
Towards Graph Containment Search and Indexing ∗

Chen Chen1 Xifeng Yan2 Philip S. Yu2 Jiawei Han1 Dong-Qing Zhang3 Xiaohui Gu2

1University of Illinois at Urbana-Champaign
{cchen37, hanj}@cs.uiuc.edu

2IBM T. J. Watson Research Center
{xifengyan, psyu, xiaohui}@us.ibm.com

3Thomson Research
{dong-qing.zhang}@thomson.net

ABSTRACT
Given a set of model graphs D and a query graph q, con-
tainment search aims to find all model graphs g ∈ D such
that q contains g (q ⊇ g). Due to the wide adoption of
graph models, fast containment search of graph data finds
many applications in various domains. In comparison to tra-
ditional graph search that retrieves all the graphs containing
q (q ⊆ g), containment search has its own indexing charac-
teristics that have not yet been examined. In this paper,
we perform a systematic study on these characteristics and
propose a contrast subgraph-based indexing model, called
cIndex. Contrast subgraphs capture the structure differ-
ences between model graphs and query graphs, and are thus
perfect for indexing due to their high selectivity. Using a
redundancy-aware feature selection process, cIndex can sort
out a set of significant and distinctive contrast subgraphs
and maximize its indexing capability. We show that it is
NP-complete to choose the best set of indexing features,
and our greedy algorithm can approximate the one-level op-
timal index within a ratio of 1 − 1/e. Taking this solution
as a base indexing model, we further extend it to accom-
modate hierarchical indexing methodologies and apply data
space clustering and sampling techniques to reduce the in-
dex construction time. The proposed methodology provides
a general solution to containment search and indexing, not
only for graphs, but also for any data with transitive rela-
tions as well. Experimental results on real test data show
that cIndex achieves near-optimal pruning power on vari-
ous containment search workloads, and confirms its obvious
advantage over indices built for traditional graph search in
this new scenario.

1. INTRODUCTION
Graph data is ubiquitous in advanced data applications,

including the modeling of wired or wireless interconnections

∗Work supported in part by the U.S. National Science Foun-
dation (NSF) IIS-05-13678/06-42771 and BDI-05-15813.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

(communication), 2D/3D objects (pattern recognition), chem-
ical compounds or protein networks (chem/bio-informatics),
circuits (computer-aided design), loosely-schemaed data (XML),
social or informational networks (Web), etc.. With the tremen-
dous amount of structured or networked data accumulated
in large databases, supporting scalable graph search be-
comes an emerging database system research problem.

Given a graph database and a graph query, one could
formulate two basic search problems: (1) (traditional) graph
search: Given a graph database D = {g1, . . . , gn} and a
graph query q, find all graphs gi in D s.t. q is a subgraph
of gi; and (2) graph containment search: Given a graph
database D = {g1, . . . , gn} and a graph query q, find all
graphs gi in D s.t. q is a supergraph of gi.

The first problem, i.e., graph search, including both ex-
act and approximate search, has been extensively studied in
the database community. For example, there are many in-
dexing methods proposed to optimize XML queries (usually
based on path expressions) against tree-structured data [9,
20]. In order to handle more complex graph queries, Graph-
Grep [21] and gIndex [25] use graph fragments such as paths
and small subgraphs as indexing features. Both of them can
achieve promising performances. Based on GraphGrep and
gIndex, approximate graph search algorithms are also suc-
cessfully developed, e.g., Grafil [26]. The key idea of these
algorithms is the feature-based pruning methodology: Each
query graph is represented as a vector of features, where
features are subgraphs in the database. If a target graph in

the database contains the query, it must also contain all the

features of the query. As long as one feature is missing, the
target graph can be safely pruned without testing subgraph
isomorphism between the query and itself.

model graph database D

query graph q

models contained by q

Figure 1: Graph Containment Search

The second problem, named graph containment search,
though having rarely been systematically studied before,

finds many applications in chem-informatics, pattern recog-
nition [7] (visual surveillance, face recognition), cyber secu-
rity (virus signature detection [6]), information management
(user-interest mapping [19]), etc.. Figure 1 illustrates the
scenario of containment search. A model graph database
D is searched against the query graph q to find all mod-
els contained in q. For example, in chemistry, a descriptor
(a.k.a. model graph) is a set of atoms with designated bonds
that has certain attributes in chemical reactions. Given a
new molecule, identifying “descriptor” structures can help
researchers to understand its possible properties. In com-
puter vision, attributed relational graphs (ARG) [7] are used
to model images by transforming them into spatial entities
such as points, lines, and shapes. ARG also connects these
spatial entities (nodes) together with their mutual relation-
ships (edges) such as distances, using a graph representa-
tion. The graph models of basic objects such as humans,
animals, cars, airplanes, are built first. A recognition sys-
tem could then query these models by the scene to identify
foreground objects, or perform large-scale video search for
specific models if the key frames of videos are represented by
ARGs. Such a system can also be used to automatically rec-
ognize and classify basic objects in technical drawings from
mechanical engineering and civil engineering.

In contrast to traditional graph search which finds all
graphs that q is contained in (q ⊆ g), containment search
has its distinguishing characteristics. Briefly speaking, the
pruning strategy employed in traditional graph search has
inclusion logic: Given a query graph q and a database graph
g ∈ D, if a feature f ⊆ q and f 6⊆ g, then q 6⊆ g. That
is, if feature f is in q then the graphs not having f are
pruned. The inclusion logic prunes by considering features
contained in the query graph. On the contrary, contain-
ment search has exclusion logic: If a feature f * q and
f ⊆ g, then q + g. That is, if feature f is not in q then the
graphs having f are pruned.

Owing to the inclusion logic, feature-based pruning and
indexing [25] is effective for traditional graph search because
if a query graph q contains a feature f , then the search can
be confined to those database graphs that contain the fea-
ture f (i.e., indexed by f). However, such a framework does
not work for containment search which uses the exclusion
logic, because the exclusion logic relies on features not con-

tained in q to implement the pruning. Also, as the space
of features not contained in q is infinite, it is impossible to
enumerate them for a given query graph. Therefore, a differ-
ent indexing methodology is needed to support containment
search.

Exclusion logic is the starting point for graph contain-
ment search. Here, instead of comparing a query graph q
with database graphs, we compare q with features. Given
a model graph database D, the best indexing features are
those subgraphs contained by lots of graphs in D, but un-
likely contained by a query graph. This kind of subgraph
features are called contrast features (or contrast subgraphs).
The term has been used by emerging pattern mining [5, 23]
in a different context, where it is defined as patterns that
are frequent in positive data but not frequent in negative
data. In this paper, the concept serves a different objective
function, which will become clear in Sections 4 and 5.

There are two potential issues of finding and using con-
trast subgraphs for the purpose of indexing. First, there
is an exponential number of subgraphs to examine in the

model graph database, most of which are not contrastive at
all. Practically, it is impossible to search all subgraphs that
appear in the database. We found that there is a connec-
tion between contrast subgraphs and their frequency: Both
infrequent and very frequent subgraphs are not highly con-
trastive, and thus not useful for indexing. So, we propose
to use frequent graph pattern mining and pick those mid-
frequent subgraphs. Second, the number of contrast sub-
graphs could be huge. Most of them are very similar to
each other. Since the indexing performance is determined
by a set of indexed features, rather than a single feature, it
is important to find a set of contrast subgraphs that collec-
tively perform well. We develop a redundancy-aware selec-
tion mechanism to sort out the most significant and distinc-
tive contrast subgraphs.

