
Behavior Query Discovery in System-Generated
Temporal Graphs

Bo Zong1∗ Xusheng Xiao2 Zhichun Li2 Zhenyu Wu2 Zhiyun Qian3

Xifeng Yan1 Ambuj K. Singh1 Guofei Jiang2

1UC Santa Barbara 2NEC Labs America, Inc. 3UC Riverside
{bzong, xyan, ambuj}@cs.ucsb.edu {xsxiao, zhichun, adamwu, gfj}@nec-labs.com zhiyunq@cs.ucr.edu

ABSTRACT
Computer system monitoring generates huge amounts of
logs that record the interaction of system entities. How to
query such data to better understand system behaviors and
identify potential system risks and malicious behaviors be-
comes a challenging task for system administrators due to
the dynamics and heterogeneity of the data. System mon-
itoring data are essentially heterogeneous temporal graphs
with nodes being system entities and edges being their inter-
actions over time. Given the complexity of such graphs, it
becomes time-consuming for system administrators to man-
ually formulate useful queries in order to examine abnormal
activities, attacks, and vulnerabilities in computer systems.

In this work, we investigate how to query temporal graphs
and treat query formulation as a discriminative temporal
graph pattern mining problem. We introduce TGMiner to
mine discriminative patterns from system logs, and these
patterns can be taken as templates for building more com-
plex queries. TGMiner leverages temporal information in
graphs to prune graph patterns that share similar growth
trend without compromising pattern quality. Experimen-
tal results on real system data show that TGMiner is 6-32
times faster than baseline methods. The discovered patterns
were verified by system experts; they achieved high precision
(97%) and recall (91%).

1. INTRODUCTION
Computer systems are widely deployed to manage the

business in industry and government. Ensuring the proper
functioning of these systems is critical to the execution of the
business. For example, if a system is compromised, the se-
curity of the customer data cannot be guaranteed; if certain
components of a system have failures, the services hosted
in the system may be interrupted. Maintaining the proper
functioning of computer systems is a challenging task. Sys-
tem experts have limited visibility into systems, as the tools

∗Bo Zong is currently a researcher at NEC Labs America.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 2150-8097/15/12.

Figure 1: Capture system activities: (a) syscall
data represented as temporal graphs, (b) a secu-
rity query, and (c) a discriminative subgraph pat-
tern representing an sshd-login activity.

they use often give a partial view of the complex systems.
This motivates the recent trend of leveraging system moni-
toring logs to offer intelligence in system management.

Temporal graphs are key data structures used to fuse in-
formation from heterogeneous sources [33, 36]. In computer
systems, system monitoring data are represented as tem-
poral graphs. For example, in cybersecurity, system call
(syscall) logs provide a comprehensive way to capture sys-
tem activities [12]. Unlike its alternatives (e.g., file access
logs [1], firewall [4], and network monitoring [23]) which pro-
vide partial information and are application-specific, syscall
logs cover all interactions among system entities (e.g., pro-
cesses, files, sockets, and pipes) over time. In Figure 1(a), a
syscall log contains a sequence of events each of which de-
scribes at which time what kind of interactions happened
between which system entities. Note that this syscall log
also forms an equivalent temporal graph.

While temporal graphs provide an intuitive way to visu-
alize system behaviors, another important step is to query
such data and leverage the results to better comprehend
system status. The question is how! It is usually burden-
some to formulate useful queries to search system-generated
temporal graphs, as they are complex with many tedious
low-level entities. Consider the following scenarios.

Example 1 (Cybersecurity). To ensure the security
of an enterprise system, a system expert wants to know if

there exists any information stealthy activity in the human
resource department over the weekend. A hypothetical activ-
ity could involve three steps: someone remotely accessed an
HR desktop by ssh, compressed several files, and transferred
them to a remote server. In order to find such activity,
one can submit a query like Figure 1(b) consisting of three
components: “sshd-login”, “compress-files”, and “send-to-
remote-server”, and perform search over syscall logs like Fig-
ure 1(a). However, such query cannot retrieve any useful
information since the low-level entities (e.g., processes and
files) recorded in the syscall logs cannot be directly mapped to
any high-level activity like “sshd-login” or “compress-files”.
In order to locate all “sshd-login” activities, one has to know
which processes or files are involved in “sshd-login” and in
what order over time these low-level entities are involved in
order to write a query. This becomes very time consuming.

Besides querying risky behaviors, the formulated behavior
queries can also be applied on the real-time monitoring data
for surveillance and policy compliance checking.

Example 2 (Datacenter monitoring). State-
of-the-art system monitoring tools generate large-scale
monitoring data as temporal graphs [36], where nodes are
system performance alerts, and edges indicate dependencies
between alerts. While these alerts suggest low-level anoma-
lies (e.g., CPU usage is too high on server A, or there
are too many full table joins on server B), system experts
desire high-level knowledge about system behaviors: do
these alerts result from disk failure or abnormal database
workload? To search such high-level system behaviors,
we have to know how alerts trigger each other and their
temporal order [25]. It is a daunting task for system experts
to manually formulate such queries.

In addition, such query formulation problems also exist in
other complex systems in the big data era.

Example 3 (Urban computing). Modern cities gen-
erate a diverse array of data from heterogeneous sources,
such as traffic flow, reports of sickness in cities, reports of
food production, and so on [33]. Information inferred from
these sources are fused into temporal graphs, where nodes
are events detected from different sources (e.g., traffic jam,
high sickness rate, and decrease in food production yield),
edges indicate relationships between events (e.g., two events
are geographically close), and timestamps record when such
relationships are detected. Domain experts are interested in
high-level knowledge in urban systems: are these unusual
events caused by river or air pollution? To formulate queries
and search such knowledge, domain experts have to under-
stand detailed temporal dependency patterns between events,
which is extremely difficult for them.

Querying high-level system behaviors significantly reduces
the complexity of evaluating system status, but it is quite
difficult to formulate useful system behavior queries, referred
to as behavior queries in this paper, because of the big se-
mantic gap between the high-level abnormal activities and
the low-level footprints of such activities. To address this
problem, one approach is to collect monitoring data of tar-
get behaviors (e.g., “sshd-login”), model the raw monitoring
data by heterogeneous temporal graphs to , and use the full
graphs to formulate queries. Unfortunately, the raw data
can be large and noisy. To overcome this challenge, instead

of using the full graphs, we identify the most discrimina-
tive patterns for target behaviors and treat them as queries.
Such queries (e.g., a few edges) are easier to interpret and
modify, and are robust to noise. A discriminative pattern
should frequently occur in the target activities, and rarely
exist in other activities. One of the discriminative subgraph
patterns for “sshd-login” is shown in Figure 1(c), which in-
cludes a few nodes/edges and is more promising for querying
“sshd-login” from syscall logs.

To this end, we formulate the behavior query construction
problem as a discriminative temporal graph mining problem:
Given a positive set and a negative set of temporal graphs,
the goal is to find the temporal graph patterns with maxi-
mum discriminative score. It is difficult to extend the exist-
ing mining techniques [10, 27] to solve this problem, since
they mainly focus on non-temporal graphs, not temporal
graphs (detailed discussion in Section 7.1).

In this paper, we propose TGMiner that addresses the
challenges to discriminative temporal graph pattern mining.

1. We have to consider both topology and edge tempo-
ral order while searching temporal graph space. To
avoid redundant search, do we need another complex
canonical labeling method like [10, 28] for mining tem-
poral graphs? In our study, we find the temporal infor-
mation in graphs allows us to explore temporal graph
space in a more efficient manner. In particular, we pro-
pose a pattern growth algorithm without any complex
canonical labeling. It guarantees that all promising
patterns are covered, and no redundant search.

