
 

Abstract. Video-endoscopy (Figure 1), a mode of minimally 
invasive surgery, has proven to be significantly less invasive to the 
patient. However, it creates a much more complex operation 
environment that requires the surgeon to operate through a video 
interface.  Visual feedback control and image interpretation can be 
difficult.  Poor visual feedback in video-endoscopy prolongs the 
operation time, increases the risk to the patient, and drives up the 
cost of health care.  It is a major roadblock in replacing the 
traditional, highly traumatic open surgical procedures with the 
much less invasive, more patient friendly video-endoscopy, and in 
training the surgeons to master this new mode of operation.  Our 
research objective is thus to design, code, and validate on real 
images novel image analysis and rectification algorithms to 
enhance the visual feedback to the surgeon in video-endoscopy. 
Index terms: computer-assisted medicine, eight-point algorithm, 
endoscopy, feature tracking 

I.   Introduction 
   Our research objective is to develop image analysis and 
rectification algorithms to enhance the visual feedback to 
the surgeon in the emerging minimally invasive surgery 
[2,3]. There has been a revolution in medical surgery in 
recent years toward minimally invasive surgery.  Minimally 
invasive surgery reduces the trauma inflicted on the patient 
during surgery, significantly shortens the time for the patient 
to recuperate, and lowers the cost of the treatment.   

   A key technological advance that has fueled the minimally 
invasive revolution is video-endoscopy.  Endoscopic 
procedures (Figure 1) are minimally invasive surgical 
procedures where several small incisions are made on the 
patient to accommodate surgical instruments such as 
scalpels, scissors, staple guns, and a video endoscope (also 
referred to as a scope or a telescope).  The scope acquires 
video images of the bodily cavity that are displayed in real 
time on a monitor to provide the visual feedback to the 
surgeon.  This setup enables the surgeon to operate 
instruments through the small incisions, as opposed to a 
large incision for direct viewing. 
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   From our discussions with practicing surgeons and 
equipment suppliers, we have identified a critical need for 
image processing assistance to enhance the surgeon's visual 
feedback in video-endoscopy. The problem is briefly 
described as follows: When the scope is inserted into a 
highly constrictive body cavity and is subject to the entry 
point constraint (Figure 1), blind spots in the view arise.  
Often times large panning and rotation of the scope is used 
to eliminate such blind spots.  In fact, the scopes are 
purposely designed with the viewing direction deviating 
from the length of the instrument to provide an “off-axis” 
view so that an axial rotation of the scope has a panning 
effect to enlarge the  view volume (Figure 2).  However, the 
view thus acquired is highly non-intuitive, since the 
physical “up” direction will in general not so appear on the 
monitor.  This effect is called ``dis-orientation.'' 

The consequences of dis-orientation are that the surgeon can 
easily lose the bearing after repeated large movement and 
rotation of the scope view.  This is because in video-
endoscopy the body anatomy is not exposed openly.  There 
is no external environment fixture visible in the images to 
help register the anatomy in the operating room 
environment.  The surgeon has to deduce the scope's bearing 
based on his/her understanding of the body anatomy.2 This 
is difficult if images are not displayed with a strong 
resemblance to what the surgeon sees in open surgery.  
Hence, solving this problem is part of the general research 
area of making endoscopic procedures more ``open-surgery-
like’’ and amenable to visual interpretation.  

We propose an image rectification algorithm whose 
objective is to maintain the surgeon's sense of up and down.  
In the language of computer graphics [1], the ``head-up'' 
vector is to be displayed as upward on the screen at all 
times. The method we have developed and tested 
extensively on real images can be summarized as follows.  
We analyze a video stream from an endoscopy procedure to 
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Figure 1: Video-endoscopy and constraints in 
maneuvering the scope imposed by the pivot point 

Figure 2: Video scopes of different viewing angles 



deduce the orientation of the camera and the projection onto 
the image plane of the physical environment’s “up” 
direction.  Panning and rotation of the camera make this 
projected direction deviate from the screen’s upward 
direction. We then rotate individual video frames by this 
computed amount, rendering rectified video that properly 
maintains the head-up direction. 

