

Abstract. Video-endoscopy (Figure 1), a mode of minimally
invasive surgery, has proven to be significantly less invasive to the
patient. However, it creates a much more complex operation
environment that requires the surgeon to operate through a video
interface. Visual feedback control and image interpretation can be
difficult. Poor visual feedback in video-endoscopy prolongs the
operation time, increases the risk to the patient, and drives up the
cost of health care. It is a major roadblock in replacing the
traditional, highly traumatic open surgical procedures with the
much less invasive, more patient friendly video-endoscopy, and in
training the surgeons to master this new mode of operation. Our
research objective is thus to design, code, and validate on real
images novel image analysis and rectification algorithms to
enhance the visual feedback to the surgeon in video-endoscopy.
Index terms: computer-assisted medicine, eight-point algorithm,
endoscopy, feature tracking

I. Introduction
 Our research objective is to develop image analysis and
rectification algorithms to enhance the visual feedback to
the surgeon in the emerging minimally invasive surgery
[2,3]. There has been a revolution in medical surgery in
recent years toward minimally invasive surgery. Minimally
invasive surgery reduces the trauma inflicted on the patient
during surgery, significantly shortens the time for the patient
to recuperate, and lowers the cost of the treatment.

 A key technological advance that has fueled the minimally
invasive revolution is video-endoscopy. Endoscopic
procedures (Figure 1) are minimally invasive surgical
procedures where several small incisions are made on the
patient to accommodate surgical instruments such as
scalpels, scissors, staple guns, and a video endoscope (also
referred to as a scope or a telescope). The scope acquires
video images of the bodily cavity that are displayed in real
time on a monitor to provide the visual feedback to the
surgeon. This setup enables the surgeon to operate
instruments through the small incisions, as opposed to a
large incision for direct viewing.

1 Supported in part by Karl-Storz Imaging, Inc and the University

of California Micro Program

 From our discussions with practicing surgeons and
equipment suppliers, we have identified a critical need for
image processing assistance to enhance the surgeon's visual
feedback in video-endoscopy. The problem is briefly
described as follows: When the scope is inserted into a
highly constrictive body cavity and is subject to the entry
point constraint (Figure 1), blind spots in the view arise.
Often times large panning and rotation of the scope is used
to eliminate such blind spots. In fact, the scopes are
purposely designed with the viewing direction deviating
from the length of the instrument to provide an “off-axis”
view so that an axial rotation of the scope has a panning
effect to enlarge the view volume (Figure 2). However, the
view thus acquired is highly non-intuitive, since the
physical “up” direction will in general not so appear on the
monitor. This effect is called ``dis-orientation.''

The consequences of dis-orientation are that the surgeon can
easily lose the bearing after repeated large movement and
rotation of the scope view. This is because in video-
endoscopy the body anatomy is not exposed openly. There
is no external environment fixture visible in the images to
help register the anatomy in the operating room
environment. The surgeon has to deduce the scope's bearing
based on his/her understanding of the body anatomy.2 This
is difficult if images are not displayed with a strong
resemblance to what the surgeon sees in open surgery.
Hence, solving this problem is part of the general research
area of making endoscopic procedures more ``open-surgery-
like’’ and amenable to visual interpretation.

We propose an image rectification algorithm whose
objective is to maintain the surgeon's sense of up and down.
In the language of computer graphics [1], the ``head-up''
vector is to be displayed as upward on the screen at all
times. The method we have developed and tested
extensively on real images can be summarized as follows.
We analyze a video stream from an endoscopy procedure to

2 An analogy is having a user wear a head-mounted helmet that

completely covers the user's field of view. The user sees only the
computer-generated virtual world. After lengthy immersion, the
user loses track of the correlation of the virtual and real worlds.

Viewing Enhancement in Video-Endoscopy1

Figure 1: Video-endoscopy and constraints in
maneuvering the scope imposed by the pivot point

Figure 2: Video scopes of different viewing angles

deduce the orientation of the camera and the projection onto
the image plane of the physical environment’s “up”
direction. Panning and rotation of the camera make this
projected direction deviate from the screen’s upward
direction. We then rotate individual video frames by this
computed amount, rendering rectified video that properly
maintains the head-up direction.

