2D Graphics
2D Raster Graphics

- Integer grid
- Sequential (left-right, top-down) scan
Line drawing

- A very important operation
 - used frequently, block diagrams, bar charts, engineering drawing, architecture plans, etc.
 - curves as concatenation of small line segments

- Criteria
 - line should appear straight

illuminate nearest grid point
Line drawing

- Line should terminate correctly
- Line should have a constant intensity

specify both end points instead of end point + slope + length

intensity ~ # of dots/unit length
Line drawing

- Line should not have “gaps”

$$y = f(x) \text{ if } |\text{slope}| < 1$$

$$x = f(y) \text{ if } |\text{slope}| > 1$$
Line drawing

- Line should be drawn as fast as possible
 - Brute-force method
 - DDA (digital differential analyzer)

\[y = mx + b \implies 1 \text{ fp } \ast \]
\[\text{for}(i = x_o ; i < x_n ; i++) \quad 1 \text{ fp } + \]
\[y_i = m \cdot i + b \]
\[y_{i+1} = mx_{i+1} + b \]
\[= m(x_i + 1) + b \]
\[= mx_i + b + m \]
\[= y_i + m \]
Bresenham’s Line Algorithm

integer operations only

\[(0,0) \rightarrow (x_2 - x_1, y_2 - y_1)\]

if \(s > t\) or \(s - t > 0\) \(\Rightarrow \square t_i\)

else \(s < t\) or \(s - t < 0\) \(\Rightarrow \blacksquare s_i\)
possible current intersection range

possible next intersection range

45°
Bresenham’s Line Algorithm

\[
s_i = \frac{dy}{dx}(x_{i-1} + 1) - y_{i-1}
\]

\[
t_i = (y_{i-1} + 1) - \frac{dy}{dx}(x_{i-1} + 1)
\]

\[
s_i - t_i = 2\frac{dy}{dx}(x_{i-1} + 1) - 2y_{i-1} - 1
\]

\[
dx(s_i - t_i) = 2(x_{i-1}dy - y_{i-1}dx) + 2dy - dx
\]

Floating point

Integer!!
Bresenham’s Line Algorithm

\[d_i = 2(x_{i-1}dy - y_{i-1}dx) + 2dy - dx \]
\[d_{i+1} = 2(x_idy - y_idx) + 2dy - dx \]
\[\Rightarrow d_{i+1} - d_i = 2dy(x_i - x_{i-1}) - 2dx(y_i - y_{i-1}) \]
\[\Rightarrow d_{i+1} - d_i = 2dy - 2dx(y_i - y_{i-1}) \]
\[\Rightarrow d_{i+1} = d_i + 2dy - 2dx(y_i - y_{i-1}) \]
Bresenham’s Line Algorithm

\[d_{i+1} = d_i + 2dy - 2dx(y_i - y_{i-1}) \]

if \(d_i \geq 0 \) choose \(t_i \)

\[\Rightarrow y_i = y_{i-1} + 1 \]

\[\Rightarrow d_{i+1} = d_i + 2(dy - dx) \]

if \(d_i < 0 \) choose \(s_i \)

\[\Rightarrow y_i = y_{i-1} \]

\[\Rightarrow d_{i+1} = d_i + 2dy \]

initial condition \(d_1 = 2dy - dx \) \((x_0, y_0) = (0,0) \)

• Complexity: 1 left shift + 2 integer additions
Circle Drawing

- Symmetry reduces drawing to 1/8

\[\begin{align*}
 x &= x_c + r \cos \theta \\
 y &= y_c + r \sin \theta
\end{align*} \]
Bresenham’s Circle Algorithm

integer operations only

$$(x_{c}, y_{c}) = (0,0)$$

$$45^\circ < \theta < 90^\circ$$

$$D(s_i) = (x_{i-1} + 1)^2 + (y_{i-1} - 1)^2 - r^2$$

$$D(t_i) = (x_{i-1} + 1)^2 + y_{i-1}^2 - r^2$$
Bresenham’s Circle Algorithm

\[d_i = |D(s_i)| - |D(t_i)| = -D(s_i) + D(t_i) \]

\[d_i = 2r^2 - 2(x_{i-1} + 1)^2 - (y_{i-1} - 1)^2 - y_{i-1}^2 \]

