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Abstract

Emerging video surveillance, large-scale sensor net-
works, and storage-bound Web applications require
large, high-performance, and reliable storage systems
with high data-throughput as well as short response
times for interactive requests. These conflicting require-
ments call for quality of service (QoS) support. These
storage systems are often implemented using Redun-
dant Arrays of Independent Disks (RAID). In this pa-
per we investigate the effectiveness of preemptive disk-
scheduling algorithms to achieve better QoS. We present
an architecture for QoS-aware RAID systems based on
Semi-preemptible IO [5]. We showwhenand how to
preempt IOs to improve the overall QoS of the RAID.
Using our simulator for preemptible RAID systems, we
evaluate the benefits and estimate the overhead of the
proposed approach.

1 Introduction

Emerging applications such as video surveillance, large-
scale sensor networks, storage-bound Web applica-
tions, and virtual reality require high-capacity, high-
bandwidth RAID storage to support high-volume IOs.
All these applications typically access large sequential
data-segments to achieve high disk throughput. In ad-
dition to high-throughput non-interactive traffic, these
applications also service a large number of interactive
requests, requiring short response time. The deploy-
ment of high-bandwidth networks promised by research
projects such as OptIPuter[19] will further magnify the
access-time bottleneck of a remote RAID store, in-
evitably making the access-time reduction increasingly
important.

What is the worst-case disk-access time, and how can it
be mitigated? On an idle disk, the access time is com-
posed of a seek and a rotational delay. However, when
the disk is servicing an IO, a new interactive IO, requir-
ing short response time, must wait at least until after the
ongoing IO has been completed. For the applications
mentioned earlier, the typical IO sizes are of the order of

a few megabytes. For example, while concurrently ser-
vicing interactive queries, the Google File System [10]
stores data in64 MB chunks and video surveillance sys-
tems [3, 18] record video segments of several megabytes
each. Another example is a virtual-reality flight simu-
lator from the TerraFly project [2], which continuously
streams the image data for multiple users from their
database of satellite images. Simultaneously, the system
must support interactive user operations.

In this paper, we introduce preemptive RAID schedul-
ing, or Praid. In Semi-preemptible IO [5] we inves-
tigated the preemptibility of disk access. In addition
to Semi-preemptible IO,Praid provides 1)preemption
mechanisms to allow the ongoing IOs to be preempted,
and 2)resumptionmechanisms to resume preempted IOs
on same or different disks. We also propose schedul-
ing policies to decide whether and when to preempt, for
maximizing theyield, or the total value, of the schedule.
Since the yield of an IO is application- and user-defined,
our scheduler maps external value propositions to inter-
nal yields, producing a schedule that can maximize total
external value for all IOs, pending and current.

1.1 Illustrative Example

We now present an example to show how preemptive
scheduling works, and why it can outperform a tradi-
tional priority-based scheduling policy. Suppose that the
disk is servicing a long sequential write when a higher
priority read IO arrives. The new IO can arrive at either
time t1 or t2, as depicted in Figure 1. If the write IO
has been buffered in a non-volatile RAID buffer1, the IO
can be preempted to service the new request. The pre-
empted write IO is delayed, to be serviced at a later time.
When the write IO is resumed, additional disk overhead
is incurred. We refer to this overhead as apreemption
overhead.

Now, a simple priority-based scheduler will always pre-
empt the long sequential write access (and incur a pre-

1Most current RAID systems are equipped with a large non-volatile
buffer. Write IOs are reported to the operating system as serviced, as
soon as the IO data is copied into this buffer.
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Figure 1: Sequential disk access.

emption overhead) regardless of whether the read IO ar-
rives at timet1 or t2. However, preempting the write ac-
cess att2 may not be profitable, since the write is nearly
completed. Such a preemption is likely to be counter-
productive—not gaining much in response time, but in-
curring preemption overhead. OurPraid scheme is able
to discern whether and when a preemption should take
place.

The above example shows just one simple scenario
where additional mechanisms can lead to performance
gains for RAID systems. In the rest of the paper, we
will detail our preemption mechanisms and scheduling
policies.

1.2 Contributions
In addition to the overall approach, the specific contri-
butions of this paper can be summarized as follows:

• Preemption mechanisms.We introduce two meth-
ods to preempt disk IOs in RAID systems—JIT-
preemption and JIT-migration. Both methods are
used by the preemptive schedulers (presented in
this paper) to simplify preemption decisions.

• Preemptible RAID policies.We propose schedul-
ing methods which aim to maximize the total QoS
value (each IO is tagged with a yield function) and
use this metric to decide whether IO preemption is
beneficial or not.

• System architecture for preemptible RAID sys-
tems.We introduce an architecture for QoS-aware
RAID systems based on the preemptible frame-
work. We implement a simulator for these systems
(PraidSim) that is used in evaluating our approach.

The rest of this paper is organized as follows: Section 2
introduces the preemption methods used for preemptive
RAID scheduling. Section 3 presents the preemptible-
RAID system architecture and the scheduling frame-
work. In Section 4, we present our experimental envi-
ronment and evaluate different scheduling approaches
using simulation. In Section 5 we present related re-
search. We make concluding remarks and suggest direc-
tions for future work in Section 6.

2 Mechanisms
In this section we introduce methods for IO preemption
and resumption. We first recap Semi-preemptible IO [5]

in Section 2.1. We then propose the three mechanisms
for IO preemption: 1) JIT-preemption with IO resump-
tion at the same disk, 2) JIT-preemption with migra-
tion of the ongoing IO to the different disk (favoring the
newly arrived IO), and 3) preemption with JIT-migration
of the ongoing IO (favoring the ongoing IO).

2.1 Semi-preemptible IO
Semi-preemptible IO[5] maps each IO request into
multiple fast-executing (and hence short-duration) disk
commands using three methods. (The ongoing IO re-
quest can be preempted between these disk commands.)
Each of these three methods addresses the reduction of
one of the following IO components:Ttransfer (denot-
ing transfer time),Trot (denoting rotational delay), and
Tseek (denoting seek time).

