Construction and Querying of Large-scale Knowledge Bases

Xiang Ren¹ Yu Su² Xifeng Yan²

University of Southern California¹

University of California, Santa Barbara²

Tutorial website:

http://xren7.web.engr.illinois.edu/tutorial-cikm17.html

Slides, code, datasets, references

Turning Unstructured Text Data into Structures

Reading the reviews: From Text to Structured Facts

This hotel is my favorite Hilton property in NYC! It is located right on 42nd street near Times Square, it is close to all subways, Broadways shows, and next to great restaurants like Junior's Cheesecake, Virgil's BBQ and many others.

-- TripAdvisor

Structured 1. "Typed" entities Facts 2. "Typed" relationships

Why Text to Structures?

Structured Search & Exploration

City contains "ist" × Category equals "Friends" × Birthday on 09/04/2000 × Age = 30 × Lastname equals "plugins" × Is active Yes No ×

Graph Mining & Network Analysis

Pattern / Association Rule Mining

Structured Feature Generation

A Product Use Case: Finding "Interesting Hotel Collections"

Technology Transfer to TripAdvisor

Grouping hotels based on structured facts extracted from the review text

Features for "Catch a Show" collection

- broadway shows
- beacon theater

2

3

4

5

6

3

4

5

- broadway dance center
- broadway plays
- david letterman show
- radio city music hall
- theatre shows

Features for "Near The High Line" collection

- high line park
- 2 chelsea market
 - highline walkway
 - elevated park
 - meatpacking district
- 6 west side
- 7 old railway

http://engineering.tripadvisor.com/using-nlp-to-find-interesting-collections-of-hotels/

Prior Art: Extracting Structures with Repeated Human Effort

Labeled data

Text Corpus

This Tutorial: Effort-Light StructMine

- Enables *quick* development of applications over various corpora
- Extracts *complex* structures without introducing human error

Effort-Light StructMine: Where Are We?

A Review of Previous Efforts

Feature engineering effort

"Distant" Supervision: What Is It?

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

Learning with Distant Supervision: Challenges

- 1. Sparsity of "Matchable"
 - Incomplete knowledge bases
 - Low-confidence matching
- 2. Accuracy of "Expansion"
 - For "matchable": Are all the labels assigned accurately?
 - For "un-matchable": How to perform inference accurately?

Effort-Light StructMine: Contributions

Challenge	Solution Idea	1	
Sparsity of "Matchable"	Effective expansion from " <i>matchable</i> "	Te col	ext pus DBpedia
	to "un-matchable"		Harness the " data redundancy " using graph-based
	Pick the <i>"hest"</i> lahels		joint optimization
Accuracy of "Expansion"	based on the context		
	(for both "matchable" and "un-matchable")	(]	Location Government
		It is my city i	favorite The <u>United</u> n the <u>States</u> needs a new
		onned	challenge

Effort-Light StructMine: Methodology

Effort-Light StructMine: Methodology

Effort-Light StructMine: Methodology

Knowledge Base Querying

Transformation in Information Search

Desktop search

Mobile search

"Which hotel has a roller - coaster in Las Vegas?"

Lengthy Documents? Direct Answers!

which hotel has a roller coaster in las vegas						
Web	Images	News	Videos	Shopping	More 👻	Search tools
About 5	603,000 result	ts (0.36 sec	onds)			
Las V vegas Some o fact, alr	egas Rol click.com/ ve of the best thr most all of the	er Coas egas/las-v ill rides and ese rides ar	ters: Stra regas-rolle roller coas e at local ho	tosphere's r-coasters.h ters in the worl tels. Here's a r	Big Shot tml ▾ d are in the ¹ undown of ro	, New Vegas area. In iller
Las V conten It's not York-Ne	egas: 10 t.time.com/ the wildest ro ew York hote	Things t ./0,31489, oller coaste I and takes	o Do — 7 1838100_1 er in existend only a few r	7. New Yor 838099_1838 ce, but this one ninutes. The ho	k-New Y 093,00.ht goes right otel is wort	X

Answer: New York-New York hotel

Mobile Internet users, in millions

Application: Facebook Entity Graph

f my friends who	work at goc	ogle		C	2
All Posts	People	Photos	Videos	Pages	Places
Filter Results city • Any city • Santa Barbara, California		M M Y S L	guyen Van Do achine Learning bur friend since J tudied Computer ves in Santa Bar	ong Anh Engineer at Go lune 2016 science at Univ bara, California	ogle versity of Califo
 Beijing, China Choose a city Education Any school Tsinghug University 	it.	X 2 Yu G S	iang Ren (Sea new posts bur friend since N oogle PhD Fellov tudied at Univers	an) March 2016 w at University of ity of Illinois at I	of Illinois Comp Urbana-Champ
 Juniversity of California, Santa Barbara Choose a school 	e e e e e e e e e e e e e e e e e e e	Y V V V V V S	ilei Wang /orks at Google pur friend since N tudies Computer	November 2012 science at Uc s	santa barbara

People, Places, and Things

Facebook's knowledge graph (entity graph) stores as entities the users, places, pages and other objects within the Facebook.

The connections between the entities indicate the type of relationship between them, such as friend, following, photo, check-in, etc.

