
1

Formal Verification of Realtime Systems in ASTRAL

Alberto Coen-Porisini
 Richard A. Kemmerer
Reliable Software Group

Department of Computer Science
University of California
Santa Barbara, CA 93106

Dino Mandrioli
Dipartimento di Elettronica

Politecnico di Milano
20133 Milano, Italia

Abstract

ASTRAL is a formal specification language for realtime systems. It is
intended to support formal software development, and therefore has been
formally defined. This paper focuses on formally proving the mathematical
correctness of ASTRAL specifications.

ASTRAL is provided with structuring mechanisms that allow one to
build modularized specifications of complex systems with layering. In this
paper, we exploit and enhance ASTRAL's structure and provide a proof
method that allows one to build well structured proofs.

Correctness proofs in ASTRAL can be divided into two categories: inter-
level proofs and intra-level proofs. The former deal with proving that the
specification of level i+1 is consistent with the specification of level i, while
the latter deal with proving that the specification of level i is correct. In this
paper we concentrate on intra-level proofs.

Key Words: Formal Methods, Formal specification and verification,
Realtime systems, Timing requirements, State machines, ASLAN, TRIO.

2

1. Introduction

ASTRAL is a formal specification language for realtime systems. It is
intended to support formal software development, and therefore has been
formally defined. [GK 91a] discusses the rational of ASTRAL's design and
demonstrates how the language builds on previous language experiments.
[GK 91b] discusses how ASTRAL's semantics are specified in terms of
TRIO, which is a formal realtime logic. It also outlines how ASTRAL
specifications can be formally analyzed by translating them into TRIO and
then using the TRIO validation theory.

Recently, a number of approaches have been proposed to build formal
proofs for real-time systems [Ost 89, ACD 90, CHS 90, Suz 90, FMM 91, GF
91]. Many of them exploit the so called "dual language approach" [Pnu 77,
Ost 89] where a system is modeled as an abstract machine (e.g., a finite
state machine or a Petri net) and its properties are described through some
assertion language (e.g., a logic or an algebraic language). However, they
are based on low level formalisms, i.e., abstract machines and/or assertion
languages that are not provided with modularization and abstraction
mechanisms. As a consequence, the proofs lack structure, which makes
them unsuitable for dealing with complex real-life systems.

On the contrary, ASTRAL is provided with structuring mechanisms that
allow one to build modularized specifications of complex systems with
layering [GK 91a, GK 91b]. In this report further details of the ASTRAL
environment components and the critical requirements components, which
were not fully developed in previous papers, are presented.

Formal proofs in ASTRAL can be divided into two categories: inter-level
proofs and intra-level proofs. The former deal with proving that the
specification of level i+1 is consistent with the specification of level i, while
the latter deal with proving that the specification of level i is consistent and
satisfies the stated critical requirements. This report concentrates on intra-
level proofs.

In the next section a brief overview of ASTRAL is presented along with
an example system, which will be used throughout the remainder of the
report for illustrating specific features of ASTRAL. Section 3 discusses how
to represent assumptions about the environment in which the system is to
run as well as the representation of critical requirements for the system.
Section 4 presents a formal framework for generating proof obligations in
ASTRAL. Finally, in section 5 some conclusions from this research are
presented and possible future directions are proposed.

2. Overview of ASTRAL

ASTRAL uses a state machine process model and has types, variables,
constants, transitions, and invariants. A realtime system is modeled by a

3

collection of state machine specifications and a single global specification.
Each state machine specification represents a process type of which there
may be multiple instances in the system. The process being specified is
thought of as being in various states with one state differentiated from
another by the values of the state variables. The values of these variables
evolve only via well defined state transitions, which are specified with Entry
and Exit assertions and have an explicit nonnull duration. State variables
and transitions may be explicitly exported by a process. This makes the
variable values readable by other processes and the transitions callable by
the external environment; exported transitions cannot be called by another
process. Interprocess communication is via the exported variables, and is
accomplished by inquiring about the value of an exported variable for a
particular instance of the process. A process can inquire about the value of
any exported variable of a process type or about the start or end time of an
exported transition.

The ASTRAL computation model views the values of all variables being
modified by a transition as being changed by the transition in a single
atomic action that occurs when the transition completes execution. Thus, if
a process is inquiring about the value of an exported variable while a
transition is being executed by the process being queried, the value obtained
is the value the variable had when the transition commenced. Start(Opi, t)
is a predicate that is true if and only if transition Opi starts at time t and
there is no other time after t and before the current time when Opi starts
(i.e., t is the time of the last occurrence of Opi). For simplicity, the
functional notation Start(Opi) is adopted as a shorthand for "time t such
that Start(Opi, t)", whenever the quantification of the variable t (whether
existential or universal) is clear from the context. Start-k(Opi) is used to
give the start time of the kth previous occurrence of Opi. Inquiries about the
end time of a transition Opi may be specified similarly using End(Opi) and
End-k(Opi).

In ASTRAL a special variable called Now is used to denote the current
time. The value of Now is zero at system initialization time. ASTRAL
specifications can refer to the current time ("Now") or to an absolute value
for time that must be less than or equal to the current time. That is, in
ASTRAL one cannot express values of time that are to occur in the future.
To specify the value that an exported variable var had at time t, ASTRAL
provides a past(var,t) function. The past function can also be used with the
Start and End predicates. For example the expression "past(Start(Op),t) = t"
is used to specify that transition Op started at time t.

The type ID is one of the primitive types of ASTRAL. Every instance of a
process type has a unique id. An instance can refer to its own id by using
"Self". There is also an ASTRAL specification function IDTYPE, which
returns the type of the process that is associated with the id.

For inquiries where there is more than one instance of that type, the
inquiry is preceded by the unique id of the desired instance, followed by a
period. Process instance ids that are used in a process specification must be
explicitly imported. For example, i.Start(Op) gives the last start time that

4

transition Op was executed by the process instance whose unique id is i.
The exception to this occurs when the process instance performing the
inquiry is the same as the instance being queried. In this case the
preceding id and period may be dropped.

An ASTRAL global specification contains declarations for all of the
process instances that comprise the system and for any constants or
nonprimitive types that are shared by more than one process type. Globally
declared types and constants must be explicitly imported by a process type
specification that requires them.

The computation model for ASTRAL is based on nondeterministic state
machines and assumes maximal parallelism, noninterruptable and
nonoverlapping transitions in a single process instance, and implicit one-
to-many (multicast) message passing communication, which is
instantaneous.

Critical requirements for the system being designed are represented as
invariants and schedules in an ASTRAL specification. Global invariants
and global scheduling constraints are part of the global specification. The
global invariants represent properties that need to be proved about the
realtime system as a whole. The global scheduling requirements should
specify the ordering of transitions from different process instances and the
time between executions of different transitions. Process invariants
represent properties that must hold for each process instance, and process
schedules represent the scheduling requirements that must be satisfied for
each process instance.

ASTRAL also allows assumptions about the external environment to be
specified in an environment clause and assumptions about the system
context in which a process is to run to be specified in an imported variable
clause. The optional environment clause describes the pattern of invocation
of external transitions; it is a time-invariant formula (i.e., it must be true
at any point of time). If Opi is an exported transition, Call(Opi) may be used
in the environment clause to denote the time of the last occurrence of the
call to Opi (with the same syntactic conventions as Start(Opi) and End(Opi)),
and Call-k(Opi) denotes the time of the kth previous occurrence of the call1.
The imported variable clause describes patterns of value changes to
imported variables, including timing information about any transitions
exported by other processes that may be used by the process being specified
(e.g.., Start(Opi) and End(Opi)).

A detailed description of ASTRAL and of its underlying motivations is
provided in [GK 91a], which also contains a complete specification of a
phone system example. In this report only the concepts of ASTRAL that are
needed to present the proof theory are discussed in detail. These concepts
are illustrated via a simple example that is a variation of the packet
assembler described in [Zav 87]:

1Note that there may be a delay from the time a transition Opi is called until it is
actually started.

5

"The system contains an object which assembles data items (in the
order in which it receives them) into fixed-size packets, and sends
these packets to the environment. It also contains a fixed number of
other objects, each of which receives data items from the
environment on a particular channel and sends those items to the
packet maker. The packet maker sends a packet to the environment
as soon as it is full of data items.

Each data receiver attaches a channel identifier to each incoming
data item; these channel identifiers are included with the data
items in the outgoing packets.

If a data receiver does not receive a new data item within a fixed
time since the last item arrived, its channel is considered closed
until the next data item arrives. Notifications of channel closings
are put into the outgoing packets as well as data items. If all
channels are closed then the packet maker should send an
incomplete packet to the environment rather than wait for data to
complete it."

In the remainder of this report we refer to this system as the CCITT
system.

The appendix contains a complete ASTRAL specification of the CCITT
system. It consists of a packet maker process specification, an input
process specification (of which there are N instances), and the global
specification. The input process specification, which corresponds to the
data receiver in Zave's system description, contains two transitions:
New_Info and Notify_Timeout. 2.

New_Info is an exported transition, with no Entry conditions, that
models the receipt of data items from the environment. It has duration
N_I_Dur.

TRANSITION New_Info(x:Info) N_I_Dur
EXIT

Msg[Data_Part] = x
& Msg[Count] = Msg[Count]' + 1
& Msg[ID_Part] = Self
& ~Channel_Closed

In ASTRAL Exit assertions, variable names followed by a ' indicate the
value that the variable had when the transition fired.

Notify_Timeout is used to notify the packet maker process that an input
process has not received any input from the environment within some fixed
time (constant Input_Tout in the specification). It has duration N_T_Dur.