1. ChunkingTtransfer. A large IO transfer is divided
into a number of small chunk transfers, and preemp-
tion is made possible between the small transfers. If
the IO is not preempted between the chunk transfers,
chunking does not incur any overhead. This is due to
the prefetching mechanism in current disk drives.

2. PreemptingTrot. By performing just-in-time (JIT)
seek for servicing an IO request, the rotational delay
at the destination track is virtually eliminated. The
pre-seek slack time thus obtained is preemptible. This
slack can also be used to perform prefetching for the
ongoing IO request, or/and to perform seek splitting.

3. SplittingTseek. Semi-preemptible IO splits a long
seek into sub-seeks, and permits preemption between
two sub-seeks.

IO1 IO2
timedisk d1

regions
Fully preemptible

Preemption points

...

Figure 2: Possible preemption points for semi-
preemptible IO.

Figure 2 shows the possible preemption points while ser-
vicing a semi-preemptible IO. Preemption is possible
only after completion of any disk command or during
the disk idle time. The regions before the JIT-seek op-
eration are fully preemptible (since no disk command is
issued). The seek operations are the least preemptible,
and the data transfer phase is highly preemptible (pre-
emption is possible after servicing each chunk, which is
on the order of0.5 ms).2

2If we know in advance when to preempt the ongoing IO, we can
choose the size for the last data-transfer chunk before preemption, and
further tune the desired preemption point.
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2.2 JIT-preemption

When the disk scheduler decides that preempting and
delaying an ongoing IO would yield a better over-
all schedule, the IO should be preempted usingJIT-
preemption. This is a local decision, meaning that a re-
quest for the remaining portion of the preempted IO is
placed back in the local queue, and resumed later on the
same disk (or dropped completely3).

Definition 2.2: JIT-preemptionis the method for pre-
empting of an ongoing semi-preemptible IO at the points
that minimize the rotational delay at the destination track
(for the higher-priority IO which is serviced next). The
scheduler decides when to preempt the ongoing IO us-
ing the knowledge about the available JIT-preemption
points. These points are roughly one disk rotation apart.

Preemption: The method relies on JIT-seek (described
in Semi-preemptible IO [5]), which requires rotational
delay prediction (also used in other disk schedulers [12,
14]). JIT-preemption is similar to free-prefetching [14].
However, if the preempted IO will be completed later,
then the JIT-preemption always yields useful data trans-
fer (prefetching may or may not be useful).4

IO2

IO1 IO2
timedisk d1

arrives

T rot

Figure 3: Possible JIT-preemption points.

Figure 3 depicts the positions of possible JIT-preemption
points. If IO1 is preempted anywhere between two ad-
jacent such points, the resulting service time forIO2

would be exactly the same as if the preemption is de-
layed until the next possible JIT-preemption point. This
is because the rotational delay at the destination track
varies depending on when the seek operation starts. The
rotational delay is minimal at the JIT-preemption points,
which are roughly one disk rotation apart.

IO1 IO2

IO2

timedisk d1

JIT−seek

IO1’
Preemption
overhead

arrives

Figure 4: JIT-preemption during data transfer.

3For example, the scheduler may drop unsuccessful speculative
reads, cache-prefetch operations, or preempted IOs whose deadlines
have expired.

4Another difference is that JIT-preemption can also be used for
write IOs, although its implementation outside of disk firmware is
more difficult for write IOs than it is for the read IOs [5].

Figure 4 depicts the case when the ongoingIO1 is pre-
empted during its data transfer phase in order to ser-
vice IO2. In this case, the first available JIT-preemption
point is chosen. The white regions represent the access-
time overhead (seek time and rotational delay for an IO).
Since JIT-seek minimizes rotational delay forIO2, its
access-time overhead is reduced for the case with JIT-
preemption (compared to the no-preemption case de-
picted in Figure 3).

Resumption: The preempted IO is resumed later at the
same disk. The preemption overhead (depicted in Fig-
ure 4) is the additional seek time and rotational delay re-
quired to resume the preemptedIO1. Depending on the
scheduling decision,IO1 may be resumed immediately
after IO2 completes, at some later time, or never (it is
dropped and does not complete). We explain scheduling
decisions in detail later in Section 3.3.

2.3 JIT-preemption with Migration

RAID systems duplicate data for deliberate redundancy.
If an ongoing IO can also be serviced at some other disk
which holds a copy of the data, the scheduler has the op-
tion to preempt the IO and migrate its remaining portion
to the other disk. In the traditional static RAIDs, this
situation can happen in RAID levels 1 and 0/1 [1] (mir-
rored or mirrored/striped configuration). It might also
happen in reconfigurable RAID systems (for example,
HP AutoRAID [26]), in object-based RAID storage [15],
or in non-traditional large-scale software RAIDs [10].

Definition 2.3: JIT-preemption-with-migrationis the
method for the preemption of the ongoing IO and its mi-
gration to a different disk in a fashion that minimizes the
service time for newly arrived IO.

Preemption: For preemption, this method relies on the
previously described JIT-preemption. Figure 5 depicts
the case when it is possible to use JIT-preemption to
promptly serviceIO2, while migratingIO1 to another
disk. Preemption overhead is in the form of additional
seek time and rotational delay required for the comple-
tion of IO1 at the replica disk.

IO1 IO2

timeddisk 2

Preemption

timedisk d1

Preemption overhead

IO1’

Figure 5: JIT-preemption with migration.
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Resumption: The preempted IO is resumed later at the
disk to which it was migrated. The preempted IO enters
the scheduling queue of the mirror disk and is serviced
according to the single-disk scheduling policy. The pre-
emption overhead exists only at the mirror disk. This
suggests that this method may be able to improve the
schedule when load balance is hard to achieve.