2. Since temporal graph space is huge, a naive exhaus-
tive search is slow even for small temporal graphs. To
speed up search, we first identify general cases where
we can conduct pruning. Then we propose algorithms
to minimize the overhead for discovering the pruning
opportunities: (1) By encoding temporal graphs into
sequences, a light-weight algorithm based on subse-
quence tests is proposed to enable fast temporal sub-
graph tests; and (2) we compress residual graph sets
into integers such that residual graph set equivalence
tests are performed in constant time.

Our major contributions are as follows. First, motivated
by the need of queries in system monitoring applications, we
identify a challenging query formulation problem in complex
temporal graphs. Second, we propose the idea of using dis-
criminative subgraph pattern mining to automatically for-
mulate behavior queries, significantly easing the query for-
mulation. Third, we develop TGMiner that leverages tem-
poral information to enable fast pattern mining in temporal
graphs. Experimental results on real data show that the
behavior queries constructed by TGMiner are effective for
behavior analysis in cybersecurity applications, with high
precision 97% and recall 91%, better than a non-temporal
graph pattern based approach whose precision and recall are
83% and 91%, respectively. For mining speed, TGMiner is
6-32 times faster than baseline methods.

2. PROBLEM FORMULATION
As described earlier, our goal is to mine skeletons for be-

havior queries from temporal graphs derived from system
monitoring data. In the following, we focus on cybersecurity
applications for the ease of presentation, but the proposed

User

Syscall
data

Database

Graph pattern
queriesInterested

behaviors
Closed

environment

Behavior syscall log
collection

Raw
temporal graph set

Figure 2: Behavior Query Formulation Pipeline

ideas and techniques can also be applied to applications in
other domains.

Temporal graph. A temporal graph G is represented
by a tuple (V,E,A,T), where (1) V is a node set; (2) E ⊂
V ×V×T is a set of directed edges that are totally ordered by
their timestamps; (3) A : V → Σ is a function that assigns
labels to nodes (Σ is a set of node labels); and (4) T is a set
of possible timestamps, non-negative integers on edges.

In practice, the syscall data of a behavior instance is col-
lected from a controlled environment, where only one target
behavior is performed. In most cases, the syscall data of a
target behavior forms a temporal graph of no more than a
few thousand of nodes/edges.

We target temporal graphs with total edge order in this
work. Our empirical results show that this model performs
quite well in identifying basic security behaviors, as these be-
haviors are usually finished by one thread. It also possesses
computation advantages, in comparison with more complex
temporal graph models. For the cases of concurrent edges,
we provide a discussion in Section 5.

Figure 3: Temporal graphs: (1) G2 is a temporal
subgraph of G1 (G2 ⊆t G1); and (2) G1 and G2 are
T-connected, while G3 is non T-connected.

Figure 3 shows three temporal graphs. Note that multi-
edges are allowed in temporal graphs as shown in G1. For
simplicity, we examine temporal graphs with only node la-
bels and edge timestamps in this paper. Our algorithms also
work for temporal graphs with edge labels.

Temporal graph pattern. A temporal graph pattern
g = (V,E,A, T) is a temporal graph, where ∀t ∈ T, 1 ≤ t ≤
|E|.

Unlike general temporal graphs where timestamps could
be arbitrary non-negative integers, timestamps in temporal
graph patterns are aligned (from 1 to |E|) and only total
edge order is kept. In the following discussion, we use upper
case letters (such as G) to represent temporal graph data,
and use lower case letters (such as g) to represent abstract
temporal graph patterns.

As it is ineffective and inefficient to take the entire raw
graph as a behavior query, it will be better to use its discrim-
inative subgraphs to capture the footprint of a behavior.

Temporal subgraph. Given two temporal graphs G =
(V,E,A, T) and G′ = (V ′, E′, A′, T ′), G ⊆t G

′ if and only if
there exist two injective functions f : V → V ′ and τ : T →
T ′ such that (1) node mapping : ∀u ∈ V , A(u) = A′(f(u));
(2) edge mapping : ∀(u, v, t) ∈ E,

(
f(u), f(v), τ (t)

)
∈ E′;

and (3) edge order preserved : ∀(u1, v1, t1), (u2, v2, t2) ∈ E,
sign(t1 − t2) = sign(τ (t1)− τ (t2)).

G′ is a match of G denoted as G′ =t G, when f and τ are
bijective functions.

Figure 3 shows an example of a temporal subgraph where
G2 ⊆t G1. In particular, the subgraph in G1 formed by
edges of timestamps 4, 5, and 6 is a match of G2.

Pattern frequency. Given a set of temporal graphs G
and a temporal graph pattern g, the frequency of g with
respect to G is defined as

freq(G, g) =
|{G | g ⊆t G ∧G ∈ G}|

|G| .

Moreover, we differentiate two types of connected graphs
among temporal graphs.

T-connected temporal graph. A temporal graph G =
(V,E,A, T) is T-connected if ∀(u, v, t) ∈ E, the edges whose
timestamps are smaller than t form a connected graph.

In Figure 3, G1 and G2 are T-connected temporal graphs
while G3 is not, because the graph formed by edges with
timestamps smaller than 5 is disconnected.

In this work, we focus on mining T-connected tempo-
ral graph patterns for the following reasons. First, in pat-
tern growth, T-connected patterns remain connected, while
non T-connected patterns might be disconnected during the
growth process, resulting in formidable explosion of pattern
search space. Second, any non T-connected temporal graph
is formed by a set of T-connected temporal graphs. In prac-
tice, we can use a single T-connected pattern or a set of T-
connected patterns that in all could be a non T-connected
pattern to form a behavior query. In the rest of this paper,
T-connected temporal graphs are referred to as connected
temporal graphs without ambiguity. Next we define the dis-
criminative temporal graph pattern mining problem.

Problem 1. Given a set of positive temporal graphs Gp

and a set of negative temporal graphs Gn, the goal is to
find the connected temporal graph patterns g∗ with maxi-
mum F

(
freq(Gp, g∗), freq(Gn, g∗)

)
, where F (x, y) is a dis-

criminative score function with partial (anti-)monotonicity:

(1) when x is fixed, y is smaller, F (x, y) is larger; and (2)
when y is fixed, x is larger, F (x, y) is larger.

F (x, y) covers many widely used score functions includ-
ing G-test, information gain, and so on [27]. In practice,
one could pick a discriminative score function that satisfies
partial (anti-)monotonicity and best fits his/her query for-
mulation task. Note that for the ease of presentation, the
discriminative score of a pattern g is also denoted as F (g)
in the following discussion.

Behavior query formulation pipeline. Figure 2 shows
a pipeline of collecting syscall logs for behaviors, finding
patterns, and using them to construct graph pattern queries
for searching behaviors from syscall data (temporal graphs)
and retrieving interesting security knowledge. We take the
behavior of sshd-login as an example.

The first step is to form input data. Relatively clean
syscall logs for sshd-login are crawled from a closed environ-
ment, where sshd-login is independently run multiple times.
Additionally, we also collect syscall logs where sshd-login is
not performed and treat them as background syscall logs.
The input of mining sshd-login behavior patterns is formed
as follows: (1) the raw syscall logs of sshd-login are treated
as a set of positive temporal graphs Gp and (2) the raw
background syscall logs are treated as a set of negative tem-
poral graphs Gn. In practice, we can also use the syscall
logs for normal or abnormal sshd-login (e.g., intrusion) as
positive datasets, which will generate graph pattern queries
for normal and abnormal behaviors.

