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Abstract

Online monitoring of data streams poses a challenge in
many data-centric applications, such as telecommunications
networks, traffic management, trend-related analysis, web-
click streams, intrusion detection, and sensor networks. Min-
ing techniques employed in these applications have to be ef-
ficient in terms of space usage and per-item processing time
while providing a high quality of answers to (1) aggregate
monitoring queries, such as finding surprising levels of a
data stream, detecting bursts, and to (2) similarity queries,
such as detecting correlations and finding interesting pat-
terns. The most important aspect of these tasks is their need
for flexible query lengths, i.e., it is difficult to set the appro-
priate lengths a priori. For example, bursts of events can
occur at variable temporal modalities from hours to days
to weeks. Correlated trends can occur at various temporal
scales. The system has to discover “interesting” behavior
online and monitor over flexible window sizes. In this pa-
per, we propose a multi-resolution indexing scheme, which
handles variable length queries efficiently. We demonstrate
the effectiveness of our framework over existing techniques
through an extensive set of experiments.

1. Introduction

A growing number of real-world applications deal with mul-
tiple streams of data: performance measurements in network
monitoring and traffic management, call detail records in
telecommunications networks, transactions in retail chains,
ATM operations in banks, log records generated by web
servers, and sensor network data. Working with streams of
data is like drinking from the proverbial fire hose: the volume
is simply overwhelming. For example, in telecommunica-
tions network monitoring, a tremendous number of connec-
tions are handled every minute by switches. As collected,
stream data is almost always at low level and too large to
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maintain in main memory. Instead, one can maintain a syn-
opsis of the stream at certain abstraction levels on the fly. The
synopsis is a small space data structure, and can be updated
incrementally as new values stream in. It is used to discover
interesting behavior, which may prompt an in-depth analysis
on the data at lower levels of abstraction [6].

In astrophysics, the sky is constantly observed for high-
energy particles. When a particular astrophysical event hap-
pens, a shower of high-energy particles arrives in addition to
the background noise. This yields an unusually high num-
ber of detectable events (high-energy photons) over a certain
time period, which indicates the existence of a Gamma Ray
Burst. If we know the duration of the shower, we can main-
tain a count on the total number of events over sliding win-
dows of the known window size and raise an alarm when the
moving sum is above a threshold. Unfortunately, in many
cases, we cannot predict the duration of the burst period.
The burst of high-energy photons might last for a few mil-
liseconds, a few hours, or even a few days. Therefore, it is
essential to design a scheme, which allows monitoring over
a variable timescale [21].

In finance, finding similar patterns in a time series
database is a well studied problem [7]. The features of a time
series sequence are extracted using a sliding window, and
inserted into an index structure for query efficiency. How-
ever, this approach is not adequate for data stream applica-
tions, since it requires a time consuming feature extraction
step with each incoming data item. For this purpose, incre-
mental computation techniques that use the previous feature
in computing the new feature have been proposed to acceler-
ate per-item processing [20]. A batch technique can further
decrease the per-item processing cost by computing a new
feature periodically instead of every time unit [14]. However,
most of these existing techniques work well for queries of a
fixed length, and do not consider queries of variable length.
For example, a user might want to know all time periods
during which the movement of a particular stock follows a
certain interesting trend that can be generated automatically
by the application [18]. Therefore, one may not have a pri-
ori knowledge regarding the query length. In order to ad-



dress this issue, a multi resolution indexing scheme has been
proposed [9]. However, this work restricts itself to the off-
line databases and does not consider how well the proposed
scheme works in a streaming scenario. A unified framework,
which inherits from these existing solutions, is necessary in
order to extract features over data streams incrementally and
handle variable length queries efficiently.

Continuous queries that run indefinitely, unless a lifetime
has been specified, fit naturally into the mold of data stream
applications. Examples of these queries include monitoring a
set of conditions or events to occur, detecting a certain trend
in the underlying raw data, or in general discovering relations
between various components of a large real time system. We
identified three different kinds of queries that are of inter-
est from an application point of view: (1) monitoring aggre-
gates, (2) monitoring or finding patterns, and (3) detecting
correlations. This list is by no means complete, but covers
a large number of real world applications that are described
above. A common aspect of these queries is that each of
them requires data management over some history of values,
and not just over the most recently reported values [5]. For
example in case of aggregate queries, the system monitors
whether the current window aggregate deviates significantly
from that aggregate in most time periods of the same size. In
case of correlation queries, the self-similar nature of sensor
measurements may be reflected as temporal correlations at
some resolution over the history of the stream [16]. There-
fore, the system has to maintain historical data along with the
current data in order to be able to answer these queries.

The types of queries we address within the scope of this
paper have been addressed separately in the database re-
search community. However, we envision that all these
queries are interconnected in a monitoring infrastructure. For
example, an unusual volatility of a time series may trigger an
in-depth trend analysis to discover the concepts hidden in the
data. One can devise efficient schemes for each of these tasks
separately. To the best of our knowledge however; a general
scheme that accommodates all these tasks in a single body
has not been addressed. We try to fill this gap by proposing
a unified system solution called “Stardust” that realizes this
vision.

1.1. Our contribution

The core part of our system involves feature extraction over
data streams. The features are extracted at multiple resolu-
tions in order to handle queries of variable length efficiently.
A dynamic index structure is used to index these features for
query efficiency. We summarize our algorithmic contribu-
tions, which mainly address the maintenance issues in the
system, as follows:

• The features at higher resolutions are computed using
the features at lower resolutions; therefore all features
are computed in a single pass.

• The system guarantees the accuracy provided to the user
queries by provable error bounds.

• The index structure has tunable parameters to trade ac-
curacy for speed and space. The per-item processing
cost and the space overhead can be tuned according to
the specific application requirements by varying the up-
date rate and the number of coefficients maintained in
the index structure.

