
ARWin - A Desktop Augmented Reality Window
Manager

UCSB Tech Report 2003-12

Stephen DiVerdi, Daniel Nurmi, Tobias H¨ollerer
Department of Computer Science

University of California, Santa Barbara, CA 93106
�sdiverdi,nurmi,holl�@cs.ucsb.edu

May 2003

Abstract

We present ARWin, a single user 3D augmented reality desktop win-
dow manager, placing 3D user interfaces into a physical desktop workspace.
We explain our design considerations and system architecture, exhibiting the
ease with which such a system can be developed and used. We showcase a
number of novel 3D applications, which take advantage of the environment
to provide more powerful interactions and data visualizations. We elaborate
on how to support 2D legacy application functionality. Finally, we discuss
future possibilities for application and interaction development.

1 Introduction

For the past twenty years, desktop computer use has been dominated by the 2D
Windows-Icons-Menus-Pointing (WIMP) paradigm. Through major advances in
computing power and systematic improvements in 3D graphics and tracking sup-
port, it is now possible to create 3D augmented environments with unprecedented
ease. Over a period of less than three months we created a 3D augmented desk-
top that can run and display 2D legacy applications, some specifically enhanced
by 3D data visualizations, and a variety of hybrid data handling and interaction
techniques.

Standard desktop computers, coupled with a head-worn display and camera,
are adequately equipped for the task of presenting the user with an augmented ver-
sion of his physical desktop workspace. Such an environment can make available
a variety of new interaction techniques. Computer programs can populate physi-
cal space and make use of electronically enhanced versions of the physical objects
commonly used in an office environment (see Figure 1).



Figure 1: A typical ARWin desktop, as experienced through a video see-through
head-worn display (Sony LDI-A55 with Point Grey Firefly camera). Applications
are (clockwise from right) weather report, tagged phone, business card, flowers,
web browser, clock.

Research in 3D data visualization [6], vision-based tracking and tangible inter-
faces [3], migration of 2D windows into 3D environments [2, 7], as well as 3D AR
workspaces [8], has advanced the state of the art of 3D user interfaces to a point
where we can put them to a rigorous test: everyday office productivity.

ARWin is our prototype environment for augmented reality desktop manage-
ment. It allows the user to work in a familiar fashion with traditional 2D GUI
applications, while introducing novel applications that are developed specifically
with the 3D workspace in mind. These applications’ geometry can mimic or ex-
tend traditional desktop objects such as a clock or calendar, or can spatially visu-
alize information, such as web or file hierarchies. Thanks to the extra dimension
in a volumetric workspace, these applications can also interact in ways previously
impossible due to the limitations of a two-dimensional desktop. Placing the appli-
cations in space rather than minimizing them to a dock or menu allows persistent
inter-application links and dataflows to be visualized graphically. It also makes
possible the interaction of applications based on physical proximity.

While AR lends itself very well to multi-user collaborative work [1, 8], our
application scenario purposefully focuses on usability benefits in the single-user
case, which is how most computer users spend the majority of their time.



Knowledge
Base

Event
Manager

ARToolkit

Display
Manager

Generate / Classify
ARWin Events

ARWin
Applications

App3d

clock, calendar,
phone, outbox,
business card,
weather report,...

3D web browser

3D file browser AppWin

draw

key/mouse

proximity

snap

VNC Server

VTex

xterm> ls -al

XWindow

VNC
Backend

GL Texture

KB / MouseDraw

texture
management

Apps

MarkersMarkersMarkers

Keyboard

Mouse

Camera

Events

Figure 2: ARWin system architecture. The event manager turns hardware input
into events. The display manager distributes events among applications which
subclass App3d. AppWin uses a texture map of a VNC server to display X-
applications.

2 Architecture

ARWin essentially replaces the combination of a display manager, such as X win-
dows, and a window manager, such as TWM (see Figure 2).

The event manager’s primary responsibility is to process input and generate
ARWin specific events. For example, the camera input prompts the event manager
to perform marker recognition and tracking. Markers affixed to the desk and walls
in the user’s workspace are detected by the ARToolkit [3], which calculates ori-
entation and position information. This provides a global coordinate space in the
volume above the user’s desk where applications may be placed.Floating mark-
ers, which the user can manipulate freely within the environment, are also used to
dynamically attach individual applications to. Input from standard hardware de-
vices (eg. keyboard and mouse) is captured using the Simple DirectMedia Library.
These events can either be passed along to the display manager unmodified, or
may trigger more complicated events, such as window dragging or menu interac-
tion. Control is then passed to the display manager.

