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Abstract

Analyzing the executions of a buggy program is essen-
tially a data mining process: Tracing the data generated
during program executions may disclose important pat-
terns and outliers that could eventually reveal the lo-
cation of software errors. In this paper, we investigate
program logic errors, which rarely incur memory ac-
cess violations but generate incorrect outputs. We show
that through mining program control flow abnormality,
we could isolate many logic errors without knowing the
program semantics.

In order to detect the control abnormality, we pro-
pose a hypothesis testing-like approach that statistically
contrasts the evaluation probability of condition state-
ments between correct and incorrect executions. Based
on this contrast, we develop two algorithms that effec-
tively rank functions with respect to their likelihood of
containing the hidden error. We evaluated these two
algorithms on a set of standard test programs, and the
result clearly indicates their effectiveness.
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1 Introduction

Recent years have witnessed a wide spread of data min-
ing techniques into software engineering researches, such
as in software specification extraction [2, 22, 19] and in
software testings [5, 7, 23]. For example, frequent item-
set mining algorithms are used by Livshits et al. to find,
from software revision histories, programming patterns
that programmers are expected to conform to [22]. A
closed frequent itemset mining algorithm, CloSpan [27],
is employed by Li et al. in boosting the performance of
storage systems [17] and in isolating copy-paste program
errors [18]. Besides frequent pattern-based approaches,

∗This work was supported in part by the U.S. National Science
Foundation NSF ITR-03-25603, IIS-02-09199, and IIS-03-08215.
Any opinions, findings, and conclusions or recommendations

expressed here are those of the authors and do not necessarily
reflect the views of the funding agencies.

existing machine learning techniques, such as Support
Vector Machines, decision trees, and logistic regression
are also widely adopted for various software engineering
tasks [5, 6, 7, 23, 21].

In this paper, we develop a new data mining algo-
rithm that can assist programmers’ manual debugging.
Although programming language designs and software
testings have greatly advanced in the past decade, soft-
ware is still far from error (or bug, fault) free [8, 16].
As a rough estimation, there are usually 1-10 errors per
thousand lines of code in deployed softwares [11]. Be-
cause debugging is notoriously time-consuming and la-
borious, we wonder whether data mining techniques can
help speed up the process. As the initial exploration,
this paper demonstrates the possibility of isolating logic
errors through statistical inference.

The isolation task is challenging in that (1) stati-
cally, a program, even of only hundreds of lines of code,
is a complex system because of the inherent intertwined
data and control dependencies; (2) dynamically, the ex-
ecution paths can vary greatly with different inputs,
which further complicates the analysis; and (3) most
importantly, since logic errors are usually tricky, the
difference between incorrect and correct executions is
not apparent at all. Therefore, it is almost like looking
for a needle in a haystack to isolate logic errors. Due to
these characteristics, isolating program errors could be
a very important playground for data mining research.

From a data mining point of view, isolating logic
errors is to discover suspicious buggy regions through
screening bulky program execution traces. For exam-
ple, our method first monitors the program runtime be-
haviors, and then tries to discover the region where the
behavior of incorrect executions (or runs) diverges from
that of correct ones. Different from conventional soft-
ware engineering methods, this data mining approach
assumes no prior knowledge of the program semantics,
thus providing a higher level of automation.

Before detailing the concepts of our method, let us
first take a brief overview of program errors. Based



on their faulty symptoms, we can roughly classify pro-
gram errors into two categories: memory errors and
logic errors. Memory errors usually manifest themselves
through memory abnormalities, like segmentation faults
and/or memory leaks. Some tools, like Purify, Valgrind

and CCured, are designed for tracking down memory
errors. Logic errors, on the other hand, refer to the pro-
gram logic incorrectness. Instead of causing programs
to abort due to memory violations, programs with logic
errors usually exit silently without segmentation faults.
The only faulty symptom is its malfunction, like gen-
erating none or incorrect outputs. Because logic errors
do not behave abnormally at the memory access level,
off-the-shelf memory monitoring tools, like Purify, have
little chance to isolate them. Considering the plethora
of tools for memory errors, we plan to focus on isolating
logic errors in this paper. To illustrate the challenges,
let us first examine an example.
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01 void dodash (char delim, char *src, int *i,

02 char *dest, int *j, int maxset)

03 {

04 while (...) {

05 ...