2. Data and Query Models

2.1. Stream computation model
A data stream consists of an ordered sequence of data points
. . . , x[i], . . . such that the value of each data point x[i] lies
in a bounded range, i.e., x[i] ∈ [Rmin, Rmax]. We assume
Rmin = 0 unless otherwise stated. We consider a system
that has M input streams, and that maintains summary infor-
mation over a time window of size N for each stream.

In the rest of the paper, we use x[i] to refer to the i-th
entry of stream x, and x[i1 : i2] to refer to the subsequence
of entries at positions i1 through i2.

2.2. Aggregate monitoring queries
In this class of queries, aggregates of data streams are mon-
itored over a set of time intervals [21]: “Report all occur-
rences of Gamma Ray bursts from a timescale of minutes to
a timescale of days”. Formally, given a window size w, an
aggregate function F , and a threshold τ associated with the
window, the goal is to report all those time instances such
that the aggregate applied to the subsequence x[t−w+1 : t]
exceeds the corresponding window threshold, i.e., check if

F (x[t− w + 1 : t]) ≥ τ (1)

where t denotes the current time. The thresholds can be esti-
mated from historical data or a model of the stream.

2.3. Pattern monitoring queries
In this class of queries, a pattern database is continuously
monitored over dynamic data streams: “Identify all tem-
perature sensors in a weather monitoring sensornet that
currently exhibit an interesting trend”. Formally, given a
query sequence Q and a threshold value r, find the set of
streams that are within distance r to the query sequence Q.
The distance measure we adopt is the Euclidean distance
(L2) between the corresponding normalized sequences. We
normalize a window of values x[1], . . . , x[w] as follows:

x̂[i] =
x[i]√

w ∗Rmax
i = 1, . . . , w (2)

thereby mapping it to the unit hyper-sphere. This specific
normalization is for the purpose of experimental consistency
with previous research work [9].



2.4. Correlation monitoring queries
In this class of queries, all stream pairs that are correlated
within a user specified threshold r at some level of abstrac-
tion are reported continuously. The correlation between two
sequences x and y can be reduced to the Euclidean dis-
tance between their z-norms [20]. The z-norm of a sequence
x[1], . . . , x[w] is defined as follows:

x̂[i] =
x[i]− µx

√

∑w
i=1(x[i]− µx)2

i = 1, . . . , w (3)

where µx is the arithmetic mean. The correlation coefficient
between sequences x and y is computed using the L2 dis-
tance between x̂ and ŷ as 1− L2

2(x̂, ŷ)/2.

3. Related Work

Zhu and Shasha consider burst detection using a summary
structure called SWT for Shifted-Wavelet Tree [21]. For a
given set of query windows w1,w2,. . .,wm such that 2LW ≤
w1 ≤ w2 ≤ . . . ≤ wm ≤ 2UW , SWT maintains U − L
moving aggregates using a wavelet tree for incremental com-
putation. A window wi is monitored by the lowest level j,
L ≤ j ≤ U , that satisfies wi ≤ 2jW . Therefore, associated
with each level j, L ≤ j ≤ U , there is a threshold τj equal to
the smallest of the thresholds of windows wi1 , . . . , wij

mon-
itored by that level. Whenever the moving sum at some level
j exceeds the level threshold τj , all query windows associ-
ated with this level are checked using a brute force approach.

Kahveci and Singh proposed MR-Index for answering
variable length queries over time series data [9]. Wavelets
are used to extract features from a time series at multiple
resolutions. At each resolution, a set of feature vectors are
combined into an MBR and stored sequentially in the or-
der they are computed. A given query is decomposed into
multiple sub-queries such that each sub-query has resolution
corresponding to a resolution at the index. A given set of can-
didate MBRs are refined using each query as a filter to prune
out non-potential candidates. However, the authors consider
and experiment on a time-series database available off-line,
where per-item processing time is not an issue. In a stream-
ing scenario, computing a transformation at each data arrival
for each resolution at the index is very costly.

Keogh et al. [10] propose a version of piecewise constant
approximation for time series data. The so-called Adap-
tive Piecewise Constant Approximation (APCA) represent
regions of great fluctuations with several short segments,
while regions of less fluctuations are represented with fewer,
long segments. Very recently, they have extended their ap-
proximation to allow error specification for each point in
time [15]. The resulting approach can approximate data with
fidelity proportional to its age. Moon et al. [14] proposed
GeneralMatch, a refreshingly new idea in similarity match-
ing. It divides the data sequences into disjoint windows, and
the query sequence into sliding windows. This approach is

the dual of the conventional approaches, i.e., dividing the
data sequence into sliding windows, and the query sequence
into disjoint windows. The overall framework is based on an-
swering pattern queries using a single-resolution index built
on a specific choice of window size. The allowed window
size depends on the minimum query length, which has to be
provided a-priori before the index construction.

Yi et al. [19] consider a method to analyze co-evolving
time sequences. They model the problem as a multi-variate
linear regression. For a given stream S, they try to estimate
its current value (dependent variable) as a linear combina-
tion of values of the same and other streams (independent
variables) under sliding window model. Given v indepen-
dent variables, and a dependent variable y with N samples
each, they find the best b independent variables to compute
the current value of the dependent variable inO(Nbv2) time.

Zhu and Shasha proposed StatStream for monitoring a
large number of streams in real time [20]. It subdivides the
history of a stream into a fixed number of basic windows and
maintains Discrete Fourier Transform (DFT) coefficients for
each basic window. This allows a batch update of DFT coef-
ficients over the entire history. It superimposes an orthogonal
regular grid on the feature space, and partitions the space into
cells of diameter r, the correlation threshold. Each stream is
mapped to a number of cells (exactly how many depends on
the “lag time”) in the feature space based on a subset of its
DFT coefficients. It uses proximity in this feature space to
report correlations [3].

