
Summarizing Answer Graphs Induced by Keyword Queries
Yinghui Wu1 Shengqi Yang1 Mudhakar Srivatsa2 Arun Iyengar2 Xifeng Yan1

1University of California Santa Barbara 2IBM Research

{yinghui, sqyang, xyan@}.cs.ucsb.edu msrivats, aruni@us.ibm.com

Abstract
Keyword search has been popularly used to query graph
data. Due to the lack of structure support, a keyword query
might generate an excessive number of matches, referred to
as “answer graphs”, that could include different relation-
ships among keywords. An ignored yet important task is
to group and summarize answer graphs that share similar
structures and contents for better query interpretation and
result understanding. This paper studies the summarization
problem for the answer graphs induced by a keyword query
Q. (1) A notion of summary graph is proposed to character-
ize the summarization of answer graphs. Given Q and a set
of answer graphs G, a summary graph preserves the relation
of the keywords in Q by summarizing the paths connecting
the keywords nodes in G. (2) A quality metric of summary
graphs, called coverage ratio, is developed to measure infor-
mation loss of summarization. (3) Based on the metric, a
set of summarization problems are formulated, which aim
to find minimized summary graphs with certain coverage
ratio. (a) We show that the complexity of these summa-
rization problems ranges from ptime to np-complete. (b)
We provide exact and heuristic summarization algorithms.
(4) Using real-life and synthetic graphs, we experimentally
verify the effectiveness and the efficiency of our techniques.

1. Introduction
Keyword queries have been widely used for querying graph

data, such as information networks, knowledge graphs, and
social networks [36]. A keyword query Q is a set of keywords
{k1, . . . , kn}. The evaluation of Q over graphs is to extract
data related with the keywords in Q [5, 36].

Various methods were developed to process keyword
queries. In practice, these methods typically generate a set
of graphs G induced by Q. Generally speaking, (a) the key-
words in Q correspond to a set of nodes in these graphs, and
(b) a path connecting two nodes related with keywords k1,
k2 in Q suggests how the keywords are connected, i.e., the
relationship between the keyword pair (k1, k2). We refer to
these graphs as answer graphs induced by Q. For example,
(1) a host of work on keyword querying [12,13,16,17,20,36]
defines the query results as answer graphs; (2) keyword
query interpretation [3,34] transforms a keyword query into
graph structured queries via the answer graphs extracted
for the keyword; (3) result summarization [15,22] generates
answer graphs as e.g., “snippets” for keyword query results.

Nevertheless, keyword queries usually generate a great
number of answer graphs (as intermediate or final results)
that are too many to inspect, due to the sheer volume of
data. This calls for effective techniques to summarize answer
graphs with representative structures and contents. Better
still, the summarization of answer graphs can be further
used for a range of important keyword search applications.
We briefly describe several key applications as follows.

keyword

 queries

structured/graph queries

 (SPARQL, pattern

 queries, XQuery...)

 keyword induced

graph summarization

query interpretation

query suggestion

query refinement
 query evaluation

result summarization

query transformation

(this paper)

Figure 1: Keyword induced graph summarization –
bridging keyword query and graph query

Enhance Search with Structure. It is known that there
is an usability-expressivity tradeoff between keyword query
and graph query [32] (as illustrated in Fig. 1). For search-
ing graph data, keyword queries are easy to formulate; how-
ever, they might be ambiguous due to the lack of struc-
ture support. In contrast, graph queries are more accurate
and selective, but difficult to describe. Query interpreta-
tion targets the trade-off by constructing graph queries, e.g.,
SPARQL [30], to find more accurate query results. Nev-
ertheless, there may exist many interpretations as answer
graphs for a single keyword query [8]. A summarization
technique may generate a small set of summary graphs, and
graph queries can be induced, or extracted from these sum-
maries. That is, a user can first submit keyword queries and
then pick up the desired graph queries, thus taking advan-
tage of both keyword query and graph query.

Improve Result Understanding and Query Refine-
ment. Due to query ambiguity and the sheer volume of
data, keyword query evaluation often generates a large num-
ber of results [15, 19]. This calls for effective methods to
summarize the query results, such that users may easily
understand the results without checking them one by one.
Moreover, users may inspect the summary to come up with
better queries that are e.g., less ambiguous, by checking the
connection of the keywords reflected in the summary. Based
on the summarization result, efficient query refinement and
suggestion techniques [23,29] may also be proposed.

Example 1: Consider a keyword query Q = { Jaguar, Amer-

ica, history } issued over a knowledge graph. Suppose there
are three graphs G1, G2 and G3 induced by the keywords
in Q as e.g., query results [16,20], as shown in Fig. 2. Each
node in an answer graph has a type, as well as its unique id.
It is either (a) a keyword node marked with ′∗′ (e.g.,Jaguar

XK∗) which corresponds to a keyword (e.g.,Jaguar), or (b) a
node connecting two keyword nodes.

Observe that for the same query, the induced graphs il-
lustrate different relations among the same keywords. For
example, G1 suggests that “Jaguar” is a brand of cars with
multiple offers in many cities of USA, while G3 suggests
that “Jaguar” is a kind of animals found in America. To
find out the answers the users need, reasonable graph struc-
tured queries are required for more accurate searching [3].
To this end, one may construct a summarization over the
answer graphs. Two summaries can be constructed as Gs1

1

G2

Q = 'Jaguar', 'America', 'history'

G1

(car)
Jaguar XJ*

Gs

company company...

history*city city...

offer offer...

United States

of America*
(country)

city city...

(car)
Jaguar XK*

(car)
Jaguar XK*

... (animal)
white Jaguar*

(animal)
black Jaguar*

north america*

(continent)

sorth america*

(continent)

history* history* habitat

G3

Q' = 'Jaguar', 'America'

offer company

'America'

'Jaguar'

city

'history'

Gs1 Gs2

'Jaguar'

'history'

'America' habitat

company

city
'Jaguar'

(car)

'Jaguar'
(animal)

'habitat'

(car)

(animal)

(country)
(continent)

1 n

1 m

1 k 1 p

1 l

'America'
(continent)

(country)

offer

United States

of America*
(country)

'America'

Figure 2: Keyword query over a knowledge graph

and Gs2 , which suggest two graph queries where “Jaguar”
refers to a brand of car, and a kind of animal, respectively.
Better still, by summarizing the relation between two key-
words, more useful information can be provided to the users.
For example, Gs1 suggests that users may search for “offers”
and “company” of “Jaguar”, as well as their locations.

Assume that the user wants to find out how “Jaguar” and
“America” are related in the search results. This requires a
summarization that only considers the connection between
the nodes containing the keywords. Graph Gs depicts such a
summarization: it shows that (1) “Jaguar” relates to “Amer-
ica” as a type of car produced and sold in cities of USA, or
(2) it is a kind of animal living in the continents of America.

The above scenarios show the need of summarization tech-
niques that preserve the connection for a set of keyword
pairs. Moreover, in practice users often place a budget for
the size of summarizations. This calls for quality metrics
and techniques to measure and generate summarizations,
constrained by the budgets. 2

This example suggests that we summarize answer graphs
G induced by a keyword query Q to help keyword query
processing. We ask the following questions. (1) How to
define a “query-aware” summarization of G in terms of Q?
(2) How to characterize the quality of the summarization?
(3) How to efficiently identify the summarization with high
quality under a budget constraint?

Contributions. This paper investigates the above prob-
lems for summarizing keyword induced answer graphs.

(1) We formulate the concept of answer graphs for a keyword
query Q (Section 2). To characterize the summarization
for answer graphs, we propose a notion of summary graph
(Section 2). Given Q and G, a summary graph captures the
relationship among the keywords from Q in G.

(2) We introduce quality metrics for summary graphs (Sec-
tion 3). One is defined as the size of a summary graph,
and the other is based on coverage ratio α, which measures
the number of keyword pairs a summary graph can cover by
summarizing pairwise relationships in G.

Based on the quality metrics, we introduce two sum-
marization problems (Section 3). Given Q and G, (a)
the α-summarization problem is to find a minimum sum-
mary graph with a certain coverage ratio α; we consider
1-summarization problem as its special case where α = 1;
(b) the K summarization problem is to identify K summary
graphs for G, where each one summarizes a subset of answer
graphs in G. We show that the complexity of these prob-

lems ranges from ptime to np-complete. For the np-hard
problems, they are also hard to approximate.

(3) We propose exact and heuristic algorithms for the sum-
marization problems. Specifically, (1) we show that for a
given keyword query Q and G, it is in quadratic time to
find a minimum 1-summarization, by providing such an al-
gorithm (Section 4); (2) we provide two heuristic algorithms
for the α-summarization (Section 4) and k summarization
problems (Section 5), respectively.

(4) We experimentally verify the effectiveness and efficiency
of our summarization techniques using both synthetic
data and real-life datasets. We find that our algorithms
effectively summarize the answer graphs. For example, they
generate summary graphs that cover every pair of keywords
with size in average 24% of the answer graphs. They
also scale well with the size of the answer graphs. These
effectively support summarization over answer graphs.

Related Work. We categorize related work as follows.

Graph Data Summarization. There has been a host of
work on general graph summarization techniques.