Structured Query: RDF + SPARQL

Triples in an RDF graph

	Subject	Predicate			Object	
	Barack_Obama	parentOf			Malia_Obama	
	Barack_Obama	parentOf			Natasha_Obama	
	Barack_Obama	spouse			Michelle_Obama	
Barack_Obama_Sr.		parentOf			Barack_Obama	
			SPAR	QL	query	
Barack	<_Obama_Sr.			SELE	CT ?x WHERE	
	Parentof parentof	Aalia_Obama	tasha. Ohama		{ Barack_Obama_Sr. parentOf ?y . ?y parentOf ?x . }	
Ba	rack_Obama	vatasna_Obama	Ansv	ver		
		Aichelle Obama		<ma< td=""><td>lia_Obama></td></ma<>	lia_Obama>	

RDF graph

<Natasha Obama>

Why Structured Query Falls Short?

Knowledge Base	# Entities	# Triples	# Classes	# Relations
Freebase	45M	3B	53K	35K
DBpedia	6.6M	13B	760	2.8K
Google Knowledge Graph*	570M	18B	1.5K	35K
YAGO	10M	120M	350K	100
Knowledge Vault	45M	1.6B	1.1K	4.5K

* as of 2014

- It's more than large: High heterogeneity of KBs
- If it's hard to write SQL on simple relational tables, it's only harder to write SPARQL on large knowledge bases
 - Even harder on automatically constructed KBs with a massive, loosely-defined schema

Certainly, You Do Not Want to Write This!

"find all patients diagnosed with eye tumor"

WITH Traversed (cls,syn) AS ((SELECT R.cls, R.syn FROM XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/properties [property/name/text()="Synonym" and property/value/text()="Eve Tumor"] /property[name/text()="Synonym"]/value' COLUMNS cls CHAR(64) PATH './parent::*/parent::* /parent::*/name', tgt CHAR(64) PATH'.') AS R) UNION ALL (SELECT CH.cls, CH.syn FROM Traversed PR. XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/definingConcepts/ concept[./text()=\$parent]/parent::*/parent::*/ properties/property[name/text()="Synonym"]/value' PASSING PR.cls AS "parent" COLUMNS cls CHAR(64) PATH './parent::*/ parent::*/parent::*/name', syn CHAR(64) PATH'.') AS CH)) SELECT DISTINCT V.* FROM Visit V WHERE V. diagnosis IN (SELECT DISTINCT syn FROM Traversed)

"Semantic queries by example", Lipyeow Lim et al., EDBT 2014

Schema-agnostic KB Querying

Tutorial Outline

- Introduction
- Part I: Effort-Light StructMine
 - Tea break at 3:00pm
- Part II: Schema-agnostic KB Querying
- Summary & Future Directions

Construction and Querying of Large-scale Knowledge Bases

Part I: Effort-Light StructMine for Knowledge Base Construction

Effort-Light StructMine: Overview

Corpus to Structured Network: The Roadmap

Corpus to Structured Network: The Roadmap

Recognizing Entities of Target Types in Text

The best BBQ I've tasted in Phoenix! I had the pulled pork sandwich with coleslaw and baked beans for lunch. The owner is very nice. ...

The best **BBQ** I've tasted in **Phoenix** ! I had the **pulled pork sandwich** with **coleslaw** and **baked beans** for lunch. The **owner** is very nice. ...

Traditional Named Entity Recognition (NER) Systems

- Heavy reliance on corpus-specific human labeling
- Training sequence models is slow

A manual annotation interface

e.g., (McMallum & Li, 2003), (Finkel et al., 2005), (Ratinov & Roth, 2009), ...

Weak-Supervision Systems: Pattern-Based Bootstrapping

Requires manual seed selection & mid-point checking

Leveraging Distant Supervision

- 1. **Detect** entity names from text
- 2. Match name strings to KB entities
- 3. **Propagate** types to the <u>un-matchable</u> names

(Lin et al., 2012), (Ling et al., 2012), (Nakashole et al., 2013)

Current Distant Supervision: Limitation I

- 1. Context-agnostic type prediction
 - Predict types for each mention regardless of context
- 2. Sparsity of contextual bridges

ID	Sentence	
S1	Phoenix is my all-time favorite dive bar in New York City.	
S2	The best BBQ I've tasted in Phoenix .	oen
S3	<i>Phoenix</i> has become one of my favorite bars in <i>NY</i> .	

Current Distant Supervision: Limitation II

- 1. Context-agnostic type prediction
- 2. Sparsity of contextual bridges
 - Some relational phrases are infrequent in the corpus
 → ineffective type propagation

ID	Sentence
S1	Phoenix is my all-time favorite dive bar in New York City.
S3	Phoenix has become one of my favorite bars in NY.

ClusType: Data-Driven Entity Mention Detection

• Significance of a merging between two sub-phrases

ClusType: Data-Driven Entity Mention Detection

• Significance of a merging between two sub-phrases

The best *BBQ* I've <u>tasted in Phoenix</u> ! I <u>had</u> the *pulled pork sandwich* <u>with</u> *coleslaw* and *baked beans* for lunch. ... This *place* <u>serves up</u> the best *cheese steak sandwich* <u>in west of Mississippi</u>.