We have broken down the task of computing the 
rectification angle into three steps.  Firstly, 2D features are 
identified and tracked from frame to frame.  Secondly, sets 
of tracked features are used to deduce the 3D motion 
undergone by the camera.  Finally, the “up” direction, as 
projected on the image plane, is obtained and the video 
frames are rotated by this amount. 

While the rectification algorithm might appear to be a 
simple combination of existing techniques, our contribution 
is in significantly improving the efficiency and robustness 
of traditional techniques to suit this new application domain. 
In particular, we reformulated the 2D tracking problem 
using Fourier analysis and were able to achieve close to 30-
fold speed increase over conventional implementation. For 
3D tracking, we employ redundancy and robust error norm 
to significantly improve accuracy and minimize the 
possibility of loss of track.  
II.  Mathematical Formulation 

The algorithm that processes the video stream comprises 
essentially three stages.  In the first stage, a number of 
image features are selected and tracked.  The features are 
areas of the image that have a high number of edges or 
corners with a high intensity contrast.  The correspondences 
of image features are established using an affine model. 

The second stage takes the 2D coordinates of the 
corresponding features in successive frames and estimates 
the camera motion parameters, using the 8-point algorithm 
[4]. Here the coordinates of the centers of the tracked 2D 
features are taken as inputs to the 8-point algorithm.  
Thirdly, after the camera transformation is obtained, we 
infer the direction of the environment’s "head-up” vector in 
the camera’s current reference.  Knowing the vector’s 3D 
coordinates in the camera’s current frame allows us to 
project it onto the image plane.  The deviation of this 
projection from the y-axis tells us by how much the image 
should be rotated to make the arrow appear again as "up" on 
the screen.  Execution of this computed rotation then 
rectifies the camera frame, as well as the entire image, to 
confirm the surgeon’s frame of reference. We describe these 
steps in more details below. 
First stage: 2-D feature tracking 

The algorithm starts out by tracking a set of 2-D features 
as they move from one frame to the next.  In order to match 
a set of pixels in one frame to the corresponding pixels in 
the next frame, an affine model is used.  A general affine 
transform maps a vector w to w’ according to the following 
form: bAww' += where A is a constant matrix and b is 
a constant vector.  It can be shown that this transformation 
is equivalent to the following sequence of operations:  a) 
shearing, b) rotation and isotropic rescaling, and c) 
translation.  This is most easily understood by expressing 
the matrix A as follows: 
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where 21σσσ =  and 21 σσε =  and W and V are 
orthogonal matrices. 

Step a) is represented by the second factor and step b) is 
represented by the first factor.  The reason for dividing the 
affine transform into these steps is two-fold.  Firstly, since 
each of the three steps involves only two parameters (out of 
the six affine parameters), searching for optimal parameters 
in this limited space is much more time-efficient.  In other 
words, the 6-dimensional search is conducted within three 
2-dimensional subspaces in a sequential manner, with 
previous subspace solutions being used as the starting points 
in the next subspace search.  The second reason that we 
have divided the affine transform into steps a-c is that for 
step b) and step c), we have developed efficient search 
methods.  These are now described. 