Given Gp and Gn, TGMiner finds the most discriminative
temporal graph patterns for sshd-login. To identify the pat-
terns that best serve the purpose of behavior search, the pat-
terns discovered by TGMiner are further ranked by domain
knowledge, including semantic/security implication on node
labels and node label popularity among monitoring data.
Top ranked patterns are then selected as queries to search
sshd-login activities from a repository of syscall log data
and see if there are abnormal/suspicious activities, e.g., too
many times of sshd-login over a Saturday night.

TGMiner overview. Our mining algorithm includes two
key components: pattern growth and pattern space pruning.

Pattern growth guides the search in pattern space. It con-
ducts depth-first search: starting with an empty pattern,
growing it into a one-edge pattern, and exploring all possi-
ble patterns in its branch. When one branch is completely
searched, the algorithm continues to explore the branches
initiated by other one-edge patterns. The key challenges in
this component is how to avoid repeated pattern search and
how to cover the whole pattern space.

Pattern space pruning is a crucial step to speed mining
processes. The underlying pattern space could be large, and
a naive search algorithm cannot scale. Therefore, effective
pruning algorithms are desired. The key problems in this
component is how to identify general pruning opportunities
and how to minimize the overhead in pruning.

3. TEMPORAL GRAPH GROWTH
In this section, we discuss the pattern growth algorithm

in TGMiner. In particular, we demonstrate (1) how tempo-
ral information in graphs enables efficient pattern growth
without repetition, and (2) the general principles to grow
temporal graph patterns so that all possible connected tem-
poral graph patterns will be covered.

3.1 Growth without Repetition
Pattern growth is more efficient in temporal graphs, com-

pared with its counterpart in non-temporal graphs.
It is costly to conduct pattern growth for non-temporal

graphs. To grow a non-temporal pattern to a specific larger
one, there exist a combinatorial number of ways. In order to
avoid repeated computation, we need extra computation to
confirm whether one pattern is a new pattern or is a discov-
ered one. This results in high computation cost, as graph
isomorphism is inevitably involved. To reduce the overhead,
various canonical labeling techniques along with their so-
phisticated pattern growth algorithms [8, 10, 28] have been
proposed, but the cost is still very high because of the in-
trinsic complexity in graph isomorphism.

Unlike non-temporal graphs, we can develop efficient al-
gorithms for temporal graph pattern growth. First, we can
decide whether two temporal graph patterns are identical
in linear time. Second, these is at most one possible way
to grow a temporal graph pattern to a specific larger one.
Next, we show why these properties stand.

The computation advantages of temporal graphs originate
from the following property.

Lemma 1. Let g1 and g2 be temporal graph patterns. If
g1 =t g2, the mappings f and τ between them are unique.

Proof. The proof is detailed in Appendix A [37].

With Lemma 1, we further prove the efficiency of deter-
mining whether two temporal graph patterns are matched.

Lemma 2. If g1 and g2 are temporal graph patterns, then
g1 =t g2 can be determined in linear time.

Proof. The proof is detailed in Appendix B [37].

Pattern growth for temporal graphs will be more efficient,
when it is guided by consecutive growth.

A

B C

1

2

A

B

1

g1 g2 g3 g4
A

B C

1

2

A

B C

1

2

4
3 3

Figure 4: An example of consecutive growth

Consecutive growth. Given a connected temporal
graph pattern g of edge set E and an edge e′ = (u′, v′, t′),
adding e′ into g is consecutive growth, if (1) it results in an-
other connected temporal graph pattern; and (2) t′ = |E|+1.

Figure 4 demonstrates how g1 grows to g4 by consecutive
growth. Consecutive growth guarantees a connected tem-
poral graph pattern will form another connected temporal
graph pattern without repetition.

Lemma 3. Let g1 and g2 be connected temporal graph pat-
terns with g1 ⊆ g2. If pattern growth is guided by consecutive
growth, then (1) either there exists a unique way to grow g1
into g2, (2) or there is no way to grow g1 into g2.

Proof. The proof is detailed in Appendix C [37].

Unlike mining non-temporal graphs, by Lemma 2 and 3,
we can avoid repeated pattern search without using any so-
phisticated canonical labeling or complex pattern growth
algorithms [10, 27]. Next, we show the three growth options
that one needs to cover the whole pattern space.

3.2 Growth Options
A

B C

1

2

g1
3

A

B
C

1

2

g2
3

A

B
C

1

2

g33
A

B C

1
2

g43

E E

4 4 4

forward
backward

inward

Figure 5: Three growth options

To guarantee the quality of discovered patterns, we need
to ensure our search algorithm can cover the whole pattern
space. In this work, we identify three growth options to
achieve the completeness. Let g be a connected temporal
graph pattern with node set V . We can grow g by consecu-
tive growth as follows.

• Forward growth: growing g by an edge (u, v, t) is a
forward growth if u ∈ V and v /∈ V .

• Backward growth: growing g by an edge (u, v, t) is a
backward growth if u /∈ V and v ∈ V .

• Inward growth: growing g by an edge (u, v, t) is an
inward growth if u ∈ V and v ∈ V .

Figure 5 illustrates the three growth options. Note that
inward growth allows multi-edges between node pairs.

The three growth options provide a guidance to conduct
a complete search over pattern space.

Theorem 1. Let A be a search algorithm following con-
secutive growth with forward, backward, and inward growth.
Algorithm A guarantees (1) a complete search over pattern
space, and (2) no pattern will be searched more than once.

Proof. The proof is detailed in Appendix D [37].

Theorem 1 provides a naive exhaustive approach to min-
ing discriminative temporal graph patterns. However, the
underlying pattern space is usually huge, and the naive
method suffers from poor mining speed. To speed up the
mining process, we propose pruning algorithms in Section 4.

4. PRUNING TEMPORAL GRAPH SPACE
In this section, we investigate how to prune search space

by the unique properties in temporal graphs. First, we ex-
plore the general cases where we can prune unpromising
branches. Next, we identify the major overhead for dis-
covering pruning opportunities, and leverage the temporal
information in graphs to minimize the overhead.

4.1 Naive Pruning Conditions
A straightforward pruning condition is to consider the

upper bound of a pattern’s discriminative score. Given
a temporal graph pattern g, the upper bound of g indi-
cates the largest possible discriminative score that could
be achieved by g’s supergraphs. Let Gp and Gn be posi-
tive graph set and negative graph set, respectively. Since

∀g ⊆t g′, freq(Gp, g′) ≤ freq(Gp, g) and freq(Gn, g′) ≥ 0, we
can derive the following upper bound,

F
(
freq(Gp, g

′), freq(Gn, g
′)
)
≤ F

(
freq(Gp, g), 0

)
.

This upper bound is theoretically tight; however, it is in-
effective for pruning in practice [27]. In the rest of this
section, we discuss general pruning opportunities inspired
by temporal sub-relations.

4.2 Pruning by Temporal Sub-relations

Figure 6: An example of residual graph

For a temporal graph pattern, we denote the graph data
that need to be considered for growing this pattern as a set
of residual graphs.

Let G′ be a subgraph of G. If we remove the edges in
G whose timestamps are no larger than the largest edge
timestamp in G′, then we form a residual graph.

Residual graph. Given a temporal graph G =
(V,E,A, T) and its subgraph G′ = (V ′, E′, A′, T ′),
R(G,G′) = (VR, ER, AR, TR) is G’s residual graph with
respect to G′, where (1) ER ⊂ E satisfies ∀(u1, v1, t1) ∈
ER, (u2, v2, t2) ∈ E′, t1 > t2; and (2) VR is the set of nodes
that are associated with edges in ER. The size of R(G,G′)
is defined as |R(G,G′)| = |ER| (i.e., the number of edges in
R(G,G′)).

Given a residual graph R(G,G′), its residual node label
set is defined as LR(G,G′) = {AR(u) | ∀u ∈ VR}.