Graph summarization and minimization. [26,33,37] propose
graph summarization to approximately describe the topol-
ogy and content of graph data. These techniques are de-
signed for summarizing an entire graphs, rather than for a
set of graphs w.r.t. a keyword query. Indexing and summa-
rization techniques are developed based on (1) bisimulation
equivalence relation to preserve path information for every
pair of nodes in a graph [25], and (2) relaxed bisimulation
relation that preserves paths with length up to K [18, 25].
In addition, simulation based minimization [2] reduces a
transition system based on simulation equivalence relation.
In contrast, our work summarizes the paths that contain
keywords. Moreover, we introduce quality metrics and al-
gorithms to find summaries for specified keyword queries,
which is not studied in the prior work mentioned above.

Relation discovery. Relation discovery is to extract the re-
lations between keywords over a (single) graph [7, 16, 31].
[31] studies the problem to extract related information for a
single entity from a knowledge graph. [7] considers extract-
ing relationships for a pair of keywords. In contrast to these
studies, we summarize relationships as a summary graph for
a keyword query. In addition, users can place constraints
such as size and coverage ratio to identify summaries with
high quality, which are not addressed before.

Graph clustering. A number of graph clustering approaches
have also been proposed to group similar graphs [1]. As
remarked earlier, these techniques are not query-aware, and
may not be directly applied for summarizing query results
as graphs [21]. In contrast, we propose algorithms to (1)
group answer graphs in terms of a set of keywords, and (2)
find best summaries for each group.

Result Summarization. Result summarization over rela-
tional databases and XML are proposed to help users un-
derstand the query results. [15] generates summaries for
XML results as trees, where a snippet is produced for each
result tree. This may produce snippets with similar struc-
tures that should be grouped for better understanding [21].
To address this issue, [22] clusters the query results based
on the classification of their search predicates. Our work
differs in that (1) we generates summarizations as general

2

graphs, (2) in contrast to result snippets, we study how to
summarize answer graphs for keyword queries.

Application Scenarios. There have been a host of studies
on processing keyword queries that generate answer graphs.
Our work can be applied to these applications.

Keyword queries over graphs. Various methods are pro-
posed for keyword search over graphs, which typically re-
turn graphs that contain all the keywords [36]. For exam-
ple, an answer graph as a query result is represented by (1)
subtrees for XML data [12,13], or (2) subgraphs of schema-
free graphs [16,17,20]. The summarization techniques in our
work can be applied in these applications as post-processing,
to provide result summarizations [15].

Query interpretation. Keyword query interpretation trans-
forms a keyword query into graph structured queries, e.g.,
XPath queries [27], SPARQL queries [30], or a group of for-
mal queries [34] (see [3] for a survey). The summary graphs
proposed in this work can be used to suggest e.g., formal
queries for keyword queries, or graph queries themselves.

Query expansion. [23] considers generating suggested key-
word queries from a set of clustered query results. [29]
studies the keyword query expansion that extends the orig-
inal queries with “surprising words” as additional search
items. Neither considers structured expansions. Our work
produces structural summaries that not only include key-
words and their relationships, but also a set of highly related
nodes and relations, which could provide good suggestions
for query refinement (Section 6).

2. Answer Graphs and Summarizations
In this section, we formulate the concept of answer graphs

induced by keyword queries, and their summarizations.

2.1 Keyword Induced Answer Graphs

Answer graphs. Given a keyword query Q as a set of key-
words {k1, . . . , kn} [36], an answer graph induced by Q is
a connected undirected graph G = (V, E, L), where V is a
node set, E ⊆ V ×V is an edge set, and L is a labeling func-
tion which assigns, for each node v, a label L(v) and a unique
identity. In practice, the node labels may represent the type
information in e.g., RDF [16], or node attributes [37]. The
node identity may represent a name, a property value, a
URI, e.g., “dbpedia.org/resource/Jaguar,” and so on. Each
node v ∈ V is either a keyword node that corresponds to
a keyword k in Q, or an intermediate node on a path be-
tween keyword nodes. We denote as vk a keyword node of
k. The keyword nodes and intermediate nodes are typically
specified by the process that generates the answer graphs,
e.g., keyword query evaluation algorithms [36]. A path con-
necting two keyword nodes usually suggests a relation, or
“connection pattern”, as observed in e.g., [7].

We shall use the following notations. (1) A path from key-
word nodes vk to v′k is a nonempty simple node sequence
{vk, v1 . . . , vn, v′k}, where vi (i ∈ [1, n]) are intermediate
nodes. The label of a path ρ from vk to v′k, denoted as
L(ρ), is the concatenation of all the node labels on ρ. (2)
The union of a set of answer graphs Gi = (Vi, Ei, Li) is a
graph G = (V, E, L), where V =

⋃
Vi, E =

⋃
Ei, and each

node in V has a unique node id. (3) Given a set of answer
graphs G, we denote as card(G) the number of the answer
graphs G contains, and |G| the total number of its nodes and

a*

e*

d

G's2

a*1 a*2

f*1 c*1 e*1

b1 b2 d1

G'1

a*3

d2 d3

e*2 g*1e*1

G'2

a*

b

c*

d

G's1

a*4

g*g*2e*3

d4 d6d5 d7 d8 d9
...

G'3

Figure 3: Answer graphs and summary graphs

edges. Note that an answer graph does not necessarily con-
tain keyword nodes for all the keywords in Q, as common
found in e.g., keyword querying [36].

Example 2: Fig. 2 illustrates a keyword query Q and a
set of answer graphs G = {G1, G2, G3} induced by Q. Each
node in an answer graph has a label as its type (e.g.,car),
and a unique string as its id (e.g.,Jaguar XK1).

Consider the answer graph G1. (a) The keyword nodes
for the keyword Jaguar are JaguarXKi (i ∈ [1, n]), and the
node United States of America is a keyword node for America.
(b) The nodes offeri (i ∈ [1, m]) and cityj (j ∈ [1, k]) are the
intermediate nodes connecting the keyword nodes of Jaguar

and America. (c) A path from Jaguar to USA passing the nodes
offer1 and city1 has a label {car,offer, city,country}. Note that
(1) nodes with different labels (e.g., JaguarXK1 labeled by
“car” and black jaguar by “animal”) may correspond to the
same keyword (e.g.,Jaguar), and (2) a node (e.g., city1) may
appear in different answer graphs (e.g., G1 and G2). 2

2.2 Answer Graph Summarization

Summary graph. A summary graph of G for Q is an
undirected graph Gs = (Vs, Es, Ls), where Vs and Es are the
node and edge set, and Ls is a labeling function. Moreover,
(1) each node vs ∈ Vs labeled with Ls(vs) represents a node
set [vs] from G, such that (a) [vs] is either a keyword node
set, or an intermediate node set from G, and (b) the nodes
v in [vs] have the same label L(v) = Ls(vs). We say vsk is
a keyword node for a keyword k, if [vsk] is a set of keyword
nodes of k; (2) For any path ρs between keyword nodes vs1

and vs2 of Gs, there exists a path ρ with the same label of ρs

from v1 to v2 in the union of the answer graphs in G, where
v1 ∈ [vs1], v2 ∈ [vs2]. Here the path label in Gs is similarly
defined as its counterpart in an answer graph.

Hence, a summary graph Gs never introduces “false”
paths by definition: if vs1 and vs2 are connected via a path
ρs in Gs, it suggests that there is a path ρ of the same label
connecting two keyword nodes in [vs1] and [vs2], respectively,
in the union of the answer graphs. It might, however, “lose”
information, i.e., not all the labels of the paths connecting
two keyword nodes are preserved in Gs.

Example 3: Consider Q and G from Fig. 2. One may
verify that Gs1 , Gs2 and Gs are summary graphs of G for
Q. Specifically, (1) the nodes Jaguar, history and America are
three keyword nodes in Gs1 , and the rest nodes are inter-
mediate ones; (2) Gs2 contains a keyword node Jaguar which
corresponds to keyword nodes {black jaguar, white jaguar} of
the same label animal in G. (3) For any path connecting two
keyword nodes (e.g., {Jaguar, offer, city, America}) in Gs1 ,
there is a path with the same label in the union of G1 and
G2 (e.g., {JaguarXK1 , offer1, city1, United States of America}).

As another example, consider the answer graphs G′1, G′2
and G′3 induced by a keyword query Q′ = {a, c, e, f, g} in
Fig. 3. Each node ai (marked with ∗ if it is a keyword node)

3

in an answer graph has a label a and an id ai, similarly
for the rest nodes. One may verify the following. (1) Both
G′s1 and G′s2 are summary graphs for the answer graph set
{G′1, G′2}; while G′s1 (resp. G′s2) only preserves the labels
of the paths connecting keywords a and c (resp. a, e and
g). (2) G′s2 is not a summary graph for G′3. Although it
correctly suggests the relation between keywords (a, e) and
(a, g), it contains a “false” path labeled (e, d, g), while there
is no path in G′3 with the same label between e3 and g2. 2

Remarks. One can readily extend summary graphs to sup-
port directed, edge labeled answer graphs by incorporating
edge directions and labels into the path label. We can also
extend summary graphs for preserving path labels for each
answer graph, instead of for the union of answer graphs, by
reassigning node identification to answer graphs.

3. Quality Measurement
In order to measure the quality of summary graphs, we

introduce two metrics based on information coverage and
summarization conciseness, respectively. We then introduce
a set of summarization problems. To simplify the discussion,
we assume that the union of the answer graphs contains
keyword nodes for each keyword in Q.