My Solution: ClusType (KDD'15)

Type Propagation in ClusType

(Belkin & Partha, NIPS'01), (Ren et al., KDD'15)
Relation Phrase Clustering in ClusType

- Two relation phrases should be grouped together if:
 - Similar string 1. "Multi-view" clustering 2. Similar context 3. Similar types for entity arguments Phoenix is my all-time Location Similar 5 favorite dive bar in relation **New York City** phrases has become one of 102 my favorite bars in Location <u>???</u> \rightarrow NY Two subtasks mutually enhance each other

ClusType: Comparing with State-of-the-Art Systems (F1 Score)

	Methods	NYT	Yelp	Tweet
Pootstrapping	Pattern (Stanford, CONLL'14)	0.301	0.199	0.223
	SemTagger (U Utah, ACL'10)	0.407	0.296	0.236
Label	NNPLB (UW, EMNLP'12)	0.637	0.511	0.246
propagation	APOLLO (THU, CIKM'12)	0.795	0.283	0.188
Classifier with	FIGER (UW, AAAI'12)	0.881	0.198	0.308
linguistic features	ClusType (KDD'15)	0.939	0.808	0.451

- vs. bootstrapping: context-aware prediction on "un-matchable"
- vs. label propagation: group similar relation phrases
- vs. FIGER: no reliance on complex feature engineering

NYT: 118k news articles (1k manually labeled for evaluation); **Yelp**: 230k business reviews (2.5k reviews are manually labeled for evaluation); **Tweet**: 302 tweets (3k tweets are manually labeled for evaluation)

 $Precision (P) = \frac{\#Correctly-typed mentions}{\#System-recognized mentions}, Recall (R) = \frac{\#Correctly-typed mentions}{\#ground-truth mentions}, F1 score = \frac{2(P \times R)}{(P+R)}$

Corpus to Structured Network: The Roadmap

From Coarse-Grained Typing to **Fine-Grained Entity Typing**

A type hierarchy with 100+ types (from knowledge base)

(Ling et al., 2012), (Nakashole et al., 2013), (Yogatama et al., 2015)

Current Distant Supervision: Context-Agnostic Labeling

My Solution: Partial Label Embedding (KDD'16)

PLE: Modeling Clean and Noisy Mentions Separately

For a noisy mention, its "<u>best</u> candidate type" should be **ranked higher** than all its "non-candidate types" S_i: *Ted Cruz*

⁽Ren et al., KDD'16)

PLE: Performance of Fine-Grained Entity Typing

- Raw: candidate types from distant supervision
- WSABIE (Google, ACL'15): joint feature and type embedding
- Predictive Text Embedding (MSR, WWW'15): joint mention, feature and type embedding
 - Both WASBIE and PTE suffer from "noisy" training labels
- PLE (KDD'16): partial-label loss for context-aware labeling

OntoNotes public dataset (Weischedel et al. 2011, Gillick et al., 2014): 13,109 news articles, 77 annotated documents, 89 entity types

Corpus to Structured Network: The Roadmap

Joint Extraction of Typed Entities and Relations

The Women's March was a worldwide protest on January 21, 2017. The protest was aimed at Donald Trump, the recently inaugurated president of the United States. The first protest was planned in Washington, D.C., and was known as the Women's March on Washington.

Prior Work: Relation Extraction (RE)

Mintz et al. *Distant supervision for relation extraction without labeled data*. ACL, 2009. Etzioni et al. *Web-scale information extraction in knowitall*. WWW, 2004. Surdeanu et al. *Multi-instance multi-label learning for relation extraction*. EMNLP, 2012.

Prior Work: An "Incremental" System Pipeline

Error propagation cascading down the pipeline

(Mintz et al., 2009), (Riedel et al., 2010), (Hoffmann et al., 2011), (Surdeanu et al., 2012), (Nagesh et al., 2014), ...

My Solution: CoType (WWW'17)

Data-Driven Entity and Relation Detection

S2: The protest was aimed at Donald Trump, the recently inaugurated president of the United States.

Frequent Pattern Mining

S2: The **protest** was **aimed at Donald Trump**, the recently inaugurated **president of** the **United States**.

Segment Quality Estimation

Phrases quality: *United States*: 0.9, *was aimed at*: 0.4, Part-of-speech (POS) patterns quality: *ADJ NN*: 0.85, *V PROP*: 0.4, ...

POS-guided Segmentation

S2: The *protest* <u>was aimed at</u> *Donald Trump*, the recently inaugurated <u>president of</u> the *United States*.

Quality Re-estimation & Re-segmentation

(S2: protest, Donald Trump), (S2: Donald Trump, United States)

Entity Mention Detection: Results

	POS Tag Pattern	Example
Good (high score)	NNP NNP NN NN CD NN JJ NN	San Francisco/Barack Obama/United States comedy drama/car accident/club captain seven network/seven dwarfs/2001 census crude oil/nucletic acid/baptist church
Bad (low score)	DT JJ NND CD CD NN IN NN IN NNP NNP VVD RB IN	a few miles/the early stages/the late 1980s 2 : 0 victory over/1 : 0 win over rating on rotten tomatoes worked together on/spent much of

	NYT	Wiki-KBP	BioInfer
FIGER segmenter [UW, 2012]	0.751	0.814	0.652
Our Approach	0.837	0.833	0.785

CoType: Co-Embedding for Typing Entities and Relations

(Ren et al. WWW'17)

Modeling Mention-Feature Co-occurrences

Second-order Proximity

Mentions with similar distributions over text features should have similar types

Vertex **m**_i and **m**_j have a large secondorder proximity

Challenge: Context-Agnostic Labeling

ID	Sent	ence	1	procident of	live in	
S2	The protest was aimed at I recently inaugurated presi	D onald Trump , the dent of the United States .	``.		born in	
Type labels for relation mention:			Entity 1	Relation types from knowledge base	n	
E1: Donald J. Trump		E2: United States		Donald Trump	United States	
E1 bu	Types: person, politician, usinessman, author, actor	E2 Types: location, organization				
Relations between E1, E2 in KB: president of, live in, born in						