We have broken down the task of computing the
rectification angle into three steps. Firstly, 2D features are
identified and tracked from frame to frame. Secondly, sets
of tracked features are used to deduce the 3D motion
undergone by the camera. Finally, the “up” direction, as
projected on the image plane, is obtained and the video
frames are rotated by this amount.

While the rectification algorithm might appear to be a
simple combination of existing techniques, our contribution
is in significantly improving the efficiency and robustness
of traditional techniques to suit this new application domain.
In particular, we reformulated the 2D tracking problem
using Fourier analysis and were able to achieve close to 30-
fold speed increase over conventional implementation. For
3D tracking, we employ redundancy and robust error norm
to significantly improve accuracy and minimize the
possibility of loss of track.
II. Mathematical Formulation

The algorithm that processes the video stream comprises
essentially three stages. In the first stage, a number of
image features are selected and tracked. The features are
areas of the image that have a high number of edges or
corners with a high intensity contrast. The correspondences
of image features are established using an affine model.

The second stage takes the 2D coordinates of the
corresponding features in successive frames and estimates
the camera motion parameters, using the 8-point algorithm
[4]. Here the coordinates of the centers of the tracked 2D
features are taken as inputs to the 8-point algorithm.
Thirdly, after the camera transformation is obtained, we
infer the direction of the environment’s "head-up” vector in
the camera’s current reference. Knowing the vector’s 3D
coordinates in the camera’s current frame allows us to
project it onto the image plane. The deviation of this
projection from the y-axis tells us by how much the image
should be rotated to make the arrow appear again as "up" on
the screen. Execution of this computed rotation then
rectifies the camera frame, as well as the entire image, to
confirm the surgeon’s frame of reference. We describe these
steps in more details below.
First stage: 2-D feature tracking

The algorithm starts out by tracking a set of 2-D features
as they move from one frame to the next. In order to match
a set of pixels in one frame to the corresponding pixels in
the next frame, an affine model is used. A general affine
transform maps a vector w to w’ according to the following
form: bAww' += where A is a constant matrix and b is
a constant vector. It can be shown that this transformation
is equivalent to the following sequence of operations: a)
shearing, b) rotation and isotropic rescaling, and c)
translation. This is most easily understood by expressing
the matrix A as follows:

)10
0

(
0

0

)(

2

1 TT

TTTT

VW)(VVWV

VW(V)V)(VUVVUA

=

=

Σ=Σ=Σ=

ε

ε
σ

σ
σ

where 21σσσ = and 21 σσε = and W and V are
orthogonal matrices.

Step a) is represented by the second factor and step b) is
represented by the first factor. The reason for dividing the
affine transform into these steps is two-fold. Firstly, since
each of the three steps involves only two parameters (out of
the six affine parameters), searching for optimal parameters
in this limited space is much more time-efficient. In other
words, the 6-dimensional search is conducted within three
2-dimensional subspaces in a sequential manner, with
previous subspace solutions being used as the starting points
in the next subspace search. The second reason that we
have divided the affine transform into steps a-c is that for
step b) and step c), we have developed efficient search
methods. These are now described.

In order to track a feature, we define an objective
function that captures the overlap of an affine-transformed
feature in one frame with the feature in the next frame. If
the affine parameters are correctly chosen, then the overlap
will be significant and this function should have a small
value. Thus, we are defining a function whose minimum we
seek. The function we use is the following:

2])()([)(∑
∈

−=
xboundingbo

TJITf
x

xx

where I and J are two adjacent frames, T represents the
transformation we seek and the bounding box is a square of
length 2s surrounding the feature. To simplify the following
discussion, let us assume that T represents only a
translation. In that case, we have:

2])()([)(∑
∈

+−=
xboundingbo

JIf
x

bxxb

where b is allowed to vary within some “possibility
window” (centered around the 0-vector). Now, if we let the
possibility window have the same size as the bounding box,
then this is equivalent to allowing the feature to migrate by
+/- s in each direction. In such a case, the area “swept” out
in J by all possible locations of the translated bounding box
covers a square of size 4s. Since this represents the universe
of pixels being examined in J for this particular
computation, it becomes convenient to express f as a sum
over this larger box (“swept box”). To keep the value of the
sum unchanged, we need to introduce a multiplicative
“mask”, whose value is unity inside the bounding box and
zero outside. Putting this together, we get:

)(])()([)(2 xbxxb
x

θ∑
∈

+−=
sweptbox

JIf

where theta is the mask. Now, it is possible to extend the
allowable values of b by a factor of 2, as long as we define
the argument of J as “wrapping around” when the limits of
“swept box” are exceeded. There is no harm in permitting
these additional values of b, since the wrapping around of
the “tentative” feature in J will produce a very bad match
with the feature in I. Thus, these additional values of b will
not be selected as the solution minimizing f. The motivation

for augmenting b’s domain is that by doing so we obtain a
standard circular convolution expression:

])()()()()(2)()([)(22∑
∈

+++−=
sweptbox

JJIIf
x

xbxbxxxxxb θθθ

Now, the first term is a constant and the second and third
terms are convolutions that can be evaluated efficiently for
all values of b. The use of the Fast Fourier Transform
allows this computation to be done in)log(nnΟ time,

instead of)(2nΟ time (where n = number of pixels in
“swept box”). Once f has been computed for all values of b,
the minimum is selected as the solution.

The procedure for handling step b) (rotation and isotropic
rescaling) is much the same, if we perform a certain change
of variables. This can best be seen if we express the
position x as a complex number z. Our expression for f for
step b) is:

2])()([)(∑
∈

−=
xboundingbo

TJITf
x

xx

where T represents rotation and isotropic rescaling. When
we employ the complex number z to represent x, then T(x)
becomes zz0 for some complex constant 0z . Thus:

)('
))ln()(ln('))(ln('
)))(exp(ln()()(

0

00

00

wwJ
zzJzzJ
zzJzzJTxJ

+=
+==

==

where J’ is the composition of the J and exp functions and
zw ln= is our change of variables. The key observation

to make here is that the argument of J’ is the sum of the
bound variable and the free variable and is therefore in the
form of a convolution. As in the previous case, this allows
efficient evaluation through the use of the FFT. More
formally, we have:

)Re(22

.'.
0

2

..
0

2
0

])(')('[

])(')('[

])()([

w

bbw

bbe

xboundingboz

ewwJwI

wwJwI

zzJzIf

w

∑

∑

∑

∈

∈

∈

+−=

+−=

−=

The last factor of)Re(2 we is due to the fact that a
uniformly-spaced grid in z-space has been replaced by a
uniformly-spaced grid in w-space. Including this factor in
our discrete case is analogous to correctly converting a
differential expression (such as xd 2) in the continuous
case, upon a change of variables. Finally, if we process this
expression in a similar way that was done for step c)
(translation), we again end up with a formula efficiently
evaluated by means of the FFT.

As for step a) (shearing), when the same complex number
approach is taken, the transformation assumes a rather more
complicated form than before. Instead of zz0 , we get:

0

2/1

0

0
0 sinhcosh z

z
zzzz

+

The problem in this case is the presence of both z and
z , which does not allow for the factoring into a purely z -

dependent factor and a purely 0z -dependent factor. Thus,
the shearing portion of the affine transform does not appear
to be amenable to the same computationally efficient
method that may be applied to the translational and
rotational/rescaling portions. In our application, since
computational efficiency is paramount, we implement the
above formulation for steps b) and c).
Second stage: 3-D reconstruction

For the second stage of the algorithm, the point
correspondences of at least eight tracked points (obtained in
the first stage) are used as inputs. The goal of the second
stage is to obtain the 3-D transformation that the camera has
undergone between the two frames. Within this stage, there
are two separate steps. Firstly, a matrix known as the
fundamental matrix is determined from the point
correspondences using a technique known as the "epipolar
formulation" [5]. Secondly, the 3-D transformation is
extracted from the fundamental matrix by performing a
factorization. In both of these steps an SVD factorization is
employed, although in unrelated ways.

In the first step, a mathematical condition known as the
epipolar constraint is used to find the fundamental matrix F.
This condition states that if a point has coordinates in the
i’th frame given by Tfyx),,(=v (where x and y denote
the pixel location and f is the focal length) and coordinates
in the (i+1)’th frame given by Tfyx),','(=v' , then

0=Fvv'T . In solving for F, we treat its elements as
being nine independent unknowns (with an overall
undecidable scale factor). In reality, however, F is the
product of an anti-symmetric matrix and a unitary matrix, so
the elements of F are not truly independent. However,
when employing the epipolar constraint, this excess freedom
can be ignored, since in the end, given physically generated
v and 'v , F will turn out to have this particular
factorization. Even if the computed F cannot be exactly
factorized in this way, a physically meaningful 3-D
transform still can be extracted from F (see below).
Therefore, the computation of F can proceed by treating its
elements as independent variables.