06 if ( isalnum(src[*i-1]) && isalnum(src[*i+1])

07 /* && (src[*i-1] <= src[*i+1]) */)

08 {

09 for (k = src[*i-1]+1; k<=src[*i+1]; k++)

10 junk = addstr(k, dest, j, maxset);

11 *i = *i + 1;

12 }

13 ...

14 (*i) = (*i) + 1;

15 }

16 }

Example 1. Program 1 shows a code segment of
replace, a program that performs regular expression
matching and substitutions. The replace program has
512 lines of non-blank C code, and consists of 20 func-
tions. In the dodash function, one subclause (com-
mented by /∗ and ∗/) that should have been included
in the if condition is missed by the developer. This is
a typical “incomplete logic” error. We tested this buggy
program through 5542 test cases and found that 130 out
of them failed to give the correct outputs. Moreover, no
segmentation faults happened during executions.

For logic errors as the above, without any memory
violations, the developer generally has no clues for
debugging. Probably, he will resort to conventional
debuggers, like GDB, for a step-by-step tracing and

verify observed values against his expectations in mind.
To make things worse, if the developer is not the original
author of the program, which is very likely in reality,
such as maintaining legacy codes, he may not even be
able to trace the execution until he at least roughly
understands the program. However, understanding
other programmers’ code is notoriously troublesome
because of un-intuitive identifiers, personalized coding
styles and, most importantly, the complex control and
data dependencies formulated by the original author.

Knowing the difficulty of debugging logic errors, we
are interested in finding an automated method that can
prioritize the code examination for debugging, e.g., to
guide programmers to examine the buggy function first.
Although it is unlikely to totally unload the debugging
burden from human beings, we find it possible to min-
imize programmers’ workloads through machine intelli-
gence. For instance, by correctly suggesting the possible
buggy regions, one can narrow down the search, reduce
the debugging cost, and speed up the development pro-
cess. We follow this moderate thought in this study.

In order to facilitate the analysis of program execu-
tions, we need to first encode each execution in such
a way that discriminates incorrect from correct exe-
cutions. This is equivalent to a proper extraction of
error-sensitive features from program executions. Be-
cause the faulty symptom of logic error is the unex-
pected execution path, it is tempting to register the ex-
act path for each execution. However, this scheme turns
out to be hard to manipulate, as well as expensive to
register. Noticing that executions are mainly directed
by condition statements (e.g., if, while, for), we fi-
nally decide to summarize the execution by the evalu-
ation frequencies of conditionals. In other words, for
each condition statement, we record how many times
it is evaluated as true and false respectively in each
execution. Although this coding scheme loses much in-
formation about the exact execution, it turns out to be
easy to manipulate and effective.

Based on the above analysis, we treat each condi-
tional in the buggy program as one distinct feature and
try to isolate the logic error through contrasting the
behaviors of correct and incorrect executions in terms
of these conditionals. Specifically, we regard that the
more divergent the evaluation of one conditional in in-
correct runs is from that of correct ones, the more likely
the conditional is bug-relevant. In order to see why this
choice can be effective, let us go back to Example 1.