Our proposed techniques, including contrast subgraphs
and redundancy-aware feature selection, form a contrast
feature-based index system, cIndex, which can achieve near-
optimal pruning performance on real datasets. This system
can be further extended to support approximate contain-
ment search. Specifically, we make the following contribu-
tions in this paper.

• We systematically investigate graph indexing towards con-
tainment search and propose a contrast subgraph-based
indexing framework, cIndex. To support this framework,
a new concept called the contrast graph matrix is devel-
oped. cIndex virtually implements contrast graph matrix
by factorizing it into two smaller matrices, which leads
to huge space economization.

• We show that it is NP-complete to choose the best set
of contrast features, and prove that our greedy algorithm
can approximate the one-level optimal index within a ra-
tio of 1 − 1/e.

• Based on cIndex, we develop data space reduction tech-
niques such as clustering and sampling to speed up the
index construction, and extend cIndex to support hier-
archical indexing models: cIndex-BottomUp and cIndex-
TopDown, which further improve the pruning capability.

• Our proposed methodology provides a general indexing
solution to containment search, not only for graphs, but
also for any data with transitive relations as well.

The rest of the paper is organized as follows. Section
2 gives preliminary concepts. Section 3 presents the ba-
sic framework, cIndex, for contrast subgraph-based contain-
ment search and indexing. The key concept of contrast sub-
graphs is introduced in Section 4. Section 5 illustrates the
necessity and details of redundancy-aware feature selection.
Section 6 explores hierarchical indexing models: cIndex-
BottomUp and cIndex-TopDown. Index maintenances are
discussed in Section 7. We report empirical studies, and
give related work in Sections 8 and 9, respectively. Section
10 concludes this study.

2. PRELIMINARIES
In this paper, we use the following notations: For a graph

g, V (g) is its vertex set, E(g) ⊆ V (g)× V (g) is its edge set,
and l is a label function mapping a vertex or an edge to a
label. Due to the application background of containment
search, a graph in the database is also called a model graph
in our setting.

Definition 1. (Subgraph Isomorphism). For two labeled
graphs g and g′, a subgraph isomorphism is an injective
function f : V (g) → V (g′), s.t.,: first, ∀v ∈ V (g), l(v) =
l′(f(v)); and second, ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(g′)
and l(u, v) = l′(f(u), f(v)), where l and l′ are the labeling
functions of g and g′, respectively. Under these conditions,
f is called an embedding of g in g′.

Definition 2. (Subgraph and Supergraph). If there ex-
ists an embedding of g in g′, then g is a subgraph of g′,
denoted by g ⊆ g′, and g′ is a supergraph of g.

The graph search and containment search problems are
formulated as follows.

Definition 3 (Graph Search Problem). Given a graph
database D = {g1, . . . , gn} and a graph query q, find all
graphs gi in D, s.t., q ⊆ gi.

Definition 4 (Graph Containment Search Problem).
Given a graph database D = {g1, . . . , gn} and a graph query
q, find all graphs gi in D, s.t., q ⊇ gi.

The definitions can be generalized to any partially ordered
data with transitive relations, such as the following.

Definition 5 (General Containment Search). Given
a transitive relation �, a database D = {g1, g2, . . . , gn} and
a query q, find all instances gi in D, s.t., q � gi.

(ga) (gb) (gc)

Figure 2: A Sample Database

Figure 3: A Query Graph

Example 1. Figure 2 (ga-gc) is a sample dataset with
three graphs and Figure 3 shows a query graph, where all
vertices and edges share the same label. For graph search,
graphs ga and gb contain the query graph; whereas for graph
containment search, graph gc is the answer.

A näıve solution to the graph containment search prob-
lem, called SCAN, examines the database D sequentially
and compares each graph gi with the query graph q to decide
whether q ⊇ gi. Such a brute-force scheme is not efficient
for large-scale databases or online applications. An interest-
ing question is: Can we reduce the number of isomorphism
tests? Intuitively, similar model graphs gi and gj are likely
to have similar isomorphism testing results with regard to
the same query graph. Let f be a common substructure
shared by gi and gj . If f * q, then, gi * q and gj * q.
That is, we can save one isomorphism test (of course, it has
overhead if f ⊆ q). This intuition leads to the design of our
exclusion logic-based indexing methodology.

3. BASIC FRAMEWORK
The exclusion logic is as follows: Instead of comparing

a query graph q with database graphs, we compare q with
features. If feature f is not in q, then the graphs having
f are pruned. The saving will be significant when f is a
subgraph of many graphs in the database.

The basic index framework using exclusion logic has three
major steps:

1. Off-line index construction: Generate and select a feature
set F from the graph database D. For feature f ∈ F , Df

is the set of graphs containing f , i.e., Df = {g|f ⊆ g, g ∈
D}, which can be represented by an inverted ID list over
D. In the index, each feature is associated with such an
ID list.

2. Search: Test indexed features in F against the query q
which returns all f 6⊆ q, and compute the candidate query
answer set, Cq = D −

⋃
f
Df (f 6⊆ q, f ∈ F).

3. Verification: Check each graph g in the candidate set Cq

to see whether g is really a subgraph of q.

The above framework outlines the basic components of
cIndex. Within this framework, given a query graph q and
a set of features F , the search time can be formulated as:

∑

f∈F

T (f, q) +
∑

g∈Cq

T (g, q) + Tindex (1)

where T (f, q) is the time to retrieve a feature and check
whether it is a subgraph of q (each feature will incur one I/O
and one isomorphism test), T (g, q) is the time to retrieve a
candidate model graph and check whether it is a subgraph
of q (each candidate will incur one I/O and one isomorphism
test), and Tindex includes the cost to load the ID lists and
the cost of index operations that compute Cq.

According to the basic index framework, various kinds of
index schemes can be formulated which use different feature
sets. Tindex is negligible as it represents operations on the
ID lists (disk access and union calculation), while subgraph
isomorphisms are of NP-hard complexity. This fact is fur-
ther confirmed by our experiments. For simplicity, we shall
focus on the time caused by T (f, q) and T (g, q), which is
roughly proportional to the total number of features and
model graphs retrieved and tested,

|F| + |Cq |. (2)

In this study, we are going to use this simplified cost model
(Equation 2) to illustrate the ideas behind our index design.
Nonetheless, the algorithms developed here can be easily
revised according to the original cost model of Equation 1.

So far, we have not discussed how to generate and select
a feature set F for index construction. In the next section,
we are going to introduce the concept of contrast features,
which can measure the pruning power of a single feature.
After that, a redundancy-aware feature selection algorithm
will be presented, which is able to select a set of significant
and distinctive contrast features to maximize their collective
pruning capability.

4. CONTRAST FEATURES
The exclusion logic suggests that every subgraph f satis-

fying f 6⊆ q is a potential candidate, with its pruning power

determined by the fraction of database containing f and the
probability that a query graph does not contain f .

Figure 4 shows several subgraph features extracted from
the sample graph database in Figure 2.