2An earlier version of this specification that did not take into account the environment
and with different invariants and schedules was presented in [GK 91b].

6

TRANSITION Notify_Timeout N_T_Dur
ENTRY

EXISTS t1: Time (Start(New_Info,t1) & Now - t1 ≥ Input_Tout)
& ~Channel_Closed
EXIT

Msg[Data_Part] = Closed
& Msg[Count] = Msg[Count]' + 1
& Msg[ID_Part] = Self
& Channel_Closed

The packet maker specification also has two transitions: Process_Msg
and Deliver, which correspond to processing a message from an input
channel and delivering a packet, respectively.

TRANSITION Process_Msg(R_id:Receiver_ID) P_M_Dur
ENTRY

LIST_LEN(Packet) < Maximum
& (EXISTS t1: Time (Receiver[R_id].End(New_Info) = t1 & t1 > Previous(R_id))

| (Receiver[R_id].Msg[Data_Part]=Closed
& past(Receiver[R_id].Msg[Data_Part],Previous(R_id)) ≠ Closed))

EXIT
Packet = Packet' CONCAT LIST(Receiver[R_id].Msg)

& Previous(R_id) BECOMES Now

TRANSITION Deliver Del_Dur
ENTRY

LIST_LEN(Packet) = Maximum
| (LIST_LEN(Packet) > 0

& (EXISTS t:Time (Start(Deliver, t) & Now - t ≥ Del_Tout)
 | Now = Del_Tout - Del_Dur + N_I_Dur))

EXIT
Output = Packet'

& Packet = EMPTY

 3. Environmental Assumptions and Critical Requirements

In addition to specifying system state (through process variables and
constants) and system evolution (through transitions), an ASTRAL
specification also defines desired system properties and assumptions on the
behavior of the environment that interacts with the system. Assumptions
about the behavior of the environment are expressed in environment
clauses and imported variable clauses, and desired system properties are
expressed through invariants and schedules. Because these components
are critical to the ASTRAL proof theory and were not fully developed in
previous reports, they are discussed in more detail in this section.

3.1 Environment Clauses

An environment clause formalizes the assumptions that must always
hold on the behavior of the environment to guarantee some desired system

7

properties. They are expressed as first-order formulas involving the calls of
the exported transitions, which are denoted Call(Opi) (with the same
syntactic conventions as for Start(Opi)). For each process p there is a local
environment clause, Envp, which expresses the assumptions about calls to
the exported transitions of process p. There is also a global environment
clause, EnvG, which is a formula that may refer to all exported transitions
in the system.

In the CCITT example there is a local environment clause for the input
process and a global clause. The local clause states that for each input
process, the time between two consecutive calls to transition New_Info is
not less than the duration of New_Info and that there will always be a call
to New_Info before the time-out expires:

(EXISTS t:Time (Call-2 (New_Info, t)) →
(Call (New_Info) - Call-2 (New_Info) ≥ N_I_Dur)

& (Now ≥ Input_Tout →
EXISTS t:Time (Call (New_Info, t))

& Now - Call(New_Info) < Input_Tout)

The global environment clause states that exactly N/L calls to transition
New_Info are cyclically produced, with time period N/L*P_M_Dur +
Del_Dur (where P_M_Dur is the duration of transition Process_Message,
Del_Dur is the duration of Deliver, and L denotes a constant that is used to
specify that N/L processes are producing messages)3:

FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S: Set_Of_Receiver

(|S| = N/L
& FORALL i:Receiver_ID

(i ISIN S ↔ Receiver[i].Call(New_Info) = t)))

& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].Call(New_Info, t)))

3.2 Imported Variable Clauses

Each process p may also have an imported variable clause, IVp. This
clause formalizes assumptions that process p makes about the context
provided by the other processes in the system. For example IVp contains
assumptions about the timing of transitions exported by other processes
that p uses to synchronize the timing of its transitions. It also contains
assumptions about when variables exported by other processes change
value. For instance, p might assume that some imported variable changes
no more frequently than every 10 time units.

3For simplicity, the traditional cardinality operator, | |, is used even though it is not an
ASTRAL operator.

8

In the CCITT example only the Packet_Maker process has an imported
variable clause. It states that the ends of transition New_Info executed by
input processes follow the same periodic behavior as the corresponding
calls. The clause is similar to the global environment clause.

3.3 Invariant Clauses

Invariants state properties that must initially be true and must be
guaranteed during system evolution, according to the traditional meaning
of the term. Invariants can be either local to some process or global. These
properties must be true regardless of the environment or the context in
which the process or system is running. Ip denotes the local invariant of
process p and IG denotes the global invariant.

Ip is a formula that can refer to local variables and local transitions (i.e.,
Start(Opi), End(Opi) of process p. It can not refer to any Call(Opi), even if
transition Opi belongs to process p. In addition, Ip can refer to imported
variables, provided that they occur within a past construct in such a way
that the meaning of the construct is the value of the imported variable in an
absolute time instant (e.g., a constant time).

IG can refer to all variables and transitions exported by processes (we call
such transitions and variables global.)

In the CCITT example the global invariant consists of two clauses. The
first clause states that every input data will be output within H1 time units
after it is input, but not sooner than H2 time units:

FORALL i:Receiver_ID, t1:Time, x:Info
 (t1≤Now-H1 & past(Receiver[i].End(New_Info(x)),t1) = t1
→ EXISTS t2:Time, k:Integer

(t2 ≥ t1+H2 & t2 ≤ Now & Change(Output,t2)
& 0 < k & k ≤ LIST_LEN(past(Output,t2))
& past(Output[k][Data_Part],t2)=x
& past(Output[k][Count],t2) = past(Receiver[i].Msg[Count],t1)
& past(Output[k][ID_part],t2) = Receiver[i].Id))

The other global clause states that no message is output other than those
produced by the input processes.

The Input process local invariant states that after Input_Tout time units
have elapsed without receiving any new message a time-out occurs, and
that the last message received is kept until a Deliver time-out occurs.

The Packet_Maker's local invariant, in contrast, is a more complex
formula that states the following properties:

I1. Changes in Output occur at, and only at, the end of a Deliver:
FORALL t: Time (Change(Output, t) ↔ past(End(Deliver), t) = t)

I2. No new messages are generated by the packet assembler:

9

FORALL k:Integer (k>0 & k≤LIST_LEN(Output)
→ EXISTS i:Receiver_ID, t:Time

(t<Now & past(Receiver[i].Msg,t)=Output[k]))

I3. The order that messages appear in an output packet is the order in
which they were processed from a channel:
FORALL k:Integer (k>0 & k<LIST_LEN(Output)
→ EXISTS t1,t2:Time

(t1 < t2 < Now
& past(End(Process_Message), t1) = t1
& past(End(Process_Message), t2) = t2
& Output[k] = past(Packet[past(LIST_LEN(Packet),t1)], t1)
& Output[k+1] = past(Packet[past(LIST_LEN(Packet),t2)], t2))

I4. The order is also preserved across output packets:
EXISTS t:Time (Start-2(Deliver, t) & End(Deliver) > Start(Deliver))
→ EXISTS t1,t2:Time

(t1 < t2 < Now
& past(End(Process_Message, t1) = t1
& past(End(Process_Message, t2) = t2
& past(Output[past(LIST_LEN(Output),

Start(Deliver)], Start(Deliver))
= past(Packet[past(LIST_LEN(Packet),t1)], t1)

& Output[1] = past(Packet[past(LIST_LEN(Packet),t2)], t2))

I5. Every message in Output was previously in Packet and if Output
changes Now then all of the elements of Packet have not changed
from when they were put into the packet until now:
FORALL k:Integer
(k>0 & k≤LIST_LEN(Output)
↔ EXISTS t:Time

(t<End(Deliver) & past(End(Process_Message),t)=t
& past(Packet[past(LIST_LEN(Packet),t)],t)=Output[k]
& FORALL t1:Time (t1≥t & t1<End(Deliver)

→ past(Packet[past(LIST_LEN(Packet), t)], t) =
past(Packet[past(LIST_LEN(Packet), t)], t1))))

I6. FORALL t1:Time t1≤Now-H3 & past(End(Process_Msg),t1)=t1
→ EXISTS t2:Time

(t2>t1 & Now ≥ t2 & past(End(Deliver),t2)=t2
& past(Packet[past(LIST_LEN(Packet),t1)],t1) =

past(Output[past(LIST_LEN(Packet),t1)],t2)
& FORALL t:Time (t≥t1 & t<t2

→ past(Packet[pastLIST_LEN(Packet), t1)], t1) =
past(Packet[past(LIST_LEN(Packet), t1)], t))))

3.4 Schedule Clauses

Schedules are additional system properties that are required to hold
under more restrictive hypothesis than invariants. As mentioned above,
invariants must hold for any system instantiation that satisfies the given
transition specification, irrespective of the behavior of the external

10

environment. Unlike invariants, the validity of a schedule may be proved
using assumptions expressed in the associated environment and/or
imported variable clauses.

Like invariants, schedules may be either local or global and obey suitable
scope rules in the same style as invariants. Unlike invariants, however,
they may refer to calls to exported transitions, since they are more
concerned with the interaction between the system and the environment.
The schedule for process p is denoted Scp and the global schedule is denoted
ScG. Typically, a schedule clause states properties about the reaction time of
the system to external stimuli and on the number of requests that can be
"served" by the system. This motivates the term "schedule".