3.1 Coverage Measurement

It is recognized that a summarization should summarize
as much information as possible, i.e., to maximize the in-
formation coverage [11]. In this context, a summary graph
should be able to capture the relationship among the query
keywords as much as possible. To characterize the informa-
tion coverage of a summary graph, we first present a notion
of keywords coverage.

Keywords coverage. Given a keyword pair (ki, kj) (ki,
kj ∈ Q and ki 6= kj) and answer graphs G induced by Q,
a summary graph Gs covers (ki, kj) if for any path ρ from
keyword nodes vki to vkj in the union of the answer graphs
in G, there is a path ρs in Gs from vsi to vsj with the same
label of ρ, where vki ∈ [vsi], vkj ∈ [vsj]. Note that the
coverage of a keyword pair is “symmetric” over undirected
answer graphs. Given Q and G, if Gs covers a keyword pair
(ki, kj), it also covers (kj , ki).

Coverage ratio. Given a keyword query Q and G, we define
the coverage ratio α of a summary graph Gs of G as

α =
2 ·M

|Q| · (|Q| − 1)

where M is the total number of the keyword pairs (k, k′)
covered by Gs. Note that there are in total |Q||Q|−1

2
pairs

of keywords from Q. Thus, α measures the information
coverage of Gs based on the coverage of the keywords.

We refer to as α-summary graph the summary graph for
G induced by Q with coverage ratio α. The coverage ra-
tio measurement favors a summary graph that covers more
keyword pairs, i.e., with larger α.

Example 4: Consider Q and G from Fig. 2. Treating Gs1

and Gs2 as a single graph Gs0 , one may verify that Gs0 is
a 1-summary graph of G for Q. Indeed, for any keyword
pair from Q (e.g., (Jaguar, America)) and any path between
the keyword nodes in G, there exists a path of the same
label in Gs0 .On the other hand, Gs is a 1

3
summary graph

for Q: it only covers the keyword pairs (Jaguar, America).
Similarly, one may verify that G′s1 (resp. G′s2) in Fig. 3 is a
0.1-summary graph (resp. 0.3-summary graph), for answer
graphs {G′1, G′2, G′3} and Q = {a, c, e, f, g}. 2

3.2 Conciseness Measurement

A summary graph should also be concise, without intro-
ducing too much detail of answer graphs. The measurement
of conciseness for summarization is commonly used in infor-
mation summarization [11,31].

Summarization size. We define the size of a summary
graph Gs, (denoted as |Gs|) as the total number of the nodes
and edges it has. For example, the summary graph Gs1 and
Gs2 (Fig. 2) are of size 12 and 7, respectively. The smaller
a summary graph is, the more concise it is.

Putting the information coverage and conciseness mea-
surements together, We say a summary graph Gs is a min-
imum α-summary graph, if for any other α-summary graph
G′s of G for Q, |Gs| ≤ |G′s|.
Remarks. The bisimulation relation [10] and graph sum-
marization [26,33] also induce summarized graphs, by group-
ing similar nodes and edges together for an entire graph,
rather than for specified keyword nodes. Moreover, (a) they
may not necessarily generate concise summary graphs; and
(b) their summary graphs may introduce “false” paths.

Example 5: The bisimulation relation [10] constraints the
node equivalence via a recursively defined neighborhood la-
bel equivalence, which is too restrictive to generate concise
summary graphs for keyword relations. For example, the
nodes b1 and b2 cannot be represented by a single node as in
Gs1 via bisimulation (Fig. 3), due to different neighborhood.
One the other hand, error-tolerant [26] and structure-based
graph summarization [33] may generate summary graphs
with “false paths”, such as G′s2 for G′3. To prevent this,
additional auxiliary structures and parameters are required.
In contrast in our work, a summary graph preserves path
labels for keywords without any auxiliary structures. 2

3.3 Summarization Problems

Based on the quality metrics, we next introduce two sum-
marization problems for keyword induced answer graphs.
These problems are to find summary graphs with high qual-
ity, in terms of information coverage and conciseness.

Minimum α-Summarization. Given a keyword query
Q and its induced answer graphs G, and a user-specified
coverage ratio α, the minimum α-summarization problem,
denoted as MSUM, is to find an α-summary graph of G with
minimum size. Intuitively, the problem aims to find the
smallest summary graph [31] which can cover the keyword
pairs no less than user-specified coverage requirement.

The problem is, however, nontrivial.

Theorem 1: MSUM is np-complete (for decision version)
and APX-hard (as an optimization problem). 2

The APX-hard class consists of all problems that cannot
be approximated in polynomial time within arbitrary small
approximation ratio [35]. We prove the complexity result
and provide a heuristic algorithm for MSUM in Section 4.

Minimum 1-summarization. We also consider the problem
of finding a summary graph that covers every pair of key-
words (ki, kj) (ki, kj ∈ Q and i 6= j) as concise as possi-

4

ble, i.e., the minimum 1-summarization problem (denoted
as PSUM). Note that PSUM is a special case of MSUM, by
setting α = 1. In contrast to MSUM, PSUM is in ptime.

Theorem 2: Given Q and G, PSUM is in O(|Q|2|G|+ |G|2)
time, i.e., it takes O(|Q|2|G|+ |G|2) time to find a minimum
1-summary graph, where |G| is the size of G. 2

We will prove the above result in Section 4.

K Summarization. In practice, users may expect a set of
summary graphs instead of a single one, where each sum-
mary graph captures the keyword relationships for a set of
“similar” answer graphs in terms of path labels. Indeed, as
observed in text summarization (e.g., [11]), a summarization
should be able to cluster a set of similar objects.

Given Q, G, and an integer K, the K summarization prob-
lem (denoted as KSUM) is to find a summary graph set GS ,
such that (1) each summary graph Gsi ∈ GS is a 1-summary
graph of a group of answer graphs Gpi ⊆ G, (2) the answer
graph sets Gpi form a K-partition of G, i.e., G =

⋃
Gpi , and

Gpi ∩Gpj = ∅ (i, j ∈ [1, K], i 6= j); and (3) the total size of
GS , i.e.,

∑
Gsi

∈GS
|Gsi | is minimized. The KSUM problem

can also be extended to support α-summarization.
Instead of finding only a single summary graph, KSUM

finds K summary graphs such that each “groups” a set of
similar answer graphs together and covers all the keyword
pairs appeared in the cluster. This may also provide a rea-
sonable clustering for answer graphs [11].

The following result tells us that the problem is hard to
approximate. We will prove the result in Section 5, and
provide a heuristic algorithm for KSUM.

Theorem 3: KSUM is np-complete and APX-hard. 2

4. Computing α-Summarization
In this section we investigate the α-summarization prob-

lem. We first investigate PSUM in Section 4.1, as a special
case of MSUM. We then discuss MSUM in Section 4.2.

4.1 Computing 1-Summary Graphs

To show Theorem 2, we characterize the 1-summary graph
with a sufficient and necessary condition. We then provide
an algorithm to check the condition in polynomial time.

We first introduce the notion of dominance relation.

Dominance relation. The dominance relation R¹(k, k′) for
keyword pair (k, k′) over an answer graph G =(V, E, L) is
a binary relation over the intermediate nodes of G, such
that for each node pair (v1, v2) ∈ R¹(k, k′), (1) L(v1) =
L(v2), and (2) for any path ρ1 between keyword node pair
vk1 of k and vk2 of k′ passing v1, there is a path ρ2 with
the same label between two keyword nodes v′k1 of k and
vk′2 of k′ passing v2. We say v2 dominates v1 w.r.t. (k, k′);
moreover, v1 is equivalent to v2 if they dominate each other.
In addition, two keyword nodes are equivalent if they have
the same label, and correspond to the same keyword.

The dominance relation is as illustrated in Fig. 4. Intu-
itively, (1) R¹(k, k′) captures the nodes that are “redun-
dant” in describing the relationship between a keyword pair
(k, k′) in G; (2) moreover, if two nodes are equivalent, they
play the same “role” in connecting keywords k and k′, i.e.,
they cannot be distinguished in terms of path labels. For
example, when the keyword pair (a, c) is considered in G′1,
the node b1 is dominated by b2, as illustrated in Fig. 4.

k

k'

v1

k

k'

v2

...

... ...

...

ρ1 ρ2

a*1 a*2

f*1 c*1 e*1

b1 b2 d1

G'1

Figure 4: Dominance relation: (v1, v2) ∈ R¹

Remarks. The relation R¹ is similar to the simulation re-
lation [2,14], which computes node similarity over the entire
graph by neighborhood similarity. In contrast to simula-
tion, R¹ captures dominance relation induced by the paths
connecting keyword nodes only, and only consider interme-
diate nodes. For example, the node b1 and b2 is not in a
simulation relation in G′1, unless the keyword pair (a, c) is
considered (Fig. 4). We shall see that this leads to effective
summarizations for specified keyword pairs.

Sufficient and necessary condition. We now present the
sufficient and necessary condition, which shows the connec-
tion between R¹ and a 1-summary graph.

Proposition 4: Given Q and G, a summary graph Gs is a
minimum 1-summary graph for G and Q, if and only if for
each keyword pair (k, k′) from Q, (a) for each intermediate
node vs in Gs, there is a node vi in [vs], such that for any
other node vj in [vs], (vj , vi) ∈ R¹(k, k′); and (b) for any
intermediate nodes vs1 and vs2 in Gs with same label and
any nodes v1 ∈ [vs1], v2 ∈ [vs2], (v2, v1) /∈ R¹(k, k′). 2

Proof sketch: We prove Proposition 4 as follows.