In our earlier work SWAT [4], we examined how to sum-
marize a single data stream in an online manner. The tech-
nique uses O(logN) space for a stream of size N . The up-
date cost for each incoming data point is constant, which fol-
lows from an amortized analysis. For an inner product query,
the technique computes an approximate answer in polylog-
arithmic time. However, this work focuses on distributed
monitoring of a single stream rather than answering queries
over multiple data streams, and does not fully address data
management over a history of values.

4. Our Solution

In this section, we introduce our techniques to extract fea-
tures at multiple resolutions over data streams. We adopt a
multi-resolution approach since we assume that we do not
have a priori information regarding queries except the min-
imum query length. The features at a specific resolution are
obtained with a sliding window of a fixed length w. The
sliding window size doubles as we go up a resolution, i.e., a
level. In the rest of the paper, we will use the terms “level”
and “resolution” interchangeably. We denote a newly com-
puted feature at resolution i as Fi. Figure 1(a) shows an
example where we have three resolutions with correspond-
ing sliding window sizes of 2, 4 and 8. With each arrival of a
new stream value, we can compute features F0, F1, and F2,
one for each resolution. However, this requires maintaining
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Figure 1. Different feature extraction schemes at multiple resolutions over a data stream.

all the stream values within a time window equal to the size
of the largest sliding window, i.e., 8 in our running example.
The per-item processing cost and the space required is linear
in the size of the largest window [9].

For a given windoww of values y = x[t−w+1], . . . , x[t],
we use an “incremental” transformation F (y) to compute
features. The type of transformation F we use depends on
the monitoring query. For example, we use SUM for burst
detection, MAX−MIN for volatility detection, and Discrete
Wavelet Transformation (DWT) for detecting correlations
and finding surprising patterns. For most real time series,
the first f (f << w) DWT coefficients retain most of the
energy of the signal. Therefore, we can safely disregard all
but the very first few coefficients to retain the salient features
(e.g., the overall trend) of the original signal.

Using an incremental transformation leads to a more ef-
ficient way of computing features at all resolutions. We can
compute level-1 features using level-0 features, and level-
2 features using level-1 features. In general, we can use
lower level features to compute higher level features [1]. Fig-
ure 1(b) depicts this new way of computation. This new al-
gorithm has a lower per-item processing cost, since we can
compute F1 and F2 in constant time. The following lemma
establishes this result.

Lemma 4.1 The new feature Fj at level j for the subse-
quence x[t−w+1 : t] can be computed “exactly” using the
features F ′

j−1 and Fj−1 at level j − 1 for the subsequences
x[t− w + 1 : t− w/2] and x[t− w/2 + 1 : t] respectively.

Proof Fj is max(F ′

j−1,Fj−1), min(F ′

j−1,Fj−1), F ′

j−1 +
Fj−1 for MAX, MIN, and SUM respectively. For DWT, See
Lemma A.1 in Appendix A.

However, the space required for this scheme is also lin-
ear in the size of the largest window. The reason is that we
need to maintain half of the features at the lower level to
compute the feature at the upper level incrementally. If we
can trade accuracy for space, then we can decrease the space
overhead by computing features approximately. At each res-
olution level, we combine every c of the feature vectors into
a box, or a minimum bounding rectangle (MBR). Figure 1(c)
depicts this scheme for c = 2. Since each MBR B contains
c features, it has an extent along each dimension. In case of
SUM, B[1] corresponds to the smallest sum, and B[2] corre-
sponds to the largest sum among all c sums. In general,B[2i]
denotes the low coordinate andB[2i+1] denotes the high co-
ordinate along the i-th dimension. Note that for SUM, MAX
and MIN, B has a single dimension. However, for DWT the
number of dimensions f is application dependent.

This new approach decreases the space overhead by a fac-
tor of c. Since we use the extent information of the MBRs in
the computation, the newly computed feature will also be an
extent. The following lemma proves this result.

Lemma 4.2 The new feature Fj at level j can be computed
“approximately” using the MBRsB1 andB2 that contain the
features F ′

j−1 and Fj−1 at level j − 1 respectively.



Proof

max(B1[1], B2[1]) ≤ Fj ≤ max(B1[2], B2[2])

min(B1[1], B2[1]) ≤ Fj ≤ min(B1[2], B2[2])

B1[1] +B2[1] ≤ Fj ≤ B1[2] +B2[2]

See Lemma A.2 in Appendix A

for MAX, MIN, SUM and DWT respectively.

Using MBRs instead of individual features exploits the
fact that there is a strong spatio-temporal correlation between
the consecutive features. Therefore, it is natural to extend the
computation scheme to eliminate this redundancy. Instead of
computing a new feature at each data arrival, one can employ
a batch computation such that a new feature is computed pe-
riodically, at every T time unit. This allows us to maintain
features instead of MBRs. Figure 1(d) shows this scheme
with T = 2. The new scheme has a clear advantage in terms
of accuracy; however it can dismiss potentially interesting
events that may occur between the periods.

Depending on the box capacity and the update rate Tj at
a given level j (the rate at which we compute a new feature)
we have the following two general computation algorithms:

• Online algorithm: Update rate Tj is equal to 1. The
box capacity c is variable. We use this update rate for
aggregate monitoring queries.

• Batch algorithm: For Tj > 1, we have a batch al-
gorithm. The box capacity is set to c = 1. We use
Tj=W for finding surprising patterns and detecting cor-
relations. This specific choice of parameter settings is
for complying with experiments in previous research
work. Our earlier work SWAT [4] is a batch algorithm
with Tj = 2

j .

The following theorem establishes the time and space
complexity of a given algorithm in terms of c and Tj . We
assume that W denotes the sliding window size at the lowest
resolution, J denotes the highest resolution, and f denotes
the dimensionality of F .

Theorem 4.3 The new feature Fj at level j for a stream
can be computed incrementally in time Θ(f) and in space
Θ(2j−1W/cTj−1).