2.4 JIT-migration

When a scheduler decides to migrate the preempted IO
to another disk with a copy of the data, it can choose to
favor the newly arrived IO or the ongoing IO. The former
uses JIT-preemption introduced earlier, but migrates the
remaining portion of the preempted IO to the queue of
some other disk holding the data. The latter usesJIT-
migration.

Definition 2.4: JIT-migrationis the method for the pre-
emption and migration of an ongoing IO in a fashion that
minimizes the service time for the ongoing IO. The on-
going IO is preempted at the moment when the destina-
tion disk starts performing data-transfer for the remain-
ing portion of the IO. The original IO is then preempted,
but its completion time is not delayed.

Preemption: JIT-migration also relies on JIT-seek and
is used to preempt and migrate the ongoing IO only if
it does not increase its service time thereby favoring the
ongoing IO.

IO1 IO2

IO2

timeddisk 2

timedisk d1

IO1’

Preemption overhead

JIT−migration

arrives

(queueing time and access time)

Figure 6: Preemption with JIT-migration.

Figure 6 depicts the case when the ongoing IO (IO1) is
more important than the newly arrived IO (IO2). How-
ever, if the disk with the replica is idle or servicing less
important IOs, we can still reduce the service time for
IO2. As soon asIO2 arrives, the scheduler can issue a
speculative migration to another disk with a copy of the
data. When the data transfer is ready to begin at the other
disk, the scheduler can migrate the remaining portion of
IO1 at the desired moment. Since the disks are not nec-
essarily rotating in unison, theIO1 can be serviced only
at approximately the same time when compared with the
no-preemption case. The preemption delay forIO1 de-
pends on the queue at the disk with the replica. If the

disk with the replica is idle, the delay will be of the or-
der of 10 ms (equivalent to the access-time overhead).

Resumption: In the case of JIT-migration,IO1 is not
preempted until the disk with the mirror is ready to con-
tinue its data transfer. Again, the preemption overhead
exists only at the mirror disk signifying the possibility of
improvement in the presence of load-imbalance.

3 Architecture
In this section, we first present a high-level system ar-
chitecture for RAID systems with the support for pre-
emptive disk scheduling. We then explain the global
(RAID) and local (single-disk) scheduling approaches.
All scheduling methods presented within this framework
are designed to be implemented in the firmware for hard-
ware RAID controllers or in the OS driver for software
RAIDs.

3.1 PRAID System Architecture
Figure 7 depicts a simplified architecture of preemptible
RAID systems. The main system components are the
external IO interface, the RAID controller, and the at-
tached disks. The components of the RAID controller
are the RAID scheduler, the single-disk schedulers (one
for each disk in the array), the RAID cache (both the
volatile read cache and the non-volatile write buffer),
and the RAID reconfiguration manager.

...

...

RAID

External IOs

RAID
scheduler

RAID cache

volatile RAM

Single−disk
scheduler

spIO

Internal IOs

RAID
reconfiguration

manager

controller

non−volatile

write buffer

Figure 7: A simplified Preemptible RAID architecture.

External IOsare issued by the IO scheduler external to
the RAID system (for example, the operating system’s
disk scheduler). These IOs are tagged with their QoS

4



requirements, so that the RAID scheduler can optimize
their scheduling. The external IOs may also be left un-
tagged, making them best-effort IOs. We have extended
a Linux kernel to enable such an IO interface [6].

The RAID schedulermapsexternal IOsto internal IOs
and dispatches them to appropriate single-disk schedul-
ing queues. Internal IOs are also generated by the RAID
reconfiguration manager for various maintenance, re-
configuration, or failure-recovery procedures.

Internal IOs are IOs which reside in the scheduling
queues of individual disks. They are tagged with in-
ternally generated yield functions, and serviced using
Semi-preemptible IO. The RAID scheduler and the lo-
cal single-disk schedulers reside on the same RAID con-
troller, and communication between them is fast and
cheap.5

Single-disk schedulersmake local scheduling decisions
for internal IOs waiting to be serviced at a disk. Inter-
nal IOs are semi-preemptible, and single-disk schedulers
can decide to preempt ongoing internal IOs. Since the
communication between individual disk schedulers is ef-
ficient, single-disk schedulers in the same RAID group
cooperate to improve the overall QoS-value for the en-
tire system.

The RAID cacheconsists of both volatile memory for
caching read IO data and non-volatile memory for
buffering write IO data. The non-volatile memory is
typically implemented as battery-backed RAM in most
currently used RAIDs. TheRAID reconfiguration man-
ager controls and optimizes the internal data organiza-
tion within the RAID system. For instance, in HP Au-
toRAID systems [26], the reconfiguration manager can
dynamically reconfigure the data to optimize for the per-
formance (between RAID 0/1 and RAID 5 configura-
tions) or migrate the data to hot-swap disks (in case of
disk failures). These operations create additional inter-
nal IOs within the RAID system.

3.2 Global RAID Scheduling

The global RAID scheduler is responsible for mapping
external IOs to internal IOs and for dispatching internal
IOs to appropriate single-disk scheduling queues.

5The assumption of efficient communication between the single-
disk schedulers holds for most RAID systems implemented as a single
box, which is typically the case for current RAID systems. We use
this assumption for efficient migration of internal IOs from one disk to
another.

3.2.1 External IOs

In this paper we refer to IO requests generated by a
file system outside of the RAID system as external IOs.
They can be tagged with the application-specified QoS
class or can be left as regular, best-effort requests.6

Our approach for providing QoS hints to the disk sched-
uler is to enable applications to specify desired QoS pa-
rameters per each file descriptor. Internally, we pass the
pointer to these QoS parameters along with each IO re-
quest in the disk queue. After theopen()system call, file
accesses get assigned the default best-effort QoS class.
We introduce several newioctl() commands which en-
able an application to set up different QoS parameters
for its open files. These additionalioctl() commands are
summarized in Table 1.