(1) We first proof by contradiction that Gs is a 1-summary
graph if and only if Condition (a) holds. Assume Gs is
a 1-summary graph while Condition (a) does not hold.
Then there exists an intermediate node vs, and two nodes
vi and vj that cannot dominate each other. Thus, there
must exist two paths in the union of answer graphs as ρ =
{v1, . . . , vi, vi+1, . . . , vm} and ρ′ = {v′1, . . . , vj , vj+1, . . . , vn}
with different labels, for a keyword pair (k, k′). Since vi,
vj is merged as vs in Gs, there exists, w.l.o.g., a false
path in Gs as ρ′′ with label L(v1) . . . L(vi)L(vj+1) . . . L(vm),
which contradicts the assumption that Gs is a 1-summary
graph. Now assume Condition (a) holds while Gs is not a
1-summary graph. Then there at least exists a path from
keywords k to k′ that is not in Gs. Thus, there exists at
least an intermediate node vs on the path with [vs] in Gs

which contains two nodes that cannot dominate each other.
This contradicts the assumption that Condition (a) holds.

(2) For the summary minimization, we show that Conditions
(a) and (b) together guarantee if there exists a 1-summary
G′s where |G′s| ≤ |Gs|, there exists a one to one function
mapping each node (resp. edge) in G′s to a node (resp.
edge) in Gs, i.e., |Gs| = |G′s|. Hence, Gs is a minimum
1-summary graph by definition. 2

We next present an algorithm for PSUM following the suf-
ficient and necessary condition, in polynomial time.

Algorithm. Fig. 5 shows the algorithm, denoted as pSum.
It has the following two steps.

Initialization (lines 1-4). pSum first initializes an empty
summary graph Gs (line 1). For each keyword pair (k, k′)
from Q, pSum computes a “connection” graph of (k, k′) in-

5

Input: A keyword query Q, an answer graph set G.
Output: A minimum 1-summary graph Gs.

1. Initialize Gs = ∅;
2. for each keyword pair (k, k′) (k, k′ ∈ Q,k 6= k′) do
3. build G(k,k′) as an induced connection graph of (k, k′);
4. merge Gs with G(k,k′);
5. R¹ := DomR(Gs); remove dominated nodes from Gs;
6. merge each vs1 , vs2 in Gs where there is a node

v1 ∈ [vs1] such that for ∀v2 ∈ [vs2], (v2, v1) ∈ R¹(k, k′);
7. return Gs;

Procedure DomR

Input: a graph Gs, G;
Output: the dominance relation R¹ over Gs.

1. for each node v in Gs do
2. dominant set [v] = {v′|L(v′) = L(v)};
3. while [v] is changed for some v do
4. for each edge (u, v) in G do

[u] = [u] ∩N([v]); [v] = [v] ∩N([u]);
5. for each v and v′ ∈ [v] do
6. R¹ = R¹∪ {(v, v′)};
7. return R¹;

Figure 5: Algorithm pSum

duced from G (line 2-3). Let G be the union of the answer
graphs in G. A connection graph of (k, k′) is a subgraph of
G induced by (1) the keyword nodes of k and k′, and (2)
the intermediate nodes on the paths between the keyword
nodes of k and those of k′. Once G(k,k′) is computed, pSum
sets Gs as the union graph of Gs and G(k,k′) (line 4).

Reducing (lines 5-7). pSum then constructs a summary
graph by removing nodes and edges from Gs. It computes
the dominance relation R¹ by invoking a procedure DomR,
which removes the nodes v as well as the edges connected to
them, if they are dominated by some other nodes (line 5).
It next merges the nodes in Gs that have dominate relation,
i.e., line 6 (as defined in 4(a)), into a set [vs], until no more
nodes in Gs can be merged. For each set [vs], a new node
vs as well as its edges connected to other nodes are created.
Gs is then updated with the new nodes and edges, and is
returned as a minimum 1-summary graph (line 7).

Procedure DomR. The idea of DomR is similar as the process
to compute a simulation relation [14], while it extends the
process to undirected connection graphs. For each node v
in Gs, DomR first initializes a dominant set, denoted as [v],
as {v′|L(v′) = L(v)} (lines 1-2). For each edge (u, v) ∈ Gs,
it identifies the neighborhood set of u (resp. v) as N(u)
(resp. N(v)), and removes the nodes that are not in N(v)
(resp. N(u)) from [u] (resp. [v]) (lines 4). Note that a node
u′ ∈ [u] cannot dominant u if u′ /∈ N(v), since there exists a
path connecting two keyword nodes passing edge (u, v) and
contains “L(u)L(v)” in its label, while for u′, such path does
not exist. The process repeats until no changes can be made
to any dominant set (lines 3-4). R¹ is then collected from
the dominant sets and returned (line 5-7).

Analysis. pSum correctly returns a summary graph Gs. In-
deed, Gs is initialized as the union of the connection graphs,
which is a summary graph (lines 2-4). Each time Gs is up-
dated, pSum keeps the invariants that Gs remains to be a
summary graph. When pSum terminates, one may verify
that the sufficient and necessary condition as in Proposi-
tion 4 is satisfied. Thus, the correctness of pSum follows.

It takes O(|Q|2|G|) to construct Gs as the union of the
connection graphs for each keyword pairs (lines 2-4). It
takes DomR in total O(|G|2) time to compute R¹. To see
this, observe that (a) it takes O(|G|2) time to initialize the
dominant sets (line 1), (b) during each iteration, once a
node is removed from [u], it will no longer be put back,
i.e., there are in total |Gs|2 iterations, and (c) the checking
at line 4 can be done in constant time, by looking up a
dynamically maintained map recording |[u] \N(v)| for each
edge (u, v), leveraging the techniques in [14]. Thus, the total
time complexity of pSum is in O(|Q|2|G|+ |G|2).

Theorem 2 follows from the above analysis.

Example 6: Recall the query Q and the answer graph set
G in Fig. 2. The algorithm pSum constructs a minimum 1-
summary graph Gs for G as follows. It initializes Gs as the
union of the connection graphs for the keyword pairs in Q,
which is the union graph of G1, G2 and G3. It then invokes
procedure DomR, which computes dominance sets for each
intermediate node in Gs, partly shown as follows.

Nodes in Gs dominance sets
offer {offeri}(i ∈ [1, m])
city {cityi}(i ∈ [1, k]), {cityj}(j ∈ [k + 1, p])
company {companyi}(i ∈ [1, l − 1]), {companyl}

pSum then reduces Gs by removing dominated nodes and
merging equivalent nodes until no change can be made. For
example, (1) companyx (x ∈ [1, l−1]) are removed, as all are
dominated by companyl; (2) all the offer nodes are merged
as a single node, as they dominate each other. Gs is then
updated as the union of Gs1 and Gs2 (Fig. 2). 2

From Theorem 2, the result below immediately follows.

Corollary 5: It is in O(|S||G| + |G|2) to find a minimum
1-summary graph of G for a given keyword pair set S. 2

Indeed, pSum can be readily adapted for specified keyword
pair set S, by specifying Gs as the union of the connection
graphs induced by S (line 4). The need to find 1-summary
graphs for specified keyword pairs is evident in the context
of e.g., relation discovery [7], where users may propose spec-
ified keyword pairs to find their relationships in graph data.

4.2 Minimum α-summarization

We next investigate the MSUM problem: finding the min-
imum α-summarization. We first prove Theorem 1, i.e., the
decision problem for MSUM is np-complete. Given Q, a set
of answer graphs G induced by Q, a coverage ratio α, and a
size bound B, the decision problem of MSUM is to determine
if there exists a α-summary graph Gs with size no more than
B. Observe that MSUM is equivalent to the following prob-
lem (denoted as MSUM∗): find an m-element set Sm ⊆ S
from a set of keyword pairs S, such that |Gs| ≤ B, where

(a) m = α · |Q||Q−1|
2

, (b) S = {(k, k′)|k, k′ ∈ Q, k 6= k′}, and
(c) Gs is the minimum 1-summary graph for G and Sm. It
then suffices to show MSUM∗ is np-complete.

Complexity. We show that MSUM∗ is np-complete as fol-
lows. (1) MSUM∗ is in np, since there exists a polynomial
time algorithm to compute Gs for a keyword pair set S, and
determine if |Gs| ≤ B (Corollary 5). (2) To show the lower
bound, we construct a reduction from the maximum cover-
age problem, a known np-complete problem [9]. Given a set
X and a set T of its subsets {T1, . . . , Tn}, as well as integers

6

K and N , the problem is to find a set T ′ ⊆ T with no more
than K subsets, where |⋃ T ′ ∩X| ≥ N . Given an instance
of maximum coverage, we construct an instance of MSUM∗

as follows. (a) For each element xi ∈ X, we construct an
intermediate node vi. (b) For each set Tj ∈ T , we introduce
a keyword pair (kTj , k′Tj

), and construct an answer graph

GTj which consists of edges (kTj , vi) and (vi, k
′
Tj

), for each

vi corresponding to xi ∈ Tj . We set S as all such (kTj , k′Tj
)

pairs. (c) We set m = |T |-K, and B = |X|-N . One may ver-
ify that there exists at most K subsets that covers at least
N elements in X, if and only if there exists a 1-summary
graph that covers at least |S|-K keyword pairs, with size at
most 2 ∗ (|X|-N+ m). Thus, MSUM∗ is np-hard. Putting
(1) and (2) together, MSUM∗ is np-complete.