Because there may be several ways to assure that a schedule is satisfied,
such as giving one transition priority over another or making additional
assumptions about the environment, and because this kind of decision
should often be postponed until a more detailed design phase, in ASTRAL
the schedules are not required to be proved. It is important, however, to
know that the schedule is feasible. That is, it is important to know that if
further restrictions are placed on the specification and/or if further
assumptions are made about the environment, then the schedule can be
met. For this reason, a further assumptions and restrictions clause may be
included as part of a process specification. Unlike other components of the
ASTRAL specification this clause is only used as guidance to the
implementer; it is not a hard requirement. The details of this clause are
given in the next subsection.

In the CCITT example the global schedule states that the time that
elapses between the call of a New_Info transition and the delivery of the
message it produced is equal to N/L*P_M_Dur + N_I_Dur + Del_Dur:

FORALL i:Receiver_ID, t1:Time, x:Info
(t1 ≤ Now - N/L*P_M_Dur - N_I_Dur - Del_Dur
& past(Receiver[i].Call(New_Info(x)),t1)=t1

→ EXISTS t2:Time, k:Integer
(t2 = t1 + N/L*P_M_Dur + N_I_Dur + Del_Dur
& 0 < k & k ≤ LIST_LEN(past(Output,t2))
& Change(Output,t2) & past(Output[k][Data_Part],t2)=x
& past(Output[k][ID_Part],t2) = Receiver[i].Id))

The local schedule for the Input process states that there is no delay
between a call of New_Info and the start of its execution.

The Packet_Maker's schedule states that the transition Deliver is
executed cyclically and that a packet is always delivered with N/L elements:

EXISTS t:Time (End-2(Deliver,t))
→ End(Deliver) - End-2(Deliver) = N/L*P_M_Dur + Del_Dur

& FORALL t: Time (past(End(Deliver), t) = t
→ LIST_LEN(past(Output, t)) = N/L)

11

3.5 Further Assumptions and Restrictions Clause

As mentioned before, schedules can be guaranteed by exploiting further
assumptions about the environment or restrictions on the system behavior.
Such assumptions constitute a separate part of the process specification,
the further assumptions and restrictions clause, FARp. For reasons that
will be clear later, this clause is only local to processes. It consists of two
parts: a further environment assumptions section and a further process
assumptions section.

The further environment assumptions section, FEnvp, obeys the same
syntactic rules as Envp. It simply states further hypotheses on–and,
therefore, further restricts–the admissible behaviors of the environment
interacting with the system. Of course, it cannot contradict previous
general assumptions on the environment expressed in Envp and EnvG.

A further process assumptions section, FPAp restricts the possible
system implementations by specifying suitable selection policies in the case
of nondeterministic choice between several enabled transitions or by further
restricting constants. In general, FPAp reduces the level of
nondeterminism of the system specification4. The two parts that comprise
the further environment assumptions section are a transition selection
part, TSp, and a constant refinement part, CRp.

The transition selection part consists of a sequence of clauses of the
following type:

{OpSeti} <Boolean Conditioni> {ROpSeti}

where

• {OpSeti} defines a set of transitions. For convenience, suitable short
hand notations are provided to group the definition of several sets into
a single formula.

• {ROpSeti} defines a restricted but nonempty set of transitions that must
be a subset of the set defined by {OpSeti}5.

• <Boolean Conditioni> is a boolean condition on the state of process p.

4This remark supplies a first explanation of the fact that FEnvk are exclusively local.
In fact, because of the maximal parallelism assumption, there is never a need to select
between several processes that are eligible for execution.

5Presently, {OpSeti} and {ROpSeti} use static notations; i.e., they must define sets or set
classes whose elements can be computed at "compile time". More dynamic computations
are needed, e.g., by using variables denoting transition indexes, but this is left for future
developments.

12

The operational semantics of the transition selection part is defined as
follows.

1. At any given time the set of enabled transitions, {ET}, is evaluated by
the process abstract machine.

2. Let {OpSeti}, <Boolean Conditioni> be a pair such that ET is {OpSeti}
and <Boolean Conditioni> holds. Notice that such a pair does not
necessarily exist.

3. If there are pairs that satisfy condition 2, then the set of transitions
that actually are eligible for firing is the union of all {ROpSeti}
corresponding to the above pairs {OpSeti}, <Boolean Conditioni> that
are satisfied.

4. If no such pair exists, the set of transitions eligible for firing is {ET}6.

The constant refinement part is a sequence of clauses that may restrict
the values that system constants can assume w.r.t. what is stated in the
remaining part of system specification. For example, one can further
restrict a constant T1 that is bounded between 0 and 100, by stating that T1's
value is actually between 10 and 50, or that it is exactly 5.

Notice that the further assumptions and restrictions section can only
restrict the set of possible behaviors. That is, if {B} denotes the set of system
behaviors that are compatible with the system specification without the
FAR clause and {RB} denotes the set of behaviors that are compatible with
the system specification including the FAR clause, then it is easy to verify
that {RB} is contained in {B}.

For the CCITT system two different further assumptions clauses were
used with the Packet_Maker process. The first contains both a constant
refinement part and a transition selection part. The CR part states that the
time-out of transition Deliver is 0 and that the packet length is equal to N/L.

Del_Tout = 0 & Maximum = N/L

The TS part states that the Process_Message transition has higher
priority than Deliver.

{Process_Message, Deliver} TRUE {Process_Message}

The second further assumptions clause contains only a constant
refinement part, which states that Deliver's time-out is N/L*P_M_Dur +
Del_Dur and that Maximum = N.

Either of these further assumptions clauses is sufficient to prove that the
schedules are met.

6Notice that the set of clauses TSk can be automatically transformed in such a way that
at least one pair satisfying the condition of point 3 always exists and that the semantics of
the system coincides with the above description of points 1 through 4. Thus, point 4 has been
included only for the user's convenience. It is not semantically necessary.

13

4 Intra-level Proof Obligations in ASTRAL

Proof obligations in ASTRAL can be divided into two categories: inter-
level proofs and intra-level proofs. The former deal with proving that the
specification of level i+1 is consistent with the specification of level i, while
the latter deal with proving that the specification of level i is consistent with
its critical requirements. In this report only intra-level proofs are
presented. However, it is first necessary to present some notation.

Let S denote a top level ASTRAL specification. S is composed of a set of
process specifications Pp and a global specification G. Each Pp, in turn, is
composed of a set of transitions Opp1,…,Oppn, a local invariant Ip, a local
schedule Scp, a local environment Envp, imported variable assumptions
IVp, a further local environment FEnvp and a further process assumption
FPAp, and an initial clause Init_Statep. Moreover, every transition Oppj is
described by entry and exit clauses denoted ENpj and EXpj, respectively7.
Finally, every further process assumption FPAp is composed of two parts:
the first, denoted CRp, describes some further hypothesis on constant
values and the second, denoted TSp, restricts the non-determinism of the
abstract machine. The global specification G is made up of a global
invariant IG, a global schedule ScG and a global environment EnvG clause.

Proving that S satisfies its critical requirements can be partitioned into
the following proof obligations:

1) Every process specification Pp guarantees its local invariant Ip;

2) Every process specification Pp guarantees its local schedule Scp;

3) The specification S guarantees the global invariant IG;

4) The specification S guarantees the global ScG;

For soundness the following proof obligations are also needed:

5) The imported variable assumptions IVp are guaranteed by the
specification S.

6) All the assumptions about the environment (Envp, FEnvp and EnvG)
are consistent.

In what follows a formal framework for these proof obligations is
presented.

4.1 ASTRAL Abstract Machine

7 There are also optional EXCEPT/EXIT pairs that specify responses to exception
conditions for a transition.

14

An informal description of the ASTRAL computational model is given in
[GK91a, GK91b]. However, a formal description of the ASTRAL abstract
machine is needed in order to carry out the ASTRAL proofs.

The semantics of the ASTRAL abstract machine is defined by three
axioms. The first axiom states that the time interval spanning from the
starting to the ending of a given transition is equal to the specified duration
of the transition.

FORALL t:Time, Op: Trans_of_p [A1]
(Now - t ≥TOp →

(past(Start(Op),t) = t ↔ past(End(Op),t+TOp) = t +TOp)),

where TOp represents the duration of transition Op.

The second axiom states that if a processor is idle and some transitions
are enabled then one transition will fire. Let ST denote the set of transitions
of process p.

FORALL t: Time (EXISTS d: Time, S'T: SET OF Trans_of_p [A2]
(FORALL t1: Time, Op: Trans_of_p

(t1 ≥ t - d & t1 < t & Op ISIN ST & past(Start(Op),t1) < past(End(Op),t)
& S'T ⊆ ST & S'T ≠ EMPTY
& FORALL Op':Trans_of_p (Op' ISIN S'T → Eval_Entry(Op',t))
& FORALL Op':Trans_of_p (Op' ~ISIN S'T → ~Eval_Entry(Op',t))
→ UNIQUE Op':Trans_of_p (Op' ISIN S'T & past(Start(Op'),t)=t)))),

where Eval_Entry(Op, t) is a function that given a transition Op and a time
instant t evaluates the entry condition ENOp of transition Op at time t.

Because the ASTRAL model implies that the starting time of a transition
equals the time in which its entry condition was evaluated, the Eval_Entry
function is introduced to prevent the occurrence of a contradiction. More
specifically, when the entry condition of transition Op refers to the last start
(2nd last, etc.) of itself, the evaluation at time t of Start(Op) in the entry
condition should refer to the value of Start immediately before the execution
of Op at time t. Since Op has a nonnull duration this can be expressed by
evaluating Start(Op) at a time t' which is prior to t and such that transition
Op has not fired in the interval [t', t).