In order to track a feature, we define an objective 
function that captures the overlap of an affine-transformed 
feature in one frame with the feature in the next frame.  If 
the affine parameters are correctly chosen, then the overlap 
will be significant and this function should have a small 
value.  Thus, we are defining a function whose minimum we 
seek.  The function we use is the following: 
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where I and J are two adjacent frames, T represents the 
transformation we seek and the bounding box is a square of 
length 2s surrounding the feature.  To simplify the following 
discussion, let us assume that T represents only a 
translation.  In that case, we have: 
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where b is allowed to vary within some “possibility 
window” (centered around the 0-vector).  Now, if we let the 
possibility window have the same size as the bounding box, 
then this is equivalent to allowing the feature to migrate by 
+/- s in each direction.  In such a case, the area “swept” out 
in J by all possible locations of the translated bounding box 
covers a square of size 4s.  Since this represents the universe 
of pixels being examined in J for this particular 
computation, it becomes convenient to express f as a sum 
over this larger box (“swept box”).  To keep the value of the 
sum unchanged, we need to introduce a multiplicative 
“mask”, whose value is unity inside the bounding box and 
zero outside.  Putting this together, we get: 
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where theta is the mask.  Now, it is possible to extend the 
allowable values of b by a factor of 2, as long as we define 
the argument of J as “wrapping around” when the limits of 
“swept box” are exceeded.  There is no harm in permitting 
these additional values of b, since the wrapping around of 
the “tentative” feature in J will produce a very bad match 
with the feature in I.  Thus, these additional values of b will 
not be selected as the solution minimizing f.  The motivation 



for augmenting b’s domain is that by doing so we obtain a 
standard circular convolution expression: 
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Now, the first term is a constant and the second and third 
terms are convolutions that can be evaluated efficiently for 
all values of b.  The use of the Fast Fourier Transform 
allows this computation to be done in )log( nnΟ  time, 

instead of )( 2nΟ  time (where n = number of pixels in 
“swept box”).  Once f has been computed for all values of b, 
the minimum is selected as the solution. 

The procedure for handling step b) (rotation and isotropic 
rescaling) is much the same, if we perform a certain change 
of variables.  This can best be seen if we express the 
position x as a complex number z.  Our expression for f for 
step b) is: 
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where T represents rotation and isotropic rescaling.  When 
we employ the complex number z to represent x, then T(x) 
becomes zz0  for some complex constant 0z .  Thus: 
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where J’ is the composition of the J and exp functions and 
zw ln=  is our change of variables.  The key observation 

to make here is that the argument of J’ is the sum of the 
bound variable and the free variable and is therefore in the 
form of a convolution.  As in the previous case, this allows 
efficient evaluation through the use of the FFT.  More 
formally, we have: 
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The last factor of )Re(2 we  is due to the fact that a 
uniformly-spaced grid in z-space has been replaced by a 
uniformly-spaced grid in w-space.  Including this factor in 
our discrete case is analogous to correctly converting a 
differential expression (such as xd 2 ) in the continuous 
case, upon a change of variables.  Finally, if we process this 
expression in a similar way that was done for step c) 
(translation), we again end up with a formula efficiently 
evaluated by means of the FFT. 

As for step a) (shearing), when the same complex number 
approach is taken, the transformation assumes a rather more 
complicated form than before.  Instead of zz0 , we get: 
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The problem in this case is the presence of both z  and 
z , which does not allow for the factoring into a purely z -

dependent factor and a purely 0z -dependent factor.  Thus, 
the shearing portion of the affine transform does not appear 
to be amenable to the same computationally efficient 
method that may be applied to the translational and 
rotational/rescaling portions.  In our application, since 
computational efficiency is paramount, we implement the 
above formulation for steps b) and c). 
Second stage:  3-D reconstruction 

For the second stage of the algorithm, the point 
correspondences of at least eight tracked points (obtained in 
the first stage) are used as inputs.  The goal of the second 
stage is to obtain the 3-D transformation that the camera has 
undergone between the two frames.  Within this stage, there 
are two separate steps.  Firstly, a matrix known as the 
fundamental matrix is determined from the point 
correspondences using a technique known as the "epipolar 
formulation" [5].  Secondly, the 3-D transformation is 
extracted from the fundamental matrix by performing a 
factorization.  In both of these steps an SVD factorization is 
employed, although in unrelated ways. 