The APX-hardness can be proved by constructing an
approximation ratio-preserving reduction [35] from the
weighted maximum coverage problem, a known APX-hard
problem, via a similar transformation as discussed above.

The above analysis completes the proof of Theorem 1.

A greedy heuristic algorithm. As shown in Theorem 1,
it is unlikely to find a polynomial time algorithm with good
approximation ratio for MSUM. Instead, we resort to an
efficient heuristic algorithm, mSum.

Given Q and G, mSum (1) dynamically maintains a set
of connection graphs GC , and (2) greedily selects a keyword
pair (k, k′) and its connection graph Gc, such that the fol-
lowing “merge cost” is minimized:

δr(GC ,Gc) = |Gs(GC∪{Gc})| − |Gs(GC)|
where Gs(GC∪{Gc}) (resp. Gs(GC)) is the 1-summary graph of
the answer graph set GC∪{Gc} (resp. (GC)). Intuitively, the
strategy always chooses a keyword pair with a connection
graph that “minimally” introduces new nodes and edges to
the dynamically maintained 1-summary graph.

The algorithm mSum is shown in Fig. 6. It first initializes
a summary graph Gs (as empty), as well as an empty answer
graph set GC to maintain the answer graphs to be selected
for summarizing (line 1). For each keyword pair (k, k′), it
computes the connection graph Gc(k,k′) from the union of
the answer graphs in G, and puts Gc(k,k′) to GC (line 2-3).

This yields a set GC which contains in total O(|Q|(|Q|−1)
2

)
connection graphs. It then identifies a subset of connection
graphs in G by greedily choosing a connection graph Gc that
minimizes a dynamically updated merge cost δr(GC ,Gc), as
remarked earlier (line 5). In particular, we use an efficiently
estimated merge cost, instead of the accurate cost via sum-
marizing computation (as will be discussed). Next, it either
computes Gs as a 1-summary graph for Gc(k,k′) if Gs is ∅,
by invoking pSum (line 6), or updates Gs with the newly
selected Gc, by invoking a procedure merge (line 7). Gc is
then removed from GS (line 8), and the merge cost of all
the rest connection graphs in GC are updated according to
the selected connection graphs (line 10-11). The process re-

peats until m = dα|Q|(|Q|−1)
2

e pairs of keywords are covered
by Gs, i.e., m connection graphs are processed (line 9). The
updated Gs is returned (line 12).

Procedure. The procedure merge (not shown in Fig. 6) is
invoked to update Gs upon new connection graphs. It takes
as input a summary graph Gs and a connection graph Gc.
It also keeps track of the union of the connection graphs Gs

corresponds to. It then updates Gs via the following actions:

Input: A keyword query Q, a set of answer graphs G,
a coverage ratio α

Output: An α-summary graph Gs.

1. Initialize Gs; Set GC := ∅;
2. for each pair (k, k′) where k, k′ ∈ Q do
3. compute connection graph Gc(k,k′); GC := GC ∪ {Gc(k,k′)};
4. while GS 6= ∅ do
5. for each Gc(k,k′) ∈ GC with minimum merge cost do
6. if Gs = ∅ then Gs := pSum((k, k′),G);
7. else merge(Gs, Gc(k,k′));
8. GC := GC \ {Gc(k,k′)};
9. if m connection graphs are merged then break ;
10. for each Gc ∈ GC do
11. update merge cost of Gc;
12.return Gs;

Figure 6: Algorithm mSum

(1) it removes all the nodes in Gc that are dominated by the
nodes in itself or the union graph; (2) it identifies equivalent
nodes from the union graph and Gc (or have the same iden-
tification); (3) it then splits node vs in Gs if [vs] contains
two nodes that cannot dominate each other, or merge all
the nodes in Gs that have dominance relation. Gs is then
returned if no more nodes in Gs can be further updated.

Optimization techniques. The computation of the merge
cost (line 5) of mSum takes in total O(|G|2) time, which re-
quires a merge process between a summary and each con-
nection graph. Instead, we use an estimation of the merge
cost that can be efficiently computed as follows.

Given a set of answer graphs G, a neighborhood contain-
ment relation Rr captures the containment of the label sets
from the neighborhood of two nodes in the union of the
graphs in G. Formally, Rr is a binary relation over the nodes
in G, such that a pair of nodes (u, v) ∈ Rr if and only if for
u (resp. v) from G1 = (V1, E1, L1) (resp. G2 = (V2, E2, L2)
) in G, (1) L1(u) = L2(v), and (2) for each neighbor u′ of u,
there is a neighbor v′ of v, such that L(u′) = L(v′). More-
over, we denote as D(Rr) the union of the edges attached to
the node u, for all (u, v) ∈ Rr. We have the following result.

Lemma 6: For a set of answer graphs G and its 1-summary
Gs, |G| ≥ |Gs| ≥ |G| - |Rr(G)| - |D(Rr)|. 2

To see this, observe the following. (1) |G| is clearly no less
than |Gs|. (2) Denote G as the union of the answer graphs
in G, we have |Gs| ≥ |G| - |R≺(G)| - |D(R≺|), where R≺(G)
is the dominance relation over G, and D(R≺) is similarly
defined as D(Rr). (3) For any (u, v) ∈ R≺(G), (u, v) is in
Rr(G). In other words, |R≺(G)| ≤ |Rr(G)|, and |D(R≺)| ≤
|D(Rr)|. Putting these together, the result follows.

The above result tells us that |G| - |Rr(G)| - |D(Rr)| is a
lower bound for Gs of G. We define the merge cost δr(GC ,Gc)

as |G| - |Rr(G)| - |D(Rr)| - |Gs(GC)|. Using an index struc-
ture that keeps track of the neighborhood labels of a node
in G, δr(GC ,Gc) can be evaluated in O(|G|) time.

Analysis. The algorithm mSum correctly outputs an α-
summary graph, by preserving the following invariants. (1)
During each operation in merge, Gs is correctly maintained
as a minimum summary graph for a selected keyword pair
set. (2) Each time a new connection graph is selected, Gs is
updated to a summary graph that covers one more pair of
keywords, until m pairs of keywords are covered by Gs.

For complexity, (1) it takes in total O(m · |G|) time to

7

a*3

d3

g*1

(a,g)

a*3

d3

e*2 g*1

+ (e,g) (a,g) (e,g)(a,e)

d

a*2

e*1

d1

a*3

d2 d3

e*2 g*1e*1

+ (a,e)

G''s

b2

a*1
G''s1 G''s2 G''s3

a*3a*2

db 1 32 d2

e*2 g*1e*1

Figure 7: Computing minimum α-summary graph

induce the connection graphs (line 1-3); (2) the while loop
is conducted m times (line 4); In each loop, it takes O((|G|2)
time to select a Gc with minimum merge cost, and to update
Gs (line 7). Thus, the total time complexity is O(m|G|2).
Note that in practice m is typically small.

Example 7: Recall the query Q′ = {a, c, e, f, g} and the
answer graph set G = {G′1, G′2} in Fig. 3. There are in
total 10 keyword pairs. Suppose α = 0.3. mSum finds a
minimum 0.3-summary graph for G and Q′ as follows. It
first constructs the connection graphs for each keyword pair.
It starts with a smallest connection graph induced by e.g.,
(a, g), and computes a 1-summary graph as G′′s1 shown in
Fig. 7. It then identifies that the connection graph Gc in-
duced by (e, g) introduces least merge cost. Thus, Gs1 is
updated to Gs2 by merging Gc, with one more node e2 and
edge (d3, e2) inserted. It then updates the merge cost, and
merges the connection graph of (a, e) to G′′s2 to form G′′s3 ,
by invoking merge. merge identifies that in G′′s3 (1) a1 is
dominated by a2, (2) the two e∗1 nodes refer to the same
node. Thus, it removes a1 and merges e∗1, updating G′′s3 to
G′′s , and returns G′′s as a minimum 0.3-summary graph. 2

Remarks. The algorithm mSum can be adapted to (ap-
proximately) find a solution to the following problem: find a
summary graph within a size bound B which maximizes the
coverage ratio. To this end, mSum is invoked in O(log |Q|)
times to find the summary graph, by checking the maximum
coverage ratio via a binary search. At each iteration, it com-
putes a minimum α-summary graph Gs for a fixed α. If |Gs|
is larger than B, it changes α to α

2
; otherwise, it changes α

to 2 · α. The process repeats until a proper α is identified.

5. Computing K Summarizations
In this section we study how to construct K summary

graphs for answer graphs, i.e., the KSUM problem.

Complexity. We start by proving Theorem 3 (Section 2).
Given Q, G, an integer K and a size bound B, the decision
problem of KSUM asks if there exists a K-partition of G,
such that the sum of the 1-summary graph for each par-
tition is no more than B. (1) The problem is in np, as
there exists a polynomial time algorithm to check if a given
partition satisfies the constraints. (2) To show the lower
bound, we construct a reduction from the graph decompo-
sition problem shown to be np-hard [28]. Given a complete
graph G where each edge is assigned with an integer weight,
the problem is to identify K′ partitions of edges, such that
the sum of the maximum edge weight in each partition is
no greater than a bound W . We construct a transforma-
tion from an instance of the graph decomposition problem
to KSUM, in polynomial time. (a) We identify the maxi-
mum edge weight wm in G, and construct wm intermediate
nodes VI = {v1, . . . , vwm}, where each intermediate node
has a distinct label. (b) For each edge in G with weight wi,

we construct an answer graph with two fixed keyword nodes
k1, k2 and edges (k1, vj) and (vj , k2), where vj ∈ VI , and
j ∈ [1, wi]. (c) We set K = K′, and B = W . One may
verify that if a K′-partition of edges in G has a total weight
within W , then there exists a K-partition of G with total
summary size within 3W +2K, and vice versa. Thus, KSUM
is np-hard. This verifies that KSUM is np-complete.