Context-Aware Type Modeling

sentence S3: "Barack Obama is the 44th and current
president of the United States"

Partial-label Loss Function

 Vector representation of the relation mention should be more similar to its "best" candidate type, than to any other non-candidate type

Modeling Entity-Relation Interactions

Object "Translating" Assumption

For a relation mention **z** between entity arguments **m1** and **m2**:

 $vec(m1) \approx vec(m2) + vec(z)$

Error on a relation triple (z, m1, m2):

$$au(z) = \|\mathbf{m}_1 + \mathbf{z} - \mathbf{m}_2\|_2^2$$

Low-dimensional vector space

Reducing Error Propagation: A Joint Optimization Framework

Modeling $O_{ZM} = \sum \sum \max \{0, 1 + \tau(z_i) - \tau(z_v)\}$ entity-relation interactions $z_i \in \mathcal{Z}_L v = 1$ $\min \mathcal{O} = \mathcal{O}_M + \mathcal{O}_Z + \mathcal{O}_{ZM}$ $O_Z = \mathcal{L}_{ZF} + \sum_{i=1}^{N_L} \ell_i + \frac{\lambda}{2} \sum_{i=1}^{N_L} \|\mathbf{z}_i\|_2^2 + \frac{\lambda}{2} \sum_{k=1}^{K_r} \|\mathbf{r}_k\|_2^2$ Modeling types of $O_M = \mathcal{L}_{MF} + \sum_{i=1}^{N'_L} \ell'_i + \frac{\lambda}{2} \sum_{i=1}^{N'_L} \|\mathbf{m}_i\|_2^2 + \frac{\lambda}{2} \sum_{i=1}^{K_y} \|\mathbf{y}_k\|_2^2$ relation mentions

Modeling types of entity mentions

(Ren et al., WWW'17)

CoType: Comparing with State-of-the-Arts RE Systems

• Given candidate relation mentions, predict its relation type if it expresses a relation of interest; otherwise, output "None"

- DS+Logistic (Stanford, ACL'09): logistic classifier on DS
- MultiR (UW, ACL'11): handles inappropriate labels in DS
- DeepWalk (StonyBrook, KDD'14): homogeneous graph embedding
- LINE (MSR, WWW'15): joint feature & type embedding
- CoType-RM (WWW'17): only models relation mentions
- CoType (WWW'17): models entity-relation interactions

NYT public dataset (Riedel et al. 2010, Hoffmann et al., 2011): 1.18M sentences in the corpus, 395 manually annotated sentences for evaluation, 24 relation types

An Ongoing Application to Life Sciences

			Explorat				
L	ifeNet:	Argument 1 Cardiomyopathies 🗴		Argument 2 Gene 🗴		Relation Ger	neDiseaseAssociation
AEA	BioInfer Network b (Pyysalo et	y human labeling al., 2007)	icted rela	LifeNet k	oy Effo	ort-Light S	StructMine
f	<u>Human</u> -	created	<		Machi	<u>ne</u> -create	ed
	1,100 sentences			4 Million+ PubMed paper			oapers
	94 protein-protein interactions		estrict yopatł	1 4	,000+ 00+ re	entity typ lation typ	Des Des
2,500 man-hours				<1 ł	nour, s	ingle ma	chine
2,662 facts			1	0,000>	k more fa	cts	
Q	Ŷ	Myopathy			2013 Oct 1; RESULTS: / truncating r	81(14):1189-90. Epub Autosomal recessive c nutations of the titin ge	2013 Aug 23. ompound heterozygous ene, TTN, were identified

(Pyysalo et al., BMC Bioinformatics'07) (Ren et al., ACL'17 demo, *under review*) Performance evaluation on BioInfer: Relation Classification Accuracy = 61.7% (11%个 over the best-performing baseline)

Biomedical Named Entity Recognition by Multi-tasking different datasets

(Liu et al., AAAl'18)

Performance of NER on Biomed Benchmark Datasets

		Dataset Benchmark	Liu et al.2017 (single-task)	Multi-task
DCOCW	Prec	88.48	83.82	82.99
BC2GM	Rec	85.97	82.12	83.08
(gene/ procern)	F1	87.21	82.96	83.03
BC4CHEMD	Prec	89.09	90.21	90. 50
	Rec	85. 75	84.82	85.45
	F1	87.39	87.44	87.90
BC5CDR	Prec	89. 21	85.71	87.70
(Chemical,	Rec	84. 45	84.71	86.63
Diseases)	F1	86.76	85. 21	87.16
NODI	Prec	85.10	84.06	85.39
(Diseases)	Rec	80.80	84. 57	87.44
(DISEases)	F1	82.90	84.32	86.40
JNLPBA	Prec	69.42	72.10	72.89
(Gene, DNA, Cell	Rec	75.99	77. 52	77.17
Line, etc.)	F1	72.55	74.72	74.97

"Heterogeneous Supervision" for Relation Extraction

- A principled I framework to **unify** KB-supervision, manual rules, crowd-sourced labels, etc.
- Multiple "labeling functions" annotate one instance → resolve conflicts & redundancy → "expertise" of each labeling function