The display manager’s primary responsibility is to use the application knowl-
edge base to determine where events should be delivered. Thedraw event, for
instance, must be delivered to all visible applications while keyboard and mouse
events need only be delivered to the application that is currently in focus. The
display manager also sets up the context for these events - when a draw event is
issued to an application, the display manager first sets up the transformation ma-
trix to provide the application with a local coordinate system to draw in. Certain
events are handled by the display manager as well, such as mouse events that move
applications within the environment.

Applications designed for ARWin implement a generic App3d superclass that
provides callback functions for each type of event ARWin can generate. To handle
various events, the developer need only implement the appropriate functions. Ap-
plications have control over their appearances via member fields in the App3d class
that the display manager reads for look and feel (eg. border style, default position).



A special case of application which we call AppWin allows users to operate
their legacy X applications (xterm, emacs) within ARWin. AppWin first runs the
X application on a virtual VNC enabled X server [5]. Our custom VNC client
connects to this server and draws the screen image data into an OpenGL texture
map, which is then applied to a polygon in the 3D space above the user’s desk. To
maximize application visibility, the focused application is always oriented to face
the user head-on.

3 Applications

Developing intuitive 3D applications constituted a major part of our work (see
Figure 1). We’ve devised an informal taxonomy to classify these applications in
terms of the physical or virtual nature of their geometry and functionality.

On the physical end of the spectrum, there are tagged physical objects, such
as the phone or business card. They are fully functional, regular desk objects that
have a small marker attached to them. These markers provide ARWin with loca-
tion information, as well as metadata (from a knowledge base) about the physical
object, enabling their interactions with other ARWin applications.

Next we have hybrid physical / virtual objects, such as the weather report.
These are tagged physical objects (a wall thermometer) which have some associ-
ated virtual geometry (the sunny / cloudy indicator). The virtual component aug-
ments the functionality of the otherwise unmodified physical object.

On the fully virtual end of the spectrum, we have virtual objects that mimic the
geometry and functionality of their physical counterparts, such as the wall clock
or flowers. These applications perform the same useful behaviors, but without the
downsides. For example. the flowers add a nice aesthetic touch to a virtual desktop,
but without the need for regular maitenance.

Finally, there are virtual objects with no physical counterpart, such as the web
and file browsers. These applications are extensions of the traditional counterparts,
specifically enhanced to take advantage of the 3D environment. Each uses cone
trees [6] to enhance visualization and manipulation of large data sets. The file
browser displays the file system in a cone tree format to allow for ease of selection
large numbers of diverse groups of files and directories. Filters can also be applied
to the conetree to select a subset of the nodes based on various filesystem metadata.
The web browser allows for normal navigation of web pages, but at the same time
uses a cone tree to display the web hierarchy from the current viewed page. The
hierarchy can include both a precache of web pages linked to from the current page,
as well as an organized history of previously viewed pages.

4 Interactions

To take full advantage of the 3D workspace, ARWin extends traditional application
interaction by providing aproximity event. When two (or more) applications are



Figure 3: Application interaction.left: phone (data handler) and business card
(data container).right: phone receives business card data, displaying and storing
the name and phone number.

placed near each other (defined by an application-specific threshold), each appli-
cation receives an event notifying it of the members of its neighborhood. What the
applications do with this knowledge is left to the developer.

For our example applications, we’ve classified each in terms of their roles dur-
ing a proximity event. Here,metadata refers to information about the application
in its current state, such as the time on the clock or the temperature on the weather
indicator. Objects which contain useful metadata are called data containers and are
represented by an orange arrow pointing away from the object. Objects which can
operate on metadata are data handlers and are represented by a blue arrow pointing
towards the object. When a handler and a container are placed near each other, the
handler can request the metadata from the container and then process it appropri-
ately (see Figure 3). This may include storing the data, displaying it, or something
else entirely.