The APX-hardness of the K summarization problem can
be shown similarly, by conducting an approximation pre-
serving reduction from the graph decomposition problem,
which is shown to be APX-hard [28]. The above analysis
completes the proof of Theorem 3.

We next present a heuristic algorithm for the KSUM prob-
lem. To find K summary graphs, a reasonable partition GP

of G is required. To this end, we introduce a similarity mea-
sure between two answer graphs.

Graph distance metric. Given two answer graphs G1 and
G2, we introduce a similarity function F (G1, G2) as follows.

F (G1, G2) =
|Rr(G1,2)|+ |D(Rr)|

|G1|+ |G2|
where G1,2 is the union of G1 and G2, and Rr(G1,2) and
D(Rr) are as defined in Section 4. Intuitively, the similarity
function F captures the similarity of two answer graphs,
by measuring “how well” a summary graph may compress
the union of the two graphs [11]. Thus a distance function
δ(G1, G2) of G1 and G2 can be defined as

δ(G1, G2) = 1− F (G1, G2)

Based on the distance measure, we propose an algo-
rithm, kSum, which partitions G into K clusters GP , such
that the total set distance F (Gpi) in each cluster Gpi is min-
imized. This intuitively leads to K small summary graphs.

Algorithm. The algorithm kSum works similarly as a K-
center clustering process [4]. It has the following three steps.

(1) Initialization. kSum first initializes (a) a set GP to main-
tain the partition of G, (b) an answer graph set GK to main-
tain the K “centers”, i.e., the selected graphs to form the
cluster, from G, and (c) a summarization set GS to keep
record of K 1-summary graphs, each corresponds to a clus-
ter Gpi in GP ; in addition, the total difference θ is initialized
as a large number, e.g., K |G|2. It initializes GK with ran-
domly selected K answer graphs from G.

(2) Clustering. It then iteratively refines the partition GP

as follows. (1) For each answer graph G ∈ G, it selects the
“center” graph Gcj in GK , which minimizes δ(G, Gcj), i.e.,
is the closest one to Gcj , and extends the cluster Gpj with
G. (2) The updated clusters GP forms a partition of G.
For each cluster Gpi ∈ GP , a new “center” graph G′ci

is
selected, which minimizes the sum of the distance from G′ci

to all the rest graphs in Gpi . The newly identified K graphs
replace the original graphs in GK . (3) The overall distance
θ=

∑
i

∑
G∈Gpi

δ(G, Gci) is recomputed for GP . kSum re-

peats the above process until θ converges.

(3) Summarizing. If GP can no longer be improved in terms
of θ, kSum computes the 1-summary graph by invoking the
algorithm pSum for each cluster Gpi ∈ GP , and returns K
1-summary graphs maintained in GS .

Example 8: Recall the answer graphs G′1, G′2 and G′3
in Fig. 3. Let K= 2, The algorithm pSum identifies a 2-

8

a*

f* c* e*

b b d

a*

e*

d

G*s2

g*

G*s1

G'1 G'2G'3{ {{ {

Figure 8: summary graphs for a 2-partition

partition for G ={G′1, G′2, G′3} as follows. It first selects
two graphs as “center” graphs, e.g., G′1 and G′3. It then
computes the distance between the graphs. One may verify
that δ(G′1, G

′
2) > δ(G′2, G

′
3). Thus, G′2 and G′3 are much

“closer,” and are grouped together to form a cluster. This
produces a 2-partition of G as {{G′1}, {G′2, G′3}}. The 1-
summary graphs are then computed for each cluster. pSum
finally returns G′s1 and G′s2 as the minimized 2 1-summary
graphs, with total size 22 (shown in Fig. 8). 2

Analysis. The algorithm kSum correctly computes K 1-
summary graphs for a K-partition of G. It heuristically
identifies K clusters with minimized total distance of each
answer graph in the cluster to its “center” graph. Intuitively,
the closer the graphs are to a center answer graph, the more
nodes are likely to be merged in a summarization. kSum can
also be used to compute K α-summary graphs.

For complexity, (1) it takes kSum O(G) time for initializa-
tion; (2) the clustering phase takes in total O(I ·K · |Gm|2)
time, where I is the number of iterations, and Gm is the
largest answer graph in G; and (3) the total time of sum-
marization is in O(|Q|2||G|+ |G|2). In our experiments, we
found that I is typically small, e.g., it is no more than 3
over both real-life and synthetic datasets.

Remark. While determining the optimal value of the clus-
ter number K is an open issue, in practice, it may be deter-
mined by empirical rules [24] or information theory.

6. Experimental Evaluation
In this section, we experimentally verify the effectiveness

and efficiency of the proposed algorithms.

6.1 Experimental Settings

Datasets. We use the following three real-life datasets in
our tests. (1) DBLP (http://dblp.uni-trier.de/xml/), a
bibliographic dataset with in total 2.47 million nodes and
edges, where (a) each node has a type from in total 24 types
(e.g.,’paper’, ’book’, ’author’), and a set of attribute values
(e.g.,’network’, ’database’, etc), and (b) each edge denotes
e.g., authorship or citation. (2) DBpedia (http://dbpedia.
org), a knowledge graph which includes 1.2 million nodes
and 16 million edges. Each node represents an entity with
a type (e.g.,’animal’, ’architectures’, ’famous places’) from
in total 122 types, with a set of attributes (e.g.,’jaguar’,
’Ford’). (3) YAGO (http://www.mpi-inf.mpg.de/yago) is
also a knowledge graph. Compared with DBLP and DBpe-
dia, it is “sparser” (1.6 million nodes, 4.48 million edges)
and much richer with diverse schemas (2595 types).

Keyword queries. We design keyword queries as follows.

(1) For DBLP, we select 5 common queries as shown in
Table 1. The keyword queries are for searching information
related with various topics or authors. For example, Q1 is

Query Keywords card(G) |V |, |E|
Q1 mining temporal graphs 355 (5,6)

Q2
david parallel computing
ACM

1222 (5,4)

Q3
distributed graphs meta-data
integration

563 (5,5)

Q4
improving query uncertain
database conference

1617 (9,14)

Q5
keyword search algorithm
evaluation XML conference

7635 (7,8)

Table 1: Queries for DBLP

Query Keywords template |QT | card(G) |V |, |E|
QT1 Jaguar place 136 75 (5,7)

QT2
united states politician
award

235 177 (6,7)

QT3
album music genre
american music awards

168 550 (11,25)

QT4

fish bird mammal
protected area
north american

217 1351 (12,24)

QT5
player club manager
league city country

52 1231 (17,28)

QT6
actor film award
company hollywood

214 1777 (12,27)

Table 2: Queries and the answer graphs for DBpedia.
The templates are also applied for YAGO.

to search the mining techniques for temporal graphs.

(2) For DBpedia and YAGO, we design 6 query templates
QT1 to QT6 , each consists of type keywords and value key-
words. The type keywords are taken from the type informa-
tion in DBpedia (resp. YAGO), e.g., country in QT5 , and
the value keywords are from the attribute values of a node,
e.g.,United States in QT2 . Each query template QTi is then
extended to a set of keyword queries (simply denoted as
QTi), by keeping all the value keywords, and by replacing
some type keywords (e.g.,place) with a corresponding value
(e.g.,America). Table 2 shows the query templates QT and
the total number of its corresponding queries |QT |. For ex-
ample, for QT1 , 136 keyword queries are generated for DB-
pedia. One such query is {’Jaguar’, ’America’}.
Answer graph generator. We generate a set of answer
graphs G for each keyword query, leveraging [17,20]. Specif-
ically, (1) the keyword search algorithm in [17] is used to
produce a set of trees connecting all the keywords, and (2)
the trees are expanded to a graph containing all the key-
words, with a bounded diameter 5, using the techniques
in [20]. Table 1 and Table 2 report the average number
of the generated answer graphs card(G) and their average
size, for DBLP and DBpedia, respectively. For example, for
QT3 , an answer graph has 11 nodes and 25 edges (denoted
as (11, 25)) on average. For YAGO, card(G) ranges from
200 to 2000, with answer graph size from (5, 7) to (10, 20).
On the other hand, various methods exist e.g., top-k graph
selection [34], to reduce possibly large answer graphs.

