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ABSTRACT
Tables are pervasive on the Web. Informative web tables
range across a large variety of topics, which can naturally
serve as a significant resource to satisfy user information
needs. Driven by such observations, in this paper, we inves-
tigate an important yet largely under-addressed problem:
Given millions of tables, how to precisely retrieve table cells
to answer a user question. This work proposes a novel table
cell search framework to attack this problem. We first for-
mulate the concept of a relational chain which connects two
cells in a table and represents the semantic relation between
them. With the help of search engine snippets, our frame-
work generates a set of relational chains pointing to poten-
tially correct answer cells. We further employ deep neural
networks to conduct more fine-grained inference on which
relational chains best match the input question and finally
extract the corresponding answer cells. Based on millions
of tables crawled from the Web, we evaluate our framework
in the open-domain question answering (QA) setting, us-
ing both the well-known WebQuestions dataset and user
queries mined from Bing search engine logs. On WebQues-
tions, our framework is comparable to state-of-the-art QA
systems based on knowledge bases (KBs), while on Bing
queries, it outperforms other systems with a 56.7% rela-
tive gain. Moreover, when combined with results from our
framework, KB-based QA performance can obtain a relative
improvement of 28.1% to 66.7%, demonstrating that web ta-
bles supply rich knowledge that might not exist or is difficult
to be identified in existing KBs.
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1. INTRODUCTION
Tables are straightforward and universal to present rela-

tional information. Informative tabular data are pervasive
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on the Web: According to [27], based on a conservative esti-
mation, over 25 million tables in 500 million Web pages are
expressing relational information, as opposed to implement-
ing visual layout. Such tables naturally serve as valuable
answer sources to satisfy users’ information needs. Tables
are also ubiquitous in other realms. For example, enter-
prises often store their important data about customers,
products and employees as tables in spreadsheets or rela-
tional databases. Effectively and precisely locating informa-
tion in these tables are critical to the success of business
management and analytics.

Unlike unstructured texts, tabular data provide informa-
tion in a more structured manner with rows and columns of
cells. Table 1 shows a list of countries and their capitals, cur-
rencies, and languages. It is an easy task for a human user
to find the information she needs when looking at the table.
But when there are millions of such tables, manual checking
becomes infeasible. How can machines automatically and
precisely find information in tables for us? In this paper,
we investigate this problem in the setting of open-domain
question answering: Users express their information need
as a natural language question, and we identify table cells
from millions of tables on the Web to answer the question.
For example, given a question “What languages do people in
France speak”, we retrieve the table cell corresponding to the
MainLanguage1 column and the “France” row in Table 1,
from millions of tables crawled from the Web.

Country Capital Currency Main Language
Algeria Algiers Dinar Arabic
Egypt Cairo Pound Arabic
France Paris Euro French

... ... ... ...

Table 1: An example table on the Web.

Question answering (QA) aims at detecting direct answers
to natural language questions. Traditional corpus-based QA
tries to find answers in plain texts [8, 13, 18, 24, 36, 44].
With the blossom of large open-domain knowledge bases
(KBs) like Freebase [7], KB-based QA has attracted much
attention recently [5, 6, 17]. Such systems parse a question
into a formal representation, e.g., logical form or SPARQL
query, to be executed on KBs. However, as noticed in many
studies [15, 29, 39, 40, 45], despite their large sizes, existing
knowledge bases are still far from complete and not being

1We will use this font to distinguish column names from
other texts.
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updated in a timely fashion. Consequently, information re-
quired to answer a question may not always exist in KBs.

Web tables contain a huge body of structured informa-
tion about wide-ranging topics, and naturally serve as a rich
knowledge pool to answer open-domain questions. Employ-
ing tables for QA is entitled with the following advantages:

1. Web tables have schema. Different from unstructured
texts, each table comes with its own schema; therefore it
is much easier to interpret the entities and relations con-
tained in a table. For example, in Table 1, entity “France”
can be easily interpreted as a country by its column name,
and the column name pair <Country, MainLanguage>
is likely to indicate main languages spoken in a country.
Such schema and structure provide valuable clues for an-
swering questions.

2. Web tables complement knowledge bases. On the one
hand, knowledge bases are incomplete, and web tables
might contain information not covered by knowledge bases.
On the other hand, the semantic structure of a KB is often
more complex than that of a table: For example, Freebase
stores the simple fact “Prescott Bush is George W. Bush’s
grandfather” in a complex structure, as shown in Figure
1. On the contrary, tables often represent relations in a
more straightforward way, with each column for a rela-
tion such as Father, Mother, Grandfather, etc. Such
straightforwardness makes answering questions like “Who
is X’s grandfather” much easier.

Question answering based on tables has been studied be-
fore in different settings. The problem investigated in Pa-
supat et al. [31] is related to yet significantly different from
ours. In their setting, the table that contains answers to the
input question is known beforehand, and their task is to find
answers in the given table. In our setting, however, we need
to explore a huge set of tables to answer a question. Ta-
bles can be viewed from the relational database perspective,
which relates our work to the study on natural language in-
terfaces to databases (NLIDBs) [3, 25, 26, 34], where users
can pose natural language queries instead of complex SQL
queries to access databases. An NLIDB translates a nat-
ural language query into an SQL query based on the rigid
schema of a given relational database. It is therefore hard
to be applied on the unconstrained schemas of web tables
in our task, where each table has a self-defined schema. Fi-
nally, while in [11, 14] the authors directly search relevant
tables to satisfy user queries, we move one step further to
precisely find table cells that contain correct answers (i.e.,
answer cells).