In the first step, a mathematical condition known as the 
epipolar constraint is used to find the fundamental matrix F.  
This condition states that if a point has coordinates in the 
i’th frame given by Tfyx ),,(=v  (where x and y denote 
the pixel location and f is the focal length) and coordinates 
in the (i+1)’th frame given by Tfyx ),','(=v' , then 

0=Fvv'T . In solving for F, we treat its elements as 
being nine independent unknowns (with an overall 
undecidable scale factor).  In reality, however, F is the 
product of an anti-symmetric matrix and a unitary matrix, so 
the elements of F are not truly independent.  However, 
when employing the epipolar constraint, this excess freedom 
can be ignored, since in the end, given physically generated 
v  and 'v , F will turn out to have this particular 
factorization.  Even if the computed F cannot be exactly 
factorized in this way, a physically meaningful 3-D 
transform still can be extracted from F (see below).  
Therefore, the computation of F can proceed by treating its 
elements as independent variables. 

The above equation is generated by applying the epipolar 
constraint to one tracked point.  However, since multiple 
points are being tracked, a system of linear homogeneous 
equations is produced, where the unknowns are the elements 
of F.  After expressing the nine elements of F as a vector f, 
the system of linear equations can be put into matrix form 
by first defining: 

TFFFFFFFFF ],,,,,,,,[ 333231232221131211≡f  

kv'vz kk ⊗≡  ( ⊗  denotes tensor product) 
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where m = number of point correspondences.  Then the set 
of epipolar constraints for all points is given by: 0=fZT . 
Since solving for f is equivalent to finding the null space of 

TZ , it is convenient to employ the SVD.  The vector 
associated with a singular value of zero will be the solution 
to f.  In practice, however, no singular value will be exactly 
zero, so the smallest one is the best approximation to the 



null space.  The main advantage in this formalism is that 
even if more than eight points are used and the system is 
over-determined, we have a systematic way of getting a 
unique result for f.  Over-determination in the system of 
equations is in fact desirable, since it increases robustness.  
The SVD is used in the following way to compute f: 
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 Once the fundamental matrix is obtained, it needs to be 
factored as described above.  The first factor will be an anti-
symmetric 3x3 matrix that expresses the translational 
component of the 3-D transformation.  The second factor is 
a unitary 3x3 matrix and represents rotation. 

As mentioned in the previous section, the fundamental 
matrix, obtained by employing a system of epipolar 
constraints, may in fact turn out not to be exactly 
factorizable into anti-symmetric and unitary components.  
With real-world data, this is to be expected due to noise in 
the feature positions. However, a unitary matrix 
representing the best estimation of the rotation can still be 
extracted from F.  For this, we again make use of the SVD. 
Let TRF = where T  is anti-symmetric and R  is unitary. 
After performing an SVD, we get: 
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Let P be the following unitary matrix: 
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Clearly, T~  and R~  can be identified as the anti-
symmetric T  and the unitary R  if and only if 21 σσ =  

and 03 =σ .  Finally, we obtain: 
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which is the rotation matrix we seek.   
The above derivation assumes ideal conditions where F 

can be decomposed into an anti-symmetric factor and a 
unitary factor.  In a real-world scenario, this condition will 
not be exactly satisfied.  However, by selecting σ3 to be the 
smallest singular value, we can still make use of the result 
for R  with the guarantee that it is unitary. 
Third stage: image rectification 

Finally, once R  is determined, the orientation (in the 
camera’s coordinate system) of a virtual “up” vector is 
updated.  After projecting the vector onto the x-y plane (the 
screen), the angle of deviation from the y-axis can be 
determined.  Using this information, the image is rotated to 
compensate for this deviation angle.  This puts the vector 
(and everything else in the image) in the “up” position as 
seen on the screen. 

As a final point, it should be mentioned that for the ideal 
case, the expression from above ]...,,[ 21 mzzzZ ≡  can be 
replaced with no side-effects by the expression 

]...,,[ 2211 mmzzzZ ααα≡ , where the α’s are arbitrary 
numbers.  This follows from the fact that each epipolar 
constraint equation is homogeneous.  In effect, a particular 
α will act as a weight that that point correspondence has on 
obtaining the fundamental matrix.  Therefore, for real-world 
data, it makes sense to choose a value for an α that reflects 
the confidence in that particular point correspondence.  
Several different criteria can be used here, including using 
the value of the 2-D feature overlap function (eg. as part of a 
Boltzmann weighting factor).  Another way is to compute f 
in two passes.  In the first pass, all the α’s are 1 and we 
obtain a tentative f~ .  For the second pass, the following 
selection is made: ))~(( 2fzT

ii h=α , where h(x) is a 
monotonically decreasing function.  In our application, we 
selected h(x) to be a downward step-function, such that the 
p worst point-correspondences are given a weight of 0 and 
the rest are given 1.  Or we suppress the potential outliers 
with zero weight. We used m = 18 and p = 2. 