Ioctl command Argument Description

IO GET QOS struct ucsb io * Get file’s QoS
IO BESTEFFORT Set best-effort class
IO QOSCLASS int *class Set IO’s QoS class
IO PRIORITY int *priority Set IO’s priority
IO DEADLINE int *deadline Set IO’s deadline

Table 1: Additionalioctl() commands.

yield

time

yield

time

response time

time

(c) (d)

(b)(a)

yield

time
Max. acceptable

response timeresponse time

Max. acceptable

Latest optimal

Latest optimal
response time

yield

Max. acceptable
response time

2

2

1

2

Figure 8: Yield functions: (a) interactive real-time IO,
(b) hard real-time IO, (c) interactive best-effort IO, and
(d) best-effort IO. (The exact values depend on the actual
implementation.)

The yield function attached to an external IO determines
the QoS value added to the system upon its completion.
Figure 8 depicts four possible yield functions that we use
in this paper. Functions (a) and (b) represent the case

6Most commodity operating systems still do not provide such an in-
terface. However, several research prototypes have implemented QoS
extensions for commodity operating systems [16, 20, 21, 6]
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when a hard deadline is associated with servicing the
IO. If the deadline is missed, the IO should be dropped
since its completion does not yield any value.7 Servic-
ing best-effort IOs always yields some QoS value, and
these IOs should not be dropped. We must point out
that the yield functions presented here are not the only
possible ones. The framework enables specifying one
“user-defined” yield function for each QoS class, which
is part of our future work.

To customize the yield (yext(t)) function for each ex-
ternal IO, we use a generic yield function for each QoS
class (yield(t) from Figure 8) and the four additional pa-
rameters. The additional parameters are: the time when
the external IO is submitted (tstart), the IO size (size),
the IO priority (p), and the IO deadline (Tdeadln). In
this paper we assign more value to a larger and higher-
priority IO using a linear approach. Our system pro-
vide an option for the OS and user-level applications to
customize the yield functions according to the following
equation (Pdef denotes the default priority):

yext(t) = size× p

Pdef
× yield

(
t− tstart

Tdeadln

)
. (1)

For example, if the OS wants to give more QoS value
to particular IOs, it would then assign priority that is
greater than the default one. If the OS wants to stretch
the yield function (from Figure 8), it would then assign
the longer deadline. Finally, if the OS wants to spec-
ify the same yield function for all IOs independently
of their sizes, it would then assign the different priori-
ties (higher priority for shorter IO and lower priority for
longer IOs).8

3.2.2 RAID Scheduler

The most important task that the RAID scheduler per-
forms is mapping external IOs to internal IOs. Inter-
nal IOs are also generated by the RAID reconfiguration
manager, and scheduled to appropriate local-disk queues
by the RAID scheduler. Each external IO (parent IO) is
mapped to a set of internal IOs (child IOs). To perform
this mapping, the RAID scheduler has to be aware of the
low-level placement of data on the RAID system.

7The option of dropping an IO request at the storage level is not
widely used in today’s systems. Additional handling might be needed
at the user level. However, the current interface need not be changed,
since systems can use the existing error-handling mechanisms.

8In real systems, additional QoS classes for same-importance IOs
may be favorable.

The RAID scheduler has a global view of the load on
each of the disks in the array. For read IOs, the internal
IO can be scheduled to any disk containing a copy of the
data. The scheduler can choose the least-loaded disk or
use a round-robin strategy. For write IOs, the internal
IOs are dispatched to all disks where duplicate copies
are located. To maintain a consistent view, the segment
in the non-volatile RAID buffer is not freed until all its
internal IOs complete.

The RAID scheduler makes the following scheduling de-
cisions to dispatch internal IOs to corresponding local-
disk scheduling queues:

• Read splitting.To further reduce response time for
interactive read requests, the RAID scheduler may
split the read request into as many parts as there are
disks with copies of the data, issuing each part to a
different disk. The read request might be completed
faster by utilizing all possible disks. However, this
involves more disk-seek overhead. The advantage
of having QoS values over the traditional RAIDs
enables preemptible RAIDs to split only interactive
IOs (when additional seek overhead leads to better
QoS).

• Speculative scheduling.Apart from dispatching
read requests to the least-loaded disk, the RAID
scheduler might also dispatch the same request with
best-effort priority to other disks which hold a copy
of the data requested. This is done in the hope that
if a more loaded disk manages to clear its load ear-
lier, then the read request can be serviced sooner.

3.3 Local Disk Scheduling

Using a local disk scheduling algorithm, the single-disk
schedulers dispatch internal (semi-preemptible) IOs and
decide about IO preemptions.

3.3.1 Internal IOs

We refer to IO requests generated within the RAID sys-
tem as internal IOs. These IOs are generated by the
RAID firmware and managed by the RAID system itself.
Usually, multiple internal IO requests (for several disks)
must be issued to service each external IO. The requests
related to data parity management, RAID auto reconfig-
uration, data migration, and data recovery are indepen-
dently generated by the RAID reconfiguration manager,
and they are not associated with any external IO. Each
internal IO is tagged with its own descriptor. The inter-
nal IO descriptor is summarized in Table 2. The deadline
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and the yield function for the parent IO are used to (1)
give more local-scheduling priority to earlier deadlines
and (2) drop the internal IO after its hard deadline ex-
pires.

Attribute Description

Starting block Logical number for1st data block
IO Size The internal IO size in disk blocks
Parent’s IO value The external IO value (from Eq. 1)
Parent’s deadline The external IO deadline
Parent’s IO size The remaining external IO size

Table 2: Internal IO descriptor.

3.3.2 Single-disk Scheduler

For external IOs whose value deteriorates rapidly with
time, a disk scheduler may benefit if it preempts less ur-
gent IOs. In traditional systems this is usually accom-
plished by bounding the size of disk IOs to relatively
small values and using non-preemptive priority schedul-
ing (for example, Linux 2.4 and 2.6 kernels use128
kB as maximum IO size). However, this approach has
two shortcomings. First, it greatly increases the num-
ber of disk IOs9 in the scheduling queue, which might
complicate the implementation of sophisticated QoS-
aware schedulers and increase their computational re-
quirements. Second, the schedulers rarely account for
the overhead of disrupting sequential disk access, since
they do not actuallypreemptthe low-level disk IOs.