(f1) (f2) (f3) (f4)

Figure 4: Features

We can build a feature-graph matrix [21] to display the
containment relationship between features and graphs, whose
(i, j)-entry tells whether the jth model graph has the ith fea-
ture. Figure 5 shows a feature-graph matrix for features in
Figure 4 and graphs in Figure 2. For instance, f3 is con-
tained in ga.

ga gb gc

f1 1 1 1

f2 1 1 0

f3 1 1 0

f4 1 0 0

Figure 5: Feature-Graph Matrix

Consider the query shown in Figure 3, we can prune ga

and gb immediately based on feature f2, according to the
exclusion logic. However, it is also possible that some over-
head may arise if a wrong feature is selected. For example,
suppose f1 is selected, then the number of subgraph isomor-
phism tests will be 4 (three plus the extra testing between
f1 and the query graph), even worse than the näıve SCAN.

The above example shows that features might have differ-
ent pruning power. Formally, let the frequency of a feature
f in the database graphs be p, and the probability that a
query graph having f be p′. Given a query graph, the ex-
pected number of subgraph isomorphism tests that can be
saved from SCAN is as follows,

Jf = np(1 − p′) − 1, (3)

where n is the total number of graphs in D. We call the sub-
graphs with high value of Jf contrast subgraph (or contrast
feature). Here is the intuition: Contrast subgraphs are those
subgraphs contained by a lot of graphs in D, but unlikely
contained by a query graph. It is obvious that we should
index those contrast subgraphs since they provide the best
pruning capability.

Equation 3 shows that features frequently (or infrequently)
appearing in both database graphs and query graphs are use-
less. As query graphs and database graphs often share some
similarity and thus a feature’s frequency in query graphs
is usually not too different from that in database graphs
(i.e., p ≈ p′), Jf will achieve its maximum at p = 1/2 and
monotonically decreases as p → 1 or p → 0. This, to some
extent, indicates an observation that good features should
be frequent, but not too frequent in the database. Since the
pruning power of infrequent subgraphs are limited, we can

use (closed) frequent subgraph mining algorithms,e.g., FSG
[16], GASTON [18], and gSpan [24], to generate an initial
set of frequent subgraphs and then filter out those contrast
ones. This approach is much easier than directly finding
contrast features from the exponential set of subgraphs in
D.

5. REDUNDANCY-AWARE FEATURE SELEC-
TION

In order to maximize the pruning capability of the ba-
sic framework introduced in Section 3, it is necessary to
use a set of contrast subgraphs. However, there might be
thousands, or millions of contrast subgraphs; it would be
unrealistic to index all of them. On the other hand, con-
trast subgraphs could be similar to each other. If two con-
trast subgraphs are similar, then the pruning power of one
subgraph will be shadowed by the other. Therefore, it is
important to remove redundant features and use a set of
distinctive contrast subgraphs. In this section, we introduce
a redundancy-aware selection mechanism to sort out such
features.

Given a SINGLE query graph q, we define the gain J of
indexing a feature set F as the number of subgraph isomor-
phism tests that can be saved from SCAN:

J = |D| − |Cq| − |F|

= | ∪f 6⊆q,f∈F Df | − |F| (4)

For an initial set of features Fo = {f1, f2, . . . , fm}, we
would like to select a subset F ⊆ Fo to maximize J . Ac-
cording to Equation 4, we should index a feature as long as
q does not have it and it covers at least one database graph
which has not yet been covered by other features (a feature
covers a graph g if g has it). Thus, what we need to solve
is exactly the set cover problem. Let

µij =

{
1 fi ⊆ gj ,
0 otherwise.

The formulation is

minimize
∑

i,fi*q

xi

subject to ∀j,
∑

i

xiµij ≥ 1, if
∑

i

µij ≥ 1,

xi ∈ {0, 1}. (5)

where xi is a boolean value indicating whether feature fi

has been selected.
The solution to the above optimization problem can help

us find an ideal feature set for a single query graph. How-
ever, in practice, the index should not be optimized for one
query graph, but for a set of query graphs. We are going to
discuss how to find a feature set that can provide the best
pruning power for multiple queries.

5.1 Feature Selection
When multiple query graphs are taken into consideration,

we can select features based on a probabilistic model or an
exact model. In a probabilistic model, we use the probability
for a feature contained in a query; while in an exact model,
we do not compute probabilities but instead plug in a set
of query graphs and see what happens. It seems that the
probabilistic model is more restrictive: The joint probability

for multiple features contained in a query is hard to derive
accurately, while it is required to determine whether one
feature is redundant with respect to the others. Therefore,
our study employs an exact model, which uses a query log
L as the training data.

Given a SET of queries {q1, q2, . . . , qr}, an optimal index
should be able to maximize the total gain

Jtotal =
r∑

l=1

| ∪f 6⊆ql,f∈F Df | − r|F| (6)

which is a summation of the gain in Equation 4 over all
queries.

The optimization over Jtotal can be written as an integer
programming problem as follows,

maximize
n∑

j=1

r∑

l=1

zjl − r
m∑

i=1

xi

subject to
∑

i,µij=1

xiνil ≥ zjl, j = 1, . . . , n and l = 1, . . . , r,

xi ∈ {0, 1}, i = 1, . . . , m,

zjl ∈ {0, 1}, j = 1, . . . , n and l = 1, . . . , r. (7)

where

νil =

{
1 fi * ql,
0 otherwise.

shows whether query graph ql has feature fi, and zjl indi-
cates whether database graph gj is pruned for query graph
ql. The optimization of Equation 7 is related to set cover,
but not straightforwardly.

Let us introduce the concept of contrast graph matrix,
which is derived from the feature-graph matrix but with its

ith row set to
−→
0 if the query has feature fi. Figure 6 shows

three query graphs and their corresponding contrast graph
matrix for the 4 features and 3 model graphs shown in Figure
4 and Figure 2.

q1 q2

0 0 0

0 0 0

1 1 0

1 0 0

q3

1 1 1

1 1 0

1 1 0

1 0 0

0 0 0

1 1 0

0 0 0

1 0 0

f1

f2

f3

f4

ga gb gc ga gb gc ga gb gc

Figure 6: Contrast Graph Matrix

For each query graph ql, we can construct a corresponding
m× n contrast graph matrix Ml, where m is the number of
features in the initial feature set Fo and n is the number of
graphs in the database D. These matrices are then column-
concatenated to form a global m × nr matrix M for the
whole query log set L, where r is the number of queries in
L.

Definition 6 (Maximum Coverage With Cost).
Given a set of subsets S = {S1, S2, . . . , Sm} of the universal
set U = {1, 2, . . . , n} and a cost parameter λ associated with

any Si ∈ S, find a subset T of S such that |∪Si∈T Si|−λ|T|
is maximized.

Casting to a contrast graph matrix M, U corresponds to
the column index of M, S corresponds to non-zero entries in
each row of M, T corresponds to the selected rows (i.e., fea-
tures), and λ corresponds to the number of queries r. Take
the matrix in Figure 6 as an example: U = {1, 2, 3, 4, 5, 6, 7, 8,
9} because there are 9 columns in the concatenated matrix,
S = {{4, 5, 6}, {1, 2, 4, 5}, {4, 5, 7, 8}, {1, 4, 7}}, e.g., {4, 5, 6}
corresponds to the first row in the matrix, λ = 3 since there
are 3 query graphs. With this translation, the integer pro-
gramming problem in Equation 7 becomes the problem of
maximum coverage with cost.

Theorem 1. Maximum coverage with cost is NP-complete.