Indirect Supervision for Relation Extraction -- using QA Pairs

- Questions \rightarrow positive / negative answers
- pos pairs \rightarrow similar relation; neg pairs \rightarrow distinct relations

Pattern-enhanced Distributional Representation Learning

Corpus to Structured Network: The Roadmap

References I

- Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R. Voss, Heng Ji, Tarek F. Abdelzaher, Jiawei Han. CoType: Joint Extraction of Typed Entities and Relations with Knowledge Bases. WWW, 2017.
- Xiang Ren, Ahmed El-Kishky, Heng Ji, and Jiawei Han. Automatic Entity Recognition and Typing in Massive Text Data (Conference Tutorial). SIGMOD, 2016.
- Xiang Ren*, Wenqi He*, Meng Qu, Lifu Huang, Heng Ji, Jiawei Han. AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding. EMNLP, 2016.
- Xiang Ren*, Wenqi He*, Meng Qu, Heng Ji, Clare R. Voss, Jiawei Han. Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding. KDD, 2016.
- Xiang Ren, Wenqi He, Ahmed El-Kishky, Clare R. Voss, Heng Ji, Meng Qu, Jiawei Han. Entity Typing: A Critical Step for Mining Structures from Massive Unstructured Text (Invited Paper). MLG, 2016.
- Xiang Ren, A. El-Kishky, C. Wang, F. Tao, C. R. Voss, H. Ji, J. Han. ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering. KDD, 2015.
- Xiang Ren, Tao Cheng. Synonym Discovery for Structured Entities on Heterogeneous Graphs. WWW, 2015.
- Tarique A. Siddiqui*, Xiang Ren*, Aditya Parameswaran, Jiawei Han. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora. CIKM, 2016.
- Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, Jiawei Han. Mining Quality Phrases from Massive Text Corpora. SIGMOD, 2015.

References II

- Marina Danilevsky, Chi Wang, Nihit Desai, **Xiang Ren**, Jingyi Guo, and Jiawei Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. SDM, 2014
- Xiang Ren, Yuanhua Lv, Kuansan Wang, Jiawei Han. Comparative Document Analysis for Large Text Corpora. WSDM, 2017.
- Jialu Liu, Xiang Ren, Jingbo Shang, Taylor Cassidy, Clare R. Voss, Jiawei Han. Representing Documents via Latent Keyphrase Inference. WWW, 2016.
- Hyungsul Kim, Xiang Ren, Yizhou Sun, Chi Wang, and Jiawei Han. Semantic Frame-Based Document Representation for Comparable Corpora. ICDM, 2013.
- Xiang Ren, J. Liu, X. Yu, U. Khandelwal, Q. Gu, L. Wang, and J. Han. ClusCite: Effective Citation Recommendation by Information Network-Based Clustering. KDD, 2014.
- X. Yu, Xiang Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han. Personalized Entity Recommendation: A Heterogeneous Information Network Approach. WSDM 2014a.
- Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, Jiawei Han. Heterogeneous Graph-Based Intent Learning from Queries, Web Pages and Wikipedia Concepts. WSDM 2014b.
- X. Yu, Xiang Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han. HeteRec: Entity Recommendation in Heterogeneous Information Networks with Implicit User Feedback. RecSys, 2013..
- Xiao Yu, Xiang Ren, Quanquan Gu, Yizhou Sun and Jiawei Han. Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks. IJCAI-HINA, 2013.

Construction and Querying of Large-scale Knowledge Bases

Part II: Schema-agnostic Knowledge Base Querying

Transformation in Information Search

Desktop search

Mobile search

"Which hotel has a roller - coaster in Las Vegas?"

Lengthy Documents? Direct Answers!

which	which hotel has a roller coaster in las vegas									
Web	Images	News	Videos	Shopping	More 👻	Search tools				
About 5	About 503,000 results (0.36 seconds)									
Las Vegas Roller Coasters: Stratosphere's Big Shot, New vegasclick.com/vegas/las-vegas-roller-coasters.html > Some of the best thrill rides and roller coasters in the world are in the Vegas area. In fact, almost all of these rides are at local hotels. Here's a rundown of roller										
Las V conten It's not York-Ne	egas: 10 t.time.com/ the wildest ro ew York hote	Things t ./0,31489, oller coaste I and takes	o Do — 7 1838100_1 er in existend only a few r	7. New Yor 838099_1838 ce, but this one ninutes. The ho	k-New Y 093,00.ht goes right otel is wort	X				

Answer: New York-New York hotel

Mobile Internet users, in millions

Application: Facebook Entity Graph

f my friends who wo	ork at goo	ogle		(2
All Posts P	eople	Photos	Videos	Pages	Places
Filter Results city • Any city • Santa Barbara, California			Iguyen Van D u Machine Learning Your friend since J Studied Computer ives in Santa Bar	ong Anh Engineer at Go lune 2016 science at Univ bara, California	ogle versity of Califo
 Beijing, China Choose a city Education Any school 		22 Y S S	Kiang Ren (Sea new posts Your friend since N Google PhD Felloo Studied at Univers	an) March 2016 w at University of ity of Illinois at U	of Illinois Comp Jrbana-Champ
 Initial oniversity Iniversity of California, Santa Barbara Choose a school 		V V V V V V V	(ilei Wang Vorks at Google Your friend since N Studies Computer	November 2012 science at Uc s	anta barbara

People, Places, and Things

Facebook's knowledge graph (entity graph) stores as entities the users, places, pages and other objects within the Facebook.