In this paper, we present a scheduler that uses an explic-
itly preemptible approach, which does not need to bound
the maximum size for low-level disk IOs (for example, a
single 8 MB IO does not need to be split into eighty128
kB low-level disk IOs). The scheduler explicitly consid-
ers the overhead of disrupting sequential accesses and
whenever it chooses to preempt the ongoing IO, the ex-
pected waiting time is substantially shorter than in the
case of traditional non-preemptible IOs [5].

The single-disk scheduler maintains a queue of all in-
ternal IOs for a particular disk. The components of the
internal IO response time arewaiting timeandservice
time. The waiting time is the amount of time that the re-
quest spends in the scheduling queue. The service time
is the time required by the disk to complete the sched-
uled request, consisting of the access latency (seek time
and rotational delay) and the data transfer time.

Internal scheduling values: The completion of an in-
ternal IO yields some QoS value for the RAID system.

9The number of low-level IOs for each application-generated IO
might be one or two orders of magnitude greater for systems that bound
the maximum IO size.

However, it is hard to estimate this value. First, ex-
ternal QoS value is generated only after the comple-
tion of the last internal IO due for a parent external
IO. Second, when performing write-back operations for
buffered write IOs, their external QoS value has been al-
ready harvested. However, not servicing these internal
IOs implies that servicing future write IOs will suffer
when the write buffer gets filled up. Third, internally
generated IOs (for example, due to the RAID reconfigu-
ration manager) must be serviced although their comple-
tion does not yield any immediate external QoS value.

Although we do not always know the QoS value gen-
erated due to the completion of an internal read IO, we
can estimate it using the following approach. When the
scheduler decides to schedule an internal IO, it predicts
the service time for the IO (Tservice).10 Let yext(t) be
the value function for the parent IO, as defined in Equa-
tion 1. Letsizeint denote the size of the internal IO, and
sizeremain denote the remaining size of the parent IO.
We estimate the scheduling value for the internal read IO
(yint read) using the following heuristic:

yint read = yext(t + Tservice)× sizeint

sizeremain
. (2)

The reasoning behind the Equation 2 is to give more
scheduling value (and hence higher priority) to internal
IOs for soon-to-complete external IOs. This is neces-
sary since we do not gain any external value from ser-
vicing internal IOs until we service the whole parent ex-
ternal IO. Servicing small internal IO for a large exter-
nal IO should have low priority. However, servicing a
small internal IO as the last fragment for a large, nearly-
completed external IO should have high priority. This is
achieved by giving more internal yields for IOs which
sizeremain diminishes faster.11

Figure 9 depicts the dynamic nature of the scheduling
value for internal write IOs. Unlike internal read IOs,
the scheduling value of internal write IOs do not depend
directly on the value of the corresponding external IOs.
The idea is to drain anearly-full write buffer at a faster
rate, and to drain anearly-emptywrite buffer at a slower
rate. Additionally, if the buffer is full, we need to in-
crease the draining rate depending on the value of pend-
ing IO requests. Whenever the RAID system services
a new external write IO, the non-volatile write buffer

10Performing this prediction does not incur additional overhead
since it is already required by Semi-preemptible IO [5].

11This is just one of several possible heuristics to address the prob-
lem. More detailed study in this regard is part of our future work.
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space decreases, and performing write-back operations
gains more importance. Hence, we increase the schedul-
ing value for write IOs. Whenever the last internal write
IO for a particular external IO completes, its data is
flushed from the non-volatile buffer, making more space
available. This reduces the importance of write-back op-
erations, and thereby decreases the scheduling value for
internal write IOs.

available
More write buffer

Less write buffer
available

y

time

int_wr

Figure 9: Scheduling value for internal write IOs.

In estimating the scheduling value for internal write
IOs, we need to consider both the available non-volatile
buffer space and all the pending external write IOs when
the buffer is full. LetIwr(space) denote the value of
freeing space in the non-volatile buffer (it is a function
of the buffer utilization). Letywri

ext (t) denote the value
of the ith external write IO waiting to be buffered. Let
sizeremain wr denote the remaining size of all of the in-
ternal IO’s siblings that need to be completed to flush
parent’s data from the non-volatile buffer. We use the
following heuristic to estimate the scheduling value of
the internal write IOs:

yint wr =
(sizeint)2

sizeremain wr
×(Iwr(space)+Max{ywri

ext (t)}) .

(3)

Iwr(space) should assign a low value to write IOs when
the buffer is nearly empty, giving higher priority to read
IOs. When the buffer is nearly full,Iwr(space) should
give high value to write IOs, giving higher priority to
write-back operations. We use the maximum value of
all pending external write IOs to further increase the pri-
ority of internal write IOs when the non-volatile buffer is
full. The design and implementation of agoodIwr func-
tion is application specific, and it is critical for gracefully
servicing both read and write IOs. Simiraly to the read
case, we give more value to large IOs and the soon-to-
complete IOs (which is the reason for(sizeint)2 factor).

Scheduling: Scheduling IOs whose service yields var-
ious values and incurs differing kinds of overhead is a
hard problem. In this paper we do not intend to ascertain

which scheduling method is the best. We use a simple
greedy approach which chooses the IO with the maxi-
mum predictedaverage yieldto schedule next. We de-
fine the average yield of an IO (yavg) as

yavg =
yint {read/wr}

Tservice
. (4)

Thus, the average yield takes into consideration the pre-
dicted time required to service the internal IO (including
its access delay and transfer time). Equations 2 and 3 es-
timate the value of internal IOs. The single-disk sched-
uler selects the internal IO with currently highest aver-
age yield, with the goal of maximizing the sum of all
external yields. If more than one IO has the sameyavg,
then we choose the one with the shortest deadline to
break the tie.