In this paper, we propose an end-to-end framework to
identify table cells that can answer a natural language ques-
tion. The core problem is to match the unstructured in-
put question with the structured information in tables. We
propose a unified chain representation for both the input
question and table cells. The question chain starts from
an identified topic entity in the question (e.g., “France”),
goes through an edge labeled with the question pattern, and
points to the to-be-determined answer. The question pat-
tern is just the input question excluding the topic entity,
and expresses the relation between the topic entity and the
answer. On the other hand, we also represent the semantic
relation between any two cells in the same row of a table
as a relational chain. For example, the semantic relation

Figure 1: Representation of the “Grandfather” rela-
tion in Freebase is complex.

between “France” and “French” in Table 1 is represented as

“France
Country−−−−−→© MainLanguage−−−−−−−−→French”, where© is a pseudo-

node referring to the particular row, and will be discussed
later in Section 2. Question answering is then reduced to
finding the relational chains that can best match with the
question chain.

There are two main challenges in identifying the correct
answer cells: (1) Among millions of tables, how to find the
relevant ones that may contain answers? (2) How to pre-
cisely locate answer cells in a relevant table? With the chain
representations, we tackle the first challenge as follows: (a)
Detect topic entities in the given question, retrieve tables
that contain the topic entities, and generate an initial set
of candidate (relational) chains pointing to possible answer
cells; (b) Issue the input question to a search engine, and
use the returned snippets to select relevant candidate chains
from the initial set.

To deal with the second challenge, we develop techniques
for more fine-grained matching between candidate chains
and the question chain, i.e., to find which candidate chain
represents the relation expressed in the question. Simple
bag-of-words based matching is insufficient because few words
are shared by a candidate chain and the input question.
We therefore employ deep neural networks to map both the
question and the information about a candidate chain into a
common semantic space. We adopt information about a can-
didate chain from three perspectives: answer type, pseudo-
predicate, and entity pairs, which we shall detail in Section 4.
We conduct extensive experiments and show that table cells
containing correct answers can be effectively identified using
the proposed framework. Moreover, combining our table cell
search framework with state-of-the-art KB-based QA sys-
tems can achieve even better performance, showing that the
two different kinds of systems complement each other.

To summarize, our contributions lie in three aspects:

• Novel Application of Tables. To the best of our knowl-
edge, our work is among the first attempts to precisely
identify table cells to answer natural language questions.
Being a straightforward way to represent relational infor-
mation, tables are abundant both on the Web and in en-
terprise data. How to precisely locate desired information
is critical to effectively utilize the rich table resources.

• Effective Table Cell Search Framework. We pro-
posed an end-to-end framework to effectively find answer
cells for a question. The core concept underlying the
proposed framework is the relational chain representation
of table cells. With the help of search engine snippets
and deep neural networks, we generate and rank can-
didate chains, and finally extract answer cells from the
top ranked chains. Our framework has a close connection
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to semantic parsing for KB-based question answering, as
it can be regarded as parsing a question into a meaning
representation using table schemas. Moreover, as shown
later, our framework does not rely on any handcrafted
grammar, and can be easily extended to closed-domain
scenarios such as table cell search in enterprise tables.

• Extensive Experimental Evaluation. Based on mil-
lions of tables crawled from the Web, we compared our
framework with state-of-the-art KB-based QA systems us-
ing both the well-known WebQuestions dataset coined
on Freebase and a set of free-form questions extracted
from Bing query logs. Our framework was evaluated both
as a stand-alone system and by being combined with KB-
based QA systems. Our experimental results showed that,
on WebQuestions, our framework is comparable to the
state-of-the-art KB-based QA systems, while on the Bing
question set, it outperforms other systems by a relative
margin of at least 56.7%. Moreover, when combining our
framework with KB-based QA systems, we can achieve
even better performance, with a relative improvement of
28.1% and 66.7% respectively. The results verified our hy-
pothesis that web tables supply rich knowledge that does
not exist or is too difficult to be utilized in existing KBs.

2. PRELIMINARIES
In this section, we describe the task addressed in this

work, i.e., precisely retrieving table cells among millions of
tables to answer natural language questions, followed by the
high-level idea of our approach.

2.1 Task
Given a natural language question, we aim at answering it

by retrieving table cells that contain correct answers, from
a large collection of tables. Figure 2 shows a concrete ex-
ample of this task. For question “What languages do people
in France speak”, one of the tables in the collection denotes
several properties of the entity “France” in the question. As
the column MainLanguage can be interpreted as main lan-
guages spoken in a country, we would like to identify the
table cell “French” lying under the MainLanguage column
and in the same row as “France”. The identified answer as
well as a small sub-table composed of the related cells and
column names can be presented, together with the URL of
the source table for further exploration.

As implied in this example, we make two assumptions
when attacking this task. First, we take an entity-centric
view: The targeted questions in this task are those that
contain at least one entity, named topic entity. This view
has been commonly adopted in recent question answering
studies [5, 6, 51]. Second, we assume that the relationship
between the topic entity in the question and the answer can
be represented by the information in a single table. A cell
matched with a topic entity and that matched with an an-
swer should occur in the same row. These two assumptions
are made because of the unique setting of our task. Us-
ing a large collection of web tables as the sole information
source for answering questions poses both advantages and
challenges, especially when compared to relying on a well-
curated knowledge base. For instance, instead of having a
rigid schema that defines all possible relations between en-
tities using a fixed set of predicates, as usually seen in a
knowledge base, more diversified types of relations are de-

What	  languages	  do	  people	  in	  France	  speak?	  
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Figure 2: An example of table cell search for QA.

Figure 3: Question chain: A two-node graph where
the topic entity node points to the answer node, and
the edge is labeled with the question pattern.

scribed by a large number of column names existing in mil-
lions of tables. Owing to the web redundancy and broad
coverage, it’s more likely that a pair of column names can
match a given question, in contrast to a single predicate in
a knowledge base2. On the other hand, it is challenging
to find relevant tables that might contain answers, from a
large collection of independent tables. Diversified forms of
relations presented by the column names also increase the
difficulty of determining whether they are equivalent to the
natural-language description of a question.

2.2 Approach
Our strategy is to formulate the task as a joint entity and

relation matching problem. Here we present the basic idea
with intuitive graphical views, leaving more details to be
introduced in Section 3.