The above equation is generated by applying the epipolar
constraint to one tracked point. However, since multiple
points are being tracked, a system of linear homogeneous
equations is produced, where the unknowns are the elements
of F. After expressing the nine elements of F as a vector f,
the system of linear equations can be put into matrix form
by first defining:

TFFFFFFFFF],,,,,,,,[333231232221131211≡f

kv'vz kk ⊗≡ (⊗ denotes tensor product)

]...,,[21 mzzzZ ≡
where m = number of point correspondences. Then the set
of epipolar constraints for all points is given by: 0=fZT .
Since solving for f is equivalent to finding the null space of

TZ , it is convenient to employ the SVD. The vector
associated with a singular value of zero will be the solution
to f. In practice, however, no singular value will be exactly
zero, so the smallest one is the best approximation to the

null space. The main advantage in this formalism is that
even if more than eight points are used and the system is
over-determined, we have a systematic way of getting a
unique result for f. Over-determination in the system of
equations is in fact desirable, since it increases robustness.
The SVD is used in the following way to compute f:

TT UΣZ V= ,

=Σ

0
),...,(921 σσσdiag ,

09 =σ ,

= 921 v,...v,vV , directionnullv9 −=

 Once the fundamental matrix is obtained, it needs to be
factored as described above. The first factor will be an anti-
symmetric 3x3 matrix that expresses the translational
component of the 3-D transformation. The second factor is
a unitary 3x3 matrix and represents rotation.

As mentioned in the previous section, the fundamental
matrix, obtained by employing a system of epipolar
constraints, may in fact turn out not to be exactly
factorizable into anti-symmetric and unitary components.
With real-world data, this is to be expected due to noise in
the feature positions. However, a unitary matrix
representing the best estimation of the rotation can still be
extracted from F. For this, we again make use of the SVD.
Let TRF = where T is anti-symmetric and R is unitary.
After performing an SVD, we get:

TUΣF V= for some U , Σ and V
Let P be the following unitary matrix:

 −
≡

100
001
010

P

We can insert TTUPPUI = to get:

RT)VUPU(UΣ

VUPPUUΣF
TTT

TTT

~~)(P

)(

≡=

=

Given that

=

3

2

1

00
00
00

σ
σ

σ
Σ we get:

TT UUUUΣT

 −
==

3

2

1

00
00
00

P~

σ
σ

σ
 and

TTVUPR =~

Clearly, T~ and R~ can be identified as the anti-
symmetric T and the unitary R if and only if 21 σσ =

and 03 =σ . Finally, we obtain:

[] T
33

T
12

T
21

T
3

T
2

T
1

321 vuvuvu
v
v

v

uuu +−=

== TTT PVUPR

which is the rotation matrix we seek.
The above derivation assumes ideal conditions where F

can be decomposed into an anti-symmetric factor and a
unitary factor. In a real-world scenario, this condition will
not be exactly satisfied. However, by selecting σ3 to be the
smallest singular value, we can still make use of the result
for R with the guarantee that it is unitary.
Third stage: image rectification

Finally, once R is determined, the orientation (in the
camera’s coordinate system) of a virtual “up” vector is
updated. After projecting the vector onto the x-y plane (the
screen), the angle of deviation from the y-axis can be
determined. Using this information, the image is rotated to
compensate for this deviation angle. This puts the vector
(and everything else in the image) in the “up” position as
seen on the screen.