Finally, the third axiom states that for each processor the transitions are
nonoverlapping.

FORALL t1, t2:Time, Op: Trans_of_p [A3]
(Start(Op)=t1 & End(Op)=t2 & t1 < t2

→ ~(EXISTS t3: Time, Op': Trans_of_p (t3 > t1 & t3 < t2 & End(Op') = t3))
& FORALL t3:Time

(t3 ≥ t1 & t3 < t2
& EXISTS Op': Trans_of_p (Start(Op')= t3 → Op = Op' & t3 = t1)))

4.2 Local Invariant Proof Obligations

15

The local invariant Ip represents a property that must hold for every state
the process p could be in. Furthermore, the invariant describes properties
that are independent from the environment. Therefore, the proof of the
invariant Ip may not make use of any assumption about the environment,
imported variables or the system behavior as described by Envp, FEnvp, IVp
and FPAp.

To prove that the specification of process p (Pp) guarantees the local
invariant one needs to show that:

1) Ip holds in the initial state of process p, and

2) If Pp is in a state in which Ip holds, then for every possible evolution of
Pp, Ip will hold.

The first proof consists of showing that the following implication is valid:

Init_Statep & Now = 0 → Ip

To carry out the second proof one assumes that the invariant Ip holds
until a given time t0 and proves that Ip will hold for every time t > t0.
Without loss of generality, one can assume that t is equal to t0 + ∆, for some
fixed ∆ greater than zero, and show that the invariant holds
until t0 + ∆.

In order to prove that Ip holds until time t0 + ∆ it may be necessary to
make assumptions on the possible sequences of events that occurred within
the interval [t0 - H, t0 + ∆], where H is a constant a priori unbounded, and
where by event is meant the starting or ending of some transition OPpj of
Pp.

Let σ denote one such sequence of events. A formula Fσ composed of the
sequence of events that belong to σ can be algorithmically associated with σ.
For each event occurring at time t one has:

Eval_Entry(Obpj, t) & past(Start(Oppj, t), t) if the event is the start of Oppj

or

past(EXpj, t) & past(End(Oppj, t), t) if the event is the end of Oppj.

Then the prover's job is to show that for any σ:

A1 & A2 & A3 −| Fσ & FORALL t:Time (t ≤ t0 → past(Ip,t))
→ FORALL t1:Time (t1 > t0 & t1 ≤ t0 + ∆ → past(Ip, t1))

16

Notice that, as a particular case, the implication is trivially true if Fσ is
contradictory, since this would mean that σ is not feasible.

A1, A2 and A3 are the axioms defining the semantics of the ASTRAL
abstract machine, which were presented in the previous section.

Note that, during the proof of the invariant Ip, one is not allowed to make
use of any assumption on the environment, imported variables or the
system behavior described by Envp, FEnvp, IVp and FPAp. Due to the
similarity of the proof techniques used for proving the local schedule we
will not present the proof of a local invariant.

4.3 Local Schedule Proof Obligations

As discussed in section 3, the local schedule Scp of a process Pp describes
some further properties that Pp must satisfy when the assumptions on the
behavior of both the environment and Pp hold. These assumptions are
described by the local environment clause Envp, the imported variables
assumption IVp, the further assumption on the environment FEnvp and the
system assumption clause FPAp.

To prove that the specification of process p (Pp) guarantees the local
schedule Scp it is necessary to show that:

1) Scp holds in the initial state of process p, and

2) If Pp is in a state in which Scp holds, then for every possible evolution of
Pp compatible with FPAp, when the environment behavior is described
by Envp and FEnvp, and the imported variables behavior is described by
IVp, Scp will hold.

Note that one can also assume that the local invariant Ip holds; i.e., Ip
can be used as a lemma. The initial state proof obligation is similar to the
proof obligation for the local invariant case; however, the further hypothesis
on the values of some constants expressed by CRp can be used:

Init_Statep & Now = 0 & CRp → Scp

The second proof obligation is also similar to the local invariant proof.
However, in this case events may be external calls of exported transitions
Oppj in addition to the starting and ending of all transitions of p.

Thus, in this case any formulas Fσ is composed of the sequence of events
that belongs to σ, and for each event occurring at time t we have:

past(ENpj, t) & past(Start(Oppj, t) = t) if the event is the start of Oppj or

past(EXpj, t) & past(End(Oppj, t) = t) if the event is the end of Oppj.

17

past(Call(Oppj, t) = t) if the event is the call of Oppj from the external

environment.

The prover's job is to show that for any σ:

A1 & A2' & A3 & A4 & Envp & FEnvp & IVp −|
CRp & Fσ & FORALL t:Time (t ≤ t0 → past(Scp, t)
→ FORALL t1:Time (t1 > t0 & t1 ≤ t0 + ∆ → past(Scp, t1))

where A2'and A4 are defined in what follows:

A2' is an axiom derived from A2 by taking into account the TSp section,
which restricts the nondeterminism of the machine, and that the exported
transitions can fire only if they are called by the environment.

The TSp section can be viewed as the definition of a function TS:
2{Op1,…,Opn} → 2{Op1,…,Opn}, having as domain and range the powerset of
the transitions of process Pp. Its semantics is the following: denoting with
ET the set of enabled transitions then TS(ET) returns a restricted set of
enabled transitions, ET', where ET' ⊆ ET. The processor will
nondeterministically select which transition to fire from the transitions in
ET'.

Let ST denote the set of transition of process p:

FORALL t: Time (EXISTS d: Time, S'T: SET OF Trans_of_p [A2']
(FORALL t1: Time, Op: Trans_of_p

(t1 ≥ t - d & t1 < t & Op ISIN ST & past(Start(Op),t1) < past(End(Op),t)
& S'T ⊆ ST & S'T ≠ EMPTY
& FORALL Op':Trans_of_p (Op' ISIN S'T → Eval_Entry'(Op',t))
& FORALL Op':Trans_of_p (Op' ~ISIN S'T → ~Eval_Entry'(Op',t))
→ UNIQUE Op':Trans_of_p (Op' ISIN TS(S'T) & past(Start(Op'),t)=t)))),

where Eval_Entry'(Op',t) = Eval_Entry(Op',t) & Issued_call(Op') iff Op' is
exported, and Eval_Entry'(Op',t) = Eval_Entry(Op',t) iff Op' is not exported.

A4 states that Issued_call(Op) is true iff the environment has called
transition Op and transition Op has not fired since then:

FORALL Op: Trans_of_p [A4]
(EXISTS t1: Time

(t1 ≤ Now & Call(Op, t1)
& FORALL t: Time (t ≥ t1 & t ≤ Now & ~Start(Op,t))
→ past(Issued_call(Op),t)))

& (EXISTS t1: Time (t1 ≤ Now & Start(Op, t1)
& FORALL t: Time (t > t1 & t ≤ Now & ~Call(Op,t))
→ ~past(Issued_call(Op),t))))

18

Note that in this case the user is allowed to use the further assumptions
represented by Envp, IVp, FEnvp and CRp.

Example

Consider the local schedule of process Packet_Maker (Scpm):

EXISTS t:Time (End-2(Deliver, t))
→ End(Deliver) - End-2(Deliver) = N/L*P_M_Dur + Del_Dur

& FORALL t:Time (past(End(Deliver),t) = t → LIST_LEN(past(Output,t)) = N/L)

To prove Scpm the imported variables assumption IVpm and the second
further process assumptions FPApm of process Packet Maker are used:

IVpm:
FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].End(New_Info) = t)))

& FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].End(New_Info) = t))

& FORALL i:Receiver_ID (Receiver[i].Msg[Data_Part] ≠ Closed)

FPApm:
Del_Tout = N/L*P_M_Dur + Del_Dur
Maximum = N

Consider a time instant p0 such that Scpm holds until p0; it is necessary to
prove that Scpm holds until p0 + ∆, where ∆ is big enough to require an
End(Deliver) to occur within (p0, p0 + ∆]. Without loss of generality, assume
that:

1) at time p0 transition Deliver ends and

2) ∆ = N/L*P_M_Dur + Del_Dur.

Now, by [A1] one can deduce that at time p0 - Del_Dur a Start(Deliver)
occurred.

The Entry assertion of Deliver states that Deliver fires either when the
buffer is full or when the time-out expires and at least one message has
been processed.

EnDel:
LIST_LEN(Packet) = Maximum

| (LIST_LEN(Packet)>0
& EXISTS t: Time

(Start(Deliver,t) & Now - t = Del_Tout)
| Now = Del_Tout + N_I_Dur - Del_Dur)

19

Start(Del)

p0p0-Del_Dur

p0-Del_Dur-N/L*P_M_Dur

End(Del)

N/L End(NI) occur in this time interval

p0-2*Del_Dur -
 N/L*P_M_Dur

Start-2(Del)

Start(PM),
End(Del)

Start(Del)

Start(PM),
End(Del)

p0+N/L*P_M_Dur

Time

Figure 1

Because Scpm holds until p0 and from the Exit assertion for Deliver it is
known that:

1) For all t less than or equal to p0 and such that an end of transition
Deliver occurred, Output contains N/L messages at time t (Scpm), and

2) The content of Output at the end of Deliver is equal to the content of
Packet at the beginning of Deliver (Exit assertion of Deliver),

From this one can conclude that at time t - Del_Dur the packet contained
N/L messages, i.e., it was not full. As a consequence transition Deliver has
fired because the time-out has expired.

Furthermore, assume as lemma L1 that Process_Message is disabled
every time Deliver fires (this lemma will be proved later).

