SwordFight: Enabling a New Class of Phone-to-Phone Action Games on Commodity Phones

Zengbin Zhang¹, David Chu², Xiaomeng Chen³, Thomas Moscibroda⁴

¹Univ. of California Santa Barbara
²Microsoft Research Redmond
³Univ. of Science and Technology of China
⁴Microsoft Research Asia
Mobile Gaming Penetration

US Mobile App Time Consumption

Games 49%
Social Networking 30%
Other 15%
News 6%

Global Mobile Gaming Revenue

Billions

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Typical Mobile Games

Can play it anywhere 😊
Physical actions are VERY limited 😞
Motion Games

Involve more physical actions 😊
Need a well-setup game environment 😞
Mobile + Motion Games (MMG)

A SwordFight with your phones!

Attack Block
Enabling SwordFight

Game Actions

“How far is my enemy?”

Attack

Block

Communication

Gesture Recognition

REAL-TIME, ACCURATE Phone-to-Phone Distance Measurement

Key Enabler
Distance Measurement in MMG

1. No infrastructure support, commodity phones

2. Real-time measurement
 - Low measurement time: \(\leq 100\text{ms} \)
 - High measurement frequency: > 10 times/second

3. Accurate
 - Centimeter level accuracy

4. Robust
 - Mobility: Up to 4m/s hand-to-hand speed
 - Environment noise: talking, laughing, shouting, walls, ...
Ranging by Sound

• Based on built-in microphone and speaker
 – *e.g.* Beepbeep[\textit{Sensys’07}], Phone-to-Phone 3D Location[\textit{Sensys’11}]
 – Phones send “tones” to each other
 – Compute distance from tones’ arrival time

Accurate (\~2cm error) 😊 Not suitable for MMG 😞
No need for infrastructure 😊 Why?
Not Suitable for MMG

• Assuming phones are static, takes ~1 second to measure distance
 – Hand-to-hand speed up to 4m/s in motion games
 ➔ Measurement error is in meters!
 ➔ Low frequency!

• Doppler Effect happens at mobile scenarios
 – Received tones will be perturbed
 – Tone detection algorithm will not work
Our Proposed Design

Real-time measurement

- Real-time Tone Detection Algorithm

Pipelined Streaming Measurement Structure

Adaptive Parallel Tone Detector

Robust to Mobility

- Robust to Noise, multipath

Binary Coding, Filtering, etc.

Practical Phone-to-Phone Ranging System for MMG
Outline

• Motivation

• Fast, Accurate, Robust Ranging for MMG
 – Real-time distance measurement
 – Robust to mobility

• Evaluation

• Conclusion
Typical Acoustic Ranging Process

Phone A
Phone A's recording stream

Phone B
Phone B's recording stream

Locate by tone detection algorithm

\[
\text{Distance} \approx \frac{(t_{A2} - t_{A1}) - (t_{B2} - t_{B1})}{2} \times v_{\text{sound}}
\]
Why Real-time is Hard

MIC initialization lag
200~600ms

Recording
~100ms

Buffering
0~50ms

Distance Calculation
1~6ms

Audio playing lag
~100ms

Phone A’s tone
~50ms

Phone B’s tone
~50ms

Total measurement time ~1s
Our Approaches

• Streamlining tone sending & recording
 – To eliminate hardware lags

• Pipelining recording, tone detection & distance calculation
 – To increase measurement frequency
 – Tone exchange and detection are in parallel

• Design a real time tone detection algorithm
 – To fundamentally reduce measurement delay
Measurement Structure

Threads:

Distance Calculation

Tone Detection

Recording

Tone Sending

Phone A Phone B Phone A Phone B Phone A
Measurement Structure

Threads:
- Distance Calculation
- Tone Detection
- Recording
- Tone Sending

Sound

Ambient Noise Cancellation

Autocorrelation(s)

Smoothing

Multipath Filter

Tone detected?

yes

Cross-correlation

Measurement Exchange

Distance Calculation

Low Pass Filter

<distance values>

Doppler Predictor

WiFi
Existing Tone Detection Algorithm

Cross-correlation

Cross-correlation Peak → Arrival Time

Recorded Sound

Template

X_i

T_i

Correlation Window

Each window takes $O(W)$ time
e.g. $W=512$ sound samples in our system

100ms sound stream = 200ms computation!
Not possible to have real time detection!
Autocorrelation-based Detection

Autocorrelation

Autocorrelation Peak

Actual Location

Autocorrelation peak is flat. Error can be 20cm+.

Recorded Sound

Delayed Sound

X_i Y_i

Computed in $O(1)$ time from previous window, much smaller than $O(W)$

100ms sound stream = 20ms computation!
How to Maintain Accuracy

- Cross-correlation peak is sharp, accurate, close to autocorrelation peak!
- Solution:
 - Set a “search window” around autocorrelation peak
 - Apply cross-correlation in search window

→ 100ms sound stream = 60ms computation!
Example

Tones

Autocorrelation results
Not very smooth

Auto Correlation

After smoothing autocorrelation peaks

Detected cross correlation peaks

Ground truth of cross correlation peaks

Cross correlation in a small window

Smoothing
Outline

• Motivation

• Fast, Accurate, Robust Ranging for MMG
 – Real-time distance measurement
 – Robust to mobility

• Evaluation

• Conclusion
Impact of Doppler Effect

• Example: approaching ambulance has higher pitch
 – Sound wave is “squeezed”

Length of recorded tones are changed

Tone length $W \rightarrow W'$, e.g. $W' = W + 1$
Impact of Doppler Effect

- **Impact**
 - Should adapt to *new tone length* W' in Autocorrelation

- **Q: How to compute W'?**
 - Theoretically, by two phones’ speed: Unknown 😞
 - Solution: max hand speed is known $\rightarrow W'$ is in $[W-2, W+2]$
Addressing Doppler Effect

• Strawman solution
 • 5 parallel detectors to search in $[W-2, W+2]$

• Adaptive solution
 – Reduce to 3 parallel detectors, ~90ms to compute 100ms sound
Additional System Components

• Use high pass filter to handle ambient noise

• **Binary coding**: two phones use different beep sounds
 – A missing beep can cause successive errors

• Use **Kalman filter** to correct errors & smooth results

• Use techniques to address multipath reflection

• **Recovery** mechanisms if phones get “out-of-sync”
Implementation & Evaluation

• Two games
 – Sword Fight, Chase Cat

• Two types of platforms
 – Nexus One (Android)
 – Samsung Focus (Windows Phone 7)

• Evaluation
 – Controlled experiments
 – Gaming in the wild: 400+ players, demonstrated at MS Techfest
Performance Summary

• Measurement frequency: 12Hz

• Measurement lag: around 100ms

• Accuracy: 2cm median error

• Tone detection under Doppler effect: 95% (2m/s), 86% (4m/s).

• Works well under noise of the same power level
Comparing with Kinect

- 2 players play SwordFight in front of a Kinect sensor
Conclusion

• We design and implement Mobile Motion Games
 – Incorporate physical actions, play wherever you like

• Enabled by real-time, accurate distance measurement
 – Demonstrated by two games on two platforms

• Comparison to *kinect* shows similar performance