Implementation. We implemented the following algo-
rithms in Java: (1) pSum, mSum and kSum for answer
graph summarization; (2) SNAP [33] to compare with pSum,
which generates a summarized graph for a single graph, by
grouping nodes such that the pairwise group connectivity
strength is maximized; (3) kSum td, a revised kSum us-
ing a top-down strategy: (a) it randomly selects two answer
graphs G1 and G2, and constructs 2 clusters by grouping the
graphs that are close to G1 (resp. G2) together; (b) it then
iteratively splits the cluster with larger total inter-cluster
distance to two clusters by performing (a), until K clusters

9

species
{Jaguar*}

place

company
{Jaguar_cars.Ltd*}

{North America*}

place

language
{Latin}

{Latin-America,

Peru, Argentia}

species
{peccary, deer

amadillo}

company
{Tata-motors,

Ford, Aston

 Martin}
{Jaguar-X-type,

MOT

Jaguar-S-type}

{Detroit}

place

{Jaguar love*}
band

{Rock}

music genre

{North America*}

place

{North America*}

place

artist
{Cody,

Johnny}

Gs G's G''s
Gs(a=0.1)

K : protected_area
{rara_national_park}

{burma}

place K : mammal
{red_panda}
3

{grebe}

bird

{south_america}

place

{burma}

place K : mammal
{red_panda}
3

mammal
{bear}

{north_america}

K : place
{grebe}

bird

{south_america}

place
K : bird
{crane}

K : protected_area
{rara_national_park}

{burma}

place K : mammal
{red_panda}
3

Gs(a=0.2) Gs(a=0.3)

4 42 K : protected_area
{rara_national_park}

K : bird
{crane}

42

5

Figure 9: Case study: summarizing real-life answer graphs

are constructed, and the K summary graphs are computed.
All experiments were run on a machine with an Intel Core2

Duo 3.0GHz CPU and 4GB RAM, using Linux. Each ex-
periment was run 5 times and the average is reported here.

6.2 Case Study: K and α-summarization

We first provide a case study using DBpedia. (1) Fixing
K = 10 and Q = {Jaguar,America}, we select 3 summary
graphs generated by kSum, as shown in Fig. 9 (left). The
summary graph suggests three types of connection patterns
between Jaguar and America, where Jaguar is a type of ani-
mal, car, and a band, respectively. Each intermediate node
(e.g.,company) contains the entities connecting the keyword
nodes, (e.g.,Ford). Observe that each summary graph can
also be treated as a suggested graph query for Q. (2) Fig. 9
(right) depicts three α-summary graphs for a keyword query
Q from the query template QT4 . Gs(α=0.1) covers a single
pair of keyword “protected area” and “mammal”. With the in-
crease of α, new keywords are added to form new α-summary
graphs. When α = 0.3, we found that Gs(α=0.3) already cov-
ers 67% of the path labels for all keyword pairs.

6.3 Performance on Real-life Datasets

Exp-1: Effectiveness of pSum. We first evaluate the ef-
fectiveness of pSum. To compare the effectiveness, we define
the compression ratio cr of a summarization algorithm as
|Gs|
|G| , where |Gs| and |G| are the size of the summary graph

and answer graphs. For pSum, Gs refers to the 1-summary
graph for G and Q. Since SNAP is not designed to summa-
rize a set of graphs, we first union all the answer graphs in G
to produce a single graph, and then use SNAP to produce a
summarized graph Gs. To guarantee that SNAP generates a
summarized graph that preserves path information between
keywords, we carefully selected parameters such as partic-
ipation ratio [33]. We verify the effectiveness of pSum, by
comparing cr of pSum with that of SNAP.

Fixing the query set as in Table 1, we compared the com-
pression ratio of pSum and SNAP over DBLP. Fig. 10(a)
shows the results, which tell us the following. (a) pSum
generates summary graphs much smaller than the original
answer graph set. For example, , cr of pSum is only 7% for
Q2. On average, cr of pSum is 23%. (b) pSum generates
much smaller summary graphs than SNAP. For example,
for Q2 over DBLP, the Gs generated by pSum reduces the
size of its counterparts from SNAP by 67%. On average,
pSum outperforms SNAP by 50% over all the datasets. It is
observed that while SNAP may guarantee path preserving
via carefully set parameters, it cannot identify dominated
nodes, thus produces larger Gs.

Using QTi (i ∈ [1, 6]), we compared cr of pSum and SNAP
over DBpedia and YAGO. Fig. 10(b) and Fig. 10(c) illus-
trate their performance, respectively. The results show that
(1) pSum produces summary graphs on average 50% (resp.
80%) smaller of the answer graphs, and are on average 62%

(resp. 72%) smaller than their counterparts generated by
SNAP over DBpedia (resp. YAGO). (2) For both algorithms,
cr is highest over DBpedia. The reason is that DBpedia has
more node labels than DBLP, and the answer graphs con-
structed from DBpedia are much denser than YAGO (Ta-
ble 2). Hence, fewer nodes can be removed or grouped in
the answer graphs for DBpedia, leading to larger summary
graphs. To further increase the compression ratio, one can
resort to α-summarization with information loss.

Exp-2: Effectiveness of mSum. In this set of experiments,
we verify the effectiveness of mSum. We compare the average
size of α-summary graphs by mSum (denoted as |Gα

s |) with
that of 1-summary graphs by pSum (denoted as |Gs|). Using

real-life datasets, we evaluated
|Gα

s |
|Gs| by varying α.

Fixing the keyword query set as {Q3, Q4, Q5}, we show
the results over DBLP in Fig. 10(d). (1) |Gα

s | increases
for larger α. Indeed, the smaller coverage ratio a summary
graph has, the fewer keyword pair nodes and the paths are
summarized, which usually reduce |Gα

s | and make it more
compact. (2) The growth of |Gα

s | is slower for larger α.
This is because new keyword pairs are more likely to have
already been covered with the increment of α. Fig. 10(e)
and Fig. 10(f) illustrate the results over DBpedia and YAGO
using the query templates {QT4 , QT5 , QT6} (Table 2). The
results are consistent with Fig. 10(d).

We also evaluated the recall merit of mSum as follows.
Given a keyword query Q, we denote the recall of mSum as
|P ′|
|P | , where P (resp. P ′) is the set of path labels between the

keyword nodes of k and k′ in G (resp. α-summary graph by
mSum), for all (k, k′) ∈ Q. Figures 10(g), 10(h) and 10(i)
illustrate the results over the three real-life datasets. The
recall increases with larger α, since more path labels are
preserved in summary graphs, as expected. Moreover, we
found that mSum covers on average more than 85% path
labels for all keyword pairs over DBLP, even when α = 0.6.

In addition, we compared the performance of mSum with
an algorithm that identifies the minimum summary graph by
exhaust searching. Using DBpedia and its query templates,
and varying α from 0.1 to 1 (we used pSum when α = 1.0),
we found that mSum always identifies summary graphs with
size no larger than 1.07 times of the minimum size.

Exp-3: Effectiveness of kSum. We next evaluate the ef-
fectiveness of kSum, by evaluating the average compression

ratio, crK= 1
K

∑K
i=1

|Gsi
|

|Gpi
| for each cluster Gpi and its corre-

sponding 1-summary graph Gsi .
Fixing the query set {Q3, Q4, Q5} and varying K, we

tested crK over DBLP. Fig. 10(j) tells us the following. (1)
For all queries, crK first decreases and then increases with
the increase of K. This is because a too small K induces
large clusters that contain many intermediate nodes that are
not dominated by any node, while a too large K leads to
many small clusters that “split” similar intermediate nodes.

10

Q1 Q2 Q3 Q4 Q5
0

0.2

0.4

0.6

0.8

1

Query

C
om

pr
es

si
on

 ra
tio

SNAP pSum

(a) pSum on DBLP

0

0.2

0.4

0.6

0.8

1

Query template

C
om

pr
es

si
on

 ra
tio

SNAP pSum

Q
T2

Q
T3

Q
T5

Q
T4

Q
T6

Q
T1

(b) pSum on DBpedia

0

0.2

0.4

0.6

0.8

1

Query template

C
om

pr
es

si
on

 r
at

io

SNAP pSum

Q
T3

Q
T4

Q
T5

Q
T6

Q
T2

Q
T1

(c) pSum on YAGO

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

m
S

um
 v

s.
 p

S
um

Q
3

Q
4

Q
5

(d) mSum on DBLP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

m
S

um
 v

s.
 p

S
um

Q
T4

Q
T5

Q
T6

(e) mSum on DBpedia

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

m
S

um
 v

s.
 p

S
um

Q
T4

Q
T5

Q
T6

(f) mSum on YAGO

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

R
ec

al
l (

%
)

Q
3

Q
4

Q
5

(g) Recall: mSum on DBLP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

R
ec

al
l (

%
)

Q
T4

Q
T5

Q
T6

(h) Recall: mSum on DBpedia

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

R
ec

al
l (

%
)

Q
T4

Q
T5

Q
T6

(i) Recall: mSum on YAGO

2 5 10 15 20 25 30 35 40
0.1

0.15

0.2

0.25

0.3

K

A
vg

. c
om

pr
es

si
on

 r
at

io

Q
3

Q
4

Q
5

(j) kSum on DBLP

25 50 75 100 125 150 175 200
0.2

0.3

0.4

0.5

0.6

K

A
vg

. c
om

pr
es

si
on

 r
at

io

Q
T4

Q
T5

Q
T6

(k) kSum on DBpedia

2 6 10 14 18
0.15

0.2

0.25

0.3

K

A
vg

. c
om

pr
es

si
on

 r
at

io

Q
T4

Q
T5

Q
T6

(l) kSum on YAGO

1000 2000 3000 4000 5000 6000
0

50

100

Number of graphs

T
im

e
(s

ec
on

ds
)

Avg. |G| = 20
Avg. |G| = 30
Avg. |G| = 40
Avg. |G| = 50

(m) Runtime: pSum

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

α

T
im

e
(s

ec
on

ds
)

(30,3000)
(30,5000)
(40,3000)
(40,5000)

(n) Runtime: mSum

10 20 40 60 80 100
0

20

40

60

K

T
im

e
(s

ec
on

ds
)

(30,5000): kSum
td

(30,5000): kSum
(40,5000): kSum

td

(40,5000): kSum

(o) Runtime: kSumtd vs. kSum

1 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

K
A

vg
. c

om
pr

es
si

on
 r

at
io

(30,5000): kSum
td

(30,5000): kSum
(40,5000): kSum

td

(40,5000): kSum

(p) kSumtd vs. kSum

Figure 10: Performance evaluation

Both cases increase crK . (2) crK is always no more than
0.3, and is also smaller than its counterpart of pSum in
Fig. 10(a). By using kSum, each cluster Gpi contains a set
of similar answer graphs that can be better summarized.