The connections between the entities indicate the type of relationship between them, such as friend, following, photo, check-in, etc.

QA Engine instead of Search Engine

• Behind the scene: A knowledge graph with millions of entities and billions of facts

Google	who is the h	Ŷ	Q						
	All News	Images	Videos	Shopping	More	Settings	Tools		
	About 36,200,0	00 results (0.7	9 seconds)						
	Ivanka Trum	p / Spouse							
	Jared m. 2009	Kushr	ner			6			
	Jared Corey Kushner is an American real estate investor and developer, publisher, and senior advisor to his father-in-law, President Donald Trump. Wikipedia								
	N	lore about .	Jared Kush	ner					
Structured Query: RDF + SPARQL

Triples in an RDF graph

	Subject	Predicate			Object	
	Barack_Obama	parentOf			Malia_Obama	
	Barack_Obama	parentOf		Natasha_Obama		
	Barack_Obama	spouse		Michelle_Obama		
	Barack_Obama_Sr.	parentOf		Barack_Obama		
			SPA	RQL	_ query	
Barack	<_Obama_Sr.			SELECT ?x WHERE		
Porentof parentof		Malia_Obama		{ Bara ?y }	ack_Obama_Sr. parentOf ?y . parentOf ?x .	
Ba	rack_Obama	Ansv		wer		
		Michelle Obama		<ma< td=""><td>alia_Obama></td></ma<>	alia_Obama>	

RDF graph

<Natasha Obama>

Why Structured Query Falls Short?

Knowledge Base	# Entities	# Triples	# Classes	# Relations	
Freebase	45M	3B	53K	35K	
DBpedia	6.6M	13B	760	2.8K	
Google Knowledge Graph*	570M	18B	1.5K	35K	
YAGO	10M	120M	350K	100	
Knowledge Vault	45M	1.6B	1.1K	4.5K	

* as of 2014

- It's more than large: High heterogeneity of KBs
- If it's hard to write SQL on simple relational tables, it's only harder to write SPARQL on large knowledge bases
 - Even harder on automatically constructed KBs with a massive, loosely-defined schema

Certainly, You Do Not Want to Write This!

"find all patients diagnosed with eye tumor"

WITH Traversed (cls,syn) AS ((SELECT R.cls, R.syn FROM XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/properties [property/name/text()="Synonym" and property/value/text()="Eve Tumor"] /property[name/text()="Synonym"]/value' COLUMNS cls CHAR(64) PATH './parent::*/parent::* /parent::*/name', tgt CHAR(64) PATH'.') AS R) UNION ALL (SELECT CH.cls, CH.syn FROM Traversed PR. XMLTABLE ('Document("Thesaurus.xml") /terminology/conceptDef/definingConcepts/ concept[./text()=\$parent]/parent::*/parent::*/ properties/property[name/text()="Synonym"]/value' PASSING PR.cls AS "parent" COLUMNS cls CHAR(64) PATH './parent::*/ parent::*/parent::*/name', syn CHAR(64) PATH'.') AS CH)) SELECT DISTINCT V.* FROM Visit V WHERE V. diagnosis IN (SELECT DISTINCT syn FROM Traversed)

"Semantic queries by example", Lipyeow Lim et al., EDBT 2014

Schema-agnostic KB Querying

Graph Query

Mismatch between Knowledge Base and Query

Knowledge Base	Query
"University of Washington"	"UW"
"neoplasm"	"tumor"
"Doctor"	"Dr."
"Barack Obama"	"Obama"
"Jeffrey Jacob Abrams"	"J. J. Abrams"
"teacher"	"educator"
"1980"	"~30"
"3 mi"	"4.8 km"
"Hinton" - "DNNresearch" - "Google"	"Hinton" - "Google"

[Yang et al. VLDB'14]

Schema-less Graph Querying (SLQ)

Transformation	Category	Example		
First/Last token	String	"Barack Obama" > "Obama"		
Abbreviation	String	"Jeffrey Jacob Abrams" > "J. J. Abrams"		
Prefix	String	"Doctor" > "Dr"		
Acronym	String	"International Business Machines" > "IBM"		
Synonym	Semantic	"tumor" > "neoplasm"		
Ontology	Semantic	"teacher" > "educator"		
Range	Numeric	"∼30" >"1980"		
Unit Conversion	Numeric	"3 mi" > "4.8 km"		
Distance	Topology	"Pine" - "M:I" > "Pine" - "J.J. Abrams" - "M:I"		

[Yang et al. VLDB'14]

Candidate Match Ranking

Features

- $F_{\nu}(v, \phi(v)) = \sum \alpha_{i} f_{i}(v, \phi(v))$ Node matching features:
- Edge matching features:

• Edge matching features:
$$F_E(e, \varphi(e)) = \sum_{j}^{i} \beta_j g_j(e, \varphi(e))$$

• Overall Matching Score

Conditional Random Field

$$P(\varphi(Q) | Q) \propto \exp(\sum_{v \in V_Q} F_v(v, \varphi(v)) + \sum_{e \in E_Q} F_e(e, \varphi(e)))$$

Query-specific Ranking via Relevance Feedback

- Generic ranking: sub-optimal for specific queries
 - By "Washington", user A means Washington D.C., while user B might mean University of Washington
- Query-specific ranking: tailored for each query
 - But need additional query-specific information for further disambiguation