\[d_{i+1} = 2r^2 - 2(x_{i-1} + 2)^2 - (y_i - 1)^2 - y_i^2 \]

\[\Rightarrow d_{i+1} - d_i = -4x_{i-1} - 6 - 2(y_i^2 - y_{i-1}^2) - 2(y_i - y_{i-1}) \]
Bresenham’s Circle Algorithm

\[d_1 = -3 + 2r \quad (x_0, y_0) = (0, r) \]

if \(d_i \geq 0 \) choose \(t_i \)

\[\Rightarrow y_i = y_{i-1}, d_{i+1} = d_i - 4x_{i-1} - 6 \]

if \(d_i < 0 \) choose \(s_i \)

\[\Rightarrow y_i = y_{i-1} - 1, d_{i+1} = d_i - 4x_i + 4y_i - 6 \]

• Complexity: only integer and shift operations
Other primitives

- **Ellipse**
 - symmetry reduces to 1/4
 - Bresenhem’s ellipse algorithm

- **Curve**
 - difficult
 - approximation using short line segments
 - general curve forms (Bezier, B-spline, etc.)

- **Characters**
 - rectangular grid patterns
Polygon Filing

- Arbitrary # of sides
- Convex or concave
- Holes
Scan Line Algorithm

- Edge table
 - sort edges by scanline (using min Y)
 - record
 - x coordinate of ymin
 - ymax
 - Δx to be added

\[(x, y_{\text{min}}) \]
Scan Line Algorithm

- Set \(y \) to smallest \(y \) in ET
- Initialize AET to be Null
- Repeat until AET and ET are empty
 - move from ET bucket \(y \) to AET those edges whose ymin = \(y \)
 - sort edges in AET by \(x \) (insertion sort)
 - fill in pixel values in between \(x \) pairs
 - remove from AET those edges whose ymax = \(y \)
 - increment \(y \) by 1
 - update \(x \) for all edges in AET
 \[x \leftarrow x + \Delta x \]
Polygon Patterned Filling

logical and
Polygon Patterned Filling

- Pattern can be anchored at
 - a fixed point: transparent object moves on a patterned background
 - a polygon corner: patterned object
2D Transformation

- For animation, manipulation, user interaction
- translation, rotation, scaling

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 x \\
 y
\end{bmatrix} + \begin{bmatrix}
 T_x \\
 T_y
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 S_x & 0 \\
 0 & S_y
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
A Very Common Confusion

- What is being transformed? Points or coordinate system?
- For CG, pipeline operations are always applied to features (points, lines, curves, planes)
- But you can think in either way:
 - Points are physically moved in a fixed coordinate system (e.g., in modeling transform), or
 - A coordinate system is moved, while points stay stationary (e.g., in viewing transform)
- Both interpretations are useful
2D Rigid Transformations

- A rigid transformation maps one coordinate system into another
 - Preserves distances and angles
- To transform points from one coordinate frame to another, find the rigid transformation that brings the two coordinate frames in alignment
 - **Translate** so that their origins coincide
 - **Rotate** so that their axes coincide (x with x, y with y, and z with z)
2D examples
2D Translation

- Translate the coordinate system by (Tx, Ty)
- What is the translated point?

\[P' = P + \begin{bmatrix} -T_x \\ -T_y \end{bmatrix} \]
2D rotation matrix

- Rotate θ counterclockwise
- What is the transformation R?

\[P' = RP \]

\[P' = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} P \]
2D Rigid Transformations

- A rigid transformation moves an object from one location to another location
- Preserves distances and angles
- To transform points from one place to another, find the rigid transformation that
 - Translate so that the object moves
 - Rotate so that the object reorients
2D examples

Trans

Rot

Trans+Rot
2D Translation

- Translate the coordinate system by \((Tx, Ty)\)
- What is the translated point?

\[
P' = P + \begin{bmatrix} T_x \\ T_y \end{bmatrix}
\]
2D rotation matrix

- Rotate θ counterclockwise
- What is the transformation R?

\[
P' = RP
\]

\[
P' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} P
\]
2D Transformation

- For animation, manipulation, user interaction
- translation, rotation, scaling

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]
2D Transformation (cont.)