The results in Fig. 10(k) and 10(l) are consistent with
their counterparts in Fig. 10(a). In addition, crK is in gen-
eral higher in DBpedia than its counterparts over DBLP and
YAGO. This is also consistent with the observation in Exp-1.

Summary: effectiveness. We found the following. (1)
The summarization effectively constructs summary graphs:
the compression ratio of pSum is on average 24%, and the av-
erage compression ratio is 20% for kSum. Moreover, mSum
can provide more compact summary results with some in-
formation loss. (2) Graphs with simpler schema (less types)
and topology can be better summarized. In addition, our al-
gorithms take up to several seconds over all real-life datasets.

6.4 Performance on Synthetic Dataset

We next evaluate the efficiency of pSum, mSum and kSum
using synthetic graphs. (1) We randomly generate synthetic
keyword queries with on average 5 keywords, where each
keyword is taken from a set Σ of 40 random labels. (2)
We generate a set of answer graphs G with size card(G) and

average graph size Avg. |G| as follows. We first select 5
labels as keywords from Σ, and randomly generate 50 path
templates, where a path template connects two keywords
with the selected labels. We then construct an answer graph
by (a) constructing a path from a path template by replacing
the labels with nodes, and (b) merge a set of paths, until
the answer graph has size Avg. |G|.
Exp-4: Summarization efficiency. Varying card(G)
from 1000 to 6000 and Avg. |G| from 20 to 50, we test the
efficiency of pSum. Fig. 10(m) shows that (1) it takes more
time for pSum to find summary graphs over larger answer
graphs, and over larger card(G), and (2) pSum scales well
with the number and the size of answer graphs. Note that
pSum seldom perform its worst case complexity.

Varying α from 0.1 to 0.9, we tested the efficiency of mSum
where card(G) (resp. Avg. |G|) varies from 3000 to 5000 (resp.
30 to 40). Fig. 10(n) shows that mSum scales well with α,
and takes more time when card(G) and Avg. |G| increase.

Fixing card(G) = 5000, we evaluated the efficiency of kSum
and its baseline version kSum td, by varying K (resp. Avg.
|G|) from 10 to 100 (resp. 30 to 40). Figure 10(o) tells us
that both algorithms take less time with the increase of K,
since they take less total time over smaller clusters induced

11

by larger K. Both algorithms take more time for larger
answer graphs. In general, kSum td takes less time than
kSum, due to a faster top-down partitioning strategy.

Fixing card(G) = 5000, we compared crK , i.e., average
compression ratio of kSum td and kSum, by varying K (resp.
Avg. |G|) from 1 to 70 (resp. 30 to 40). As shown in
Fig. 10(p), crK first decreases, and then increases with the
increasing of K, the same as Fig. 10(j) and Fig. 10(k). Al-
though kSum td is faster, kSum outperforms kSum td with
lower crK , due to better iterative clustering strategy.

Summary: efficiency. We found that the summarization
algorithms scale well with the size of answer graphs, and ef-
ficiently compute summary graphs under coverage and con-
ciseness constraints. Also, our algorithms take more time
over random graphs than over real datasets, due to (1) larger
answer graph number and size, and (2) more diversity in
connection patterns. Techniques such as incremental com-
putation for simulation [6] may apply for dynamic and in-
teractive scenarios, over large number of answer graphs.

7. Conclusion
In this paper we have developed summarization tech-

niques for keyword search in graph data. By providing a
succinct summary of answer graphs induced by keyword
queries, these techniques can improve query interpretation
and result understanding. We have proposed a new concept
of summary graphs and their quality metrics. Three summa-
rization problems were introduced to find the best summa-
rizations with minimum size. We established the complexity
of these problems, which range from ptime to np-complete.
We proposed exact and heuristic algorithms to find the best
summarizations. As experimentally verified, the proposed
summarization methods effectively compute small summary
graphs for capturing keyword relationships in answer graphs.

For future work, we will compare the summarization re-
sults for different keyword search strategies. Our work can
also be extended to enhance keyword search with summary
structures so that the access to graph data becomes easier.

8. References
[1] C. C. Aggarwal and H. Wang. A survey of clustering algo-

rithms for graph data. In Managing and Mining Graph Data,
pages 275–301. 2010.

[2] D. Bustan and O. Grumberg. Simulation-based minimiza-
tion. TOCL, 4(2):181–206, 2003.

[3] S. Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing
search with structure. IEEE Data Eng. Bull., 33(1):3–24,
2010.

[4] M. Charikar, S. Guha, É. Tardos, and D. Shmoys. A
constant-factor approximation algorithm for the k-median
problem. In STOC, pages 1–10, 1999.

[5] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on
structured and semi-structured data. In SIGMOD, 2009.

[6] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. Incre-
mental graph pattern matching. In SIGMOD, 2011.

[7] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. Rex:
Explaining relationships between entity pairs. PVLDB,
5(3):241–252, 2011.

[8] H. Fu and K. Anyanwu. Effectively interpreting keyword
queries on rdf databases with a rear view. In ISWC, 2011.

[9] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. 1979.

[10] R. Gentilini, C. Piazza, and A. Policriti. From bisimulation
to simulation: Coarsest partition problems. J. Automated
Reasoning, 2003.

[11] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz.
Multi-document summarization by sentence extraction.
In NAACL-ANLPWorkshop on Automatic summarization,
pages 40–48, 2000.

[12] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
Xrank: ranked keyword search over xml documents. In SIG-
MOD, 2003.

[13] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD, pages 305–316,
2007.

[14] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Com-
puting simulations on finite and infinite graphs. In FOCS,
1995.

[15] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet gen-
eration in xml search. In SIGMOD, pages 315–326, 2008.

[16] P. K., S. P. Kumar, and D. Damien. Ranked answer graph
construction for keyword queries on rdf graphs without dis-
tance neighbourhood restriction. In WWW, 2011.

[17] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. De-
sai, and H. Karambelkar. Bidirectional expansion for key-
word search on graph databases. In VLDB, 2005.

[18] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploit-
ing local similarity for indexing paths in graph-structured
data. In ICDE, pages 129–140, 2002.

[19] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data
clouds: summarizing keyword search results over structured
data. In EDBT, pages 391–402, 2009.

[20] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an ef-
fective 3-in-1 keyword search method for unstructured, semi-
structured and structured data. In SIGMOD, 2008.

[21] Z. Liu and Y. Chen. Query results ready, now what? IEEE
Data Eng. Bull., 33(1):46–53, 2010.

[22] Z. Liu and Y. Chen. Return specification inference and result
clustering for keyword search on xml. TODS, 35(2):10, 2010.

[23] Z. Liu, S. Natarajan, and Y. Chen. Query expansion based
on clustered results. PVLDB, 4(6):350–361, 2011.

[24] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate
analysis. 1980.

[25] T. Milo and D. Suciu. Index structures for path expressions.
In ICDT, 1999.

[26] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summa-
rization with bounded error. In SIGMOD, 2008.

[27] D. Petkova, W. B. Croft, and Y. Diao. Refining keyword
queries for xml retrieval by combining content and structure.
In ECIR, pages 662–669, 2009.

[28] J. Plesńık. Complexity of decomposing graphs into fac-
tors with given diameters or radii. Mathematica Slovaca,
32(4):379–388, 1982.

[29] N. Sarkas, N. Bansal, G. Das, and N. Koudas. Measure-
driven keyword-query expansion. PVLDB, 2(1):121–132,
2009.

[30] S. Shekarpour, S. Auer, A.-C. N. Ngomo, D. Gerber, S. Hell-
mann, and C. Stadler. Keyword-driven sparql query genera-
tion leveraging background knowledge. In Web Intelligence,
pages 203–210, 2011.

[31] M. Sydow, M. Pikula, R. Schenkel, and A. Siemion. En-
tity summarisation with limited edge budget on knowledge
graphs. In IMCSIT, pages 513–516, 2010.

[32] S. Tata and G. M. Lohman. Sqak: doing more with keywords.
In SIGMOD, 2008.

[33] Y. Tian, R. Hankins, and J. Patel. Efficient aggregation for
graph summarization. In SIGMOD, 2008.

[34] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k ex-
ploration of query candidates for efficient keyword search on
graph-shaped (rdf) data. In ICDE, 2009.

[35] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[36] H. Wang and C. Aggarwal. A survey of algorithms for key-

word search on graph data. Managing and Mining Graph
Data, pages 249–273, 2010.

[37] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, 2010.

12