Figure 6 demonstrates an example of residual graph,
where G′ is a subgraph of G, R(G,G′) is G’s residual graph
with respect to G′, and LR(G,G′) is its residual node set.

Let M(G, g) be a set including all the subgraphs in G
that match a temporal graph pattern g. Given Gp and g,
we define positive residual graph set R(Gp, g) as

R(Gp, g) =
⋃

G∈Gp

{R(G,G′) | G′ ∈ M(G, g)}.

Given R(Gp, g), its residual node label set L(Gp, g) is de-
fined as

L(Gp, g) =
⋃

G∈Gp

⋃

G′∈M(G,g)

LR(G,G′).

Similarly, we can define negative residual graph set
R(Gn, g) and its residual node label set L(Gn, g).

Next, we introduce another important property that helps
us identify pruning opportunities.

Proposition 1. Given a temporal graph set G and two
temporal graph patterns g1 ⊆t g2, if R(G, g1) = R(G, g2),
then the node mapping between g1 and g2 is unique.

Proof. We sketch the proof as follows. First, we prove
if the node mapping between g1 and g2 is not unique, any
match for g2 includes multiple matches for g1. Then we
prove if any match for g2 includes multiple matches for g1,

R(G, g1) = R(G, g2) will never be true. The detailed proof
is stated in Appendix E [37].

In the following, we present subgraph pruning and super-
graph pruning. In the following discussion, for a temporal
graph pattern g, we use g’s branch to refer to the space of
patterns that are grown from g, and use F ∗ to denote the
largest discriminative score discovered so far.

Let g1 and g2 be temporal graph patterns where g1 is
discovered before g2. If (1) g2 is a temporal subgraph of g1;
(2) they share identical positive residual graph sets; and (3)
for those nodes in g1 that cannot match to any nodes in g2,
their labels never appear in g2’s residual node label set, then
we can conduct subgraph pruning on g2.

Subgraph pruning. Given a discovered pattern g1 =
(V1, E1, A1, T1) and a pattern g2 of node set V2, if (1) g2 ⊆t

g1, (2) R(Gp, g2) = R(Gp, g1), and (3) L(Gp, g2)∩Lg1\g2 = ∅
(where Lg1\g2 = {A1(u) | ∀u ∈ V1 \ V ′

1} and V ′
1 ⊆ V1 is the

set of nodes that map to nodes in V2), we can prune the
search on g2’s branch, if the largest discriminative score for
patterns in g1’s branch is smaller than F ∗.

Ø
g2

Figure 7: Subgraph pruning

Figure 7 illustrates the idea in subgraph pruning. In the
mining process, we reach a pattern g2, and we also notice
that there exists a discovered pattern g1, which satisfies the
conditions in subgraph pruning. Therefore, pattern growth
in g1’s branch suggests how to grow g2 to larger patterns
(e.g., growing g1 to g′1 indicates we can grow g2 to g′2). Since
none of the patterns in g1’s branch have the score F ∗, the
patterns in g2’s branch cannot be the most discriminative
ones as well, which can be safely pruned.

Lemma 4. Subgraph pruning prunes pattern space with-
out missing any of the most discriminative patterns.

Proof. The proof is detailed in Appendix F [37].

Similar to subgraph pruning, we can perform supergraph
pruning. Let g1 and g2 be temporal graph patterns where
g1 is discovered before g2. If (1) g1 is a temporal subgraph
of g2, (2) they share identical positive and negative residual
graph sets, and (3) they have the same number of nodes, we
can conduct supergraph pruning on g2.

Supergraph pruning. Given two patterns g1 and g2,
where g1 is discovered before g2 and g2 is not grown from g1,
if (1) g2 ⊇t g1, (2) R(Gp, g2) = R(Gp, g1), (3) R(Gn, g2) =
R(Gn, g1), and (4) g2 and g1 have the same number of nodes,
the search in g2’s branch can be safely pruned, if the largest
discriminative score for g1’s branch is smaller than F ∗.

Figure 8 demonstrates the idea in supergraph pruning. In
the mining process, a temporal graph pattern g2 is reached,

Ø

g2
A

A

1

2 C

E
3

...

g1

...

A

A

2

3 C

E
4

1

A

A

1

2 C

E
3

A

A

1

2 C

E
3

A

A

2

3 C

E
4

1 A

A

2

3 C

E
4

14
4... ...5 5

Figure 8: Supergraph pruning

and there is another pattern g1 discovered before g2, which
satisfies the conditions in supergraph pruning. Therefore,
the growth knowledge in g1’s branch suggests how to grow g2
to larger patterns. Since none of the patterns in g1’s branch
are the most discriminative, we can infer the patterns in
g2’s branch are unpromising as well, and the search in g2’s
branch can be safely pruned.

Proposition 2. Supergraph pruning prunes pattern
space without missing the most discriminative patterns.

Proof. The proof is detailed in Appendix G [37].

Lemma 4 and Proposition 2 lead to the following theory.

Theorem 2. Performing subgraph pruning and super-
graph pruning guarantees the most discriminative patterns
will still be preserved.

Theorem 2 identifies general cases where we can conduct
pruning in temporal graph space; however, it works only if
the overhead for discovering these pruning opportunities is
small enough. The major overhead of subgraph pruning and
supergraph pruning comes from two sources: (1) temporal
subgraph tests (e.g., g2 ⊆t g1), and (2) residual graph set
equivalence tests (e.g., R(Gp, g2) = R(Gp, g1)). For exam-
ple, to mine patterns for “sshd-login” behavior, the mining
process involves more than 70M temporal subgraph tests
and 400M residual graph set equivalence tests. These over-
head is not negligible, and it significantly degrades the effi-
ciency of the pruning algorithm. Next, we investigate how
to minimize these overhead.

4.3 Temporal Subgraph Test
In this section, we discuss how to leverage the temporal

information in graphs to minimize the overhead from tem-
poral subgraph tests. First, we propose an encoding scheme
that represent temporal graphs by sequences. Second, we
develop a light-weight algorithm based on subsequence tests.

Similar to subgraph test for non-temporal graphs, it is
difficult to efficiently perform temporal subgraph tests.

Proposition 3. Given two temporal graphs g and g′, it
is NP-complete to decide g ⊆t g

′.

Proof. We sketch the proof as follows. First, we prove
the NP-hardness by reducing clique problem [15] to tempo-
ral subgraph test problem. By transforming non-temporal
graphs into temporal graphs in polynomial time, we show
we solve clique problem by temporal subgraph tests, which
implies temporal subgraph test problem is at least as hard

as clique problem. Second, we prove temporal subgraph test
problem is NP by showing we can verify its solution in poly-
nomial time. The proof is detailed in Appendix H [37].

While existing algorithms [5, 21, 32] for non-temporal sub-
graphs provide possible solutions, temporal information in
graphs suggests the existence of a faster solution.

1. Since edges are totally ordered in temporal graphs, it
is possible to encode temporal graphs into sequences.

2. After temporal graphs are represented as sequences,
it is possible to enable faster temporal subgraph tests
using efficient subsequence tests.

Based on these insights, we propose a light-weight tempo-
ral subgraph test algorithm. In particular, this algorithm
consists of two components: (1) a sequence-based tempo-
ral graph representation, and (2) a temporal subgraph test
algorithm based on subsequence tests.

Before we dive into the technical details, we review the
definition of subsequence. Let s1 = (a1, a2, ..., an) and s2 =
(b1, b2, ..., bm) be two sequences. If there exist 1 ≤ i1 <
i2 < ... < in ≤ m such that ∀1 ≤ j ≤ n, aj = bij , s1 is a
subsequence of s2, denoted as s1 ⊑ s2.