For each input question, we apply entity linking [49] to
identify possible entities in the question. Each identified
entity defines the topic entity and question pattern, where
the former is just the canonical name of the entity and the
latter is the rest of the question after removing the entity
mention. For instance, assuming “France” is the topic entity
identified in “What languages do people in France speak”,
the question pattern is simply “What languages do people
in <e> speak”, where <e> indicates the slot for the topic
entity. A question can then be naturally represented as a
two-node graph as in Figure 3. We call this graph a question
chain. Notice that a question may produce multiple question
chains because it can contain more than one topic entity.

Each table essentially defines a “mini knowledge base” –
each row describes multi-relations among the cells it con-

2More sophisticated analysis of multiple tables and their col-
umn names will be needed for complicated, highly composi-
tional questions, which we leave for future work.
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Figure 4: Top: Each row of a table describes multi-
relations among the cells. The circle is a pseudo-
node for this particular row, connecting all the cells
with their column names as edges. Bottom: A pair
of cells form a directional relational chain, which is
the path connecting them in the row graph.

tains. Following [31], a row in a table can be represented
by an undirected row graph that connects each cell to a
pseudo-node, where the edge is labeled with the correspond-
ing column name (i.e., relation). The pseudo-node3 simply
indicates the row where the cells come from. Figure 4 (top)
shows an example of this graph.

A row graph can be decomposed into several relational
chains. Each relational chain connects two cell nodes by
starting from one node, going through the pseudo-node and
then pointing to the other node. Similarly, the edges are la-
beled with the corresponding column names. Figure 4 (bot-
tom) shows one example of this construction. Hereafter, we
denote the starting cell of a relational chain as the topic cell,
and the ending cell as the answer cell.

Reminiscent of our second assumption mentioned previ-
ously, we shall map the question to a pair of cells in the
same row of a table. Having represented the question as a
question chain q and a pair of cells as a relational chain r,
finding a table cell to answer the question is reduced to a
chain matching problem. Comparing Figure 3 and 4 (bot-
tom), for q and r to be matched, the topic entity in q has to
be matched with the topic cell of r, and the question pat-
tern in q needs to be implied by both inward and outward
relations of r. The answer cell of r can thus be extracted. In
case where multiple topic entities are identified, we do not
assume all the topic entities simultaneously exist in a single
table row; instead, all relational chains starting from a topic
cell containing any topic entity will be jointly considered.

3. TABLE CELL SEARCH FRAMEWORK
Figure 5 illustrates our end-to-end table cell search frame-

work, which consists of three main steps. We first generate
a set of candidate (relational) chains. To do that, we detect
topic entities in an input question, match the topic enti-
ties with tables to find topic cells, and generate candidate
chains from each topic cell. The first step results in a large
set of candidate chains, many of which are irrelevant to the
question. Therefore, in the second step, search engine snip-
pets providing more information about the input question

3The pseudo-node can be analogous to the compound-value-
type design in Freebase, which is a standard way to encode
multi-relations in RDF triples.

Figure 5: Table cell search framework.

are utilized to help filter out irrelevant chains. We further
employ deep neural networks to match the question and a
candidate chain in a common semantic space. Overall can-
didate chains are ranked based on a set of carefully derived
features. An answer cell can then be extracted from each
top ranked candidate chain.

3.1 Candidate Chain Generation
Given a question, one can first apply named entity recog-

nition [30] to identify topic entities, and then retrieve all the
table cells that contain any of the topic entities via sub-
string matching. Since an entity often has many aliases
(e.g., “Barack Obama”, “Barack H. Obama” or “President
Obama”), it is therefore beneficial to match table cells with
not only the entity mention in the question, but also other
entity aliases. Fortunately, open-domain knowledge bases
like Freebase store common aliases of an entity; therefore,
in our framework, we link each topic entity in the question to
Freebase and fetch its alias list. We employ a state-of-the-art
entity linking system [49], which is designed particularly for
short and noisy texts and has been shown especially suit-
able for topic entity linking in natural language questions
[51]. Table cells containing any alias of a topic entity are re-
trieved as topic cells. In the rest of the paper, any statement
like a table cell contains an entity, means the cell contains
the entity mention or any of its aliases (if available).

As discussed in Section 2, given a topic cell, we assume
the answer cell lies in the same row. But it is unknown
which is the answer cell at this stage. We therefore first
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blindly generate a candidate chain for each possible answer
cell, and leave candidate chain ranking for later. Consider
Table 1: Assuming we have identified the“France”cell under
Country as a topic cell, three candidate chains are gener-
ated, one for each cell in the same row (“Paris”, “Euro”, and
“French”). Each candidate chain starts from the topic cell,
goes through the corresponding column names, and points
to the candidate answer cell (See Figure 5). We repeat the
same procedure for every topic cell, and end up with a large
(can be hundreds of thousands) set of candidate chains.

3.2 Coarse-Grained Pruning
In the first step, all relational chains related to any identi-

fied topic entity are generated as candidates. Consequently,
many of them are not truly relevant to the input ques-

tion, e.g., “France
From−−−→© Actress−−−−−→Sophie Marceau” in Figure

5, which is generated from a table about French actresses.
We now prune the candidate chain set to obtain a cleaner
candidate set for the subsequent ranking model as well as for
efficiency consideration. To do that, we need to evaluate the
relevance of a candidate chain to the input question. How-
ever, both the question and a candidate chain usually only
contain a few words, and have even fewer words in common.
If we directly compare them word-by-word, many relevant
chains will be deemed as irrelevant. Therefore, we employ
search engine snippets to enrich the question, a common
technique used in information retrieval related tasks [40].