As a final point, it should be mentioned that for the ideal
case, the expression from above]...,,[21 mzzzZ ≡ can be
replaced with no side-effects by the expression

]...,,[2211 mmzzzZ ααα≡ , where the α’s are arbitrary
numbers. This follows from the fact that each epipolar
constraint equation is homogeneous. In effect, a particular
α will act as a weight that that point correspondence has on
obtaining the fundamental matrix. Therefore, for real-world
data, it makes sense to choose a value for an α that reflects
the confidence in that particular point correspondence.
Several different criteria can be used here, including using
the value of the 2-D feature overlap function (eg. as part of a
Boltzmann weighting factor). Another way is to compute f
in two passes. In the first pass, all the α’s are 1 and we
obtain a tentative f~ . For the second pass, the following
selection is made:))~((2fzT

ii h=α , where h(x) is a
monotonically decreasing function. In our application, we
selected h(x) to be a downward step-function, such that the
p worst point-correspondences are given a weight of 0 and
the rest are given 1. Or we suppress the potential outliers
with zero weight. We used m = 18 and p = 2.

III. Experimental Set-up and Results
Figure 3 shows the setup used to conduct testing. A knee

mockup (provided by Karl Storz Imaging) was used as the

Figure 3: Knee mockup with camera and scope

working environment for the endoscope. The camera itself
was a Karl-Storz Telecam model 20212130U hooked up by
S-video to an ATI capture card. The S-Video was then
converted to AVI files that were then parsed frame by
frame. After rectification, new images were generated and
then concatenated into a new AVI stream.

To validate the algorithm, we proceeded in the following
stages. The first stage involved testing on a hybrid of real
and synthetic video, where a real image was rotated
synthetically by known amounts. The purpose is to obtain
precise ground truth data so that comparison between the
algorithm’s rectification angle and the synthetic angle of
rotation could be made. Finally, completely real and long
video sequences with general camera movement were
tested. We described the results below.

 Stage 1: Hybrid of synthetic-real video using a knee
mock-up

 For this stage, a surgical knee mockup supplied by Karl
Storz Imaging (18” long with holes for inserting the camera)
was used (Figure 3). The scope was inserted into a cavity in
the knee and a typical image was obtained. This image was
then rotated synthetically by known amounts. In typical
tests, video executing five rotations was processed by the
algorithm. As an initializing step, the software selects
features of interest by use of an interest operator. The 2-D
tracking then is performed for each feature at each frame.
Two adjustable parameters are the number of features used
(at least eight) and the frequency with which the 3-D
algorithm is executed. More specifically, the 3-D algorithm
does not need to run at every new frame. Rather, a frame
separation greater than one can be used between executions.
We call this number of frames the “inter-3D” parameter.
The reason for not selecting the value of this parameter as
one is that some error may accrue at each execution.
Therefore, we wish to run this algorithm only when enough
difference in the camera’s coordinates has accumulated. On
the other hand, it is important not to set this parameter too
high, since in that case features may become occluded or
fall off the field of view. Additionally, some frequency in
running the 3-D algorithm has to be maintained to ensure
real-time updates to the rectification angle. For the frames
lying in-between, a linear predictor can be used for
obtaining the rectification angle. Again, if the inter-3D

parameter is not excessively high, then a low-order predictor
can be used with good accuracy. Typical values used for
these parameters have been: 16 features and 5 frames
between 3-D executions.

The purpose of testing this hybrid video was to test the
simple case of on-axis rotation and compare with the
synthetic ground-truth. Figure 4 shows typical results
obtained. As can be seen, the computed angle of
rectification is a close fit to the known ground-truth.

 Stage 2: Real video with arbitrary camera motion
 In this stage, video was obtained by inserting the scope

into the knee mockup. In this case however, the camera was
moved about with a general movement in which all degrees
of freedom were varied. In these sequences, the camera was
allowed to approach the cavity wall significantly, thus
simulating real surgical situations. Also, performance of the
interest operator was tested as old features disappear from
the field of view and new ones are acquired. Figure 6 shows
an original and rectified sequence using the knee mockup.
Figure 7 displays the same comparison, but here the interior
of the mouth has been used as the environment. Figure 5
compares the computed angle of rectification with the
amount obtained by (human) analysis of the original
sequence (sets of landmarks were carefully examined frame
by frame). Given the arbitrary nature of the camera

Figure 4: Actual deviation of "up" direction (unrectified) and
computed "up": for on-axis rotation

Figure 5: Actual deviation of “up” direction (unrectified)
and computed “up”: for general camera motion

Figure 6: original and rectified sequences (top and
bottom rows, respectively) for general camera motion:
knee mockup

movement (zooming and panning), the correspondence is
very good.
Discussion

From our experiment, we concluded that the source of
overall error in the algorithm comes from the 2-D tracking.
More specifically, over long sequences, a bounding box
surrounding a feature will inevitably have some drift with
respect to the true location of the feature. By over-
determining the system of equations, we achieve some
robustness, especially if these drifts are random in direction.
Our results show that minimizing these drifts will be helpful
to improving rectification for very long sequences.
Preprocessing the images by various image processing
techniques is currently being examined. In particular,
counter-acting the effect that motion blurring may have on
tracking accuracy is being investigated.