Sequence-based representation. A temporal graph
pattern g can be represented by two sequences.

• Node sequence nodeseq(g) is a sequence of labeled
nodes. Given g is traversed by its edge temporal order,
nodes in nodeseq(g) are ordered by their first visited
time. Any node of g appears only once in nodeseq(g).

• Edge sequence edgeseq(g) is a sequence of edges in g,
where edges are ordered by their timestamps;

Figure 9: Sequence-based temporal graph represen-
tation and temporal subgraph tests

Figure 9 illustrates examples of sequence-based represen-
tation. In g1 and g2, node labels are represented by let-
ters, and nodes of the same labels are differentiated by their
node IDs represented by integers in brackets. Node labels
in nodeseq are associated with node IDs as subscripts. Note
that when we compare node labels, their subscripts will be
ignored (i.e., ∀i, j, Bi = Bj). Each edge in edgeseq is repre-
sented by the following format (id(u), id(v)), where id(u) is
the source node ID and id(v) is the destination node ID.

Given two temporal graphs g1 and g2, if g1 ⊆t g2,
we expect nodeseq(g1) ⊑ nodeseq(g2) and edgeseq(g1) ⊑
edgeseq(g2). However, when g1 ⊆t g2, nodeseq(g1) ⊑
nodeseq(g2) may not be true. As shown in Figure 9,
nodeseq(g1) ̸⊑ nodeseq(g2) because the first visited time of
the node with label E is inconsistent in g1 and g2.

To address this issue, we propose enhanced node sequence
enhseq. Let g be a temporal graph. enhseq(g) is a se-
quence of labeled nodes in g. Given g is traversed by its
edge temporal order, enhseq(g) is constructed by process-
ing each edge (u, v, t) as follows. (1) If u is the last added
node in the current enhseq(g), or u is the source node of the
last processed edge, u will be skipped; otherwise, u will be
added into enhseq(g). (2) Node v will be always added into
enhseq(g). Note that nodes in g might appear multiple times
in enhseq(g). Figure 9 shows the enhanced node sequences
of g1 and g2.

With the support from enhanced node sequence, we are
ready to build the connection between temporal subgraph
tests and subsequence tests.

Lemma 5. Two temporal graphs g1 ⊆t g2 if and only if

1. nodeseq(g1) ⊑ enhseq(g2), where the underlying match
forms an injective node mapping fs from nodes in g1
to nodes in g2;

2. fs(edgeseq(g1)) ⊑ edgeseq(g2), where fs(edgeseq(g1))
is an edge sequence where the nodes in g1 are replaced
by the nodes in g2 via the node mapping fs.

Proof. The proof is detailed in Appendix I [37].

As shown in Figure 9, g1 and g2 are two temporal graphs
satisfying g1 ⊆t g2. The node sequence of g1 is a subse-
quence of the enhanced node sequence of g2 with the in-
jective node mapping fs(1) = 1, fs(2) = 5, fs(3) = 6,
and fs(4) = 4. Therefore, we obtain fs(edgeseq(g1)) =
⟨(1, 5), (5, 6), (4, 6)⟩ so that fs(edgeseq(g1)) ⊑ edgeseq(g2).

Subsequence-test based algorithm. A temporal sub-
graph test algorithm is derived from Lemma 5. Given tem-
poral graphs g1 and g2, the algorithm performs as follows.

1. Search an injective node mapping fs between g1 and
g2 such that nodeseq(g1) ⊑ enhseq(g2);

2. Test whether fs(edgeseq(g1)) ⊑ edgeseq(g2). If yes,
the algorithm terminates and returns g1 ⊆t g2; other-
wise, the algorithm searches next qualified node map-
ping. If such a node mapping exists, repeat step 1 and
2; otherwise, the algorithm terminates with g1 !t g2.

Although we can perform subsequence tests in linear time,
many possible node mappings may exist. Among all the pos-
sible mappings, a large amount of them are false mappings,
which are not injective. To further improve the speed, we
adapt existing pruning techniques for subsequence match-
ing to temporal subgraph tests. The idea is to identify false
mappings as early as possible by leveraging node labels, local
neighborhood information, and processed prefixes as condi-
tions to prune unpromising search branches. We detail these
pruning techniques in Appendix J [37].

4.4 Residual Graph Set Equivalence
In this section, we discuss how to efficiently test equiva-

lent residual graph sets by leveraging temporal information
in graphs. A naive approach applies a linear scan algorithm.
Since residual graph set equivalence tests are frequently em-
ployed by subgraph and supergraph pruning, repeated linear
scans causes significant overhead and suffers poor efficiency.

Let g1 and g2 be temporal graph patterns. Consider G′
1

and G′
2 are the matches of g1 and g2 in G, respectively. Since

edges in temporal graphs are totally ordered, we can derive
the following result: R(G,G′

1) is equivalent to R(G,G′
2) if

and only if |R(G,G′
1)| = |R(G,G′

2)|. Thus, we can efficiently
conduct residual graph set equivalence tests as follows.

Lemma 6. Given temporal graph patterns g1 and g2 with
g1 ⊆t g2, and a set of graphs G, R(G, g1) = R(G, g2) if and
only if I(G, g1) = I(G, g2), where

I(G, gi) =
∑

R(G,G′)∈R(G,gi)

|R(G,G′)|.

Proof. The proof is detailed in Appendix K [37].

Remark. We only need to pre-compute I(G, g) once by a
linear scan over R(G, g), and the following residual graph
set equivalence tests are performed in constant time.

5. DISCUSSION: CONCURRENT EDGES
In a system with parallelism and concurrency, its monitor-

ing data may generate concurrent edges (i.e., edges sharing
identical timestamps). In the following, we discuss how our
technique can handle such cases.

First, we can extend TGMiner to mine patterns of concur-
rent edges by the following modifications.

• For temporal graph representation, instead of using
a sequence of edges, we use a sequence of concurrent
subgraphs, each of which includes all the edges sharing
identical timestamps.

• In terms of pattern growth, if the added edge has a
larger timestamp compared with the last added edge,
follow the growth algorithm in TGMiner; if the added
edge share the same timestamp with the last added
edge, follow the growth algorithm in gSpan [28]; and we
never add edges with smaller timestamps. To avoid re-
peated patterns, each concurrent subgraph is encoded
by canonical labeling.

• For subgraph tests in pruning, we need to replace node
matching based on labels with concurrent subgraph
matching based on subgraph isomorphism, and ensure
node mappings are injective.

Note that the computation complexity in the extended
TGMiner will be increased, as the costly subgraph isomor-
phism is unavoidable for dealing with the non-temporal
graphs formed by concurrent edges.

Second, instead of modifying the mining algorithm, we can
transform concurrent edges into total-ordered edges. De-
spite of the existence of concurrency, data collectors can
sequentialize concurrent events based on pre-defined poli-
cies [25, 36] (e.g., randomly assigning a total time order
for concurrent edges). In this way, we use the monitoring
data with an artificial total order to approximate the original
data, and apply TGMiner without modification. When there
are a small portion of concurrent edges with minor accuracy
loss, this method benefits the efficiency of TGMiner.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed algorithms for

behavior query discovery using real system activity data
(i.e., syscall logs). In particular, we focus on two aspects:
(1) the effectiveness of the behavior queries found by our al-
gorithms, and (2) the efficiency of the proposed algorithms.

6.1 Setup
We start with the description for the datasets investigated

in our experimental study.