We issue the input question q as a query to Bing4, then
compute the word frequency vector based on the top-50 re-
turned snippets, denoted as wq. For each candidate chain
c, we merge the table caption, topic/answer cells, and col-
umn names on it, and then compute its word frequency
vector denoted as wc. Two vector similarities are adopted:
cosine(wc, wq) and InterScore(wc, wq) where the latter is de-
fined as ‖wc � wq‖0 and computes the number of unique
words in common. Here � is the element-wise product and
‖ · ‖0 is the l0 norm of a vector. Candidate chains with both
high cosine(wc, wq) and InterScore(wc, wq) are kept. These
two measures inspect vector similarity from different aspects
and make a more restrictive selection of relevant candidate
chains. If wc deviates far from wq, the corresponding candi-
date chain is regarded as irrelevant and thereby discarded.

3.3 Deep Chain Inference
After relevant candidate chains to the input question are

collected, we perform deeper inference on whether a can-
didate chain can represent the natural-language statement
of the given question. On the candidate chain side, we ex-
plore its information from three perspectives: answer type,
pseudo-predicate, and entity pairs. We use the question pat-
tern defined in Section 2 to represent what factual informa-
tion is being asked in the question, regardless of the specific
topic entity. In order to capture the syntactically different
but semantically equivalent ways of stating the same ques-
tion, as well as to handle the mismatch between natural
language sentences and table schemas, we construct deep
neural networks to evaluate the matching degree between a
question pattern and each perspective of a candidate chain
in a common semantic space. Finally, for each candidate
chain, we develop a set of features for downstream rank-
ing so that candidate chains pointing to correct answer cells

4http://www.bing.com/.

Figure 6: Semantic similarity between question pat-
tern and answer type in a candidate chain.

can be ranked as high as possible. Next we introduce our
methodology for deep chain inference in greater details.

4. CHAIN INFERENCE
Coarse-grained pruning gives a set of candidate chains

that are likely relevant to the input question. We now need
to conduct deeper inference on which candidate chain can
actually answer the question. Each candidate chain is in-
spected from the following perspectives, which give clues
about whether the candidate chain matches the question:

(1) Answer type. Answer type is defined as the column
name corresponding to the answer cell of a candidate chain.
Obviously, the answer type MainLanguage matches the
question “What languages do people in France speak” bet-
ter than others such as Currency and Capital.

(2) Pseudo-predicate. While answer type gives informa-
tion about the answer cell, the relation between the topic cell
and the answer cell is also critical for identifying the answer.
Predicate is a term representing the relation between two en-
tities in a knowledge base. For example, PresidentOf is
a predicate between Barack Obama and the United States.
Analogically, we use the column name pair, e.g., Country-
MainLanguage, on each candidate chain to form a pseudo-
predicate. A pseudo-predicate connects a topic cell to an
answer cell and represents a certain relation between them.
Intuitively, the pseudo-predicate Country-MainLanguage
matches questions asking about languages spoken in a coun-
try better than other pseudo-predicates such as Country-
Population and Country-Currency.

(3) Entity pairs. Entity pairs from two columns in a table
shall have the same relation. For example, all the entity
pairs {<Egypt, Arabic>, <France, French>, <Germany,
German>, ...} are about some country and its main lan-
guage. The entity pairs from the same columns as the topic
and answer cells in a candidate chain therefore provide sig-
nificant information about the implicit relation expressed in
the chain, complementing the pseudo-predicate.

In cases where any column name is missing on a candi-
date chain, which is quite uncommon in our experiments, we
simply use an empty word set as a replacement. Since the
question pattern represents what information is being asked
irrespective of the topic entity, intuitively a correct candi-
date chain should match the question pattern from the above
three perspectives. Given the fact that a question pattern
usually share few common words with each perspective, we
can hardly build effective matching models based on word-
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level information. For example, the entity pair <Spain,
Spanish> shares no common word with the question pat-
tern “What languages do people in <e> speak”, yet they are
about the same relation, i.e., the spoken language of a coun-
try. Therefore, we first map them into a common semantic
space, where semantically similar texts will be represented
as similar fixed-length vectors. Text embedding via neural
networks (more broadly termed “deep learning for natural
language processing”) has been extensively studied recently
and demonstrated to excel at capturing the syntactically
different ways of stating the same meaning [20, 21, 23, 41,
50, 51]. Hence we employ deep neural networks to embed
question patterns and various perspectives about candidate
chains and measure their similarity in the semantic space.

Take answer type as example. Figure 6 shows the archi-
tecture to match the question pattern with the answer type
of a candidate chain. Two deep neural networks are con-
structed respectively to embed both the question pattern
and the answer type. We then compute the cosine similar-
ity of the embedded semantic vectors as the matching degree
between the given question and the answer type. The same
model architecture is applied to match other perspectives of
candidate chains with a question pattern, but model param-
eters are separately learned for each perspective using the
corresponding inputs.

There could be different designs for the deep neural net-
work in Figure 6. We select the Convolutional Deep Struc-
tured Semantic Model 5 (C-DSSM) developed in [38] because
of its great potential that has been demonstrated in many
information retrieval related tasks [20, 37, 51]. Figure 7 illus-
trates the C-DSSM. It takes a word sequence such as “What
languages do people in <e> speak”as input. The word hash-
ing layer decomposes a word into a vector of letter-trigrams.
For example, word “speak” is converted to a bag of letter-
trigrams {#-s-p, s-p-e, p-e-a, e-a-k, k-e-#} where “#” is the
word boundary symbol. All the unique letter-trigrams in
the dataset form the letter-trigram vocabulary of size N and
each word will be converted to an N×1 vector (e.g., ft) with
each component being the frequency of a letter-trigram in
the word. Following this, a convolutional layer concatenates
the letter-trigram frequency vectors in a context window of
size 3 and projects it to a local contextual feature vector,
e.g., ht = tanh(Wc[ft−1, ft, ft+1]),∀t = 1, ..., T . Then a
max pooling layer is deployed to extract the most salient
local features and forms a fixed-length global feature vector.
This global feature vector is subsequently fed to a non-linear
feed-forward neural network layer, which outputs the final
semantic representation of the original input word sequence
(a question pattern or word sequence representing answer
type, pseudo-predicate or entity pairs), i.e., y = tanh(Wsv).