III. Experimental Set-up and Results 
Figure 3 shows the setup used to conduct testing.  A knee 

mockup (provided by Karl Storz Imaging) was used as the 

Figure 3: Knee mockup with camera and scope 



working environment for the endoscope.  The camera itself 
was a Karl-Storz Telecam model 20212130U hooked up by 
S-video to an ATI capture card.  The S-Video was then 
converted to AVI files that were then parsed frame by 
frame.  After rectification, new images were generated and 
then concatenated into a new AVI stream. 

To validate the algorithm, we proceeded in the following 
stages.  The first stage involved testing on a hybrid of real 
and synthetic video, where a real image was rotated 
synthetically by known amounts.  The purpose is to obtain 
precise ground truth data so that comparison between the 
algorithm’s rectification angle and the synthetic angle of 
rotation could be made.  Finally, completely real and long 
video sequences with general camera movement were 
tested.  We described the results below. 

 Stage 1: Hybrid of synthetic-real video using a knee 
mock-up 

 For this stage, a surgical knee mockup supplied by Karl 
Storz Imaging (18” long with holes for inserting the camera) 
was used (Figure 3).  The scope was inserted into a cavity in 
the knee and a typical image was obtained.  This image was 
then rotated synthetically by known amounts.  In typical 
tests, video executing five rotations was processed by the 
algorithm.  As an initializing step, the software selects 
features of interest by use of an interest operator. The 2-D 
tracking then is performed for each feature at each frame.  
Two adjustable parameters are the number of features used 
(at least eight) and the frequency with which the 3-D 
algorithm is executed.  More specifically, the 3-D algorithm 
does not need to run at every new frame.  Rather, a frame 
separation greater than one can be used between executions.  
We call this number of frames the “inter-3D” parameter.  
The reason for not selecting the value of this parameter as 
one is that some error may accrue at each execution.  
Therefore, we wish to run this algorithm only when enough 
difference in the camera’s coordinates has accumulated.  On 
the other hand, it is important not to set this parameter too 
high, since in that case features may become occluded or 
fall off the field of view.  Additionally, some frequency in 
running the 3-D algorithm has to be maintained to ensure 
real-time updates to the rectification angle.  For the frames 
lying in-between, a linear predictor can be used for 
obtaining the rectification angle.  Again, if the inter-3D 

parameter is not excessively high, then a low-order predictor 
can be used with good accuracy.  Typical values used for 
these parameters have been: 16 features and 5 frames 
between 3-D executions. 

The purpose of testing this hybrid video was to test the 
simple case of on-axis rotation and compare with the 
synthetic ground-truth. Figure 4 shows typical results 
obtained.  As can be seen, the computed angle of 
rectification is a close fit to the known ground-truth. 

 Stage 2: Real video with arbitrary camera motion 
 In this stage, video was obtained by inserting the scope 

into the knee mockup.  In this case however, the camera was 
moved about with a general movement in which all degrees 
of freedom were varied.  In these sequences, the camera was 
allowed to approach the cavity wall significantly, thus 
simulating real surgical situations.  Also, performance of the 
interest operator was tested as old features disappear from 
the field of view and new ones are acquired.  Figure 6 shows 
an original and rectified sequence using the knee mockup.  
Figure 7 displays the same comparison, but here the interior 
of the mouth has been used as the environment.  Figure 5 
compares the computed angle of rectification with the 
amount obtained by (human) analysis of the original 
sequence (sets of landmarks were carefully examined frame 
by frame).  Given the arbitrary nature of the camera 