Behavior Avg. #nodes Avg. #edges Total #labels Size

bzip2-decompress 11 12 15 small
gzip-decompress 10 12 7 small
wget-download 33 40 92 small
ftp-download 30 61 39 small
scp-download 50 106 68 medium
gcc-compile 65 122 94 medium
g++-compile 67 117 100 medium
ftpd-login 28 103 119 medium
ssh-login 66 161 94 medium
sshd-login 281 730 269 large

apt-get-update 209 994 203 large
apt-get-install 1006 1879 272 large
background 172 749 9065 –

Table 1: Statistics in training data

Training data. We collect 13 datasets with in total
11, 200 temporal graphs to mine behavior queries for 12 dif-
ferent behaviors. In total, it contains 1, 905, 621 nodes and
7, 923, 788 edges derived from the syscall logs including be-
haviors of interest and background system activities.

We focus on 12 behaviors as representatives for the ba-
sic behaviors that have drawn attention in cybersecurity
study [2, 3, 30]. For each behavior, we collect 100 temporal
graphs based on the syscall logs generated from 100 inde-
pendent executions of the behavior, as we find the sample
size of 100 already achieves good precision (97%) and recall
(91%). For background system activities, 10, 000 temporal
graphs are sampled from 7 days’ syscall logs generated by a
server without performing any target behaviors.

The statistics of the training data are shown in Table 1.
Although the size of a single temporal graph is not large, we
find discriminative patterns within the data can involve up
to 45 edges, which is a large number for pattern mining prob-
lems because of the exponential number of sub-patterns.

To evaluate how the effectiveness and efficiency are af-
fected by different amounts of training data, we vary the
amount of used training data from 0.01 to 1.0, where 0.01
means 1% of training data are used for behavior query dis-
covery, and 1.0 means we consider all the data.

In addition, we generate synthetic datasets to evaluate the
scalability of TGMiner. The synthetic datasets are created
based on the training data: we generate datasets SYN-2,
SYN-4, SYN-6, SYN-8, and SYN-10 by replicating each graph
in the training data 2, 4, 6, 8, and 10 times, respectively.

Test data. Test data are used to evaluate the accuracy
of the behavior queries found by our algorithms. They are
obtained from an independent data collection process: we
collect another seven days’ syscall log data, which forms a
large temporal graph with 2, 352, 204 nodes and 15, 035, 423
edges. The test data contain 10, 000 behavior instances of
the 12 target behaviors. Note that our focus in this paper
is query formulation instead of pattern query processing.
Based on the patterns discovered from training data, we
formulate behavior queries, and search their existence from
the test data by existing techniques [35].

More details about training/test data collection are pre-
sented in Appendix L [37].

Implementation. For effectiveness, we consider Ntemp
and NodeSet as baselines. (1) Ntemp employs non-temporal
graph patterns for behavior query discovery. In particu-
lar, we remove all the temporal information in the train-

ing data, apply existing algorithms [10] to mine discrimina-
tive non-temporal graph patterns for each behavior, and use
the discovered patterns to formulate non-temporal behavior
queries. (2) NodeSet searches behavior instances by key-
word queries using a set of discriminative node labels. The
discriminativeness of a node label is measured by the same
score function F (x, y) for temporal graph patterns. Top-k
discriminative node labels are selected for a query of k node
labels. A match of a query is a set of k nodes, where its
node label set is identical to the node label set specified in
the query, and its spanned time interval is no longer than
the longest observed lifetime of the target behavior.

For efficiency, we implement five baseline algorithms
to demonstrate the contributions of each component in
TGMiner. All the baselines apply the proposed pattern
growth algorithm and the naive pruning condition stated
in Section 4.1. (1) SubPrune employs the pruning condition
in Lemma 4. (2) SupPrune considers the pruning condition
in Proposition 2. (3) PruneGI uses all the pruning conditions
but applies a graph index based algorithm for temporal sub-
graph tests. In particular, we index one-edge substructures,
and use efficient algorithms to join partial matches into full
matches [35]. (4) PruneVF2 considers all the pruning condi-
tions but performs temporal subgraph tests by a modified
VF2 algorithm [5]. (5) LinearScan uses all the pruning con-
ditions but performs residual graph set equivalence tests via
a linear scan algorithm.

In addition, we employ information gain, G-test [27], as
well as the function F (x, y) = log (x/(y + ϵ)) (ϵ is set to
10−6) adopted in [10] as discriminative score functions. In
our experiment, we find these score functions deliver a com-
mon set of discriminative patterns.

All the algorithms are implemented in C++ with GCC
4.8.2, and all the experiments are performed on a server with
Ubuntu 14.04, powered by an Intel Core i7-2620M 2.7GHz
CPU and 32GB of RAM. Each experiment is repeated 10
times, and their average results are presented.

6.2 Effectiveness of Behavior Queries
We evaluate the effectiveness of TGMiner from three as-

pects. (1) For different behaviors, how accurately can behav-
ior queries suggested by TGMiner search behavior instances
from system activity data? (2) How does query accuracy
vary when pattern size in queries changes? (3) How does
the amount of training data affect query accuracy?

Precision and recall are used as the metrics to evaluate the
accuracy. Given a target behavior and its behavior query, a
match of this behavior query is called an identified instance.
An identified instance is correct, if the time interval during
which the match happened is fully contained in a time in-
terval during which one of the true behavior instances was
under execution. A behavior instance is discovered, if the
behavior query can return at least one correct identified in-
stance with respect to this behavior instance. The precision
and recall of a behavior query are defined as follows.

precision =
#correctly identified instances
total #identified instances

,

recall =
#discovered instances
#behavior instances

.

Note that when TGMiner returns multiple discriminative
patterns that have the same highest discriminative score,
the returned patterns are further ranked by a score function

based on domain knowledge. From all the discriminative
patterns, top-5 patterns are used to build behavior queries.
The details about the domain knowledge based score func-
tion is discussed in Appendix M [37].

Figure 10: Discovered discriminative patterns

Figure 10 illustrates a few discovered discriminative pat-
terns. For sshd-login behavior, the unique interaction pat-
tern among system entities makes it accurate for search pur-
pose. Note that this pattern does not include any node
with “sshd” in the label. This indicates that keyword-based
techniques that simply use application names as keywords
(e.g., sshd) cannot find such highly accurate patterns. For
file download behaviors, it is the distinct patterns of how
to access libraries and sockets that differentiate wget-based
download from ftp-based download.

Metric Precision (%) Recall (%)
Algorithm NodeSet Ntemp TGMiner NodeSet Ntemp TGMiner

bzip2-decompress 100 100 100 100 100 100
gzip-decompress 96.6 100 100 100 100 100
wget-download 96.5 100 100 93.6 93.4 93.4
ftp-download 100 100 100 100 96.1 96.1
scp-download 13.8 59.4 100 11.2 91.3 91.3
gcc-compile 69.7 81.2 94.3 89.2 89.4 87.6
g++-compile 73.4 91.3 95.2 84.5 85.3 85.3
ftpd-login 76.6 81.8 94.1 100 89.7 86.8
ssh-login 33.8 64.3 93.9 78.7 87.2 85.9
sshd-login 43.4 59.6 99.9 99.8 99.9 99.9

apt-get-update 50.3 79.3 95.9 47.6 84.5 82.4
apt-get-install 68.3 81.7 95.7 35.6 86.3 83.9

Average 68.5 83.2 97.4 78.4 91.9 91.1

Table 2: Query accuracy on different behaviors

Table 2 shows the precision and recall of behavior queries
on all the 12 behaviors. The size (i.e., the number of edges)
of the behavior queries suggested by TGMiner and Ntemp
is fixed as 6, using all the training data. NodeSet employs
the top-6 discriminative node labels to query each behavior.
First, the behavior queries suggested by TGMiner accurately
discover behavior instances. Over all the behaviors, its aver-
age precision and recall are 97.4% and 91.1%, respectively.
Second, the queries provided by Ntemp only achieve 83.2%
of precision, suffering significantly higher false positive rate.
This result indicates the importance of temporal information
in searching system behaviors. Third, the queries suggested
by TGMiner consistently outperform the queries formed by
NodeSet. These results confirm that temporal graph pat-
terns discovered by TGMiner provide high-quality skeletons
to formulate accurate behavior queries.