Relevance Feedback: Users indicate the **(ir)relevance** of a handful of answers

Problem Definition

- Q: A graph query
- G: A knowledge graph
- $\phi(Q)$: A candidate match to Q
- $F(\phi(Q) | Q, \theta)$: A generic ranking function
- \mathcal{M}^+ : A set of positive/relevant matches of Q
- \mathcal{M}^- : A set of negative/non-relevant matches of Q

Graph Relevance Feedback (GRF): Generate a query-specific ranking function \tilde{F} for Q based on \mathcal{M} $^+$ and \mathcal{M} $^-$

[Su et al. KDD'15]

Query-specific Tuning

- The θ represents (query-independent) feature weights. However, each query carries its own view of feature importance
- Find query-specific θ^* that better aligned with the query using user feedback

Type Inference

- Infer the implicit type of each query node
- The types of the positive entities constitute a composite type for each query node

Context Inference

- Entity context: neighborhood of the entity
- The contexts of the positive entities constitute a composite context for each query node

Experiment Setup

- Knowledge graph: DBpedia (4.6M nodes, 100M edges)
- Graph query sets: WIKI and YAGO

- Explicit feedback: User gives relevance feedback on top-10 results
- GRF improves SLQ for over 100%
- Three GRF components complement each other

- Pseudo feedback: Blindly assume top-10 results are correct
- Erroneous feedback information but no additional user effort

MAP@K	1	5	10	20	50	100
SLQ_WIKI	0.23	0.21	0.24	0.25	0.27	0.28
GRF_WIKI	0.73	0.58	0.52	0.50	0.49	0.49
SLQ_YAGO	0.40	0.35	0.33	0.32	0.36	0.39
GRF_YAGO	0.82	0.66	0.60	0.57	0.58	0.61

Figure credit to Scott Yih

- Language mismatch
 - Lots of ways to ask the same question
 - Find terrorist organizations involved in September 11 attacks
 - Who did September 11 attacks?
 - The nine eleven were carried out with the involvement of what terrorist organizations?
 - All need to be mapped to the KB relation: terrorist_attack

- Language mismatch
- Large search space
 - United_States has over 1 million neighbors in Freebase

- Language mismatch
- Large search space
 - United_States has over 1 million neighbors in Freebase

Scalability

- How to scale up to more advanced inputs, and scale out to more domains?
- KBQA data is highly domain-specific

- Language mismatch
- Large search space
 - United_States has over 1 million neighbors in Freebase

Scalability

- How to scale up to more advanced inputs, and scale out to more domains?
- KBQA data is highly domain-specific
- Compositionality
 - If a model understands relation A and B, can it answer A+B?

What will be covered

- Model
 - General pipeline
 - Semantic matching: CNN and Seq2Seq
- Data
 - Low-cost data collection via crowdsourcing
 - Cross-domain semantic parsing via neural transfer learning

Query Graph

Who first voiced Meg on Family Guy?

 $\lambda x. \exists y. cast(FamilyGuy, y) \land actor(y, x) \land character(y, MegGriffin)$

Slides adapted from Scott Yih

Topic Entity Linking

- An advanced entity linker for short text
 - Yang and Chang, "S-MART: Novel Tree-based Structured Learning Algorithms Applied on Tweet Entity Linking." ACL'15
- Prepare surface form lexicon for KB entities
- Entity mention candidates: all consecutive word sequences in lexicon
- Score entity mention candidates with the statistical model, keep top-10 entities

Candidate Logical Form Generation

 (Roughly) enumerate all admissive logical forms up to a certain complexity (2-hop)

[Yih et al. ACL'15]

[Jia+ ACL'16, Liang+ ACL'17, Su+ EMNLP'17]

Generative model: $p(R|P) = \prod_i p(R_i|P, R_{<i})$

What will be covered

Model

- General pipeline
- Semantic matching: CNN and Seq2Seq

Data

- Low-cost data collection via crowdsourcing
- Cross-domain semantic parsing via neural transfer learning

Scalability

- Vertical scalability
 - Scale up to more complex inputs and logical constructs

Who was the head coach when Michael Jordan started playing for the Chicago Bulls?

In which season did Michael Jordan get the most points?

What team did Michael Jordan play for?

Scalability

- Vertical scalability
 - Scale up to more complex inputs and logical constructs
- Horizontal scalability
 - Scale out to more domains
 - Weather, calendar, hotel, flight, restaurant, ...
 - Knowledge base, relational database, API, robots, ...
 - Graph, table, text, image, audio, ...
- More data + Better (more data-efficient) model

On Generating Characteristic-rich Question Sets for QA Evaluation (EMNLP'16) Cross-domain Semantic Parsing via Paraphrasing (EMNLP'17) Building Natural Language Interfaces to Web APIs (CIKM'17)

Low-cost Data Collection via Crowdsourcing

"How many children of Eddard Stark were born in Winterfell?"

3: Paraphrasing via crowdsourcing

"What is the number of person who is born in Winterfell, and who is child of Eddard Stark?"

2: Canonical utterance generation

count(λ x.children(Eddard_Stark, x) ∧ place_of_birth(x, Winterfell))

1: Logical form generation

Existing KBQA datasets mainly contain *simple questions*

"Where was Obama born?"

"What party did Clay establish?"

"What kind of money to take to bahamas?"