Proof We compute Fj at level j using the features at level
j − 1 in time Θ(f) as shown in Lemmas 4.1 and 4.2. The
number of features that need to be maintained at level j − 1
for incremental computation at level j is 2j−1W . Therefore,
depending on the box capacity and update rate, the space
complexity at level j − 1 is Θ(2j−1W/cTj−1).

As new values stream in, new features are computed and
inserted into the corresponding index structures while fea-
tures that are out of history of interest are deleted to save

space. Coefficients are computed at multiple resolutions
starting from level 0 up to level J : at each level a sliding
window is used to extract the appropriate features. Com-
putation of features at higher levels is accelerated using the
MBRs at lower levels. The MBRs belonging to a specific
stream are threaded together in order to provide a sequential
access to the summary information about the stream. This
approach results in a constant retrieval time of the MBRs.
The complete algorithm is shown in Algorithm 1.

Algorithm 1 Compute Coefficients(Stream S)

Require: BS
j,i denotes the i-th MBR at level j for stream S.

begin procedure
w := W (the window size at the lowest resolution);
tnow denotes the current discrete time;
for j := 0 to J do
BS

j,i := the current MBR at level j for stream S;
if j = 0 then
y := S[tnow − w + 1 : tnow];
normalize y if F = DWT ;
Fj := F (y);

else
find MBR BS

j−1,i1
that contains the feature

for the subsequence S[tnow −w+ 1 : tnow − w
2 ];

find MBR BS
j−1,i2

that contains the feature
for the subsequence S[tnow − w

2 + 1 : tnow];
Fj := F (BS

j−1,i1
, BS

j−1,i2
);

end if
if number of features in BS

j,i < c (box capacity) then
insert Fj into BS

j,i;
else

insert BS
j,i into index at level j;

start a new MBR BS
j,i+1;

insert Fj into BS
j,i+1;

end if
adjust the sliding window size to w := w * 2;

end for
end procedure

We maintain features at a given level in a high dimen-
sional index structure. The index combines information from
all the streams, and provides a scalable access medium for
answering queries over multiple data streams. However, each
MBR inserted into the index is specific to a single stream.
We use the R*-Tree family of index structures for indexing
MBRs at each level [2]. In order to support frequent updates,
the techniques outlined in [12] can be employed to accelerate
our implementation.

5. Advanced Search Algorithms

In this section, we describe what and how to monitor in
our framework, namely aggregate monitoring queries, pat-
tern monitoring queries, and correlation monitoring queries.



5.1. Monitoring an aggregate query
Without loss of generality, we assume that the query window
size is a multiple of W . An aggregate query with window
size w and threshold τ is answered by first partitioning the
window into multiple sub-windows, w1,w2,. . .,wn such that
0 ≤ j1 < . . . < ji < ji+1 < . . . < jn ≤ J , andwi =W2ji .
For a given window of length bW , the partitioning corre-
sponds to the ones in the binary representation of b such that
∑n

i=1 2
ji = b. The current aggregate over a window of size

w is computed using the sub-aggregates for sub-windows in
the partitioning. Assume that W = 2 and c = 2. Con-
sider a query window w = 26. The binary representation of
b = 13 is 1101, and therefore the query is partitioned into
three sub-windows w0 = 2, w2 = 8, and w3 = 16. Figure 2
shows the decomposition of the query and the composition
of the aggregate together. The current aggregate over a win-
dow of size w = 26 is approximated using the extents of
MBRs that contain the corresponding sub-aggregates. The
computation is approximate in the sense that the algorithm
returns an interval F such that the upper coordinate F [2] is
always greater than or equal to the true aggregate. If F [2] is
larger than the threshold τ , we retrieve the most recent sub-
sequence of length w, and compute the true aggregate. If this
value exceeds the threshold, we raise an alarm. The complete
algorithm is shown in Algorithm 2.

aggregate query  w=26

w=16

w=8

w=2

w=4

w3=16 w2=8 w0=2

MBRs
in level-3

index

Figure 2. Aggregate query decomposition and
approximation composition for a query win-
dow of size w = 26.

In order to quantify the false alarm rate of our approxi-
mation, we assume that we monitor bursts of events and that
our aggregate function is SUM. LetX denote the sum within

Algorithm 2 Aggregate Query(Stream S, Window w,
Threshold τ )
begin procedure

initialize t to tnow, the current discrete time;
partition w into n parts as w1, w2, . . . , wn;
initialize aggregate F ;
for i := 1 to i := n do

find the resolution level j such that wi =W2j ;
MBR B contains the feature on S[t− wi + 1 : t];
merge sub-aggregate B to F := F (B,F);
adjust offset to t := t− wi for next sub-window;

end for
if τ ≤ F [2] then

retrieve S[tnow − w + 1 : tnow];
if τ ≤ F (S[tnow − w + 1 : tnow]) then

raise an alarm;
end if

end if
end procedure

sliding window w = bW . We set τ to µX(1 − Φ(p)) such
that

Pr

(

X − µX

µX
≥ τ − µX

µX

)

≤ p (4)

holds for a given sufficiently small p, where Φ denotes
the normal cumulative distribution function. Zhu and
Shasha [21] address monitoring the burst based on windows
with size Tw such that 1 ≤ T < 2, where 2j−1W < w ≤
2jW . This approach corresponds to monitoring the burst via
one of the levels in the index structure. Let Z denote the sum
within sliding window Tw. We assume that

Z − µZ

µZ
∼ Norm(0, 1) (5)

Assuming µZ = Tµ(X), one can show that the false alarm
rate is equal to Pr(Z > τ) such that

Pr

(

Z − Tµ(X)
Tµ(X)

≥ τ − Tµ(X)
Tµ(X)

)

= Φ

(

1− 1− Φ−1(p)

T

)

(6)
According to Equation 6, for a fixed value of p, the smaller
T is, the smaller is the false alarm rate. In our case, we use
sub-aggregates for sub-windows w1,w2,. . .,wn for comput-
ing the final aggregate on a given query window of sizew and
threshold τ . The sub-aggregate for sub-window wi is stored
in an MBR at level ji. An MBR at level ji corresponds to a
monitoring window of size 2jiW + c− 1. Then, effectively
we monitor a burst using a window of size bW+log b∗(c−1)
such that:

T ′ =
bW + log b ∗ (c− 1)

bW
= 1 +

log b ∗ (c− 1)
bW

(7)

where T ′ decreases with increasing b. For example, for c =
W = 64 and b = 12, we have T ′ = 1.2987 and T = 1.3333.