- Inconsistent representation for translation
- Cannot be concatenated
- Troublesome for
 - Hierarchical transforms
 - Interactive, incremental display

\[P = R_n \ldots (R_3 (R_2 (R_1 P + T_1) + T_2) + T_3) \ldots + T_n \]
Homogeneous Coordinates

- consistent representation for all three
- can be concatenated & pre-computed

\[(x, y) \rightarrow (wx, wy, w), w \neq 0\]
\[(wx, wy, w) \rightarrow (wx / w, wy / w)\]
\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & T_x \\
0 & 1 & T_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = (TRS) \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
How about other transforms?

- For example, reflection

Mirrored images of each other
Try to represent the new transform as a composite of T, R, S

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\theta = -\tan^{-1}\left(\frac{b}{a}\right)
\]

\[
\theta = \tan^{-1}\left(\frac{b}{a}\right)
\]
Clipping Against Upright Rectangular Window

- Points

\[\text{if } x_{\text{min}} \leq x \leq x_{\text{max}} \text{ and } y_{\text{min}} \leq y \leq y_{\text{max}} \]
\[\text{then accept otherwise reject} \]
Clipping Against Upright Rectangular Window

- **Lines**
 - trivially accepted if both end points inside
 - otherwise Points

\[
\begin{align*}
x_1 + t(x_2 - x_1) &= x'_1 + t'(x'_2 - x'_1) \\
y_1 + t(y_2 - y_1) &= y'_1 + t'(y'_2 - y'_1) \\
0 \leq t, t' \leq 1
\end{align*}
\]

\((x_1, y_1), (x_2, y_2)\) : end points of line
\((x'_1, y'_1), (x'_2, y'_2)\) : end points of window boundary
Cohen-Sutherland Line-Clipping Algorithm

- Outcodes
 - bit1 --above: ymax-y
 - bit2 --below: y-ymin
 - bit3 --right of: xmax-x
 - bit4 --left of: x-xmin
- Trivially-accept: both end points having outcode 0000
- Trivially-reject: corresponding bits in two outcodes are set, or outcode1 & outcode2 nonzero
- Neither: need more testing
- E.g. mid-point algorithm
 - divide a line segment \((x_1, y_1), (x_2, y_2)\)
 into two line segments
 \((x_1, y_1), ((x_1 + x_2) / 2, (y_1 + y_2) / 2)\)
 \(((x_1 + x_2) / 2, (y_1 + y_2) / 2), (x_2, y_2)\)
 - test each line independently
 - recursive division if necessary
 - guarantee to stop in \(O(\log n)\) steps
Cyrus-Beck (Liang-Basky) Line Clipping

- Can be more efficient when intersection tests are unavoidable
- Work in the parameter \((t)\) space to locate true intersections before calculating 2D coordinates
- Work for all kinds of clipping polygons and in 3D
- Two basic steps:
 - find intersections \((t)\)
 - classify intersections
Cyrus-Beck (Liang-Basky) Line Clipping

Find intersections

- \(N \cdot (P(t) - P_E) = 0 \)
- \(N \cdot (P_o + t(P_1 - P_o) - P_E) = 0 \)
- \(t N \cdot (P_1 - P_o) + N \cdot (P_o - P_E) = 0 \)
- \(t = \frac{N \cdot (P_o - P_E)}{-N \cdot (P_1 - P_o)} \)

where \(P_0, P_1 \) are the endpoints of the line, \(P(t) \) is a point on the line, \(P_E \) is the endpoint on the clipping edge, and \(N = (a, b) \) is the normal vector.
- Intersections outside (0,1) range are not valid.
- But intersection inside (0,1) range might not be valid either.
Cyrus-Beck (Liang-Basky) Line Clipping

- Classify intersections

\[N \cdot (P_1 - P_o) < 0 \text{ PE (potentially entering)} \]
\[N \cdot (P_1 - P_o) > 0 \text{ PL (potentially leaving)} \]
- Locate the largest PE point & $t > 0$
- Locate the smallest PL point & $t < 1$
- PE < PL for a valid line
Polygon Clipping (Sutherland-Hodgman)

- Given an ordered sequence of polygon vertices
- And a *convex* clipping polygon
- Output ordered clipped polygon vertices
- Using divide-and-conquer, one clipping edge at a time
Original

Right boundary clipping
Bottom boundary clipping

Left boundary clipping
Top boundary clipping
Other Primitives

- Use of extents (extents for a whole string, words, individual characters)
- Divide and Conquer