GraphQuestions: A New KBQA Dataset with Rich Characteristics

- Structural complexity
 - "people who are on a gluten-free diet can't eat what cereal grain that is used to make challah?"
- Quantitative analysis (functions)
 - "In which month does the average rainfall of New York City exceed 86 mm?"
- Commonness
 - "Where was Obama born?" vs.
 - "What is the tilt of axis of Polestar?"
- Paraphrase
 - "What is the nutritional composition of coca-cola?"
 - "What is the supplement information for coca-cola?"
 - "What kind of nutrient does coke have?"

https://github.com/ysu1989/GraphQuestions
Model	Average F1 (%)
Sempre (Berant+ EMNLP'13)	10.8
Jacana (Yao+ ACL'14)	5.1
ParaSempre (Berant+ ACL'14)	12.8
UDepLambda (Reddy+ EMNLP'17)	17.6
Para4QA (Li+ EMNLP'17)	20.4

[Su+ EMNLP'17]

Crowdsourcing is great, but...

- There is an unlimited number of application domains; prohibitive cost to collect (sufficient) training data for every one.
- **Transfer learning**: Use existing data of some source domains to help target domain
- **Problem**: KBQA data is highly domain-specific

What is transferrable in semantic parsing?

[Su+ EMNLP'17]

- First convert logical forms to canonical utterances
- Train a neural paraphrase model on the source domains; adapt the model to the target domain

- Source domain: "play for" ⇒ "whose team is"
- Word embedding: "play" ⇒ "work", "team" ⇒ "employer"
- Target domain: "work for" ⇒ "whose employer is"

Neural Transfer Learning for Semantic Parsing

- Overnight dataset: 8 domains (basketball, calendar, etc.), each with a knowledge base
- For each target domain, use other 7 domains as source

Construction and Querying of Large-scale Knowledge Bases

Summary

Overall Contributions

- Effort-Light StructMine: "accurate" expansion of "matchable"
 → Corpus-specific labeling free, domain/language-independent
- Schema-agnostic Query: query without programming
- Technology Transfer:

 A principled approach to manage, explore, analyze, and search "Big Text Data"

Future Work: Phrase Mining

- Refine quality phrases to entity mentions
- Further use the refined entity mention results to improve phrase mining
- Use high-quality phrases in different languages to improve the entity tagging

Future Work: Phrase Mining

- For popular languages with sufficient NLP tools
 - Incorporate more NLP features and structures
- For low-/zero- resource languages
 - Better unsupervised method

Future Work: Attribute Discovery

- Combining complementary methods towards attribute discovery from massive text corpora
 - Learning Approaches
 - Linguistic patterns using POS tagging, NP chunking, clause analysis, dependency parsing ...
 - Meta pattern-driven approaches
 - Harnessing entity recognition and (fine-grained) typing systems
 - Quality assessment and meta-pattern segmentation based on contexts
 - Grouping synonymous patterns
 - Adjusting type levels for appropriate granularity

Future Work: Attribute Discovery

Combining network mining and attribute mining

Looking Forward: What's Next?

Looking Forward: Analyzing Literature to Facilitate Scientific Research

- Literature → Structured Network → Scientific Discovery
- More disciplines & More structure analysis functions

Scientific Hypothesis Generation by predicting missing relationships

Gaining insights for various research tasks in different disciplines

Collaborate with life scientists, chemists, physicists, computer scientists, ...

Looking Forward: Engaging with Human Behaviors

Social media post, Customer review, Chats & messages Structured Behavior Data

Social network, Electronic health record, Transaction record Personalized Intelligent Systems

Smart Health, Business intelligence, Conversational agent

Collaborate with doctors, social scientists, economists, ...

Looking Forward: Integrating with **Our Physical World**

Collaborate with network & system researchers, environmental scientists, ...

Application to Vertical Domains

"Which cement stocks go up the most when a Category 3 hurricane hits Florida?"

KENSHC

One Interface for All

- All domains in a unified knowledge base
- Incrementally learn new domains without forgetting (or instead boosting) existing ones

Acknowledgement

Academic Collaborators

Jiawei Han (UIUC), ChengXiang Zhai (UIUC), Tarek Abdelzaher (UIUC), Aditya Parameswaran (UIUC), Saurabh Sinha (UIUC), Heng Ji (RPI), Yizhou Sun (UCLA), Peipei Ping (UCLA), David Liem (UCLA), Shih-Fu Chang (Columbia), Morteza Dehghani (USC), Richard Weinshilboum (Mayo Clinic), Clare V. Ross (ARL), Lance Kaplan (ARL), James Hendler (RPI), Xifeng Yan (UCSB), Brian Sadler (ARL), Michelle Vanni (ARL), Sue Kase (ARL), Huan Sun (OSU)

Industry Collaborators

Surajit Chaudhuri (MSR), Kuansan Wang (MSR), Kaushik Chakrabarti (MSR), Chi Wang (MSR), Hao Ma (MSR), Bin Bi (MSR), Yuanhua Lv (Microsoft Bing), Cong Yu (Google Research), Jialu Liu (Google Research), Tao Cheng (Pinterest), Mike Tung (DiffBot), Craig Schmidt (TripAdvisor), Mudhakar Srivatsa (IBM), Ahmed Awadallah (MSR), Patrick Pantel (MSR), Michael Gamon (MSR), Scott Yih (Al2)

Thank you! Q&A

- Effort-Light StructMine: "accurate" expansion of "matchable"
 → Corpus-specific labeling free, domain/language-independent
- Schema-agnostic Query: query without programming
- Technology Transfer:

 A principled approach to manage, explore, analyze, and search "Big Text Data"