This implies that our approximation reduces the false alarm
rate to a minimal amount with the optimal being at T ′ = 1.
In fact, for c = 1 we have the optimal algorithm. However
the space consumption in this case is much larger.

5.2. Monitoring a pattern query
There are two different ways to answer a pattern query de-
pending on the algorithm used for index construction. We
first consider the case of the online algorithm. Given a query
sequence Q and a threshold value r, we first partition it into
multiple sub-queries, Q1, Q2, . . . , Qn such that 0 ≤ j1 <
. . . < ji < ji+1 < . . . < jn ≤ J , and |Qi| = W2ji . As-
sume that the first sub-query Q1 has resolution j1. We per-
form a range query with radius r on the index constructed at
resolution j1. On the initial candidate box set R, we perform
the hierarchical radius refinement technique proposed in [9].
Briefly, for each MBR B ∈ R, this technique is used to re-
fine the original radius r to r′ =

√

r2 − dmin(Q1, B)2 for
the next sub-queryQ2, where dmin(p,B) for a point p and an
MBRB is defined as the minimum Euclidean distance of the
query point p to the MBR B [17]. We apply the same pro-
cedure recursively until we process the last sub-query Qn,
and get a final set of MBRs C to check for matches. The
complete algorithm is shown in Algorithm 3.

Algorithm 3 Pattern Query Online(Query Q)
begin procedure

partition Q into n parts as Q1, Q2, . . . , Qn;
find the resolution level j1 such that |Q1| =W2j1 ;
R := Range Query(Indexj1 , DWT(Q̂1),Q.r);
C := Hierarchical Radius Refinement(R,Q);
post-process C to discard false alarms;

end procedure

Assume that a batch algorithm with Tj = W is used for
index construction. Therefore, the stream is divided into W -
step sliding windows of size w. Let |S| denote the size of the
stream. Then, there are b(|S| − w + 1)/W c such windows.
Given a query sequence Q, we extract W prefixes of size w
asQ[0 : w−1], Q[1 : w], . . . , Q[W−1 : w+W−1]. We use
each prefix query to identify potential candidates. In order to
clarify the ensuing development, we note that a single prefix
query would suffice in case an online algorithm with Tj = 1
was used for index construction. Our approach is similar to
a recent work by Moon et al [14]. The authors construct a
single resolution index using a sliding window of maximum
allowable size w that satisfies 1 ≤ b(min(Q)−W + 1)/wc,
where min(Q) is the a priori information regarding the min-
imum query length. However, in our case, a given query
can be answered using any index at resolution j that satis-
fies 1 ≤ b(|Q| −W + 1)/(2jW )c. In order to improve the
accuracy of our search algorithm, we extract disjoint win-
dows along with each prefix in order to refine the original
query radius as in the multi-piece search technique proposed

by Faloutsos et al [7]. The number of such disjoint windows
is at most p = b(|Q| − W + 1)/wc. We illustrate these
concepts on a query window of size |Q| = 9 as shown in
Figure 3, where J = 1 and W = 2. The prefixes are shown
as i = 0 and i = 1 along with the corresponding disjoint
windows. We insert each and every feature extracted over Q
into a query MBR B. The MBR B is extended in each di-
mension by a fraction of the query radius, i.e., r/

√
p. Later,

we perform a range query over the index at level j using B
and retrieve a set R of candidate features. We post-process
R to discard false alarms. The complete algorithm is shown
in Algorithm 4.

query
sequence

|Q|=9

disjoint sub-sequences
of size w=4

i=0

i=1

query MBR B

feature extraction
at every 2nd time

w=4
w=4

w=4

  stream
incoming

level-1 index

Figure 3. Subsequence query decomposition
for a query window of size |Q| = 9.

Algorithm 4 Pattern Query Batch(Query Q)
begin procedure

find the largest level j such that 2jW +W − 1 ≤ |Q|;
initialize query MBR B to empty;
let w be equal to 2jW , level-j sliding window size;
for i := 0 to i :=W − 1 do

for k := 0 to k := b(|Q| − i)/wc do
extract kth disjoint subsequence of the query

sequence into y := Q[i+ kw : i+(k+1)w− 1];
insert DWT(ŷ) into MBR B;

end for
end for
compute radius refinement factor p := b(|Q|−W+1)/wc;
enlarge query MBR B by Q.r/

√
p;

R := Range Query(Indexj, B);
post-process R to discard false alarms;

end procedure

5.3. Monitoring a correlation query
Whenever a new feature Fj of a stream S is computed at
level j, we perform a range query with Fj as the center and
the radius set to r. In a system withM synchronized streams,



this involves execution of O(M) range queries at every data
arrival. One important thing to note here is that the differ-
ence between a correlation query and a pattern query comes
from the type of normalization performed (see Sections 2.3
and 2.4). We omitted the details of the algorithm due to space
constraints.

6. Performance Evaluation

We used synthetic and real data in our experiments. The
synthetic data streams were generated using a random walk
model. For a stream x, the value at time i (0 < i) is
x[i] = R +

∑i
j=1(uj − 0.5) where R is a constant uni-

form random number in [0, 100], and uj is a set of uniform
random real numbers in [0, 1]. The first set of real data is the
Host Load trace data [8]. A total of 570 traces (each of size
3K) were collected in late August 1997 at Carnegie Mellon
University (CMU) on a group of machines. The second set
of real data consists of two real time series: (1) burst.dat
of size 9, 382 and (2) packet.dat of size 360, 000 from
UCR Time Series Data Mining Archive [11].