Proof. Reduction from set cover. Given an instance
of set cover: Subsets S = {S1, S2, . . . , Sm} of the universal
set U = {1, 2, . . . , n}, we further let λ = 1 and construct
an instance of maximum coverage with cost. Assume we
solve this instance of maximum coverage with cost and get a
solution T, which covers the universal set U except a portion
U ′. Now as any element j ∈ U ′ must be covered by at least
one subset Sij

from S (otherwise, S cannot set cover U), we
will show that T∪{Sij

|j ∈ U ′} is a minimal set covering U .
If this is true, then the NP-complete set cover can be solved
via maximum coverage with cost through a polynomial-time
reduction, which means that maximum coverage with cost
itself must be NP-complete.

Proof by contradiction. Suppose that Tmin is a minimal
set covering U , while T ∪ {Sij

|j ∈ U ′} is not. Plug Tmin

into the objective function of Definition 6:

| ∪Si∈Tmin
Si| − λ|Tmin| = |U | − |Tmin|

> |U | − |T ∪ {Sij
|j ∈ U ′}|

= |U | − |U ′| − |T| (8)

= | ∪Si∈T Si| − λ|T|

we obtain Tmin as a better solution than T for this particu-
lar instance of maximum coverage with cost. Contradiction!

To see Equation 8, we have: No Si 6∈ T can cover at least 2
elements of U ′ (otherwise, {Si}∪T is a better solution than
T for the problem of maximum coverage with cost, which
can increase the objective function by at least 1), implying
that each Sij

can only cover 1 element of U ′, and thus it
must be true that |{Sij

|j ∈ U ′}| = |U ′|.

Having seen the connection between set cover and maxi-
mum coverage with cost, it is reasonable to follow the same
greedy heuristic used to approximate set cover in treating
this new NP-complete problem. In each iteration, we select
a row with the most number of non-zero entries from the
matrix M; however, since now including a feature is asso-
ciated with cost r, it may not be good to completely cover
each column of M, which can potentially generate a heavy
negative entry −r|F| in Jtotal. Rather, we set a fixed K,
and choose the best K features. This can be regarded as
a mechanism of redundancy-aware feature selection, which
aims at finding those distinctive features that are able to
cover database graphs not covered by previous features.

How good is this greedy feature selection process? Note
that, as K is fixed and r is a constant, we only need to max-
imize the first part of Equation 6 so that the performance

metric Jtotal is optimized. Define that part:

r∑

l=1

| ∪f 6⊆ql,f∈F Df |

as the coverage of the indexed feature set F composed of K
features. We have the following theorem.

Theorem 2. In terms of coverage, the greedy feature se-
lection process can approximate the optimal index with K
features within a ratio of 1 − 1/e.

Proof. When the cost parameters λ|T| are dropped, we
are indeed treating the problem of maximum coverage (but
with no cost associated): Given m subsets S = {S1, S2, . . . ,
Sm} of the universal set U = {1, 2, . . . , n}, find K of them
which can cover the most number of elements in U . [12]
mentions a greedy algorithm as same as ours and proves that
it can achieve an approximation ratio of 1 − 1/e. Details of
the proof are neglected, see [12] for references.

What if the number of features K is not fixed as given?
Straightforwardly, if the number of non-zero entries in a row
is greater than the cost r, adding it to F can further bring
down Jtotal. Overall, we refer to this feature selection algo-
rithm as cIndex-Basic. Algorithm 1 outlines its pseudo-
code. Given a contrast graph matrix, it first selects a row
that hits the largest number of columns, and then removes
this row and all columns covered by it. This process repeats
until no row can cover at least r columns.

Algorithm 1 cIndex-Basic

Input: Contrast Graph Matrix M.
Output: Selected Features F .

1: F = ∅;
2: while ∃i,

∑
j
Mij > r do

3: select row i with most non-zero entries in M;
4: F = F ∪ {fi};
5: for each column j s.t. Mij is not zero do

6: delete column j from M;
7: delete row i;
8: return F ;

5.2 Complexity and Virtualization

Lemma 1. cIndex-Basic’s time complexity is O(|Fo||D||L|).

Proof. For each row i, we keep track of how many non-
zero entries ui exist. For each column deleted on line 6 of
Algorithm 1, influenced ui’s must be modified to reflect the
change, and the number of such ui’s is upperbounded by
|Fo|. As there are in total |D||L| columns, maintaining all
the ui’s throughout the algorithm takes O(|Fo||D||L|) time.
On line 3, selecting the row with the currently highest ui

needs O(|Fo|) time. Because in each iteration we delete at
least one column, all re-selections take at most O(|Fo||D||L|)
time. In total, the time complexity is O(|Fo||D||L|).

The contrast graph matrix shown in Figure 6 might be too
large with a size of |Fo||D||L|. As shown below, there is no
need to materialize the contrast graph matrix. In fact, we
can use a compact (contrast graph) matrix, together with
the feature-graph matrix, to replace it.

q1 q2 q3

f1 0 3 0

f2 2 2 0

f3 0 2 2

f4 1 1 1

Figure 7: Compact Contrast Graph Matrix

Figure 7 shows a compact matrix Mc for the 4 features
and 3 queries in Figure 4 and Figure 6. The (i, l)-entry of
Mc is

∑n

j=1
µijνil, where µij = 1 if the jth model graph has

the ith feature and νil = 1 if the lth query graph does not
have the ith feature.

We can mimic the feature selection process on the original
contrast graph matrix by manipulating the compact matrix
Mc correspondingly: In each iteration, we select row i with
the maximum sum of entries in Mc and update Mc accord-
ing to its definition in above. In this way, we only need to
keep two matrices for index construction. This virtual im-
plementation of contrast graph matrix can reduce the space
usage from O(|Fo||D||L|) to O(|Fo||D| + |Fo||L|).

5.3 Non-binary Features
The analysis presented so far does not consider the plural-

ity of features: In fact, features are not limited to 0-1 vari-
ables if we take into account the number of their occurrences
(i.e., non-automorphic embeddings) in a graph. Assume fi

occurs in g for n(fi, g) times. If n(fi, g) > n(fi, q) (which
substitutes the clause: fi ⊆ g & fi * q in the binary setting),
then g 6⊆ q. The basic framework can be slightly adjusted to
accommodate non-binary features: Given a query log entry
q, the contrast graph matrix for q is now defined as: Mij = 1
if n(fi, g) > n(fi, q); and when incoming queries are being
processed, we allow pruning if n(fi, g) > n(fi, q). Nothing
else needs to be changed.

5.4 Time Complexity Reduction
As analyzed in Section 5.2, the time complexity of the

greedy algorithm for feature selection is linear to the size of
initial feature set Fo, database D, and query log L. However,
in practice, the product of |Fo|, |D|, and |L| may still be too
large. If we can substantially reduce the cardinality of Fo,
D, or L, it would be of great help for fast index construction.

We propose two data reduction techniques: sampling and
clustering. Due to space limitation, here we only discuss
the sampling technique, e.g., we might sample a small set of
model graphs from the database and a small set of queries
from the query log. Clustering can be similarly pursued if
we treat it as a form of advanced sampling that selectively
picks out representative data points. One should be cau-
tious about the optimization function in Equation 6 when

performing sampling on D. Let D̂ be a sample of D; and
based on this sample, we are going to build an index for D.
According to Equation 6, the first part of Jtotal:

r∑

l=1

| ∪f 6⊆ql,f∈F Df |

now approximately shrinks to |D̂|
|D|

times as before. In order

to make the optimization solution in line with the original

one without sampling, the second part of Jtotal should be
reduced by the same factor accordingly. Therefore, the total
gain depicted in Equation 6 becomes

Jtotal =

r∑

l=1

| ∪f 6⊆ql,f∈F D̂f | −
|D̂|

|D|
· r|F|

6. HIERARCHICAL INDEXING MODELS
The cIndex-Basic algorithm introduced in Section 5 builds

a flat index structure, where each feature is tested sequen-
tially and deterministically against any input queries. This
mechanism has two potential disadvantages.