We instantiate the deep neural network in Figure 6 with
C-DSSM. Three matching models shall be learned for ques-
tion pattern respectively paired with answer type, pseudo-
predicate, and entity pairs. To train these semantic match-
ing models, we need to collect three training sets, formed by
pairs of question patterns and their true answer type/pseudo-
predicate/entity pairs. Unfortunately, no such training sets
are readily available. Based on the question-answer pairs in
existing QA datasets, our mechanism to construct training
sets is as follows: For each question in a question-answer
training set, we first match both the topic entities and the

5Publicly available at: http://research.microsoft.com/
en-us/projects/dssm/.
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Figure 7: Architecture of C-DSSM [38]. Number of
neurons in each layer is set via a held-out dataset.

answer entities with table cells; the matched table cells are
respectively named topic cells and answer cells. Then we
extract the relational chains connecting a topic cell to an
answer cell in the same row. In order to effectively train
the model, we shall obtain a cleaner training set; therefore
we conservatively keep only the relational chains with both
top-20 cos(wc, wq) and InterScore(wc, wq) scores. We con-
duct manual checking to decrease mismatch between the re-
lational chains and the question. For each selected chain, we
extract its answer type, pseudo-predicate, and entity pairs
to respectively pair with the corresponding question pattern,
and finally form the training sets.

In each case, we randomly sample 5% pairs as the held-out
set, and the rest as the training set. Hyper-parameters of
the C-DSSM, such as the number of neurons in each layer,
are selected using the held-out set. Consistent with other
studies employing deep neural networks [22, 51], we observe
that the C-DSSM is insensitive to the hyper-parameters in
a reasonable range (e.g., 300 ∼ 500 nodes in the semantic
layer, and learning rate 0.05 ∼ 0.005). We leave more details
about the C-DSSM related model learning to [22, 37, 38].

5. FEATURES
We develop a set of features to rank the candidate chains,

which are summarized as below.

5.1 Shallow Features
Shallow features consider the matching degree between a

question and a candidate chain at the word level.
As introduced in Section 3, for each question, we prepare

the word frequency vector wq based on the top-50 snippets
returned by a search engine. On the candidate chain side,
we construct the word frequency vector wc based on its ta-
ble caption, column names and table cells. Two similarity
measures are then applied:

• cosine(wq, wc) =
wq·wc

‖wq‖2‖wc‖2

• InterScore(wq, wc) = ‖wq � wc‖0

where InterScore stands for the intersection score and cal-
culates the number of overlapped words in wq and wc.
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5.2 Deep Features
Three perspectives are investigated: answer type, pseudo-

predicate, and entity pairs. For a candidate chain c, the
word sequence of the three types of information is denoted
as ca, cp, and ce, respectively. With the trained C-DSSM
model, we capture the high-level features of ca, cp, and ce
respectively as y(ca), y(cp), and y(ce). On the question side,
we input the word sequence representing the question pat-
tern (qp) and extract its high-level features y(qp). Addition-
ally, we concatenate the topic cell with the pseudo-predicate
cp, noted as cp∗, and compare it with the original question
sentence q. This feature specifically takes into account the
effect of topic entities on semantic matching, which was also
adopted in [51].

The semantic similarities between information on the ques-
tion side and that on the candidate chain side are calculated
as below and incorporated as features in our framework:

• DeepType: cosine
(
y(qp), y(ca)

)
• DeepPredicate: cosine

(
y(qp), y(cp)

)
• DeepEntityPairs: cosine

(
y(qp), y(ce)

)
• DeepSentence: cosine

(
y(q), y(cp∗)

)
.

Here DeepSentence can be regarded as a variation of
DeepPredicate. For the word sequence on entity pairs ce,
we include two variations: (1) ce is the word sequence gener-
ated by concatenating all entity pairs under the two columns
of a candidate chain, in the order of their row indices; (2) ce
is the word sequence corresponding to a single entity pair,
and we average cosine

(
y(qp), y(ce)

)
over all entity pairs cor-

responding to a candidate chain as DeepEntityPairs.
Overall, for each candidate chain, features investigated

include shallow features {cosine, InterScore} and deep fea-
tures {DeepType, DeepPredicate, DeepEntityPairs,
DeepSentence }.

5.3 Ranking
Based on the above features, we map a candidate chain

to a feature vector w.r.t. the question. A ranking algorithm
shall be deployed to order candidate chains based on their
feature vectors. For each question, in the coarse-grained
pruning stage, we select candidate chains with both top-3K
cosine similarity and top-3K InterScore, in order to reduce
noise and speed up the ranking process. For training, we la-
bel each candidate chain as correct if its answer cell contains
at least one gold-standard answer and incorrect if otherwise.
We adopt an in-house fast implementation of the MART gra-
dient boosting decision tree algorithm [9, 19], which learns
an ensemble of regression trees and has shown great perfor-
mance in various tasks [10].

6. EXPERIMENTS
Now we evaluate our table cell search framework in the

open-domain question answering setting.

6.1 Experimental Setup

Table Sets
We test our framework using two sets of tables as answer
sources: one is extracted from Wikipedia pages whereas the

WebQ Splits: WebQ Examples:
2,032 testing who did the voice for lola bunny?
3,778 training in what coutries do people speak danish?

BingQ Splits: BingQ Examples:
1,164 testing cherieff callie voice
4,725 training boeing charleston sc plant location

Table 2: Statistics of question sets.

Datasets WikiTables AllTables

WebQ
Training: 2,551 (68%) Training: 2,818 (75%)
Testing: 1,362 (67%) Testing: 1,507 (74%)

BingQ
Training: 2,794 (59%) Training: 3,235 (68%)
Testing: 679 (58%) Testing: 793 (68%)

Table 3: Table coverage of question sets.

other is from the broader Web, denoted respectively as Wik-
iTables and AllTables. We employ the table extractor used
in [47], which extracts HTML tables from the web crawl
and deploys a classifier to distinguish relational tables from
other types of tables, such as layout or formatting tables.
This approach is also similar to the one used in [12]. We
do not discuss the details here since it is not the main focus
of this paper. WikiTables contains around 5 million tables
whereas AllTables contains roughly 99 million tables, much
larger but also noisier than WikiTables.