In the experiments, we measured precision and response
time. Precision is the ratio of the number of relevant records
retrieved to the total number of records retrieved (or the ratio
of true alarms raised to the total alarms raised). Response
time is query response time and/or maintenance time: query
response time is the time that elapses from query issue time
to the time of an answer, and maintenance time is the time
spent on maintaining summary structures. In most of the
experiments, we are interested in the average behavior of
the algorithms, therefore we collected our measurements on
queries of uniformly random length that were generated us-
ing the random walk model. Measurements were collected
on machines with dual AMD Athlon MP 1600+ processors,
2 GB of RAM, and running Linux 2.4.19.

6.1. Monitoring aggregates

In this set of experiments, we computed aggregates of
data streams based on a given a set of window sizes
w1,w2,. . .,wm, an aggregate function F and a threshold τwi

associated with each window size. We used the second set of
the real datasets. We set the thresholds of different window
sizes as follows: we used 1K of burst data and 8K of net-
work packet data as training data. For a window of size w,
we computed the aggregates on the training data with a slid-
ing window of size w. This gives another time series y. The
thresholds are set to be µy +λ ∗ σy , where µy and σy are the
mean and standard deviation respectively. The window sizes
are K, 2K, . . . ,m ∗K time units, where K is a constant and
m is the number of query windows. We measured the true
alarm rate (precision) by the ratio of the true alarms raised to
the total alarms raised, and the number of alarms raised for
an increasing query set size. We compared our technique to
SWT, a burst detection scheme for data streams [21].
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Figure 4. Performance results on (a) detecting
bursts of events on burst.dat, (b) and (c) on
measuring volatility of packet.dat.

6.1.1 Burst detection

In order to detect bursts of events, we chose our aggregate
function F to be SUM. We set K = 20, m = 50, and var-
ied λ, the factor of threshold. The larger λ is, the higher the
thresholds are, and therefore fewer alarms will be sounded.
Fewer alarms also imply a faster response time. We experi-
mented with box capacities c from 1 to 150. Since the small-



est query window size is 20, a box capacity larger than this
adversely affects the performance of our algorithm, based on
the analysis in Section 5.1. Figure 4(a) shows the results on
the dataset burst.dat. Our algorithm has a superior qual-
ity of answers compared to SWT, which itself is more than
ten times faster than the linear scan [21]. Stardust with c = 1
is the exact algorithm with no false alarms. For all box ca-
pacities except the largest c = 150, Stardust is more selective
than SWT with increasing factor of threshold due to the best
effort approximation. For example, Stardust with c = 25 of-
fers a precision of 0.82 compared to 0.57 offered by SWT
for the case of λ = 10.

The false alarm rate of a technique is the ratio of false
alarms raised to the total alarms raised. For example, Star-
dust with c = 5 has a true alarm rate of 0.95 for λ = 16;
therefore the false alarm rate of Stardust in this case is 0.05
compared to the false alarm rate 0.44 of SWT.

6.1.2 Volatility detection

In this experiment, we are interested in abnormal volatility
F=SPREAD(x), which is the measure of MAX(x)−MIN(x)
for a given time series x. We intentionally set the threshold
λ to a small value, i.e., to 0.12, and produced many more
alarms than what domain experts are interested in. We set
K = 100, variedm over {50, 60, 70, 80}, and the box capac-
ity c over {1, 10, 100, 1000}. Figure 4(b) shows the results
on the dataset packet.dat. In all test cases, our algorithm
outperformed SWT, which itself is up to 100 times faster than
the linear scan. The improvement is again due to our best-
effort approximation, which reduces the false alarm rate to a
minimal amount. For the example case of NW = 60, Star-
dust with c = 100 offers a precision of 0.89 with a total of
116, 976 alarms raised, compared to a precision of 0.64 with
a total of 180, 224 alarms raised by SWT as shown in Fig-
ure 4(c). The false alarm rate of Stardust with c = 10 for
NW = 50 is 0.0009 compared to the false alarm rate 0.39
of SWT. We note that the number of false alarms directly
affects the response time of the algorithm.

6.2. Monitoring for surprising patterns
In this set of experiments, we measured the average preci-
sion offered to a set of one-time pattern queries of uniformly
random length that were generated using the random walk
model. We compared our system performance to MR-Index,
a novel multi-resolution index structure [9] and to General-
Match, a recent state-of-the-art single-resolution index struc-
ture [14].

6.2.1 Varying query length and radius

We performed a set of experiments on the host load dataset.
We set N to 1024, and observed up to 3K data arrivals for
each stream. We computed the average precision on a query
workload of 100 uniformly generated variable length queries
of length 192, . . . , 64 × k, . . . , 1024 at each measurement
point. Figure 5 shows the results. The online algorithm is

the worst among all four competing techniques, which sug-
gests that a batch algorithm is the algorithm of choice for
pattern matching. For low selectivity queries, our batch al-
gorithm outperformed the other two techniques by more than
two times. The reason behind this is that our algorithm uses
larger windows in answering the query, therefore it has a
higher precision. This also implies that our batch algorithm
will have a superior quality for point queries. However, for
high selectivity queries, GeneralMatch is the clear winner.
The reason for this difference is the value of the radius re-
finement factor p (see Section 5.2 for a discussion) because
the smaller the window size used for index construction is
the larger the factor p is; therefore, fewer candidates may
be returned for high selectivities. However, the difference is
marginal, as shown for increasing values of selectivity. Fur-
thermore, it is not difficult to modify our algorithm so that it
becomes adaptive and works better for all selectivities: one
can decrease the resolution of the index used for high selec-
tivity queries. We confirmed this claim with more experi-
ments; however, omitted these uninteresting results.
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Figure 5. Average precision on the Host Load
dataset for N = 1024, W = 64, M = 25, c = 64,
and f = 2.

