Priority Queues and Heaps

Bryce Boe
2013/08/13
CS24, Summer 2013 C
Outline

• Thursday Recap
• More Tree Properties
• Priority Queue
• Heaps
O(n²) Sorting Algorithms

- **Bubble sort**
 - Bubble the largest element to the end in each pass

- **Insertion sort**
 - Insert the next element into the sorted portion of the list

- **Selection sort**
 - Find the smallest item and put it in its proper location
O(nlog(n)) Sort Algorithms

• Merge Sort
 – Break the problem up until you have 1 or 2 items and put them in order
 – Merge the sorted lists O(k) where k is the size of the small lists
 – $T(n) = 2T(n/2) + O(n) \implies O(n*\log(n))$ (masters theorem)
BST Remove

- If the node has no children simply remove it
- If the node has a single child, update its parent pointer to point to its child and remove the node
Removing a node with two children

- Replace the value of the node with the largest value in its left-subtree (right-most descendant on the left hand side)
- Then repeat the remove procedure to remove the node whose value was used in the replacement
Removing a node with two children
Full Binary Tree

- Full Binary Tree
 - A binary tree in which every node has either 0 or 2 children

- Complete Binary Tree
 - A binary tree in which every level is completely filled save for the last where all items must be filled from the left-hand-side
Neither complete nor full

Complete but not full

Full but not complete

Complete and full
Priority Queue

• Abstract data type with operations similar to the queue
 – enqueue(item, priority)
 • Add an item to the queue
 – dequeue()
 • Remove the item with highest priority from the queue
 (FIFO order for items with same priority)
Brainstorm

• Discuss for a few minutes with those near you:
 – Come up with two functionally distinct ways to implement a priority queue
Bounded Priority Queue

- Simple trick if the number of priorities is bounded
- Provide one FIFO queue for each priority
- Always look for items starting from the highest queue before proceeding to the next

- enqueue: $O(1)$
- dequeue: $O(1)$
Sorted List Implementation

- Use a standard linked-list implementation of a queue
- Modify enqueue such that it places the item in the appropriate location in the list
 - enqueue: $O(n)$
 - dequeue: $O(1)$
Tree Implementation

• Construct a tree such that its root is always the highest priority
• Additionally every subtree has the same property (parent is of equal or higher priority than children)
Heap

- A **complete** tree where each node’s parent has a higher or equal priority
Think about it

• Are there any trees that can be both a heap and a BST?
Heap Insertion (enqueue)

• Place item in the next free location (obey the completeness property)
• Continue to swap it with its parents until the ordering property is valid (bubble up)
• enqueue: $O(\log(n))$ – worst cases traverses up the entire height of the tree
Heap removal (dequeue)

• Store the value at the root to return at the end
• Swap the last item in the tree with the root
• Continually swap the current node with its child of highest priority until it is of higher priority than both children (bubble-down)
• dequeue: \(O(\log(n))\) – worst cases traverses down the entire height of the tree
Lab 7

- Write function to test if array is in heap-order
- Arrays are great for storing complete trees

```
| 11 | 10 | 7 | 9 | 5 | 6 | 4 | 8 | 2 | 3 | 1 |
```