Question Answering Evaluation Sets
To test our table cell search framework, we pick the pop-
ularly studied open-domain QA setting: Open-domain QA
datasets and systems are available, which makes the evalu-
ation and comparison with different systems very straight-
forward. Nevertheless, our framework can be extended to
closed-domain question answering as long as the table sources
are domain-specific. In our experiments, two question-answer
sets are employed, where the gold-standard answer set of
each question contains one or more entities in Freebase. We
show the statistics and example questions in Table 2.

WebQ. WebQuestions (WebQ) is developed by [5] and
consists of 5,810 question-answer pairs. The questions are
collected using the Google Suggest API and answers are ob-
tained from Freebase with the help of Amazon MTurk. The
dataset is split into training and testing sets, respectively
containing 3,778 questions (65%) and 2,032 questions (35%).
Since its release, WebQ has been widely used in testing an
array of open-domain QA systems [5, 6, 16, 50, 51].

BingQ. BingQ is constructed in [40]. Questions in this
dataset are mined from search engine logs, and therefore
not necessarily well-formed yet reflect realistic information
needs of the general public. Each question is crowdsourced
to obtain correct entity answers. One distinction between
BingQ and WebQ is that the knowledge required to answer a
question in BingQ (i.e., the relation between its topic entity
and answer entity) might not exist in KBs. There are in
total 5,889 QA pairs, in which 4,725 (80%) are randomly
selected for training and 1,164 (20%) for testing in [40].

Table-answerable question sets. The construction of
the above evaluation sets does not refer to our table collec-
tions, therefore the knowledge required to answer a question
might not exist in WikiTables or AllTables. Such questions
are unanswerable using the table collections, no matter what
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WebQ BingQ

Features Precision Recall F1 Precision Recall* F1

Shallow Features 0.4214 0.3373 0.3561 0.4035 0.4035 0.4035
Deep Features 0.5352 0.4210 0.4462 0.4757 0.4747 0.4750

Shallow + Deep Features 0.5712 0.4540 0.4804 0.5817 0.5817 0.5817

Shallow + DeepType 0.5433 0.4323 0.4566 0.5493 0.5493 0.5493
Shallow + DeepPredicate 0.5492 0.4315 0.4572 0.5493 0.5493 0.5493
Shallow + DeepSentence 0.4728 0.3768 0.3954 0.4227 0.4227 0.4227

Shallow + DeepEntityPairs 0.4662 0.3703 0.3907 0.5538 0.5528 0.5531

All Features − DeepType 0.5551 0.4362 0.4623 0.5538 0.5538 0.5538
All Features − DeepPredicate 0.5609 0.4474 0.4732 0.5714 0.5714 0.5714
All Features − DeepSentence 0.5639 0.4467 0.4729 0.5803 0.5803 0.5803

All Features − DeepEntityPairs 0.5698 0.4523 0.4786 0.5596 0.5596 0.5596
* Recall is close to precision because almost every question in BingQ has only one answer.

Table 4: Performance of different feature combinations.

algorithms are developed to search table cells. In order to
evaluate the effectiveness of our framework, we need to re-
move those unanswerable questions. It is difficult, if not
impossible, to automatically verify whether a question is
answerable by a huge set of tables. We adopt the follow-
ing mechanism to make an approximation: We will keep a
question if and only if at least one of its topic entities and
at least one of its answer entities simultaneously exist in the
same row of some table. Such existence is merely checked
by substring match; therefore, it is still a challenging task
to evaluate whether the semantic relation between two ta-
ble cells matches a question or not. Our framework focuses
on dealing with this task, and we leave more challenging
problems involving joining and integrating tables for future
work. The percentage of questions left in each evaluation
set is defined as its coverage by a particular table set, which
is shown in Table 3. As one can see, a large proportion
of questions in both sets, around 58% to 75%, are covered
by tables, and AllTables covers roughly 10% more questions
than WikiTables. We next evaluate our framework only on
questions covered by each table set.

Evaluation Measures
For each question, we extract the answer cell from each of
the top-K ranked candidate chains, and thereby top-K an-
swer cells are retrieved. To evaluate the results, we adopt
Precision, Recall, and F1 measures as similarly defined in
traditional information retrieval [28], since table cell search
is analogical to retrieving relevant documents to a query.
We regard an answer cell as relevant to the input question
if it contains at least one entity in the gold-standard answer
set. Therefore, for question q, Precision (P ) and Recall (R)
are defined as P =

nq

K
and R =

aq

Nq
. Here nq is the num-

ber of relevant answer cells retrieved, aq is the number of
unique gold-standard answer entities contained in the top-
K answer cells, and Nq is the total number of gold-standard
answer entities. F1 is the harmonic mean of P and R. We
present the average Precision, Recall, and F1 over all test
questions as final results.

Alternative Systems for Comparison
KB-based QA systems via semantic parsing can be regarded
as a special kind of table cell search if we take a tabular
view of knowledge bases: Each predicate corresponds to a

two-column table with subject entities in one column and
object entities in the other. Two state-of-the-art such sys-
tems are taken into account. Sempre and ParaSempre
developed in [5] and [6] have shown excellent performance
to answer questions in WebQ. We directly use their pre-
dicted results on WebQ. On BingQ, we re-train the sys-
tems on the training set and evaluate using the testing set.
The implementation of the systems is publicly available in
https://github.com/percyliang/sempre. These systems
return a set of entities from Freebase as answer. For fair
comparison, the returned entity set is treated as their top-1
retrieved answer cell, and evaluated according to our previ-
ously defined measures. Unless otherwise stated, we com-
pare the top-1 answer cell returned by each system in the
following experiments, following convention where only the
top-1 result is presented to users as an answer.