6.3. Monitoring correlations

Finally, we considered correlation queries in our experi-
ments. We set the box capacity c to 1, and updated each and
every level at every W time units by using a batch algorithm.
We detect correlations at resolution J where N = 2JW . We
compared our algorithm with StatStream, a recent correlation
detection scheme proposed for data streams [20].

StatStream uses an orthogonal grid of cells to detect cor-
relations. A cell in an f -dimensional space has 3f −1 neigh-
bor cells, leading to a search volume of (3f − 1)rf . A range
query in an f -dimensional space with radius r has volume



Scalability r = 0.01 r = 0.02 r = 0.04 r = 0.08

Number of streams StatStream Stardust StatStream Stardust StatStream Stardust StatStream Stardust

256 711 911 1422 912 9093 1232 90550 1532
512 1442 1672 2854 1743 17565 2434 182933 4587
1024 2183 3224 5448 3445 41790 5759 377202 15042
2048 4226 6279 11987 7080 90310 14561 802234 50923
4096 9103 12578 30143 16364 200398 44534 1865893 225444
8192 35751 27350 101986 43332 600103 186855 4845718 956756

Table 1. Total time (ms) spent on correlation detection for an increasing number of streams.

πf/2rf/(f/2)! assuming that f is even. The ratio of the
search volume of the cell technique to the volume of a range
query with radius r is (3f − 1)(f/2)!/πf/2. Furthermore,
if we use the same grid structure to detect correlations with
threshold larger than r (e.g., 2r, 3r,. . . ,br), we need to check
distant cells as well. The ratio increases sharply for a thresh-
old of br, since a cell in f -dimensional space in this case has
(2b+ 1)f − 1 neighbor cells.

6.3.1 Scalability comparison

We compared the total wall clock time of both techniques
under a varying number of streams and a varying correla-
tion threshold. The total wall clock time is the time spent
for maintaining the summary structures and computing the
correlations. The cell radius in StatStream is set to 0.01.
We set N = 256, W = 16, and f = 2. We mon-
itored M ∈ {256, 512, 1024, 2048, 4096, 8192} synthetic
data streams and observed 256 arrivals for each stream.

As shown in Table 1, Stardust detected correlations faster
than StatStream for various threshold values. The perfor-
mance improvement is from 5 times up to 60 times.

6.3.2 Effect of increasing dimensionality

We compared the average precision and average correlation
detection time under varying dimensionality on 1000 syn-
thetic data streams of 2048 data points each. The cell ra-
dius in StatStream was set to 0.1. We work on a history of
size N = 1024 and a window W of size 64. We extracted
f = 2 coefficients for each stream in both techniques. Star-
dust outperformed StatStream when the correlation thresh-
old exceeds 0.5 in these particular settings. For example,
Stardust detected the correlations with threshold r = 1 in
325.90 seconds with a precision of 0.29, whereas StatStream
detected the same correlations in 1430.51 seconds with a pre-
cision of 0.22.

The performance of Stardust improved significantly both
in precision and in correlation detection time by increasing
the number of coefficients f . We observed this behavior in
Figures 6 (a) and (b). For the correlation threshold of r = 1,
the precision of Stardust increased from 0.29 to 0.74, and the
correlation detection time decreased from 325.90 seconds to
135.80 seconds for f = 2 and f = 16 respectively.

The performance of StatStream degraded with increasing
number of coefficients. Therefore, we omitted the results on
StatStream under varying number of coefficients. In the ex-

perimental results, Stardust with f = 16 outperformed Stat-
Stream with f = 2 by up to 20 times in precision, and by up
to 18 times in correlation detection time.

7. Concluding Remarks

In this paper, we have presented a space and time efficient
framework Stardust to summarize and index multiple
data streams. We reduce the maintenance cost of our in-
dex structure by computing transformation coefficients on-
line: we compute coefficients at higher levels on the index
that stores the coefficients at lower levels. This approach
decreases per-item processing time considerably, and mini-
mizes the space required for incremental computation. The
index structure has an adaptive time-space complexity de-
pending on the update rate and the number of coefficients
maintained, and guarantees the approximation quality by
provable error bounds. We have provided an extensive set
of experiments showing the effectiveness of our framework.
In the future, we will explore fitting incremental regression
models in our framework in order to enable parameter esti-
mation, e.g., determining the right window sizes to monitor,
for different kinds of queries.
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A. Discrete Wavelet Transform

The approximation coefficients are defined through the inner
product of the input signal with φj,k, the shifted and dilated
versions a low-pass scaling function φ0. In the same vein,
the detail coefficients are defined through the inner product
of the input signal with ψj,k, the shifted and dilated versions
the wavelet basis function ψ0.

φj,k(t) = 2
−j/2φ0(2

−jt− k), j, k ∈ Z (8)

ψj,k(t) = 2
−j/2ψ0(2

−jt− k), j, k ∈ Z (9)

From this point on, we will only consider how to compute ap-
proximation coefficients. This is because detail coefficients
at level j are computed using approximation coefficients at
level j − 1. Using Equation 8, we can obtain the approxima-
tion signal at level j for the signal x as follows

A
(x)
j =

∑

k

〈x, φj,k〉φj,k

In the same manner, the approximation signal at level j + 1
for x is

A
(x)
j+1 =

∑

k

〈x, φj+1,k〉φj+1,k

To compute A
(x)
j+1, we need to compute coefficients

〈x, φj+1,n〉. Using the twin-scale relation for φ, we can com-
pute 〈x, φj+1,n〉 from 〈x, φj,k〉 [13]. This can mathemati-
cally be expressed as

〈x, φj+1,n〉 =
∑

k

hk−2n〈x, φj,k〉 (10)

Cj,n =
∑

k

h̃n−k〈x, φj,k〉 (11)

〈x, φj+1,n〉 = Cj,2n (12)

where hk and h̃ are low-pass reconstruction and decompo-
sition filters respectively. We use the terms “approximation
signal” and “approximation coefficients” interchangeably.