Figure 4: Actual deviation of "up" direction (unrectified) and 
computed "up": for on-axis rotation 

Figure 5: Actual deviation of “up” direction (unrectified) 
and computed “up”: for general camera motion 

Figure 6: original and rectified sequences (top and 
bottom rows, respectively) for general camera motion: 
knee mockup 



movement (zooming and panning), the correspondence is 
very good. 
Discussion 

From our experiment, we concluded that the source of 
overall error in the algorithm comes from the 2-D tracking.  
More specifically, over long sequences, a bounding box 
surrounding a feature will inevitably have some drift with 
respect to the true location of the feature.  By over-
determining the system of equations, we achieve some 
robustness, especially if these drifts are random in direction.  
Our results show that minimizing these drifts will be helpful 
to improving rectification for very long sequences.  
Preprocessing the images by various image processing 
techniques is currently being examined.  In particular, 
counter-acting the effect that motion blurring may have on 
tracking accuracy is being investigated. 

The timing results for the 2-D tracking using the FFT-
convolution method are very positive.  Using another 
method for evaluating the objective (feature overlap) 
function as a reference, we achieved a 26-fold increase in 
speed.  This reference method utilized a hierarchical 
approach in finding the minimum of the objective function.  
It can be briefly described as follows.  In the first iteration, 
the full possibility window is searched, but using a course 
granularity.  In the next iteration, the size of the window is 
decreased, the center is placed on the previous iteration’s 
solution and the resolution is increased.  Eventually, the 
resolution reaches the pixel level and the algorithm 
terminates.  In addition, before the start of the algorithm, the 
center of the window can be predicted from the past 
movements of the bounding box.  Using a predicted center 
allows for employing a smaller initial window, with the net 
effect of speeding up the algorithm.  It is this prediction-
based hierarchical method that we used as a comparison to 
calculate the mentioned speedup.  Additionally, it is clear 
that the FFT method is truly an exhaustive search (within 
the 2-D affine subspaces), while the reference method is not 
and can on occasion miss the true minimum.  

The 3-D component of the algorithm yields good timing 
performance as well.  It consumes only 1/5 of the duty cycle 
required for real-time processing. 

In the sequences we have analyzed, the deviation of the 
computed rectification from the known correct amount is 

approximately 10%.  Our current work is focused on 
reducing this figure. 
IV. Concluding Remarks 

In this paper, we present our research on enhancing 
visual feedback to the surgeon in minimally-invasive 
surgery. A method was presented for estimating the amount 
of rotation necessary to rectify images forming a video 
stream to help alleviate the dis-orientation problem in 
endoscopy.  By estimating the “up” direction as seen in the 
camera’s coordinate system, we can obtain the deviation 
from the screen’s “up” direction.  This deviation tells us the 
amount of rotation we need to render a rectified image to 
maintain the surgeon’s sense of head-up direction.  An 
efficient method of computing 2-D feature tracking was 
presented.  The 3-D portion of the algorithm makes use of 
the epipolar constraint and employs a set of these constraints 
to generate a matrix equation.  With the help of the SVD, 
we are able to get a optimal approximation to the 
fundamental matrix.  After this step, we again use the SVD 
to decompose the fundamental matrix into an anti-
symmetric factor and a unitary factor.  The latter is of 
interest to us, since it represents the rotation of the camera 
between two successive frames and can therefore be used to 
update the camera parameters used for rectification. 

By expressing the 2-D tracking objective function as a 
convolution, we were able to obtain a large speedup over 
straightforward evaluation.  This formulation allows for 
DSP hardware implementation as well as parallelization (in 
evaluating 2-D FFTs). 

Next steps for us include processing the image stream so 
that moving objects, such as scalpels, which are not attached 
rigidly to the rest of the scene, can be segmented out.  In this 
way, only features forming part of the rigid whole will be 
selected for tracking and the basic assumptions of the 
algorithm are maintained. 
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Figure 7: original and rectified sequences (top 

and bottom rows, respectively) for general camera 
motion: actual human tissue (mouth) 