ARWin provides an additional new event to applications, called asnap event.
For some applications, such as a web browser or xterm, it is appropriate to provide
two modes of operation - one in 3D and one in 2D. The snap event gives the target
application control over the display so it can draw at full resolution for maximum
visibility. The input events can be handled differently as well, to provide an inter-
face appropriate to this 2D representation. This is particularly useful for AppWin
objects - when snapped, the user is presented with the traditional interface to the X
windows application.

5 Future Work

A major benefit of a system like ARWin is that it’s provides a useful testbed for
new ideas and integration of established technologies in an augmented reality envi-
ronment. We have many ideas for features we’d like to add and new concepts we’d
like to test out in a developed system.



One of our next goals will be to replace the traditional mouse interface with
something more appropriate to the three-dimensional workspace. At the moment,
ARWin uses a screen stabilized pointer controlled by a mouse. This is unintu-
itive for a number of reasons, largely because the user has an expectation of how
a mouse will perform which does not clearly translate into ARWin. One major
problem is the mouse is screen stabilized - that is, when the user moves his or her
head, the mouse moves with it, rather than holding it’s world position. This is un-
intuitive - a user would expect a pointing device to remain world stabilized. We are
considering a variety of replacements, from using a regular mouse to control a 3D
cursor, to using a more intuitive 3DOF device like a spaceball. The most attractive
possibility is to integrate hand tracking and gesture recognition algorithms so the
user’s hand could be the pointing device.

We also have many different avenues to explore in the realm of inter-application
interactions. ARWin’s proximity events and data container / handler abstraction al-
lows for the easy transfer and manipulation of small metadata, but the potential for
connecting flows of more significant application data and control information is
obvious, much along the same lines as data tiles’ [4] information sharing. Once
these inter application streams are established the question of how best to visualize
the sharing of data is immediately raised. Simply drawing static lines to represent
all links quickly becomes muddled and annoying, but some visual cue to the user
indicating the link and transfer of data is obviously necessary.

6 Conclusions

We have presented ARWin, a practical augmented reality desktop environment.
We’ve demonstrated ARWin’s ability to execute traditional X applications as well
as novel 3D applicationss which showcase ARWin’s enhancements.

In the future, ARWin will be an invaluable testing environment for technology
integration. We will explore user interaction techniques such as hand tracking
and gesture recognition, as well as more advanced application interaction and data
visualization technologies.

It’s important to understand the limitations of ARWin. Tracking with the AR-
Toolkit is currently limited by camera resolution and the careful calibration of
known markers attached to the desk and walls. Techniques have been developed
to address the marker placement issue, and would be appropriate to integrate with
ARWin. The low resolution of HMDs is another fundamental limitation, which
we’d like to address by allowing applications to snap to a high resolution desktop
LCD monitor instead of the HMD.

References

[1] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Beshers. Enveloping users and
computers in a collaborative 3D augmented reality. InIWAR ’99, pages 35–44, San



Francisco, CA, Oct. 20–21 1999.
[2] S. Feiner, B. MacIntyre, M. Haupt, and E. Solomon. Windows on the world: 2D

windows for 3D augmented reality. InACM UIST ’93, pages 145–155, Atlanta, GA,
Nov. 3–5 1993.

[3] I. Poupyrev, D. Tan, M. Billinghurst, H. Kato, H. Regenbrecht, and N. Tetsutani. De-
veloping a generic augmented-reality interface.Computer, 35(3):44–50, Mar. 2002.

[4] J. Rekimoto, B. Ullmer, and H. Oba. Datatiles: a modular platform for mixed physical
and graphical interactions. InCHI, pages 269–276, 2001.

[5] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network com-
puting. InIEEE Internet Computing, pages 33–38, Jan./Feb. 1998.

[6] G. Robertson, J. Mackinlay, and S. Card. Cone trees: Animated 3D visualizations of
hierarchical information. InACM CHI’91, pages 189–194, 1991.

[7] G. Robertson, M. van Dantzich, D. Robbins, M. Czerwinski, K. Hinckley, K. Risden,
D. Thiel, and V. Gorokhovsky. The task gallery: a 3D window manager. InACM CHI
’00, pages 494–501, Apr. 1–6 2000.

[8] D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple user interface di-
mensions with augmented reality. InIEEE/ACM ISAR 2000, pages 20–29, Oct. 5–6
2000.