Figure 10 depicts the average yield (solid line) for two
internal IOs serviced by the same disk. The dotted line
denotes the yield for the same IOs when distributed over
the useful data transfer periods latency. When the sched-
uler must choose an IO to service next from the queue,
it services the IO with the maximum average yield. Our
initial design goal was that the scheduler can effectively
mimic the behaviour of frequently used disk schedulers
like the shorters-access-time-first (SATF) scheduler [12]
(when preemptions do not happen).

IO1
IO2

y
avg

time

Figure 10: Average yield.

Preemptions: We now present two preemption ap-
proachesconservative preemptionand aggressive pre-
emptionthat aim to optimize for the long-term and short-
term respectively.

Whenever a new IO arrives, the scheduler checks
whether preempting the ongoing IO (using the preemp-
tion methods introduced in Section 2), servicing the new
IO, and immediately resuming the preempted IO, offers
a better average yield than would be obtained without
preemption. To calculate the average yield in either case,
we must consider the yields due to both IOs. Let the on-
going IO be denoted asIO1 and the newly arrived IO
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asIO2. Let T 1
service−remain denote the time required

to service the remaining portion ofIO1 irrespective of
whether it is preempted or not.12 In either case, we use
the following formulation to give us the average yield
due to both IOs:

yavg =
y1

int + y2
int

T 1
service−remain + T 2

service

. (5)

Notice that although we consider only the remaining
time left to service the ongoing IO, we still include its
entire yield, as opposed to including only the yield cor-
responding to the remaining portion of the IO. Indeed,
the ongoing IO yields any valueonly if it is serviced en-
tirely.

Conservative Preemption:The conservative approach
makes a decision based on a long-term optimization cri-
terion. Only if the preemption of the ongoing IO yields
an overall average yield in the long term (given by Equa-
tion 5) greater than the no preemption case, the ongoing
IO is preempted. Figure 11 depicts the case when even
though the newly arrived IO (IO2) offers a greater av-
erage yield than that of the remaining portion of the on-
going IO (IO1), the conservative approach chooses not
to preempt the ongoing IO. By not preempting the on-
going IO, an overall greater yield is obtained after both
IOs have been serviced.

IO1
IO2

IO2

y
avg

IO1

Average yield due to the
remaining portion of

arrives

time

Figure 11: Conservative preemption.

Aggressive Preemption: Although the current IO of-
fers a lesser average yield than the newly arrived IO, the
conservative approach might conceivably choose not to
preempt it. This happens because the conservative ap-
proach considers the overall average yield for servicing
both IOs before making a decision, taking into consid-
eration the preemption overhead. When the preemption
overhead is considered within the framework of Equa-
tion 5, by not preempting the current IO (and thus elimi-

12The value ofT 1
service−remain will be different depending on

which case gets instantiated. It will include the preemption overhead
in case the IO is preempted.

nating preemption overhead) we obtain an overall better
yield on the completion of the two IOs.

IO2

y
avg

IO1 IO1IO2

arrives

time
remaining

Figure 12: Aggressive preemption.

However, it is also conceivable that additional IO re-
quests arrive in this period with higher priority than the
ongoing IO. In this case, the best schedule might be sim-
ply to service all the higher priority IOs in the queue
before finally servicing the ongoing IO. The aggressive
preemption approach preempts the ongoing IO as soon
as another IO with a higher average yield arrives. Fig-
ure 12 depicts the case when the aggressive approach
preempts the ongoing IO in a greedy manner to immedi-
ately increase the average yield.

Finally, to support cascading preemptions (preempting
an IO which already caused the preemption of another
IO), we simply return the preempted IO to the schedul-
ing queue. According to Equation 4, the predicted av-
erage yield increases for the remaining portions of pre-
empted IOs (because parts of their data have been al-
ready transfered). This is necessary in order to maintain
the feasibility of the greedy approach—actual QoS value
is generated only after the whole IO completes. Hence,
we have to control the number of preemptions. Our ap-
proach also prevents thrashing due to cascading preemp-
tions. Cascading preemptions occur only when the aver-
age yield for all IOs in the cascade is maximum.13

4 Experimental Evaluation

In this study we have relied on simulation to validate
our preemptive scheduling methods.Semi-preemptible
IO [5] shows that it is feasible to implement preemp-
tion methods necessary for preemptive RAID scheduling
outside of disk firmware. In this study we used the pre-
vious work in disk modeling and profiling [5, 9, 13] to
build an accurate simulator for preemptible RAID sys-
tems (PraidSim). We evaluate the PRAID system using

13Since we use a greedy approach, starvation is possible. To handle
starvation, we can add a simple modification to our internal scheduling
value, forcing it to increase with time.
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several micro-benchmarks and for two simulated real-
time streaming applications.

4.1 Experimental Setup

We usePraidSim to evaluate preemptive RAID schedul-
ing algorithms. PraidSim is implemented in C++ and
uses Disksim [9] to simulate disk accesses. We do
not use the RAID simulator implemented in Disksim,
but write our own simulator for QoS-aware RAID sys-
tems based on the architecture presented in Section 3.
PraidSim can either execute a simulated workload for
external IOs or perform a trace-driven simulation. We
have chosen to simulate only the chunking and JIT-seek
methods fromSemi-preemptible IO. The seek-splitting
method only helps in reducing the maximum IO wait-
ing time and adds noticeable overhead. The chunking
method relies only on optimal chunk size for a particu-
lar disk, which is easy to profile for both IDE and SCSI
disks [5]. JIT-seek, which has been previously imple-
mented in several schedulers [5, 13], is used here for
JIT-preemption.

Parameter name Description

RAID level RAID 0, RAID 0/1, or RAID 5
Number of disks Number of disks in the disk array
Mirrors Number of mirror disks
Disksim model Name of the parameter file for Disksim disks
Striping unit Size of the striping unit in disk blocks (512 B)
Write IOs Write IO arrival rate and random distribution
Read IOs Read IO deadlines, arrival rate and rand. dist.
Interactive IOs Interactive IO arrival rate and rand. dist.
Scheduling SCAN or FIFO for each IO class
Preemption Preempt writes, reads, or no preemption
Interactivity Preemption criteria for interactive IOs
Write priority Buffer size and dynamic QoS value for writes
Chunk size Chunk size forSemi-preemptible IO

Table 3: Summary ofPraidSim parameters.