Figure 11 demonstrates how the precision and recall of be-
havior queries suggested by TGMiner vary while their query
size ranges from 1 to 10. All the training data were used in
this experiment, and the average precision and recall over
all the behaviors are reported. First, when the query size
increases, the precision increases, but the recall decreases.
In general, increasing behavior query size improves query

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 a

cc
ur

ac
y

Behavior query size (#edges)

Precision Recall

Figure 11: Query accuracy with different query sizes

precision at the cost of a slightly higher false negative rate.
Second, when the query size goes beyond 6, we observe little
improvement on precision or loss on recall.

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

0.01 0.20 0.40 0.60 0.80 1.00

Q
ue

ry
 a

cc
ur

ac
y

Amount of used training data

Precision Recall

Figure 12: Query accuracy with different amounts
of used training data

Figure 12 suggests how precision and recall of behavior
queries vary as the amount of used training data is changed
from 0.01 to 1.0. Note that behavior query size is fixed as
6, and the average precision and recall over all the behav-
iors are presented. First, more training data bring higher
precision and recall. For example, when the amount of used
training data increases from 0.01 to 1.0, the precision of
the constructed behavior queries increase from 91% to 97%.
Second, when the amount of used training data increases, we
observe a diminishing return for both precision and recall.

6.3 Efficiency in Behavior Query Discovery
The efficiency of TGMiner is evaluated from two aspects.

(1) How is the efficiency of TGMiner compared with baseline
algorithms? (2) How is the efficiency of TGMiner affected by
different amounts of used training data? Note that behavior
query discovery is an offline step: we only need to mine
patterns once, and then use the patterns to formulate queries
serving online search demands.

Response time is used as the metric to evaluate the effi-
ciency. Given input temporal graph sets, the response time
of an algorithm is the amount of time the algorithm spends
in mining all discriminative patterns.

Figure 13 demonstrates response time of all algorithms
over small, medium, and large size behaviors as categorized

in Table 1. All the training data are used in this experiment,
and the discovered patterns have up to 45 edges.

First, TGMiner consistently outperforms the baseline algo-
rithms over all the target behaviors. TGMiner is up to 50 and
4 times faster than SubPrune and SupPrune. SupPrune can-
not finish the mining tasks for medium and large behaviors
within 2 days. We notice most of the pruning opportuni-
ties come from subgraph pruning, while supergraph pruning
brings additional performance improvement.

Second, TGMiner performs up to 6, 17, and 32 times
faster than PruneGI, LinearScan, and PruneVF2, respectively.
PruneGI has to frequently build graph indexes for each dis-
covered patterns during the whole mining process, which in-
volves high overhead. Indeed, graph indexing is more suit-
able for querying large graphs, where we can build graph
indexes offline. In our case, a light-weighted temporal sub-
graph test algorithm performs better. In sum, the perfor-
mance improvement highlights the importance of minimiz-
ing the overhead in temporal subgraph tests and residual
graph set equivalence tests.

Third, for small, medium, and large behaviors, TGMiner
can complete mining tasks within 6 seconds, 4 minutes, and
26 minutes, respectively. We also noticed that TGMiner
mines all discriminative patterns with no more than 6 edges
within one minute for all the behaviors, while 6-edge pat-
terns can achieve good search accuracy as shown before.

Figure 14 presents the response time of TGMiner as the
size of the largest patterns that are allowed to explore is
set to 5, 15, 25, 35, and 45. When the size increases, the
response time of TGMiner increases. When the size is set
as 5, TGMiner can finish the mining tasks within 10 seconds
for all the behaviors,.

Pruning Condition Small Medium Large

Subgraph pruning 71.8% 61.0% 62.2%
Supergraph pruning 1.1% 8.3% 4.2%

Table 3: Empirical probabilities that pruning condi-
tions are triggered on behaviors of different sizes

Table 3 shows the empirical probabilities that subgraph
and supergraph pruning are triggered when TGMiner is pro-
cessing a pattern for behaviors of different sizes. The high
trigger rate of subgraph pruning is consistent over all the
behaviors, which explains its high pruning power.

Figure 15 shows how the response time of TGMiner is af-
fected by using different amounts of training data. Ranging
from 0.01 to 1.0, the response time of TGMiner increases lin-
early when more training data is considered. The scalability
test on synthetic datasets (detailed in Appendix N [37]) also
shows that the response time of TGMiner linearly scales with
the size of training data. From the training data with up to
20M nodes and 80M edges, TGMiner can mine all discrimi-
native patterns of up to 45 edges within 3 hours.

6.4 Summary
The experimental results are summarized as follows.

First, behavior queries discovered by TGMiner achieve high
precision (97%) and recall (91%), while the baseline algo-
rithms Ntemp and NodeSet suffers poor accuracy. Second,
TGMiner consistently outperforms the baseline algorithms
in terms of efficiency, and is up to 6, 17, and 32 times faster
than PruneGI, LinearScan, and PruneVF2, respectively.

 0
 50

 100
 150
 200
 250
 300
 350
 400

R
es

po
ns

e
tim

e
(s

ec
on

d)

Mining Algorithms

TGMiner
PruneGI

SubPrune
LinearScan

PruneVF
SupPrune

(a) Small behavior traces

 0

 1000

 2000

 3000

 4000

 5000

 6000

R
es

po
ns

e
tim

e
(s

ec
on

d)

Mining Algorithms

TGMiner
PruneGI

SubPrune
LinearScan

PruneVF

(b) Medium behavior traces

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

R
es

po
ns

e
tim

e
(s

ec
on

d)

Mining Algorithms

TGMiner
PruneGI

SubPrune
LinearScan

PruneVF

(c) Large behavior traces

Figure 13: Response time for behaviors of different sizes

100

101

102

103

104

105

 0 10 20 30 40 50

R
es

po
ns

e
tim

e
(s

ec
on

d)

Size of largest pattern

Large
Medium

Small

Figure 14: Response time by varying the size of the
largest patterns that are allowed to explore

100

101

102

103

104

105

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(s

ec
on

d)

Amount of used training data

Large
Medium

Small

Figure 15: Response time by varying the amount of
used training data

7. RELATED WORK

7.1 Discriminative Graph Pattern Mining
Discriminative graph pattern mining is one of the feature

selection methods that is widely applied in a variety of graph
classification tasks [18, 22, 27].

In general, two directions have been investigated to speed
up mining discriminative non-temporal graph patterns. One
direction is to find discriminative patterns early such that
unpromising search branches can be pruned early [27]. The
other direction relies on approximate search that finds good-
enough graph patterns [10]. In addition, a few studies [17,
24] focus on mining patterns from graph snapshots.

It is difficult to extend existing work on non-temporal
graphs to mine temporal graph patterns. The key problem
is how to deal with timestamps in the mining process.

One possibility is to ignore timestamps: mine discrimi-
native non-temporal patterns by existing approaches, and
then use timestamps to find discriminative temporal pat-
terns from the non-temporal patterns. This method has two
drawbacks. First, since canonical labeling on non-temporal
graphs [10, 28] have difficulties in dealing with multi-edges,
we have to collapse multi-edges into a single edge. In this
way, the final result will be partial, as it excludes patterns
with multi-edges. Second, a large number of temporal pat-
terns may share the same non-temporal patterns, and a dis-
criminative non-temporal pattern may result in no discrim-
inative temporal pattern. The redundancy in non-temporal
patterns will bring potential scalability problems.