6.2 Performance of Different Feature Groups
We first discuss the performance of different feature com-

binations in our framework, with WikiTables as the answer
source. For each feature combination, we merely use fea-
tures from that combination for training and testing. As
shown in Table 4, we have made the following discoveries:

(1) Shallow features, which only take advantage of word-
level information, actually achieve surprisingly good perfor-
mance on both evaluation sets. This may be explained by
the high redundancy of tables and the exploitation of search
engine snippets: A table using similar wording as the input
question and its snippets likely exists, which makes direct
word-level matching effective on some questions. It shows
a unique advantage of using web tables as answer sources,
as opposed to using a rigidly defined knowledge base. Nev-
ertheless, deep features still get much better performance
than shallow features, showing that deeper inference is also
necessary and is more advanced.

(2) Shallow features and deep features complement each
other. Search engine snippets used in computing shallow
features can gather question-related information on the Web
to help match a question with the correct candidate chain.
Therefore, although shallow features are less effective than
deep features, combining them achieves the best performance,
with a 34.9% ∼ 44.2% relative improvement over only shal-
low features and 7.7% ∼ 22.5% over only deep features on
both evaluation sets.
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WebQ BingQ
System Precision Recall F1 Precision Recall F1

TabCell 0.5712 0.4540 0.4804 0.5817 0.5817 0.5817
Sempre 0.5419 0.4738 0.4895 0.3328 0.3328 0.3328

ParaSempre 0.6013 0.5294 0.5463 0.3711 0.3711 0.3711
TabCell +ParaSempre 0.7702 0.6765 0.6998 0.6186 0.6186 0.6186

Table 5: Comparison of different systems.

(3) Each deep feature defined in Section 4 is combined
with shallow features to compare their relative advantage.
The two deep features based on answer type and pseudo-
predicate, i.e., DeepType and DeepPredicate, are most
important in both evaluation sets. Both DeepType and
DeepPredicate contain the answer type information, i.e.,
the column name corresponding to the answer cell. This
gives us an important implication that correctly inferring
the answer type of a question is critical to finding correct
answers. The performance of DeepEntityPairs is quite
different on these two evaluation sets. On BingQ, Deep-
EntityPairs is slightly better than DeepPredicate and
DeepType. This is possibly because BingQ questions are
not well-formed word sequences (see examples in Table 2),
and using a significant number of entity pairs to match them
can be more effective than using regular word sequences
such as answer type and pseudo-predicate. Although overall
DeepSentence and DeepEntityPairs are not as effective
as DeepType or DeepPredicate, removing either of them
from our framework can hurt the performance, as seen from
the last two rows in Table 4.

6.3 Comparison with KB-based QA Systems
We now compare our table cell search framework with two

state-of-the-art KB-based QA systems Sempre and ParaSem-
pre, which extract answers from Freebase, a large and widely
used knowledge base. This comparison can help gain in-
sights about the two answer sources (web tables vs. knowl-
edge bases). Apart from separately evaluating each system,
we also combine the predicted answer cell from our frame-
work with that from ParaSempre. If our framework and
ParaSempre complement each other in answering differ-
ent questions, the combined results are expected to induce
a large performance gain. Results are shown in Table 5,
with TabCell referring to our framework. Our observa-
tions lie in two aspects: (1) System performance varies on
different evaluation sets. On WebQ, ParaSempre obtains
the best performance, yet TabCell is still comparable to
Sempre. While on BingQ, TabCell outperforms Sempre
and ParaSempre respectively by 74.8% (from 0.3328 to
0.5817) and 56.7% (from 0.3711 to 0.5817). These signif-
icant differences partly result from the evaluation set con-
struction process. Questions in WebQ were coined on Free-
base and are guaranteed answerable by Freebase. However,
in BingQ, questions were collected from search engine logs
and the knowledge required to answer them does not neces-
sarily exist in Freebase. Nevertheless, we can safely draw the
conclusion that our framework is at least as effective as state-
of-the-art KB-based QA systems according to these evalua-
tion sets. (2) For each question, we combine TabCell and
ParaSempre by simply merging the content in each sys-
tem’s top-1 answer cell. Evaluation on the merged answer
cell shows around 28.1% (from 0.5463 to 0.6998) and 66.7%

(from 0.3711 to 0.6186) improvements over ParaSempre on
WebQ and BingQ, respectively. The simple combination ap-
proach asserts non-decreasing performance; however, such a
large performance gain convincingly indicates that table cell
search can complement KB-based QA. It verifies our hypoth-
esis that tables contain rich information that might be miss-
ing or difficult to be identified in KBs, and our framework
presents an effective way to precisely locate such information
to satisfy user needs.

6.4 Experiments on All Tables from the Web
We not only test our framework with WikiTables as the

answer source, but also with AllTables which is around 20
times larger and covers 10% more questions than the former.
On the other hand, AllTables is also noisier since general web
users compose tables with less attention to table schema or
column naming than Wikipedia contributors. Table parsers
[47] can be more error-prone when extracting tables from the
general webpages. We now compare these two table sets as
answer sources using the larger testing set in Table 3, i.e.,
1507 questions in WebQ and 793 in BingQ. These testing
sets are preferred over the smaller ones, because it allows
the opportunity to show advantages of the larger coverage
by AllTables. Table 6 shows the results of our framework
using all the features. On WebQ, WikiTables can provide
better results than AllTables, partly because of the strong
connection between Freebase and Wikipedia, i.e., the knowl-
edge stored in Freebase is heavily derived from Wikipedia [1].
Detecting answers to WebQ questions from the smaller and
cleaner WikiTables shall be easier than from AllTables. On
the other hand, for BingQ questions which are not necessar-
ily answerable by Freebase or Wikipedia pages, AllTables
performs better owing to its higher coverage.