The Entry condition of Process_Message is:

LIST_LEN(Packet) < Maximum
& (Receiver[R_id].End(New_Info) > Previous(R_id)

| (Receiver[R_id].Msg[Data_Part] = Closed
& past(Receiver[R_id].Msg[Data_Part], Previous(R_id)) ≠ Closed))

and since:

1) the buffer is not full (Scpm), and

2) no notification of closed channel can arrive (IVpm)

one can conclude that no new message is available when Deliver fires (L1).

IVpm states that N/L messages are received every N/L*P_M_Dur +
Del_Dur time units. As a consequence:

1) the N/L messages output at time p0 have been received before time
p0 - Del_Dur - N/L*P_M_Dur, in order to allow Process_Message to
process each of them, and

2) they have been received after the second last occurrence of Delivery
prior to p0 (because of L1).

20

Thus, one can conclude that the N/L messages output at time p0 have
been received in the interval:

(Start-2(Deliver), p0 - Del_Dur - N/L*P_M_Dur],

i.e., (p0 - 2*Del_Dur - N/L*P_M_Dur, p0 - Del_Dur - N/L*P_M_Dur]

because of Scpm.

As a consequence of IVp m , N/L new messages will arrive after
N/L*P_M_Dur + Del_Dur time units from the last arrival, i.e., in the
interval (p0 - Del_Dur, p0].

Thus, at time p0 Process_Message will become enabled and the N/L
messages will be processed within time p0 + N/L*P_M_Dur, since Deliver
is disabled until that time. Moreover, at time p0 + N/L*P_M_Dur
Process_Message will be disabled, since there are exactly N/L messages to
process.

Thus, at time p0 + N/L*P_M_Dur the buffer contains N/L messages and
Deliver fires because the time-out has expired. Also, at time p0 +
N/L*P_M_Dur + Del_Dur Deliver ends and the length of the Output buffer
will be equal to N/L (Exit clause of Deliver).

Therefore, the schedule will hold until time p0 + N/L*P_M_Dur +
Del_Dur.

To complete the proof it is necessary to give an inductive proof of lemma
L1, which states that Process_Message is disabled every time Deliver fires.

Initially, the first time that Deliver fires, Process_Message is disabled.
In fact, the first N/L End(New_Info) occur at time N_I_Dur (IVpm).
Transition Process_Message will finish processing these messages at time
N_I_Dur + N/L*P_M_Dur, and at that time Deliver will become enabled.

Since no End(New_Info) can occur in (N_I_Dur, N_I_Dur +
N / L * P _ M _ D u r + Del_Dur) (by IVp m), then at time N_I_Dur +
N/L*P_M_Dur transition Process_Message is disabled and Deliver fires.

Now suppose that when Deliver fires Process_Message is disabled; it is
necessary to prove that Process_Message is again disabled the next time
Deliver fires.

Let q0 be the time when Deliver starts; by hypothesis at time q0
Process_Message is disabled. As a consequence the messages in Packet at
time q0 have been received in the interval (q0 - Del_Dur - N/L*P_M_Dur, q0
- N/L*P_M_Dur] (Scpm).

Thus, by IVPM the next N/L messages will arrive in the interval (q0, q0 +
Del_Dur]. Furthermore, the time-out for Deliver will expire at time q0 +
N/L*P_M_Dur + Del_Dur. Therefore, Deliver cannot fire before that time
unless the buffer is full.

At time q0 + Del_Dur Process_Message will become enabled, and it will
fire until either all messages have been processed or the buffer becomes

21

full. At time q0 + Del_Dur + N/L*P_M_Dur the N/L messages that arrived
in the interval (q0, q0 + Del_Dur] will be processed and since no new
message can arrive before q0 + Del_Dur + N/L*P_M_Dur at that time
Process_Message will be disabled. Similarly, at that time Deliver will be
enabled and thus will fire.

4.4 Global Invariant Proof Obligations

Given an ASTRAL specification S composed of n processes, the state of S
can defined as the tuple <s1,…,sn>, where sp represents the state of process
Pp. The global invariant IG of S describes the properties that must hold in
every state of S.

To prove that IG is guaranteed by S it is necessary to prove that:

1) IG holds in the initial state of S, and

2) If S is in a state in which IG holds, then for every possible evolution of
S, IG will hold.

Since the initial state of S is the tuple <Init_State1,…,Init_Staten>, where
each Init_Statep represents the initial state of process Pp, to prove point 1)
one needs to prove the validity of the following logical implication:

∧p=1
n (Init_Statep) & Now = 0 → IG

Point 2 can be proved in a manner very similar to the local invariant
case. However in this case the sequences of events σ will contain events for
exported transitions belonging to any process of S. Moreover, the local
invariant of each process Pp composing S can be used to prove that every σ
preserves the global invariant. Thus, in this case any formula Fσ is
composed of the sequence of events that belong to σ . For each event
occurring at time t:

Eval_Entry(Obpj, t) & past(Start(Oppj, t), t) if the event is the start of Oppj

or

past(EXpj, t) & past(End(Oppj, t), t) if the event is the end of Oppj.

Then the prover's job is to show that for any σ:

A1 & A2 & A3 −| Fσ & FORALL t:Time (t ≤ t0 → past(IG, t)) →
FORALL t1:Time (t1 > t0 & t1 ≤ t0 + ∆ → past(IG, t1))

Note that during the above proofs the local invariants can be used as
lemmas.

22

Example

Consider only the second part of the global invariant IG:

FORALL i:Receiver_ID, t1:Time, x:Info
(t1 ≤ Now - H1 & past(Receiver[i].End(New_Info(x)),t1) = t1

→ EXISTS t2:Time, k:Integer
(t2 ≥ t1 + H2 & t2 ≤ Now
& k > 0 & k ≤ LIST_LEN(past(Output,t2))
& Change(Output,t2) & past(Output[k][Data_Part],t2)=x
& past(Output[k][Count],t2)=past(Receiver[i].Msg[Count],t1)
& past(Output[k][ID_Part],t2)=Receiver[i].Id))

We use the local invariant I1 of the process Packet_Maker as a lemma.

(I1) FORALL t:Time (Change(Output,t) ↔ past(End(Deliver),t)=t)

The above invariant relates the predicate Chg(Output,t) to the ending
time of transition Deliver. The predicate Chg(Output,t) is defined so that it
is true iff Output changes value at time t, otherwise it is false.

Thus, by using I1 the invariant can be rewritten as follows:

FORALL i:Receiver_ID, t1:Time, x:Info,
(t1 ≤ Now - H1 & past(Receiver[i].End(New_Info(x)),t1) = t1

→ EXISTS t2:Time, k:Integer
(t2 ≥ t1 + H2 & t2 ≤ Now
& k > 0 & k ≤ LIST_LEN(past(Output,t2))
& past(End(Deliver),t2)=t2 & past(Output[k][Data_Part],t2)=x
& past(Output[k][Count],t2)=past(Receiver[i].Msg[Count],t1)
& past(Output[k][ID_Part],t2)=Receiver[i].Id))

We can now use the local invariant I5 of the process Packet_Maker to
further rewrite the global invariant.

FORALL k:Integer (k > 0 & k ≤ LIST_LEN(Output)
↔ EXISTS t:Time

(t < End(Deliver) & past(End(Process_Message),t)=t
& past(Packet[past(LIST_LEN(Packet),t)],t) = Output[k]
& FORALL t1 :Time(t1≥ t & t1< End(Deliver)

→ past(Packet[past(LIST_LEN(Packet),t)],t) =
past(Packet[past(LIST_LEN(Packet),t)],t1))))

I5 states that for every message in Output there exists a time t prior to the
end of transition Deliver such that at time t:

1) the message was the last element of variable Packet,

2) the transition Process_Message ended and,

3) between t and the end of transition Deliver the elements already in
Packet are not modified.

23

In other words, t is the time instant in which Packet_Maker has finished
processing the message.

By using I5 the global invariant can be rewritten as follows:

FORALL i:Receiver_ID, t1:Time, x:Info
(t1 ≤ Now - H1 & past(Receiver[i].End(New_Info(x)),t1) = t1)

→ EXISTS t2, t3:Time, k:Integer
(t2 ≥ t1 + H2 & t2 ≤ Now & t3<t2
& k > 0 & k ≤ LIST_LEN(past(Output,t2))
& past(End(Deliver),t2)=t2 & past(Output[k][Data_Part],t2)=x
& past(Output[k][Count],t2)=past(Receiver[i].Msg[Count],t1)
& past(Output[k][ID_Part],t2)=Receiver[i].Id
& past(End(Process_Message),t3)=t3
& past(Packet[past(LIST_LEN(Packet),t3)],t3) = past(Output[k], t2)
& FORALL t :Time (t ≥ t3 & t < t2

→ past(Packet[past(LIST_LEN(Packet),t3)],t3) =
past(Packet[past(LIST_LEN(Packet),t3)],t))))

Thus, our goal is to prove that both t2 and t3 exist under the hypothesis
stated by the above premise. For this purpose we will use the following
lemma (L2):

FORALL i:Receiver_ID, t1:Time, x:Info,
(t1 ≤ Now - N_I_Dur & past(Receiver[i].End(New_Info(x)),t1) = t1)

→ EXISTS t3:Time
(t3 ≤ Now
& past(End(Process_Msg),t3)=t3
& past(Packet[past(LIST_LEN(Packet),t3)][Data_Part],t3)=x
& past(Packet[past(LIST_LEN(Packet),t3)][Count],t3)=

past(Receiver[i].Msg[Count],t1)
& past(Packet[past(LIST_LEN(Packet),t3)][ID_Part],t3)=Receiver[i].Id))

L2 states that every received message will be processed within N_I_Dur
time units. Thus, using L2 we conclude that t3 exists if H1 is greater than
or equal to N_I_Dur.