First, the index, consisting of a set of features F and their
corresponding inverted ID lists, is flat-structured. Given a
query graph, we need to sequentially test the containment
relationship between q and each of the features in F , which
is equivalent to executing the näıve SCAN approach on F .
Note that, F is nothing else but a set of graphs. In order to
avoid näıve SCAN, it is interesting to view F itself as an-
other graph database on which a second-level index can be
built. This process can be repeated to generate a hierarchi-
cal index structure. Figure 8 shows a bottom-up hierarchical
index based on this design strategy.

Second, cIndex-Basic follows a deterministic order when
testing its indexed features. Specifically, each feature in F
must be retrieved and compared with any given query q,
which does not adapt to different inputs flexibly. Now, sup-
pose we have tested a feature f1 and are going to test an-
other feature f2, then the testing result between f1 and q,
i.e., f1 ⊆ q or f1 * q, can give us hints about how the
query looks like, which may affect our choice of the second
feature. In cIndex-Basic, f2 is fixed no matter f1 ⊆ q or
f1 * q. Here, we can relax this constraint and allow them
to be two different features: f2 and f ′

2. Would this strategy
help improve the performance? The answer is yes! Follow-
ing exactly the same idea to select more features engenders
a top-down hierarchical index, as shown in Figure 9.

In this section, we will examine these two hierarchical in-
dexing models. Using a conventional search tree to index
the inverted list associated with each feature, they can be
easily implemented over a graph database.

... Original Graph Database

First Level Index

Second Level Index

graph

f1

f2

g1 g2 g3 gn

Third Level Index

f3

...

Figure 8: Bottom-up Hierarchical Indexing

6.1 Bottom-up Hierarchical Index
Bottom-up means that the index is built layer by layer

starting from the bottom-level graphs. Figure 8 shows a
bottom-up hierarchical index where the ith-level index Ii is
built by applying cIndex-Basic to features in the (i − 1)th-
level index Ii−1. For example, the first-level index I1 is
built on the original graph database by cIndex-Basic. Once

this is done, the features in I1 can be regarded as another
graph database, where cIndex-Basic can be executed again
to form a second-level index I2. Following this manner, we
can continue building higher-level indices until the pruning
gain becomes zero.

This method is called cIndex-BottomUp. Note that in
a bottom-up index, features on the ith-level must be sub-
graphs of features on the (i − 1)th-level. In Figure 8, sub-
graph relationships are shown as edges. For example, f1 is
a subgraph of f2, which is in turn a subgraph of f3. Given a
query graph q, if f1 * q, then the tree covered by f1 need not
be examined due to the exclusion logic. This phenomenon
is called the cascading effect. Since the index on each level
will save some isomorphism tests for the graphs it indexes,
it is obvious that cIndex-BottomUp should outperform the
flat index of cIndex-Basic.

The bottom-up index has a potential problem on the ar-
rangement of features in the hierarchy. At the first glance,
the cascading effect can avoid examinations of many features
in the index if a higher-level feature is not contained in the
query. However, this will not happen often because higher-
level features are in general weaker and thus much easier to
be contained: During the construction of a bottom-up in-
dex, the best features are entered into lower levels because
they are built first. Intuitively, it would be more profitable
to put high-utility features in higher-level indices, which can
prune the database graphs as early as possible. This idea
leads us to the following top-down hierarchical index design.

f1

f2 f2'
not containedcontained

Figure 9: Top-down Hierarchical Indexing

6.2 Top-down Hierarchical Index
The top-down hierarchical index first puts f1, the feature

with the highest utility, at the top of the hierarchy. Given a
query graph q, if f1 is contained by q, we go on to test f2; if
f1 is not contained by q, we at first prune all model graphs
indexed by f1, and then pick f ′

2 as the second feature. In
a flat index built by cIndex-Basic, f2 and f ′

2 are forced to
be the same: No matter whether f1 is contained by q, the
same feature will be examined next. However, in a top-down
index, they can be different.

Generally speaking, the top-down index adopts a differen-
tiating strategy. Suppose that a query log set Q is clustered
into c groups: Q1,Q2, . . . ,Qc, based on their isomorphism
testing results against a set of features. We can uniformly
choose K features FQ with regard to Q, or we can specifi-
cally choose K features FQl

for each of Ql (l = 1, 2, · · · , c).
Likely, the latter strategy will achieve better performance
due to its finer granularity.

Figure 10 illustrates the process of building a top-down hi-
erarchical index. For the three query graphs shown in Figure
6, we first construct their contrast graph matrix. Based on

q1 q2

0 0 0

0 0 0

1 1 0

1 0 0

q3

1 1 1

1 1 0

1 1 0

1 0 0

0 0 0

1 1 0

0 0 0

1 0 0

f1

f2

f3

f4

contain f2
do not contain f2

q1 q2
0 0 0

1 1 0

0 0 0

q3

1 1 1

1 1 0

1 0 0

0 0 0

0 0 0

1 0 0

f1

f3

f4

f1

f3

f4

contrast m
atrix

Figure 10: Top-down Index Construction

the greedy feature selection algorithm, feature f2 will be se-
lected first (f3 is a tie), where {q1, q2, q3} is divided into two
groups {q3} (those contain f2) and {q1, q2} (those do not
contain f2). In the right branch, columns covered by f2 are
removed from the contrast graph matrix.

The above partitioning process is iterated until we reach
a leaf node of the tree. In order to avoid too deep branches
that may cause overfitting, a smallest number (min size) of
queries must be retained within each leaf. Now the hierar-
chical structure is clear: at an internal node Ni, we select
one feature fi to split the query log set into two groups; at
a leaf node Nl, cIndex-Basic is applied to build a flat index.
We call this hybrid approach cIndex-TopDown.

Formally, given a query log set Li, a feature set Fi, and
a contrast graph matrix Mi at an internal node Ni, we
run cIndex-Basic on Mi to get the feature with the high-
est utility. Let this feature be f . f splits Li into two groups
L′

i = {q|f ⊆ q, q ∈ Li} and L′′
i = {q|f 6⊆ q, q ∈ Li}, which

form the two branches of node Ni. Mi is also split into two
parts: M′

i and M′′
i , where M′

i is the contrast graph matrix
for the query log set L′

i and M′′
i is the matrix for L′′

i . In the
“do not contain” branch, all columns covered by feature f
are removed from M′′

i .

7. INDEX MAINTENANCES
The indexing methodology we have examined so far is

suitable within a static environment. When updates take
place in the database D or query graphs deviate away from
previously logged entries, how should the index react in or-
der to maintain its performance?

First, we can take an “ostrich” strategy: Stick with the
same set of selected features and the same hierarchical struc-
ture built. Whenever an insertion/deletion to D takes place,
we simply add/remove a corresponding item to/from the in-
verted ID lists of all involved features. If the changed model
graph database and query log is not significantly deviated
from the original, it is quite reasonable that the index thus
maintained will continue to perform well. This aspect of the
“ostrich” algorithm is further confirmed in our experimental
results.