The timing results for the 2-D tracking using the FFT-
convolution method are very positive. Using another
method for evaluating the objective (feature overlap)
function as a reference, we achieved a 26-fold increase in
speed. This reference method utilized a hierarchical
approach in finding the minimum of the objective function.
It can be briefly described as follows. In the first iteration,
the full possibility window is searched, but using a course
granularity. In the next iteration, the size of the window is
decreased, the center is placed on the previous iteration’s
solution and the resolution is increased. Eventually, the
resolution reaches the pixel level and the algorithm
terminates. In addition, before the start of the algorithm, the
center of the window can be predicted from the past
movements of the bounding box. Using a predicted center
allows for employing a smaller initial window, with the net
effect of speeding up the algorithm. It is this prediction-
based hierarchical method that we used as a comparison to
calculate the mentioned speedup. Additionally, it is clear
that the FFT method is truly an exhaustive search (within
the 2-D affine subspaces), while the reference method is not
and can on occasion miss the true minimum.

The 3-D component of the algorithm yields good timing
performance as well. It consumes only 1/5 of the duty cycle
required for real-time processing.

In the sequences we have analyzed, the deviation of the
computed rectification from the known correct amount is

approximately 10%. Our current work is focused on
reducing this figure.
IV. Concluding Remarks

In this paper, we present our research on enhancing
visual feedback to the surgeon in minimally-invasive
surgery. A method was presented for estimating the amount
of rotation necessary to rectify images forming a video
stream to help alleviate the dis-orientation problem in
endoscopy. By estimating the “up” direction as seen in the
camera’s coordinate system, we can obtain the deviation
from the screen’s “up” direction. This deviation tells us the
amount of rotation we need to render a rectified image to
maintain the surgeon’s sense of head-up direction. An
efficient method of computing 2-D feature tracking was
presented. The 3-D portion of the algorithm makes use of
the epipolar constraint and employs a set of these constraints
to generate a matrix equation. With the help of the SVD,
we are able to get a optimal approximation to the
fundamental matrix. After this step, we again use the SVD
to decompose the fundamental matrix into an anti-
symmetric factor and a unitary factor. The latter is of
interest to us, since it represents the rotation of the camera
between two successive frames and can therefore be used to
update the camera parameters used for rectification.

By expressing the 2-D tracking objective function as a
convolution, we were able to obtain a large speedup over
straightforward evaluation. This formulation allows for
DSP hardware implementation as well as parallelization (in
evaluating 2-D FFTs).

Next steps for us include processing the image stream so
that moving objects, such as scalpels, which are not attached
rigidly to the rest of the scene, can be segmented out. In this
way, only features forming part of the rigid whole will be
selected for tracking and the basic assumptions of the
algorithm are maintained.

References:

1. J.D. Foley, A. van Darn, S.K. Feiner, and J.F. Hughes.
Computer Graphics: Principles and Practice, 2nd ed.
Addison-Wesley, Reading, MA, 1990

2. J.F. Hulka and H. Reich. Textbook of Laparoscopy, 2nd Ed.
W.B. Saunders, Philadelphia, PA, 1994

3. J.G. Hunter and J.M. Sackier (eds.). Minimally Invasive
Surgery. McGraw-Hill, New York, 1993

4. H.C. Longuet-Higgins, "A Computer Algorithm for
Reconstructing a Scene from Two Projections," Nature, vol.
293, pp. 133-135, Sept 1981.

5. G. Xu and Z. Zhang, “Epipolar Geometry in Stereo, Motion
and Object Recognition”, Kluwer Academic Publishers, 1996

Figure 7: original and rectified sequences (top

and bottom rows, respectively) for general camera
motion: actual human tissue (mouth)