Table 3 summarizes the configurable parameters in
PraidSim. The internal RAID configuration is chosen
by specifying the RAID level, number of disks in the ar-
ray, number of mirror replicas, stripe size, and the name
of the simulated disk for Disksim. For this paper we
used the Quantum Atlas 10K disk model. The IO ar-
rival rate is specified with the arrival rate and random
distribution for write IOs, deadline read IOs, and inter-
active read IOs; or by specifying a trace file. The next set
of parameters is used to specify thePraidSim schedul-
ing algorithm for non-interactive read and write IOs, the
preemption decisions, methods for scheduling interac-
tive reads, and the dynamic value for internal write IOs.
The chunk size parameter specifies the chunk size used
to schedule semi-preemptible IOs. For all experiments
in this paper we used chunk size of20 kB. We varied the
simulated workloads to cover a large parameter space

and then performed experiments using parameters that
approximate the behavior of interactive video streaming
applications (the write-intensive video surveillance and
the read-intensive interactive video streaming applica-
tions).

4.2 Micro-benchmarks

Our micro-benchmarks aimed to answer the following
questions:

• Does preemptingnon-interactive IOs always im-
prove the quality of service?

• How doespreemptionhelp when interactive opera-
tions consist of several IOs in a cascade?

• What is the overhead of preempting and delaying
write IOs to promptly service read requests?

4.2.1 Preemption Decisions

In order to show that decisions about preempting se-
quential disk accesses are not trivial for all applications,
we performed the following experiment. We varied the
size of non-interactive IOs and measured both the re-
sponse time for interactive IOs and the throughput for
non-interactive IOs. We fix the arrival rate for interac-
tive IOs to10 req/s, and keep the disk fully utilized with
non-interactive IOs. The size of the interactive requests
is 100 kB.
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Figure 13: Average response time for interactive IOs vs.
non-interactive IO size.

Figure 13 depicts the average response time for inter-
active IOs for preempt-never and preempt-always ap-
proaches. For small IO sizes the benefit of preemp-
tion is of the order of5 − 10 ms. However, for large
non-interactive sequential IOs, the preemption yields
improvements of the order of100 ms. The preemp-
tive approach also provides less variation in response
times, which is very important for interactive systems.
Figure 14 shows the difference in throughput between
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the preempt-never and preempt-always approaches. The
main question is whether the trade-off between im-
proved response time and reduced throughput yields bet-
ter quality of service.
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Figure 14: Disk throughput vs. non-interactive IO size.

Figure 15 depicts the improvements in aggregate in-
teractive value (for all external interactive IOs) of the
preempt-always over the preempt-never approach. We
use a yield function for interactive real-time IOs from
Figure 8(a) in Section 3.2.1. If non-interactive IOs are
small, the preempt-always approach does not offer any
improvement, since all interactive IOs can be serviced
before their deadlines even without preemptions. For
large sizes of non-interactive IOs and short (100 ms)
deadlines, preempt-always yielded up to2.8 times the
value of the non-preemptive approach (180% improve-
ment). For applications with shorter deadlines the im-
provements are substantially higher. However, even for
large non-interactive IOs, if the deadlines are of the or-
der of200 ms, then the preempt-always approach makes
only marginal improvements over the preempt-never ap-
proach.
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Figure 15: Improvements in aggregate interactive value.

Figure 16 shows the difference between the aggregate
values for all serviced IOs for the preempt-always and
the preempt-never approaches. For the case when the
non-interactive requests yield the same as or greater
value than the interactive IOs, the preempt-always ap-

proach degrades the aggregate value when a disk ser-
vices small non-interactive IOs (up to approximately
2 MB in Figure 16). For cases when interactive re-
quests are substantially more important than the non-
interactive ones, the difference in aggregate value for all
IOs converges to the curve presented in Figure 15. Sim-
ple priority-based scheduling cannot easily handle both
cases.
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Figure 16: Differences in aggregate values for all
IOs between the preempt-always and preempt-never ap-
proaches: (a) non-interactive and interactive IOs are
equally important and (b) non-interactive IOs are more
important (their value is five times greater).

4.2.2 Response Time for Cascading IOs

Interactive operations often require multiple IOs for their
completion. For example, a video-on-demand system
has to first fetch meta-data containing information about
the position of requested frame in a file. For large sys-
tems, meta-data cannot always reside in the memory
cache, and requires an additional disk IO. Another exam-
ple is a video surveillance system which supports com-
plex interactive queries with data dependences [7, 18].

In order to show how preemptions help when an interac-
tive operation consists of issuing multiple IO requests in
a cascade, we performed the following experiment. The
background, non-interactive workload consists of both
read and write IOs (external), each being2 MB long. We
use the RAID 0/1 configuration with 8 disks. The sizes
of internal IOs are between0 and2 MB and the interac-
tive IOs are100 kB each. As soon as one interactive IO
completes, we issue the next IO in the cascade, measur-
ing the time required to complete all cascading IOs. Fig-
ure 17 depicts the effect of cascading interactive IOs on
the average response time for the whole operation. If the
maximum acceptable response time for interactive op-
erations is around100 ms, the preemptive approach can
service six cascading IOs, whereas the non-preemptive
approach can service only two.
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Figure 17: Response time for cascading interactive IOs.

4.2.3 Overhead of Delaying Write IOs

In order to show the overhead of preempting and de-
laying write IOs, we performed the following experi-
ment. We varied the arrival rate for read requests and
plotted the overhead in terms of increased buffering re-
quirements and reduced idle time . We compared the
following three scheduling policies: (1) SCAN schedul-
ing without priorities, (2) SCAN scheduling with prior-
ities for reads but without preemptions, and (3) SCAN
scheduling with write preemptions.
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Figure 18: RAID write-buffer requirements.