Unfortunately, there are also cases where a previously
built index becomes completely outdated after a substantial

amount of updates. This may be due to dramatic changes to
database D, log L, or both, which makes it inappropriate to
still take the original database and query log as references.
In practice, such scenarios must be monitored so that some
counter-measures can be taken.

Let I be the index originally built. We periodically take
small samples Ds and Ls from D and L, mine a set of fre-
quent subgraphs Fs out of Ds, and calculate a new index
Is based on the triplet (Fs,Ds,Ls). The mining step can
even be bypassed, because frequent patterns represent the
intrinsic trends of data and are relatively stable in spite
of updates. The sampling ratios can be set according to
the updating rates of D and L. Since queries are continu-
ously being logged in an online fashion, we can also apply
strategies such as tilted time windows [3] to over-sample the
query stream in the recent past so that the evolutions of
query distribution are better reflected. As will be shown in
the experiment section, the performance of I and Is can be
systematically gauged: If I has not degraded much from Is,
which roughly represents an up-to-date index, the “ostrich”
strategy is taken; otherwise, we may consider to replace I
with Is or reconstruct it from a larger sample to assure even
higher accuracy. Here, we take advantage of the data space
reduction techniques introduced in Section 5.4. They are
very effective in building an index with similar quality as
the one built on the whole dataset, while the index con-
struction time is greatly reduced. This is ideal for online
performance monitoring purposes.

8. EMPIRICAL STUDIES
In this section, we present our empirical studies on real

datasets. We first demonstrate cIndex’s effectiveness by
comparing its query performance with that of the näıve
SCAN method and the indexing structure provided by gIn-
dex [25], a state-of-art algorithm proposed for traditional
graph search, followed by examinations on scalability, main-
tenances, etc.. As gIndex is not designed for containment
search, we use the features selected by gIndex, and feed them
into the containment search framework given in Section 3.
This strategy is named as FB (Feature-Based) to avoid pos-
sible confusions with cIndex’s contrast feature-based method-
ology.

Our experiments are done on a Windows XP machine with
a 3GHz Pentium IV CPU and 1GB main memory. Programs
are compiled by Microsoft Visual C++ 6.

8.1 Experiment Settings
Graph containment search has many applications. In this

experiment, we are going to explore two of them, fast chemi-
cal descriptor search and real-time object recognition search,
on two real datasets. The first one is an AIDS anti-viral
screen dataset, which contains the graph structures of chem-
ical compounds. This dataset is publicly available on the
website of Developmental Therapeutics Program, which was
also used in the testing of gIndex [25]. The second one is
taken from TREC Video Retrieval Evaluation (i.e., TREC-
VID, url: http://www-nlpir.nist.gov/projects/trecvid),
which is a public benchmark for evaluating the performance
of high-level concept (e.g., objects in scenes) detection and
image search [27, 10].

8.2 Chemical Descriptor Search
The AIDS anti-viral screen dataset contains more than

40,000 chemical compounds. We randomly pick 10,000 graphs
to form a dataset, which is denoted as W . W is divided to
a query log set L and a testing query set Q based on five-
fold cross-validation. That is, we randomly partition W into
five pieces W1, . . . , W5 of equal size, and each time use four
pieces as query log and one piece as testing query. Results
are reported as an average over five folds.

In chem-informatics, a model graph database usually in-
cludes a set of fundamental substructures, called descrip-
tors. These descriptors, shared by specific groups of known
molecules, often indicate particular chemical and physical
properties. Given a molecule, fast searching for its “de-
scriptor” substructures can help researchers to quickly pre-
dict its attributes. In order to build a descriptor (model)
graph database D, we apply frequent subgraph mining on
W and generate 5,000 distinctive frequent subgraphs whose
frequency ranges from 0.5% to 10%.

During experiments, we keep the index built by cIndex
on disk. When a query q comes, we load the indexed fea-
tures and compare them with q (this represents the |F| part
of Equation 2). For those features f * q, their associated
ID lists are then loaded into memory and merged to com-
pute the candidate query answer set (this represents the
Tindex part of Equation 1). Finally, these candidate graphs
are retrieved from the database for further verification (this
represents the |Cq | part of Equation 2).

 10

 100

 1000

 10000

 100000

 10 100

Q
ue

ry
 P

er
fo

rm
an

ce
 (

in
 #

 o
f i

so
. t

es
ts

)

Average Size of Query Answer Set

OPT
SCAN

cIndex-Basic
FB

Figure 11: Query Performance of cIndex-Basic, in

terms of Subgraph Isomorphism Test Numbers

 1

 10

 100

 1000

 10000

 10 100

Q
ue

ry
 P

er
fo

rm
an

ce
 (

in
 m

ic
ro

se
co

nd
s)

Average Size of Query Answer Set

OPT
SCAN

cIndex-Basic
FB

Figure 12: Query Performance of cIndex-Basic, in

terms of Query Processing Time

Figure 11 and Figure 12 compare the query performance of
cIndex-Basic with that of SCAN and FB. Here, 2,000 queries
are taken from the testing fold of W , which are divided
into five bins: [0, 10), [10 − 20), [20 − 30), [30, 40), [40,∞),

based on the size of the query answer set, i.e., the number
of database graphs that are contained in the query. The
x-axis in Figure 11 shows the average answer set size of the
queries within each bin, and the y-axis depicts the average
querying cost of each method in terms of isomorphism test
numbers. Figure 12 has the same x-axis as Figure 11, but
its y-axis shows the corresponding query processing time
instead of isomorphism test numbers. In summary, Figure
11 is gauging based on Equation 2 of the basic framework,
while Figure 11 is gauging based on Equation 1.

The cost of SCAN is obviously |D| = 5, 000 tests for Figure
11 and the total time needed to load and check all these 5,000
database graphs for Figure 12. As Equation 1 indicates, the
cost of cIndex-Basic and FB consist of three parts: the first
part is testing indexed features against the query, the second
part is testing each graph in the candidate answer set for
verification, and the third part is the index overhead. Since
in the second part, we always need to verify those database
graphs really contained in the query, which can never be
saved by any indexing efforts, this portion of cost is marked
as OPT in both figures.

To make the comparison fair, we select the same number
of features for FB and cIndex-Basic. As shown in the figure,
cIndex-Basic performs significantly better than näıve SCAN
and FB, while itself achieves near-optimal pruning power.
Note the log scale of y-axis, cIndex-Basic in fact increases
the performance by more than one order of magnitude. The
above result well testifies the necessity of a new indexing
scheme aiming at containment search, which is the major
motivation of this study.

Furthermore, trends shown in Figure 11 and Figure 12 are
very similar to each other, which implies that the simplified
cost model we proposed in Equation 2 is quite reasonable.
Actually, we also measured the differential part: Tindex in
our experiments: Looking at Figure 12, cIndex-Basic in gen-
eral costs several tens of microseconds per query; while in
comparison, Tindex is in the range of 0.3ms-0.4ms. We did
not draw this adjustment in the picture, as it will become
too small to be discernable. Having this in mind, we shall
stick with the isomorphism test numbers (i.e., follow Equa-
tion 2) to gauge query performance in below.