Another possibility is to consider timestamps as labels.
The temporal patterns discussed in this paper focus on the
temporal order instead of exact timestamps. Therefore, it is
difficult to mine the desired patterns by the approaches for
non-temporal patterns.

Our work is different from existing works. First, unlike ex-
isting studies that mainly deal with non-temporal graphs, we
propose a solution to temporal graphs. Second, compared
with existing works on graph snapshots, we study more flex-
ible temporal graph patterns. The graph patterns defined
in [17, 24] are too rigid to support system management.

7.2 Temporal Graph Management
Recent studies on temporal graphs strive to develop cost-

effective solutions to management problems.
There have been a few works on developing more efficient

index-free algorithms for time-dependent shortest-path [29],
minimum temporal path [26], and anomaly detection [20].

Graph indexing, compression, and partitioning have been
proposed to accelerate query processing for subgraph match-
ing [35], reachability [34], community searching [9], and
neighborhood aggregation [16]. Incremental computa-
tion has been investigated for queries including shortest-
path [19], SimRank [31], and cluster searching [14]. In ad-
dition, Gao et al. [6] exploited distributed computation to
monitor subgraph matching queries.

Data storage is a critical component in temporal graph
management. Chronos [7] investigated temporal data local-
ity for query processing. Efficient ways to store and retrieve
graph snapshots have been studied in [11, 13].

Unlike these works, our focus is to develop cost-effective
algorithms that help users formulate meaningful temporal
graph queries, bridging the gap between users’ knowledge
and temporal graph data.

8. CONCLUSION
Computer system monitoring generates huge temporal

graphs that record the interaction of system entities. While
these graphs are promising for system experts to query be-
haviors for system management, it is also difficult for them
to compose queries as it involves many tedious low-level sys-
tem entities. We formulated this query formulation problem
as a discriminative temporal graph mining problem, and
introduced TGMiner to mine discriminative patterns that
can be taken as query templates for building more complex
queries. TGMiner leverages temporal information in graphs
to enable efficient pattern space exploration and prune un-
promising search branches. Experimental results on real sys-
tem data show that TGMiner is 6-32 times faster than base-
line methods. Moreover, the discovered patterns were veri-
fied by system experts: they achieved high precision (97%)
and recall (91%).

Acknowledgement. We would like to thank the anony-
mous reviewers for the helpful comments on earlier versions
of the paper. This research was partially supported by the
Army Research Laboratory under cooperative agreements
W911NF-09-2-0053 (NS-CTA), NSF IIS-1219254, and NSF
IIS-0954125. The views and conclusions contained herein
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notice herein.

9. REFERENCES
[1] Splunk. http://www.splunk.com/.
[2] Ssh brute force - the 10 year old attack that still persists.

http://blog.sucuri.net/2013/07/.
[3] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and

C. Kruegel. A view on current malware behaviors. In
LEET, 2009.

[4] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls
and Internet Security: Repelling the Wily Hacker. 2003.

[5] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub) graph isomorphism algorithm for matching large
graphs. TPAMI, pages 1367–1372, 2004.

[6] J. Gao, C. Zhou, J. Zhou, and J. X. Yu. Continuous
pattern detection over billion-edge graph using distributed
framework. In ICDE, pages 556–567, 2014.

[7] W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen. Chronos: a graph
engine for temporal graph analysis. In EuroSys, pages 1–14,
2014.

[8] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
ICDM, pages 549–552, 2003.

[9] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs.
In SIGMOD, pages 1311–1322, 2014.

[10] N. Jin, C. Young, and W. Wang. Gaia: graph classification
using evolutionary computation. In SIGMOD, pages
879–890, 2010.

[11] U. Khurana and A. Deshpande. Efficient snapshot retrieval
over historical graph data. In ICDE, pages 997–1008, 2013.

[12] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen.
Enriching intrusion alerts through multi-host causality. In
NDSS, 2005.

[13] A. G. Labouseur, P. W. Olsen, and J.-H. Hwang. Scalable
and robust management of dynamic graph data. In BD3 at
VLDB, pages 43–48, 2013.

[14] P. Lee, L. V. Lakshmanan, and E. E. Milios. Incremental
cluster evolution tracking from highly dynamic network
data. In ICDE, pages 3–14, 2014.

[15] R. G. Michael and S. J. David. Computers and
intractability: a guide to the theory of np-completeness.
1979.

[16] J. Mondal and A. Deshpande. Eagr: Supporting continuous
ego-centric aggregate queries over large dynamic graphs. In
SIGMOD, pages 1335–1346, 2014.

[17] S. Ranu, M. Hoang, and A. Singh. Mining discriminative
subgraphs from global-state networks. In KDD, pages
509–517, 2013.

[18] S. Ranu and A. K. Singh. Graphsig: A scalable approach to
mining significant subgraphs in large graph databases. In
ICDE, pages 844–855, 2009.

[19] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying
historical evolving graph sequences. In VLDB, pages
726–737, 2011.

[20] K. Sricharan and K. Das. Localizing anomalous changes in
time-evolving graphs. In SIGMOD, pages 1347–1358, 2014.

[21] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient
subgraph matching on billion node graphs. In VLDB, pages
788–799, 2012.

[22] M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel,
A. J. Smola, L. Song, S. Y. Philip, X. Yan, and K. M.
Borgwardt. Near-optimal supervised feature selection
among frequent subgraphs. In SDM, pages 1076–1087, 2009.

[23] W. Venema. TCP wrapper: Network monitoring, access
control, and booby traps. In USENIX Security, 1992.

[24] B. Wackersreuther, P. Wackersreuther, A. Oswald,
C. Böhm, and K. M. Borgwardt. Frequent subgraph
discovery in dynamic networks. In MLG, pages 155–162,
2010.

[25] P. Wang, H. Wang, M. Liu, and W. Wang. An algorithmic
approach to event summarization. In SIGMOD, pages
183–194, 2010.

[26] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path
problems in temporal graphs. In VLDB, pages 721–732,
2014.

[27] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant
graph patterns by leap search. In SIGMOD, pages 433–444,
2008.

[28] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

[29] Y. Yang, H. Gao, J. X. Yu, and J. Li. Finding the
cost-optimal path with time constraint over time-dependent
graphs. In VLDB, pages 673–684, 2014.

[30] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS, pages 116–127,
2007.

[31] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank on
link-evolving graphs. In ICDE, pages 304–315, 2014.

[32] S. Zhang, J. Yang, and W. Jin. Sapper: subgraph indexing
and approximate matching in large graphs. In VLDB,
pages 1185–1194, 2010.

[33] Y. Zheng, H. Zhang, and Y. Yu. Detecting collective
anomalies from multiple spatio-temporal datasets across
different domains. In SIGSPATIAL, 2015.

[34] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability
queries on large dynamic graphs: A total order approach.
In SIGMOD, pages 1323–1334, 2014.

[35] B. Zong, R. Raghavendra, M. Srivatsa, X. Yan, A. K.
Singh, and K.-W. Lee. Cloud service placement via
subgraph matching. In ICDE, pages 832–843, 2014.

[36] B. Zong, Y. Wu, J. Song, A. K. Singh, H. Cam, J. Han,
and X. Yan. Towards scalable critical alert mining. In
KDD, pages 1057–1066, 2014.

[37] B. Zong, X. Xiao, Z. Li, Z. Wu, Z. Qian, X. Yan, A. K.
Singh, and G. Jiang. Behavior query discovery in
system-generated temporal graphs. arXiv:1511.05911.