Table Sources Precision Recall F1

WebQ
WikiTables 0.5162 0.4103 0.4342
AllTables 0.4738 0.3708 0.3923

BingQ
WikiTables 0.4981 0.4981 0.4981
AllTables 0.5233 0.5226 0.5228

Table 6: Comparison of different table sources.

6.5 Evaluation on Top-K Answer Cells
Previously we evaluate using only the top-1 answer cell,

following the convention in QA. We now evaluate our frame-
work when multiple answer cells are retrieved, as shown in
Table 7. WikiTables are used and all features are included.
When increasing K, Recall shall be non-decreasing while
Precision may decrease. The results show that on WebQ,
K = 2 and K = 3 obtain a better F1 score than when only
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WebQ BingQ
Top-K Precision Recall F1 Precision Recall F1

K=1 0.5712 0.4540 0.4804 0.5817 0.5817 0.5817
K=2 0.5323 0.5306 0.4959 0.5052 0.6412 0.5505
K=3 0.4983 0.5819 0.4919 0.4470 0.6766 0.5154
K=5 0.4430 0.6268 0.4680 0.3602 0.7090 0.4468

Table 7: Evaluation on top-K ranked answer cells.

considering the top-1 answer cell. Since WebQ questions
usually have multiple answers, presenting multiple answer
cells could benefit the overall performance with F1 domi-
nantly affected by the increasing Recall. On the other hand,
since BingQ questions usually have only one answer and the
relevant answer cell for most questions is already ranked in
the first place as shown by Precision@K = 1, increasing K
leads to a lower F1.

7. RELATED WORK
We summarize previous related work in three categories:

(1) Question answering; (2) Table search, annotation, and
integration; (3) Natural language interface to databases.

Question answering. Different types of question answer-
ing systems based on texts, knowledge bases (KBs), and ta-
bles have been investigated. Most earlier QA systems such
as [8, 13, 18, 24, 36, 44] mine answers from TREC [44] doc-
ument collections or the rich web corpus. QuASM proposed
in [33] exploits the structure inherent in web documents to
boost question answering. QuASM indexes web documents
into smaller units (e.g., text tables, HTML tables) to be uti-
lized by a QA system. QuASM did not utilize the schemas
of HTML tables to infer answers to a question, instead, they
are treated similarly as the entire document when being used
for QA. KB-based QA systems parse natural language ques-
tions to specific forms such as logic forms, graph queries,
and SPARQL queries, which can be executed against KBs to
find answers [5, 6, 17, 35, 42, 46, 51, 53]. QA systems devel-
oped in [16] investigate both curated KBs such as Freebase
and extracted KBs from general corpora, as answer sources
to answer a question. Yang et al. [48] find patterns (i.e.,
aggregations of subtrees) in a knowledge base to compose
table answers to keyword queries such as “Washington cities
population”. Yao et al. [50] propose to associate question
patterns with answer patterns described by Freebase with
the help of a web-scale corpus. Noticing that KBs are far
from complete, Sun et al. [40] develop a framework to detect
answers from the web texts, while still utilizing the rich in-
formation about entities in Freebase to determine the true
answers. Given a table and a question, [31] parses a ques-
tion according to the schema of the given table and outputs
answers accordingly. Our work is most related to [31], but
significantly different in that given a question, the table con-
taining answers is not associated; instead, we aim at finding
table cells from millions of tables to answer it.

Table search, annotation, and integration. Tables
have been actively studied in many aspects such as anno-
tation, integration, and search [2, 14, 27, 32, 43, 52]. For
example, Limaye et al. [27] annotate table cells with enti-
ties, table columns with entity types to which entities in the
column belong, and relations that pairs of table columns

seek to express, and show the benefits of good annotations
to the performance of a web search tool. Similarly, Venetis
et al. [43] recover the semantics of tables by annotating a
table with a database of class labels and relationships auto-
matically extracted from the Web. Finding tables in a large
corpus of heterogeneous tables related to a user table is in-
vestigated in [14]. Several types of relatedness are captured
including tables that are candidates for joins and tables that
are candidates for union. Pimplikar et al. [32] aim at answer-
ing table queries which consist of several keyword columns.
In [11, 14], the authors directly return relevant tables to sat-
isfy user queries. While retrieving entire tables is desirable
in many scenarios such as finding reusable tables and infor-
mation summarization on a topic, in this paper we focus on
precisely locating table cells to answer questions. Table an-
notation and integration can be regarded as pre-processing
steps to facilitate our table cell search framework. We leave
in future studies how to involve integration of intermedi-
ate results, when using tables to answer more compositional
questions. The discovered facts via QA based on tables can
be used to complete existing KBs. A similar methodology
has been adopted in [45]. In [4], Balakrishnan et al. share
lessons and insights in developing a broad set of applications
of web tables at Google. While a brief description on using
web tables to answer fact seeking queries is provided, few
technical details are provided.

Natural language interface to databases. Natural lan-
guage interfaces to databases (NLIDBs), where users can
pose natural language queries instead of writing complex
SQL queries, have been studied since several decades ago [3,
25, 26, 34]. NLIDBs will translate a natural language ques-
tion to an SQL query according to the predefined schema
of a relational database. It is hard to be directly applied
in our task where each table has a self-defined schema. Our
work novelly exploits search engine snippets and deep neural
networks to locate table cells for QA.

8. CONCLUSION
In this paper, we proposed an end-to-end framework to

precisely locate table cells in millions of web tables for ques-
tion answering. Our table cell search framework was com-
pared with state-of-the-art KB-based QA systems. Through
extensive experiments, we showed that our framework could
outperform other systems by a large margin on real-world
questions mined from search engine logs. Our results also
supported the hypothesis that web tables are a good comple-
ment to knowledge bases, providing rich knowledge missing
from existing knowledge bases. In the future, we would like
to extend the framework to tackle more compositional ques-
tions where integration of multiple tables and columns will
be needed, as well as to table cell search in closed-domain
scenarios such as enterprise tables.
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