Figure 18 depicts the RAID write-buffer requirements
for different read arrival rates. In this case, we used
RAID level 0/1, 4+4 disks, each external read IO was
1 MB, and the external write rate was50 MB/s (100
MB/s internally). Results show that independently of
the scheduling criteria, whenever the available disk idle
time is small, the required buffer size increases expo-
nentially. The additional write-buffer requirement is ac-
ceptable for a range of read arrival rates in the system
with preemptions. A real system must control the num-
ber of preemptions as well as the read/write priorities
depending on available RAID idle time. Figure 19 de-
picts the average disk idle-time for different read arrival
rates. The results showed that for arrival rates of up to
around10 req/s, preemption only marginally increases

the write-buffer requirement and reduces the RAID idle-
time, with noticeable improvements in interactive per-
formance.
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Figure 19: Average RAID idle-time.

4.3 Write-intensive Real-time Applications

In this section we discuss the benefits of using the pre-
emptive RAID scheduling for write-intensive real-time
streaming applications. We generated a workload simi-
lar to that of a video surveillance system which services
read and write streams with real-time deadlines. In addi-
tion to IOs for real-time streams, we also generate inter-
active read IOs. We present results for a typical RAID
0/1 (4+4 disks) configuration with a real-time write-rate
of 50 MB/s (internally 100 MB/s) and a real-time read
rate of10 MB/s. The arrival rate for interactive IOs is10
req/s. The external non-interactive IOs are2 MB each,
and interactive IOs are1 MB each. The workload cor-
responds to a video surveillance system with50 DVD-
quality write video streams,20 real-time read streams,
and10 interactive operations performed each second.
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Figure 20: Average interactive read response times.

Figure 20 depicts the improvements in the response
times for interactive IOs and the overhead in reduced
RAID idle time. The system was able to satisfy all real-
time streaming requirements in all the three cases. Using
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the JIT-preemption method, our system decreased the in-
teractive response time from110 ms to60 ms, by reduc-
ing the RAID idle-time from7.2% to 6.5%. The read-
splitting method from Section 3.2.2 further decreases the
response time (by reducing the data-transfer component
on a single disk) with the substantially larger effect on
reduced average disk idle time.

4.4 Read-intensive Applications
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Figure 21: Average interactive read response times.

Figure 21 depicts the average response times for inter-
active read requests for read-intensive real-time stream-
ing applications. The setup is the same as for write-
intensive applications in the previous section, but the
system services only read IOs. The streaming rate for
non-interactive reads is129 MB/s. The interactive IOs
are1 MB each, and their arrival rate is10 req/s. The
improvements in average response times were similar
to those in our write-intensive experiment. The JIT-
preemption with migration didn’t substantially improve
the average response for interactive IOs, but the bet-
ter load-balancing compensated for the reduction in idle
time due to JIT-preemption.

Summary of Results

First, we found that it is not always desirable to preempt
non-interactive IOs. The decision depends on the ap-
plication and the relative importance of user requests.
Whenever we preempt nearly-completed IOs, we intro-
duce additional seek overhead without obtaining any ad-
ditional value for servicing interactive IOs faster.

Second, we found out that preemption can lead to sub-
stantial QoS improvements for interactive IOs consisting
of several cascading IOs where each subsequent IO re-
quest depends on the competition of the previous one.
Our system was able to service six cascading IOs in less
than 100 ms, compared to only two for non-preemptible
approach. This is important for large-scale commercial

systems servicing interactive users [10] and emerging
video surveillance systems [7, 18].

Third, we found out that the increased write-buffer re-
quirements and the reduced disk idle-time are accept-
able for a range of interactive IO arrival rates and
background, non-interactive streaming rates. We per-
formed experiments on the range of read- and write-
intensive streaming workloads (simulating the typical
video streaming systems). In summary, the preemptible
system can reduce the interactive response time by
nearly a half (for example, from110 ms to60 ms) while
reducing disk idle-time by only0.7 % (for the same size
of write buffer).

5 Related Work

Before the pioneering work of [4, 16, 22], it was as-
sumed that the nature of disk IOs was inherently non-
preemptible. Preemptible RAID scheduling is based
on detailed knowledge of low-level disk characteris-
tics. A number of scheduling approaches rely on these
low-level characteristics [5, 11, 13, 17]. RAID storage
was the focus of a number of important studies includ-
ing [1, 8, 22, 23, 26]. In his recent keynote speech at
FAST 2003, John Wilkes et al. [24, 25] stressed the im-
portance of providing quality-of-service scheduling in
storage systems.

While most current commodity operating systems do
not provide sufficient support for real-time disk ac-
cess, several research projects are committed to imple-
menting real-time support for commodity operating sys-
tems [16, 20]. Molano et al. [16] presented their design
and implementation of a real-time file system for RT-
Mach. Sundaram et al. [20] presented their QoS exten-
sions for Linux operating system (QLinux).

6 Conclusion

In this paper we have investigated the effectiveness of
IO preemptions to provide better disk scheduling for
RAID-based storage systems. We first introduced meth-
ods for preemptions and resumptions of disk IOs—JIT-
preemption and JIT-migration. We then proposed an ar-
chitecture for QoS-aware RAID systems and a frame-
work for preemptive RAID scheduling. We imple-
mented a simulator for such systems (PraidSim). Us-
ing simulation, we evaluated benefits and estimated the
overhead associated with preemptive scheduling deci-
sions. Our evaluation showed that using IO preemptions
can lead to a better overall system QoS for applications
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with large sequential accesses and interactive user re-
quests.

We plan to further this work in the following two direc-
tions. First, based on the existing Linux QoS extensions,
we plan to implement a preemptive scheduler for soft-
ware RAIDs. Second, we plan to investigate the effec-
tiveness of preemptive scheduling in cluster-based stor-
age systems.
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