Thus, we can use the local invariant I6 of the process Packet_Maker to
prove that also t2 exists and that t2 > t3.

FORALL t1:Time (t1 ≤ Now - H3 & past(End(Process_Message),t1) = t1
→ EXISTS t2:Time

(t2 > t1 & t2 ≤Now & past(End(Deliver),t2) = t2
& past(Packet[past(LIST_LEN(Packet),t1)],t1) =

past(Output[past(LIST_LEN(Packet),t1)],t2))
& FORALL t :Time (t ≥t1 &t <t2

→ past(Packet[past(LIST_LEN(Packet),t1)],t1) =
past(Packet[past(LIST_LEN(Packet),t1)],t))))

24

In fact using I6 we conclude that if t3 ≤ Now - H3 then t2 exists and is
greater than t3. Thus, by assuming H1 equals H3 + N_I_Dur we proved that
t2 exists.

We now prove the lemma L2, that is:

FORALL i:Receiver_ID, t1:Time, x:Info,
(t1 ≤ Now - N_I_Dur & past(Receiver[i].End(New_Info(x)),t1) = t1)

→ EXISTS t3:Time, k:Integer
(t3 ≤ Now
& past(End(Process_Msg),t3)=t3
& past(Packet[past(LIST_LEN(Packet),t3)][Data_Part],t3)=x
& past(Packet[past(LIST_LEN(Packet),t3)][Count],t3)=

past(Receiver[i].Msg[Count],t1)
& past(Packet[past(LIST_LEN(Packet),t3)][ID_Part],t3)=Receiver[i].Id))

Consider an instant p0 such that L2 holds until that time. We have to
prove that L2 will hold until time p0 + ∆, where ∆ is equal to N_I_Dur

Since L2 holds until p0 then all messages received before p0 - N_I_Dur
have been processed before p0, i.e., they have been processed within
N_I_Dur time units. Thus, to prove that L2 holds at p0 + N_I_Dur we must
show that every message received in the interval (p0 - N_I_Dur, p0] is
processed within N_I_Dur time units.

The local invariant I2 of process Input allows us to conclude that all the
messages will be kept for at least N_I_Dur time units.

Consider the worst case which is represented by N new messages m1, …,
mN arriving at time p0, i.e., that the process Packet_Maker has to process
N different messages within N_I_Dur time units. Each message mi, 1 ≤i ≤
N is a unique tuple <xi, ci, idi>, where xi is the information, ci is an integer
identifying the message and idi is the ID of the Input process that created
xi.

If N new messages arrive at time p0 then no messages have been
produced in [p0 - N_I_Dur, p0), because the duration of transition
New_Info is N_I_Dur. Thus all messages received before p0 - N_I_Dur
have been processed by transition Process_Message (L2). Therefore, at time
p0 process Packet_Maker will be either idle or executing transition Deliver.

Consider the latter case, i.e., at time p0 process Packet_Maker is
executing transition Deliver. Therefore it will be idle at time p0 + Del_Dur.

The Entry clause of Deliver requires that at least one message is in
Packet in order to fire and since the Exit clause of Deliver empties Packet
we conclude that between two executions of Deliver there must be at least
one execution of Process_Message. Thus, as soon as process Packet_Maker
is idle Process_Message fires (Axiom A2). Thus, in the worst case it will
fire at time p0 + Del_Dur.

25

Transition Process_Message lasts P_M_Dur time units, and thus at
time p0 + Del_Dur + P_M_Dur Process_Message will end. By looking at the
Entry - Exit clauses of Process_Message we have that Packet will contain
the message m1.8

After Process_Message has fired transition Deliver is enabled if the time-
out has expired or the buffer is full. In the former case the process
Packet_Maker will select non deterministically whether to execute
transition Process_Message or Deliver (Axiom A2), while in the latter
Deliver will fire.

Thus if Process_Message is executed m2 is processed within 2*P_M_Dur
+ Del_Dur time units; otherwise, if Deliver is executed, then
Process_Message will fire and m2 will be processed within 2*P_M_Dur +
2*Del_Dur.

Since we want to prove that all the messages are processed within
N_I_Dur time units we will assume that Deliver is executed after
Process_Message. In fact in such a case we have to prove that we can
process N-2 messages in N_I_Dur - 2*P_M_Dur - 2*Del_Dur time units
while if we assumed that Process_Message fired we had to prove that we
can process N-2 messages in N_I_Dur -2*P_M_Dur - Del_Dur time units.

After m2 is processed transition Deliver could be enabled. Thus, after
2*P_M_Dur + 3*Del_Dur time units Process_Message will process m3.

As a consequence the N-th message will be processed within
N*P_M_Dur +N*Del_Dur time units.

Consider now that at time p0 the processor was idle. In such a case by
using the same kind of reasoning we can conclude that the N messages will
be processed within N*P_M_Dur + (N-1)*Del_Dur time units.

Since by hypothesis N_I_Dur is greater than or equal to N*(P_M_Dur +
Del_Dur) every received message will be processed within time p0 +
N_I_Dur, i.e., L2 holds at time p0 + N_I_Dur as well.

4.5 Global Schedule Proof Obligations

The global schedule ScG of the specification S describes some further
properties that S must satisfy, when all its processes satisfy their own
schedules and the assumptions on the behavior of the global environment
hold.

Thus, to prove that ScG is consistent with S one has to show that:

1) ScG holds in the initial state of S, and

2) If S is in a state in which ScG holds, then for every possible evolution of
S, ScG will hold.

8For simplicity we will denote with mi, the i-th processed message

26

In both proofs one can assume that the global invariant IG and every
local invariant Ip and local schedule Scp9 holds as well as the global
environment assumptions EnvG. Note that none of the local environment
assumptions (Envp and FEnvp) may be used to prove the validity of the global
schedule.

The first proof requires the validity of the formula:

∧p=1
n (Init_Statep) & Now = 0 & EnvG → ScG

The second proof requires the construction of the sequences of events σ.
Each σ will contain calling, starting and ending of exported transitions
belonging to any process Pp of S.

Thus, each formula Fσ will be composed of the sequence of events that
belong to σ. For each event occurring at time t:

past(ENpj, t) & past(Start(Oppj, t) = t) if the event is the start of Oppj or

past(EXpj, t) & past(End(Oppj, t) = t) if the event is the end of Oppj.

past(Call(Oppj, t) = t) if the event is the call of Oppj from the external

environment.

Then the prover's job is to show that for any σ:

A1 & A2" & A3 & A4 & EnvG −| Fσ

& FORALL t:Time (t ≤ t0 → past(ScG, t))
→ FORALL t1:Time (t1 > t0 & t1 ≤ t0 + ∆ → past(ScG, t1))

where A2" is an axiom derived from A2 by taking into account that the
exported transitions can fire only if they are called by the environment.

FORALL t: Time (EXISTS d: Time, S'T: SET OF Trans_of_p [A2"]
(FORALL t1: Time, Op: Trans_of_p

(t1 ≥ t - d & t1 < t & Op ISIN ST & past(Start(Op),t1) < past(End(Op),t)
& S'T ⊆ ST & S'T ≠ EMPTY
& FORALL Op':Trans_of_p(Op' ISIN S'T → Eval_Entry'(Op',t))
& FORALL Op':Trans_of_p (Op' ~ISIN S'T → ~Eval_Entry'(Op',t))
→ UNIQUE Op':Trans_of_p (Op' ISIN S'T & past(Start(Op'),t)=t)))),

9 The global invariant, the local invariants and the local schedules can be used as
lemmas to prove the global schedule.

27

where Eval_Entry'(Op',t) = Eval_Entry(Op',t) & Issued_call(Op'), iff Op'
is exported and Eval_Entry'(Op',t) = Eval_Entry(Op',t), iff Op' is not

exported.

Example

Consider the global schedule ScG:

FORALL i:Receiver_ID, t1:Time, x:Info
(t1 ≤ Now - N/L*P_M_Dur - N_I_Dur - Del_Dur
& past(Receiver[i].Call(New_Info(x)),t1)=t1
→ EXISTS t2:Time, k:Integer

(t2 = t1 + N/L*P_M_Dur + N_I_Dur + Del_Dur
& k > 0 & k ≤ LIST_LEN(past(Output,t2))
& Change(Output,t2) & past(Output[k][Data_Part],t2)=x
& past(Output[k][ID_Part],t2)=Receiver[i].Id))

Consider a time instant p0 such that at p0 - N_I_Dur - N/L*P_M_Dur -
Del_Dur a call(New_Info(x)) occurred and suppose ScG holds until p0. Our
goal is to prove that ScG holds until p0 + ∆ as well. We assume ∆ equal to
N/L*P_M_Dur + Del_Dur.

By considering the local invariant I1 of process Packet Maker we know
that at time p0 Deliver ended, and by axiom A1 at time p0 - Del_Dur,
transition Deliver started.

By considering EnvG we can deduce that:

1) At time p0 - N_I_Dur - N/L*P_M_Dur - Del_Dur, N/L calls to
New_Info occurred,

2) At time p0 - N_I_Dur, N/L calls to New_Info occur, and

3) No call(New_Info) can occur in (p0 - N_I_Dur - N/L*P_M_Dur -
Del_Dur, p0 - N_I_Dur)

Using the local schedule of process Packet_Maker we know that at time
p0 + N/L*P_M_Dur + Del_Dur another End(Deliver) occurs, and by again
using I1 of process Packet_Maker at that time Output changes value.