Lemma A.1 The approximation coefficients at level j, 1 ≤
j ≤ J , for a signal x[t−w+ 1 : t] can be computed exactly
using the approximation coefficients at level j − 1 for the
signals x[t− w + 1 : t− w/2] and x[t− w/2 + 1 : t].

Proof Let x, x1 and x2 denote signals x[t − w + 1 : t],
x[t− w + 1 : t− w/2], and x[t− w/2 + 1 : t] respectively.
At a particular scale j − 1, the shape of the wavelet scal-
ing function φj−1,0 is kept the same, while it is translated to



obtain the wavelet family members at different positions, k.
Since x1 and x2 constitute the two halves of the whole signal
x, we can easily compute 〈x, φj−1,k〉 using 〈x1, φj−1,k〉 and
〈x2, φj−1,k〉 as follows

x′1 =

{

x1[n], 1 ≤ n ≤ w/2
0, w/2 + 1 ≤ n ≤ w

}

x′2 =

{

0, 1 ≤ n ≤ w/2
x2[n− w/2], w/2 + 1 ≤ n ≤ w

}

〈x, φj−1,k〉 = 〈x′1+x′2, φj−1,k〉 = 〈x′1, φj−1,k〉+〈x′2, φj−1,k〉
This result is due to the linearity of the wavelet trans-

formation. Using Equations 11, 12, and the coefficients
〈x, φj−1,k〉, we can obtain the approximation signal A(x)

j at
level j for x.
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Figure 7. Transforming an MBR using dis-
crete wavelet transform. Transformation cor-
responds to rotating the axes (the rotation an-
gle = 45◦ for Haar wavelets)

In order to compute the most recent approximation coeffi-
cients for a sliding window of values x at a given resolution j,
we can use the extent information of the MBRs Bj−1,i1 and
Bj−1,i2 in <f at level j − 1 that contain the coefficients of
the corresponding two halves of x. These MBRs are merged
together using Lemma A.1 to get an MBR B in <f ′

, where
f ′ is larger than f (e.g., f ′ is 2f for Haar wavelets). The
MBR B approximates the coefficients at level j − 1 for x.
In order to compute the coefficients at level j for x, one can
compute the coefficients for each one of the 2f ′

corners ofB,
and find the tightest MBR in <f that encloses the resulting
2f ′

coefficients in <f . This is true for any such unitary trans-
formation as wavelet transformation that rotates the axes as
shown in Figure 7. However this algorithm (Online I) has
a processing time of Θ(2f ′

f). To reduce this cost, we pro-
pose a new technique (Online II) that uses only two of
the corner points, namely the low and high coordinates of B.
This approach achieves a faster processing time of Θ(f) at
the cost of a lower accuracy.

Lemma A.2 It is possible to compute approximation coeffi-
cients on a hyper-rectangle B ∈ <f ′

with low coordinates
[xl1 , . . . , xlf′

] and with high coordinates [xh1
, . . . , xhf′

].

Proof Approximation coefficients are computed by first
convolving (*) the signal with the low-pass filter as in Equa-
tion 11 and then down-sampling (↓) the resulting signal as in
Equation 12. Let xlo, xhi and xi denote the signals corre-
sponding to the low coordinates of B, high coordinates of B
and an arbitrary point insideB respectively. LetA(B) denote
the resulting transform. We can simply compute A(xlo) and
A(xhi) to get the low coordinates, A(Blo), and the high co-
ordinates, A(Bhi), of A(B). This is true only if the low-pass
filter contains all non-negative entries as in Haar wavelets.
If not, we can use the linearity of convolution operation as
follows:

A(x) =↓ (x ∗ (h̃+ δ − δ)) =↓ (x ∗ (h̃+ δ)− x ∗ δ) (13)

where the amplitude scaling filter δ is a constant amplitude
filter with the smallest positive amplitude that makes all the
entries of h̃ + δ nonnegative. With this insight, it is easy to
verify for all xi ∈ B that:

xi ∗ h̃ = xi ∗ (h̃+ δ)− xi ∗ δ
xlo ∗ (h̃+ δ) ≤ xi ∗ (h̃+ δ)
xlo ∗ δ ≤ xi ∗ δ
xi ∗ (h̃+ δ) ≤ xhi ∗ (h̃+ δ)
xi ∗ δ ≤ xhi ∗ δ

which collectively imply a lower bound and an upper bound
on any feature vector A(xi) to be computed before down-
sampling as

xlo ∗ (h̃+ δ)− xhi ∗ δ ≤ min
i
{xi ∗ h̃} (14)

max
i
{xi ∗ h̃} ≤ xhi ∗ (h̃+ δ)− xlo ∗ δ (15)

Using Equations 14 and 15, we can compute low and high
coordinates of A(B) as

A(Blo) = ↓ (xlo ∗ (h̃+ δ)− xhi ∗ δ) (16)

A(Bhi) = ↓ (xhi ∗ (h̃+ δ)− xlo ∗ δ) (17)

Lemma A.2 establishes that for a given xi ∈ B, the inequal-
ity A(Blo) ≤ A(xi) ≤ A(Bhi) holds.

A.1. Error bound
Wavelet transformation corresponds to the rotation of the
axes in the original space. An input MBR B in the original
space is transformed to a new shape S in the feature space
(see Figure 7). We project the resulting shape S on each di-
mension in the feature space, and find the tightest MBRA(B)

that encloses S. The new MBR A(B) contains the feature
A(x) we ultimately want to compute. The volume of A(B)

is a function of the projection along each dimension. Since
the wavelet transformation is a distance preserving transfor-
mation, the length along each dimension can be at most two
times the original length.