 200

 250

 300

 350

 400

 450

 0 0.2 0.4 0.6 0.8 1

Q
ue

ry
 P

er
fo

rm
an

ce
 (

of

 is
o.

 te
st

s)

Percentage of F/D/L Remained after Data Reduction

Sampling L
Sampling D

Figure 13: Effectiveness of Data Space Reduction

Figure 13 shows the effectiveness of the data space reduc-
tion techniques proposed in Section 5.4. Here, we sample
D and L to reduce the data size to a specific percentage
shown on the x-axis. y-axis shows the query performance
of the index built on the sampled model graphs and query
logs. It seems that all strategies perform well as long as the
remained data size is above some threshold and thus can

well reflect the data distribution. Sampling on query log L
is very stable, indicating that the amount of query log data
needed is moderate. Furthermore, as suggested by Lemma
1, we observe that the index construction time is linearly
scalable with regard to the sample size |D| and |L|; while
the figure is omitted here due to lack of space.

In addition, if it is hard to obtain query logs, cIndex can
perform a “cold start”: As the database distribution is often
not too different from the query distribution, we might use
the database itself as a pseudo log to initiate an index so that
the system can start to operate. After that, as real queries
flow in, the maintenance scheme described in Section 7 can
be applied. Using this alternative, the average querying cost
on the set of 2,000 queries is degraded from 239.8 tests to
340.5 tests, which we believe is affordable. This means that
cIndex can work well even without query log.

 220

 240

 260

 280

 300

 320

 340

 0.2 0.4 0.6 0.8 1

Q
ue

ry
 P

er
fo

rm
an

ce
 (

of

 is
o.

 te
st

s)

Database Size after Updates (*|D|)

Directly Built
Incrementally Updated

Figure 14: Index Maintenances

Figure 14 shows the situation when database updates take
place. To simulate such a scenario, a sample D4 = 4

5
|D| is

taken from D; similarly, we sample D3 out of D4, D2 out
of D3, and D1 out of D2, so that |Di| = i

5
|D|(i = 1, . . . , 5),

where D5 = D. By doing this, Dj ’s (j > i) can be viewed as
a database incrementally updated from Di through a batch
of insertions. We compare two curves here: One curve shows
the performance of the index directly constructed for Di,
while the other shows the performance of the index origi-
nally constructed for D1 but maintained afterwards to fit
Di (“ostrich” updating). Performance is still gauged using
the same set of 2,000 queries. It can be seen that two curves
start from the same point at D1, and keep quite close to
each other for all the following updated databases. This
well validates the feasibility of the proposed “ostrich” index
maintenance scheme.

 100

 1000

 10 100

Q
ue

ry
 P

er
fo

rm
an

ce
 (

of

 is
o.

 te
st

s)

Average Size of Query Answer Set

cIndex-Basic
cIndex-BottomUp
cIndex-TopDown

Figure 15: Performance of Hierarchical Indices

In the next several experiments, we examine hierarchi-
cal indices. Figure 15 depicts the query performance of all
three indices: cIndex-Basic, cIndex-BottomUp, and cIndex-
TopDown. We implement a 2-level bottom-up index, and set
the top-down index’s stop-split query log min size at 100.
Compared to cIndex-Basic, a bottom-up index can approx-
imately save 25% by providing another index for the first-
level features, while a top-down index can save by nearly
one half, due to its differentiating effect.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

C
on

st
ru

ct
io

n
T

im
e

(s
ec

on
ds

)

Size of Query Log (*|L|)

cIndex-Basic
cIndex-BottomUp
cIndex-TopDown

Figure 16: Scalability of Hierarchical Indices

Figure 16 compares the scalability of hierarchical indexing
algorithms to that of cIndex-Basic, with respect to the size of
query log: |L|. It is observed that, cIndex-BottomUp takes
a little bit more time, due to the additional computation
it devotes to the second-level index. Surprisingly, cIndex-
TopDown runs even faster than cIndex-Basic. This is due
to the fact that splitting at an internal node removes part
of the contrast graph matrix, and thus the time spent in
choosing deeper-level features is reduced. The results are
quite similar when we vary |Fo| and |D|.

 100

 1000

 0.2 0.4 0.6 0.8 1

In
de

x
S

iz
e

(#
 o

f i
nd

ex
ed

 fe
at

ur
es

)

Database Size (*|D|)

cIndex-Basic
cIndex-BottomUp
cIndex-TopDown

Figure 17: Index Size

Figure 17 compares the index size by measuring the num-
ber of indexed features. It is shown that the increase of index
size is sub-linear to the increase of database size, which is
a nice property when dealing with large databases. cIndex-
TopDown somehow indexes more features since it selects a
potentially different feature set for different subgroups of the
query log. Both cIndex-BottomUp and cIndex-TopDown ex-
change some space cost for the improvement of query per-
formance.

8.3 Object Recognition Search
In object recognition search, labeled graphs are used to

model images by transforming pixel regions into entities.

These entities (taken as vertices) are connected together ac-
cording to their spatial distances. The model graphs of ba-
sic objects, e.g., humans, animals, cars, airplanes, etc., are
stored in a database, which are then queried by the recog-
nition system to identify foreground objects that appear in
the scene. Certainly, such querying should be conducted as
fast as possible in order to support real-time applications.

We download more than 20,000 key frame images from
the TREC-VID website. A labeled graph is generated for
each image through salient region detection, followed by a
quantization step that converts continuous vertex/edge fea-
tures into integer values. The scale-saliency detector is de-
veloped by Kadir et al. [14], which outputs the locations
and scales of detected regions. After that, color moment
features are extracted from each region, where regions and
their color moment features form vertices. Edges of a graph
are generated by connecting nearby vertices, which are then
associated with corresponding spatial distances. The graphs
transformed from the key frame images are taken as query
graphs, while the model graphs are extracted as annotated
regions in the key frames. The TREC-VID benchmark pro-
vides many concept image regions, including face, building,
table, monitor, microphone, baseball, bicycle, etc., that are
annotated by humans. We collected several thousand model
graphs from these concepts. Since one concept might have
different appearances, there are tens of, or even hundreds of
model graphs for each concept.

 100

 1000

 10000

 180 200 220 240 260 280 300 320 340 360

Q
ue

ry
 P

er
fo

rm
an

ce
 (

of

 is
o.

 te
st

s)

Average Size of Query Answer Set

OPT
SCAN

cIndex-Basic

Figure 18: Query Performance – TREC-VID

Figure 18 shows the result. The database contains 2,535
model graphs. We use cIndex-Basic to build an index, whose
performance is then tested against 3,000 querying key frames.
It can be seen that as same as in chemical descriptor search,
the system provides near-optimal pruning capability and is
an order of magnitude faster than the näıve SCAN approach.
We observe that, in our case, the average time needed by
SCAN to process one query is about 1 second. Obviously,
such costs would be unaffordable for large-scale applications
that require real-time responses.

9. RELATED WORK
Graph search, both the traditional and containment one,

are needed in various application domains, though they may
be associated with different names, such as graph matching.

For traditional graph search, there have been a lot of stud-
ies under the term “graph indexing”. In XML, where the
structures encountered are often trees and lattices, query
languages built on path expression become popular [9, 20].
For more complicated scenarios such as searching a chemical

compound database by small functional fragments, Shasha
et al. [21] extend the path-based technique for full-scale
graph retrieval; Yan et al. propose gIndex [25] and use fre-
quent subgraphs as indexing features, which is shown to be
more effective. There are also a few studies dealing with
approximate graph search. He et al. [11] develop a closure
tree with each node being a closure (i.e., summarization) of
its descendant nodes. This tree is utilized as an index to
perform (approximate) graph search. Tian et al. [22] define
a more sophisticated similarity measure, and design a frag-
ment (i.e., feature-based) index to assemble an approximate
match. However, all these methods target traditional graph
search. In order to tackle graph containment search, a new
methodology is needed.