Thus, the time interval between the N/L call(New_Info) at time p0 -
N_I_Dur and the change in the value of Output at time p0 + N/L*P_M_Dur
+ Del_Dur is equal to:

[p0 + N/L*P_M_Dur + Del_Dur] - [p0 - N_I_Dur] = N_I_Dur +
N/L*P_M_Dur + Del_Dur

We still have to prove that the output packet contains all and only the N/L
messages produced by the input packet :

The local invariant I2 of process Packet_Maker states that no messages
are produced by that process, thus the output packet will contain only

28

received messages. All the messages received in [0, p0 - N_I_Dur -
N/L*P_M_Dur - Del_Dur] have already been output, since the local
schedule holds until p0; therefore, the only received messages after p0 -
N_I_Dur - N/L*P_M_Dur - Del_Dur are those that arrived at time p0 -
N_I_Dur. Furthermore, Output has not changed value in
[p0 - N_I_Dur, p0 + N/L*P_M_Dur + Del_Dur).

As a consequence every message in Output at time p0 + N/L*P_M_Dur +
Del_Dur was received at time p0 - N_I_Dur. Since we know from the local
schedule of process Packet_Maker that Output contains N/L messages at
time p0 + N/L*P_M_Dur + Del_Dur, it is trivial to prove that at that time
Output contains all and only the messages received at time p0 - N_I_Dur.

Thus, one can conclude that ScG holds in p0 + ∆.

4.6 Imported Variable Proof Obligation

When proving the local schedule of a process p one can use the
assumptions about the imported variables expressed by IVp. Therefore,
these assumptions must be checked against the behavior of the processes
that they are imported from.

The proof obligation guarantees that the local environment, local
schedule and local invariant of every process of S except p, and the global
environment, invariant and schedule imply the assumptions on the
imported variables of process p:

A1 & A2 & A3 & ∧i≠p
 Envi ∧i≠p

 Ii & ∧i≠p
 Sci & EnvG & IG & ScG → IVp

Example

Consider the first two assumptions on the imported variables of process
Packet_Maker (IVpm):

FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].End(New_Info) = t)))

& FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].End(New_Info) = t))

The global environment clause states that:

FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].Call(New_Info) = t)))

& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].Call(New_Info, t)))

29

Using the local schedule of process Input we can rewrite the above
formula as follows:

FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].Start(New_Info) = t)))

& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].Start(New_Info, t)))

Using axiom A1 we have that:

FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID

(i ISIN S ↔ Receiver[i].End(New_Info) = t + N_I_Dur)))
& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0

→ FORALL i:Receiver_ID (~Receiver[i].End(New_Info, t + N_I_Dur)))

which can be rewritten as:

FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].End(New_Info) = t)))

& FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].End(New_Info) = t))

which is the IVpm.

4.7 Environment Consistency Proof Obligations

Every process Pp of S may contain two clauses describing assumptions on
the behavior of the external environment, Envp and FEnvp. These clauses
are used to prove the local schedule of Pp as discussed in sections 3.1 and
3.5. The global specification of S also contains a clause describing
assumptions on the system environment behavior EnvG.

For soundness, it is necessary to verify that none of the environmental
assumptions contradict each other, i.e., that a behavior satisfying the global
as well as the local assumptions can exist. This requires proving that the
following formula is satisfiable:

∧i=1
n Envi & ∧i=1

n FEnvi & EnvG

If the above formula is satisfiable, then there exists at least one
environment behavior that fulfills all the environmental assumptions.
Conversely, if it is not satisfiable, no such environment can exist and some
(or possibly all) of the assumptions on the environment have to be modified.

30

Example

The local environment of process Input is:

(EXISTS t:Time (Call-2(New_Info,t))
→ Call(New_Info) - Call-2(New_Info) ≥ N_I_Dur)

& (Now ≥ Input_Tout
→ EXISTS t:Time (Call(New_Info,t))& Now - Call(New_Info) < Input_Tout)

Process Packet_Maker has no local environment, while the global
environment is:

FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S:Set_of_Receiver_ID

(|S| = N/L
& FORALL i:Receiver_ID (i ISIN S ↔ Receiver[i].Call(New_Info, t)))

& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].Call(New_Info) = t)))

Neither the Input nor the Packet_Maker process have any further
assumptions about the environment and thus, we have to verify the
satisfiability of the conjunction of the two formulas above

This will result in a set of equations among the constants of the
specification. If the set of equations can be solved, then the environment is
satisfiable otherwise it is not.

5. Conclusion and future directions

In this report the environment and critical requirements clauses, which
were only briefly sketched in previous papers, were presented in detail. The
intra-level proof obligations were also presented and an example proof was
demonstrated.

All of the proofs for the CCITT specification have been completed. In
addition, the proofs of five different schedules that can be guaranteed by
using different further assumptions clauses have also been completed. The
proofs of these schedules did not require any new or changed invariants.

Future work will concentrate on defining the necessary inter-level proof
obligations for ASTRAL.

References

[ACD 90] Alur, R., C. Courcoubetis and D. Dill, "Model-Checking for
Real-Time Systems," 5th IEEE LICS 90, IEEE, pp. 414-425, 1990.

[CHS 90] Chang, C., H. Huang and C. Song, "An Approach to Verifying
Concurrency Behavior of Real-Time Systems Based On Time
Petri Net and Temporal Logic," InfoJapan 90, IPSJ, pp. 307-314,
1990.

31

[FMM 91] Felder, M., D. Mandrioli and A. Morzenti, "Proving Properties
of Real-Time Systems through Logical Specifications and Petri
Net Models," Tech. Rept. 91-72, Dip. di Elettronica-Politecnico di
Milano, December, 1991.

[GF 91] Gabrielian, A. and M. Franklin, "Multilevel Specification of
Real-Time Systems," CACM 34, 5, pp. 51-60, May, 1991.

[GK 91a] Ghezzi, C. and R. Kemmerer, "ASTRAL: An Assertion
Language for Specifying Realtime Systems," Proceedings of the
Third European Software Engineering Conference, Milano,
Italy, pp. 122-146, October, 1991.

[GK 91b] Ghezzi, C. and R. Kemmerer, "Executing Formal
Specifications: the ASTRAL to TRIO Translation Approach,
"Proceedings of TAV4: the Symposium on Testing, Analysis,
and Verification, Victoria, B.C., Canada, pp. 112-119, October,
1991.

[Ost 89] Ostroff, J., Temporal Logic For Real-Time Systems, Research
Studies Press LTD., Taunton, Somerset, England , Advanced
Software Development Series, 1, 1989.

[Pnu 77] Pnueli, A., "The Temporal Logic of Programs," Proceedings of
the 18th Annual Symposium on Foundations of Computer
Science, pp. 46-57, 1977.

[Suz 90] Suzuki, I., "Formal Analysis of Alternating Bit Protocol by
Temporal Petri Nets," IEEE-TSE 16 , 11, pp. 1273-1281,
November, 1990.

[Zav 87] Zave, P., PAISLey User Documentation Volume 3: Case Studies,
Computer Technology Research Laboratory Report, AT&T Bell
Laboratories, Murray Hill, New Jersey, 1987.

32

Appendix ASTRAL Formal Specification for the CCITT System

GLOBAL Specification CCITT

PROCESSES
Receiver: array [1..N] of Input,
Assembler: Packet_Maker

TYPE
Data,
Message IS STRUCTURE OF

(Data_Part: Data
 Count: Integer
 ID_Part: ID),

Message_List IS LIST OF Message,
Pos_Integer: TYPEDEF i: Integer (i > 0),
Receiver_ID: TYPEDEF i:Pos_Integer (i ≤ N),
Set_Of_Receiver_ID IS SET OF Receiver_ID,
Info: TYPEDEF D:Data (D ≠ Closed)

CONSTANT
N, L: Pos_Integer,

/*N denotes the number of processes of type Input, L denotes a value
such that the number of input processes producing messages at the
same time is N/L*/

Closed: Data,
N_I_Dur, P_M_Dur, Del_Dur: Time

33

/*These are the duration for transitions New_Info, Process_Message,
and Deliver*/

H1, H2: Time

/*H1, H2 are lower and upper bounds on the time for an input to be
output*/

AXIOM
N MOD L = 0

DEFINE
Change(L_Msg:Message_List,t:Time):Boolean ==

EXISTS e: Time

(e > 0 & e ≤ t
& FORALL d: Time

(d ≥ t - e & d < t → past(L_Msg, d) ≠ past(L_Msg,t)))

ENVIRONMENT

/*The environment cyclically produces exactly N/L messages

every N/L*P_M_Dur + Del_Dur time units*/
FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) = 0
→ EXISTS S: Set_Of_Receiver

(|S| = N/L10

& FORALL i:Receiver_ID
(i ISIN S ↔ Receiver[i].Call(New_Info) = t)))

& FORALL t:Time (t MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→ FORALL i:Receiver_ID (~Receiver[i].Call(New_Info, t)))

INVARIANT
/* Every data output was received sometime in the past */

10For simplicity, we adopt the traditional cardinality operator, | |, even though it is not
an ASTRAL operator.

