, H. Lu, J. Xu, and J. Yu. Continuously Main-
taining Quantile Summaries of the Most Recent N
Elements over a Data Stream. In Proceedings of the
20th IEEE ICDE International Conference on Data
Engineering, pages 362–374, 2004.

[45] D. Lopresti. Models and Algorithms for Duplicate
Document Detection. In Proceedings of the 5th IC-
DAR International Conference on Document Analy-
sis and Recognition, pages 297–300, 1999.

[46] W. Low, M. Lee, and T. Ling. A Knowledge-Based
Approach for Duplicate Elimination in Data Clean-
ing. Information Systems Journal, 26(8):585–606,
2001.

[47] G. Lucca, M. Penta, and A. Fasolino. An Approach
to Identify Duplicated Web Pages. In Proceedings of
26th COMPSAC International Computer Software
and Applications Conference, pages 481–486, 2002.

[48] G. Manku and R. Motwani. Approximate Frequency
Counts over Data Streams. In Proceedings of the
28th ACM VLDB International Conference on Very
Large Data Bases, pages 346–357, 2002.

[49] G. Manku, S. Rajagopalan, and B. Lindsay. Ran-
dom Sampling Techniques for Space Efficient Online
Computation of Order Statistics of Large Datasets.
In Proceedings of the 18th ACM SIGMOD Interna-
tional Conference on Management of Data, pages
251–262, 1999.

[50] Y. Matias, J. Vitter, and M. Wang. Dynamic Mainte-
nance of Wavelet-Based Histograms. In Proceedings
of the 26th ACM VLDB International Conference on
Very Large Data Bases, pages 101–110, 2000.

[51] A. Metwally, D. Agrawal, and A. El Abbadi. Effi-
cient Computation of Frequent and Top-k Elements
in Data Streams. In Proceedings of the 10th ICDT
International Conference on Database Theory, pages
398–412, 2005.

[52] A. Monge. Matching Algorithms within a Duplicate
Detection System. IEEE Data Engineering Bulletin,
23(4):14–20, 2000.

[53] A. Monge and C. Elkan. An Efficient Domain-
Independent Algorithm for Detecting Approximately
Duplicate Database Records. In Proceedings of
ACM SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery, pages 23–
29, 1997.

[54] M. Reiter, V. Anupam, and A. Mayer. Detecting
Hit-Shaving in Click-Through Payment Schemes. In
Proceedings of the 3rd USENIX Workshop on Elec-
tronic Commerce, pages 155–166, 1998.

[55] Z. Tian, H. Lu, W. Ji, A. Zhou, and Z. Tian. An N-
gram-Based Approach for Detecting Approximately
Duplicate Database Records. International Journal
on Digital Library, 3(4):325–331, 2002.

[56] K. Whang, B. Vander-Zanden, and H. Taylor.
A Linear-Time Probabilistic Counting Algorithm
for Database Applications. ACM Transactions on
Database Systems, 15:208–229, 1990.

[57] S. Ye, R. Song, J. Wen, and W. Ma. A Query-
Dependent Duplicate Detection Approach for Large
Scale Search Engines. In Proceedings of the 6th Asia-
Pacific Web Conference, pages 48–58, 2004.

[58] Y. Zhu and D. Shasha. StatStream: Statistical Mon-
itoring of Thousands of Data Streams in Real Time.
In Proceedings of the 28th ACM VLDB International
Conference on Very Large Data Bases, pages 358–
369, 2002.

12