Graph matching has been a research focus for decades [2],
especially in pattern recognition, where the wealth of litera-
ture cannot be exhausted. Conte et al. give a comprehensive
survey on graph matching [4], Gold et al. [8] apply a grad-
uated assignment algorithm to quickly match two graphs,
and Messmer et al. [17] place all permutations (i.e., isomor-
phisms) of each database graph in a decision tree for online
retrieval. In bio-informatics, how to align two biological net-
works is a challenging issue. Koyutürk et al. [15] propose a
method for aligning two protein networks using a distance
based on evolutionary models characterizing duplication and
divergence. However, to the best of our knowledge, no algo-
rithm considers the possibility of using a contrast feature-
based methodology for graph containment search and index-
ing, which is our focus in this work.

Fang et al. propose to use string matching algorithms
for virus signature detection in network packet streams [6].
Compared with bit-sequence signatures, if structured sig-
natures are used instead to capture richer information, the
methodology developed in this paper would be needed. Petro-
vic et al. [19] model the online information dissemination
process as a graph containment search problem. Users sub-
scribe their interests, represented as an RSS (RDF Site Sum-
mary) graph model, to an intermediate broker, who checks
each incoming publication to see whether it covers the in-
terest of any subscription: If it does, the publication is dis-
seminated to the right users. Our cIndex framework can
definitely benefit such user-interest mapping systems.

As for graph mining, there have been a sequence of meth-
ods developed [13, 16, 24, 18] that can efficiently extract
(closed) frequent subgraphs from a database. They act as a
firm basis for the feature selection process of cIndex.

Putting graph in the context of partially ordered data, we
can examine containment search at a higher level of abstrac-
tion. Based on the transitive relation: α � β, β � γ ⇒ α �
γ, a lattice can be built for the data space, and contrast
feature-based indexing can be regarded as a method of find-
ing those elements existing in the middle of the lattice which
are best for indexing. Besides this, there are other ways of
doing it for special data types. One well-known example is
the Aho-Corasick string matching algorithm [1], which can
locate all occurrences of a set of keywords (database) in a in-
put string (query) within O(n+m) time, where n is the total
size of key words and m is the input length. Unfortunately,
in the context of graph containment search, a similar solu-
tion is hard to derive since it is infeasible to design a graph
serialization technique so that subgraph isomorphism check
can be replaced by substring matching test: Subgraph iso-
morphism is NP-complete [12], which cannot be solved via

polynomial substring matching. Rather, in this study, we
approach contrast feature-based indexing as a methodology
which do not rely on the specialties of data, and thus serve
the general principles of indexing partially ordered data.

10. CONCLUSIONS
Different from traditional graph search that has been ex-

tensively studied, graph containment search was rarely dis-
cussed before as a database management problem, though
it is needed in various domains such as chem-informatics,
pattern recognition, cyber security, and information man-
agement. It is desirable to quickly search a large database
for all the model graphs that a query graph contains. This
motivates us to develop a novel indexing methodology, cIn-
dex, for efficient query processing. Our empirical studies
also confirm that traditional graph search indices do not fit
the scenario of containment search.

As a unique characteristic of containment search, cIn-
dex relies on exclusion logic-based pruning. We propose
a contrast subgraph-based indexing framework, develop a
redundancy-aware process to select a small set of significant
and distinctive index features, and further improve the per-
formance by accommodating two hierarchical indexing mod-
els. Other techniques and issues, such as data space reduc-
tion for fast index construction, and index maintenances in
front of updates, are also discussed. The methods proposed
are general for any data with transitive relations. Applying
the cIndex methodology to new data types and extending
it to support approximate search are interesting topics for
future research.

11. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search. Commun.
ACM, 18(6):333–340, 1975.

[2] H. Bunke. Graph matching: Theoretical foundations,
algorithms, and applications. In Vision Interface,
pages 82–88, 2000.

[3] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.
Multi-dimensional regression analysis of time-series
data streams. In VLDB, pages 323–334, 2002.

[4] D. Conte, P. Foggia, C. Sansone, and M. Vento.
Thirty years of graph matching in pattern recognition.
IJPRAI, 18(3):265–298, 2004.

[5] G. Dong and J. Li. Efficient mining of emerging
patterns: Discovering trends and differences. In KDD,
pages 43–52, 1999.

[6] Y. Fang, R. H. Katz, and T. V. Lakshman. Gigabit
rate packet pattern-matching using tcam. In ICNP,
pages 174–183, 2004.

[7] K. S. Fu. A step towards unification of syntactic and
statistical pattern recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 8(3):398–404, 1986.

[8] S. Gold and A. Rangarajan. A graduated assignment
algorithm for graph matching. IEEE Trans. Pattern
Anal. Mach. Intell., 18(4):377–388, 1996.

[9] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In VLDB, pages 436–445, 1997.

[10] X. Gu, Z. Wen, C. Lin, and P. S. Yu. Vico: an
adaptive distributed video correlation system. In ACM
Multimedia, pages 559–568, 2006.

[11] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In ICDE, page 38, 2006.

[12] D. S. Hochbaum, editor. Approximation Algorithms
for NP-Hard Problems. PWS Publishing, MA, 1997.

[13] L. B. Holder, D. J. Cook, and S. Djoko. Substucture
discovery in the subdue system. In KDD Workshop,
pages 169–180, 1994.

[14] T. Kadir and M. Brady. Saliency, scale and image
description. International Journal of Computer
Vision, 45(2):83–105, 2001.

[15] M. Koyutürk, A. Grama, and W. Szpankowski.
Pairwise local alignment of protein interaction
networks guided by models of evolution. In RECOMB,
pages 48–65, 2005.

[16] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, pages 313–320, 2001.

[17] B. T. Messmer and H. Bunke. A decision tree
approach to graph and subgraph isomorphism
detection. Pattern Recognition, 32(12):1979–1998,
1999.

[18] S. Nijssen and J. N. Kok. A quickstart in frequent
structure mining can make a difference. In KDD,
pages 647–652, 2004.

[19] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-topss: fast
filtering of graph-based metadata. In WWW, pages
539–547, 2005.

[20] C. Qun, A. Lim, and K. W. Ong. D(k)-index: An
adaptive structural summary for graph-structured
data. In SIGMOD Conference, pages 134–144, 2003.

[21] D. Shasha, J. T.-L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS, pages 39–52, 2002.

[22] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and
J. M. Patel. SAGA: a subgraph matching tool for
biological graphs. Bioinformatics, pages 232–239,
2006.

[23] R. M. H. Ting and J. Bailey. Mining minimal contrast
subgraph patterns. In SDM, 2006.

[24] X. Yan and J. Han. Closegraph: mining closed
frequent graph patterns. In KDD, pages 286–295,
2003.

[25] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In SIGMOD
Conference, pages 335–346, 2004.

[26] X. Yan, P. S. Yu, and J. Han. Substructure similarity
search in graph databases. In SIGMOD Conference,
pages 766–777, 2005.

[27] D. Zhang and S.-F. Chang. Detecting image
near-duplicate by stochastic attributed relational
graph matching with learning. In ACM Multimedia,
pages 877–884, 2004.