34

FORALL k:Integer
(k > 0 & k ≤ LIST_LEN(Output) & Output[k] [Data_Part] ≠ Closed

→ EXISTS i:Receiver_ID, t:Time, j:Integer

(t < Now & Receiver[i].Start-j(New_Info(Output[k] [Data_Part]) = t))

& /* Every input data will be output within H1 time units after it
is input, but not sooner than H2 time units*/

FORALL i:Receiver_ID, t1:Time, x:Info
 (t1≤Now-H1 & past(Receiver[i].End(New_Info(x)),t1) = t1
→ EXISTS t2:Time, k:Integer

(t2 ≥ t1+H2 & t2 ≤ Now & Change(Output,t2)
& 0 < k & k ≤ LIST_LEN(past(Output,t2))
& past(Output[k][Data_Part],t2)=x
& past(Output[k][Count],t2) = past(Receiver[i].Msg[Count],t1)
& past(Output[k][ID_part],t2) = Receiver[i].Id))

SCHEDULE

/*The time that elapses between the call of a New_Info transition and
the delivery of the message it produced is equal to N/L*P_M_Dur +
N_I_Dur + Del_Dur*/

FORALL i:Receiver_ID, t1:Time, x:Info
(t1 ≤ Now - N/L*P_M_Dur - N_I_Dur - Del_Dur
& past(Receiver[i].Call(New_Info(x)),t1)=t1

→ EXISTS t2:Time, k:Integer
(t2 = t1 + N/L*P_M_Dur + N_I_Dur + Del_Dur

& 0 < k & k ≤ LIST_LEN(past(Output,t2))
& Change(Output,t2) & past(Output[k][Data_Part],t2)=x
& past(Output[k][ID_Part],t2) = Receiver[i].Id))

END CCITT

35

SPECIFICATION Input

LEVEL Top_Level

IMPORT
Data, Message, Info, Closed, N_I_Dur

EXPORT
New_Info, Msg

VARIABLE
Msg: Message,
Channel_Closed:Boolean

CONSTANT
Input_Tout, N_T_Dur: Time

ENVIRONMENT

(EXISTS t:Time (Call-2 (New_Info, t)) →

Call (New_Info) - Call-2 (New_Info) ≥ N_I_Dur)
& (Now ≥ Input_Tout →

EXISTS t:Time (Call (New_Info, t))
& Now - Call(New_Info) < Input_Tout)

INITIAL

~Channel_Closed & Msg[Data_Part] ≠ Closed & Msg[Count]=0

36

INVARIANT

/* After Input_Tout time units have elapsed without receiving any new
message a timeout occurs */

FORALL t1: Time
(Start(New_Info, t1) & Now - t1 > Input_Tout

→ EXISTS t2: Time

(Start(Notify_Timeout, t2) & t2 = t1 + Input_Tout))

& /* The last received message is kept until a timeout occurs */

FORALL t1: Time, x: Info
((End(New_Info(x), t1) & Now - t1 < Input_Tout - N_I_Dur +

N_T_Dur
→ Msg[Data_part] = x)

&
(End(New_Info(x), t1) & Now - t1 ≥ Input_Tout - N_I_Dur +

N_T_Dur
→ Msg[Data_part] = Closed))

SCHEDULE
FORALL t: Time, x: Info

(t ≤ Now → ((Call(New_Info(x)) = t) ↔ Start(New_Info(x)) = t))

TRANSITION New_Info(x:Info) N_I_Dur

 EXIT
Msg[Data_Part] = x

& Msg[Count] = Msg[Count]' + 1
& Msg[ID_Part] = Self
& ~Channel_Closed

37

TRANSITION Notify_Timeout N_T_Dur

 ENTRY

EXISTS t1: Time

Start(New_Info,t1) & Now - t1 ≥ Input_Tout
& ~Channel_Closed

 EXIT
Msg[Data_Part] = Closed

& Msg[Count] = Msg[Count]' + 1
& Msg[ID_Part] = Self
& Channel_Closed

END Top_Level

END Input

38

SPECIFICATION Packet_Maker

LEVEL Top_Level

IMPORT
Receiver, Data, Message, Message_List, Pos_Integer, Receiver_ID,
Set_Of_Receiver_ID, Info, Closed, N, L, P_M_Dur, Del_Dur, N_I_Dur,
Msg

EXPORT
Output

VARIABLE
Packet: Message_List,
Previous(Receiver_ID): Time,
Output: Message_List

CONSTANT
Maximum: Pos_Integer,
Del_Tout, H3: Time

/*H3 denotes an upperbound for the time to deliver a message
after it has been processed*/

IMPORTED VARIABLE CLAUSE
FORALL t: Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) = 0
→

EXISTS S: Set_Of_Receiver_ID

(|S | = N/L

 & FORALL i: Receiver_ID
(i ISIN S ↔ Receiver[i].End(New_Info) = t)))

& FORALL t:Time ((t - N_I_Dur) MOD (N/L*P_M_Dur + Del_Dur) ≠ 0
→

FORALL i:Receiver_ID (~Receiver[i].End(New_Info) = t))
& FORALL i:Receiver_ID (Receiver[i].Msg[Data_Part] ≠ Closed)

39

INITIAL
Packet = EMPTY

& FORALL i:Receiver_ID (Previous(i)=0)
& Output = EMPTY

INVARIANT
/*Changes in Output occur at and only at the end of a Deliver*/ (I1)

FORALL t: Time
(Change(Output, t) ↔ past(End(Deliver), t) = t)

&
/* No new messages are generated by the packet assembler */ (I2)

FORALL k:Integer
(k>0 & k≤LIST_LEN(Output)
→ EXISTS i:Receiver_ID, t:Time

(t<Now & past(Receiver[i].Msg,t)=Output[k]))

&
/*The order that messages appear in an output packet is the (I3)
order in which they were processed from the channels*/

FORALL k:Integer
(k>0 & k<LIST_LEN(Output)
→ EXISTS t1,t2:Time

(t1 < t2 < Now
& past(End(Process_Message), t1) = t1
& past(End(Process_Message), t2) = t2
& Output[k] = past(Packet[past(LIST_LEN(Packet),t1)], t1)
& Output[k+1] = past(Packet[past(LIST_LEN(Packet),t2)], t2))

40

 &
/* The order is also preserved across output packets */ (I4)

EXISTS t:Time (Start-2(Deliver, t) & End(Deliver) > Start(Deliver))
→

EXISTS t1,t2:Time
(t1 < t2 < Now

& past(End(Process_Message, t1) = t1
& past(End(Process_Message, t2) = t2
& past(Output[past(LIST_LEN(Output), Start(Deliver)], Start(Deliver))

= past(Packet[past(LIST_LEN(Packet),t1)], t1)
& Output[1] = past(Packet[past(LIST_LEN(Packet),t2)], t2))

&
/* Every message in Output was previously in Packet and (I5)
all of the elements of Packet have not changed from when
they were put into the packet until the packet is output*/

FORALL k:Integer
(k>0 & k≤LIST_LEN(Output)
↔ EXISTS t:Time

(t<End(Deliver) & past(End(Process_Message,t)=t
& past(Packet[past(LIST_LEN(Packet),t)], t) = Output[k]
& FORALL t1:Time

(t1≥t & t1<End(Deliver)
→ past(Packet[past(LIST_LEN(Packet), t)], t) =

past(Packet[past(LIST_LEN(Packet), t)], t1))))

&
FORALL t1:Time (I6)

(t1≤Now-H3 & past(End(Process_Msg),t1)=t1
→ EXISTS t2:Time

(t2>t1 & t2 ≤ Now & past(End(Deliver),t2)=t2
& past(Packet[past(LIST_LEN(Packet), t1)], t1) =

past(Output[past(LIST_LEN(Packet), t1)], t2)
& FORALL t:Time

(t≥t1 & t<t2
→ past(Packet[past(LIST_LEN(Packet), t1)], t1) =

past(Packet[past(LIST_LEN(Packet), t1)], t))))

41

SCHEDULE
/*The transition Deliver is activated cyclically. Furthermore, it always
delivers a packet with N/L elements*/

EXISTS t:Time (End-2(Deliver,t))

→ End(Deliver) - End-2(Deliver) = N/L*P_M_Dur + Del_Dur

& FORALL t: Time (past(End(Deliver), t) = t
→ LIST_LEN(past(Output, t)) = N/L)

TRANSITION Process_Msg(R_id:Receiver_ID) P_M_Dur

 ENTRY
/*Packet is not full and either (a) the present message has been produced
after the last message that has been processed from that channel, or (b)
the value of the current message is Closed and the value of the previously
processed message for that channel was not Closed*/

LIST_LEN(Packet) < Maximum
& (Receiver[R_id].End(New_Info) > Previous(R_id)

| (Receiver[R_id].Msg[Data_Part]=Closed
& past(Receiver[R_id].Msg[Data_Part],Previous(R_id)) ≠ Closed))

 EXIT
Packet = Packet' CONCAT LIST(Receiver[R_id].Msg)

& Previous(R_id) BECOMES Now

TRANSITION Deliver Del_Dur

 ENTRY
/*Either Packet is full or Packet is not empty and the timeout elapsed
from the last Deliver or from the initial time*/

LIST_LEN(Packet) = Maximum
| (LIST_LEN(Packet) > 0

& (EXISTS t:Time (Start(Deliver, t) & Now - t = Del_Tout)
| Now = Del_Tout - Del_Dur + N_I_Dur))

 EXIT
Output = Packet'

& Packet = EMPTY

42

FURTHER ASSUMPTIONS #1
CONSTANT REFINMENT

Del_Tout = 0, Maximum = N/L

TRANSITION SELECTION

{Process_Message, Deliver} TRUE {Process_Message}

FURTHER ASSUMPTIONS #2
CONSTANT REFINMENT

Del_Tout = N/L*P_M_Dur + Del_Dur, Maximum = N

END Top_Level

END Packet_Maker