For convenience, we declare two boolean variables
A and B as follows,

A = isalnum(src[*i-1]) && isalnum(src[*i+1]);

B = src[*i-1]<= src[*i+1];



If the program were written correctly, A ∧ B should
have been the guarding condition for the if block, i.e.,
the control flow goes into the if block if and only if
A ∧ B is true. However, in the buggy program where
B is missing, any control flow that satisfies A will
fall into the block. As one may notice and we will
explain in Section 2, an execution is logically correct
until (A∧¬B) is evaluated as true when the control flow
reaches Line 6. Because the true evaluation of (A∧¬B)
only happens in incorrect runs, and it contributes to
the true evaluation of A, the evaluation distribution of
the if statement should be different between correct
and incorrect executions. This suggests that if we
monitor the program conditionals, like the A here, their
evaluations will shed light on the hidden error and can
be exploited for error isolation. While this heuristic can
be effective, one should not expect it to work with any
logic errors. After all, even experienced programmers
may feel incapable to debug certain logic errors. Given
that few effective ways exist for isolating logic errors,
we believe this heuristic worths a try.

The above example motivates us to infer about the
potential buggy region from the divergent branching
probability. Heuristically, the simplest approach is to
first calculate the average true evaluation probabilities
for both correct and incorrect runs, and treat the nu-
meric difference as the measure of divergence. However,
simple heuristic methods like the above generally suf-
fer from weak performance across various buggy pro-
grams. In this paper, we develop a novel and more
sophisticated approach to quantifying the divergence of
branching probabilities, which features a similar ratio-
nale to hypothesis testing [15]. Based on this quantifi-
cation, we further derive two algorithms that effectively
rank functions according to their likelihood of contain-
ing the error. For example, both algorithms recognize
the dodash function as the most suspicious in Example
1.

In summary, we make the following contributions.

1. We introduce the problem of isolating logic errors, a
problem not yet well solved in software engineering
community, into data mining research. We believe
that recent advances in data mining would help
tackle this tough problem and contribute to software
engineering in general.

2. We propose an error isolation technique that is
based on mining control flow abnormity in incorrect
runs against correct ones. Especially, we choose to
monitor only conditionals to bear low overhead while
maintaining the isolation quality.

3. We develop a principled statistical approach to
quantify the bug relevance of each condition state-

ment and further derive two algorithms to locate the
possible buggy functions. As evaluated on a set of
standard test programs, both of them achieve an en-
couraging success.

The remaining of the paper is organized as follows.
Section 2 first provides several examples that illustrate
how our method is motivated. The statistical model
and the two derived ranking algorithms are developed
in Section 3. We present the analysis of experiment
results in Section 4. After the discussion about related
work in Section 5, Section 6 concludes this study.

2 Motivating Examples

In this section, we re-visit Example 1 and explain in de-
tail the implication of control flow abnormality to logic
errors. For clarity in what follows, we denote the pro-
gram with the subclause (src[*i-1]<= src[*i+1])

commented out as the incorrect (or buggy) program P,
and the one without comments is the correct one, de-
noted as P̂. Because P̂ is certainly not available when
debugging P, P̂ is used here only for illustration pur-
poses: It helps illustrate how our method is motivated.
As one will see in Section 3, our method collects statis-
tics only from the buggy program P and performs all
the analysis.

Given the two boolean variables A and B as pre-
sented in Section 1, let us consider their evaluation com-
binations and corresponding branching actions (either

enter or skip the block) in both P and P̂. Figure 1 ex-

plicitly lists the actions in P (left) and P̂ (right), respec-
tively. Clearly, the left panel shows the actual actions
taken in the buggy program P, and the right one lists
the expected actions if P had no errors.

A ¬A
B enter skip
¬B enter skip

A ¬A
B enter skip
¬B skip skip

Figure 1: Branching Actions in P and P̂

Differences between the above two tables reveal that
in the buggy program P, unexpected actions take place
if and only if A ∧ ¬B evaluates to true. Explicitly,
when A ∧ ¬B is true, the control flow actually enters
the block, while it is expected to skip. This incorrect
control flow will eventually lead to incorrect outputs.
Therefore, for the buggy program P, one run is incorrect
if and only if there exist true evaluations of A ∧ ¬B at
Line 6; otherwise, the execution is correct although the
program contains a bug.

While the boolean expression B: (A ∧ ¬B) = true

exactly characterizes the scenario under which incorrect



executions take place, there is little chance for an
automated tool to spot B as bug relevant. The obvious
reason is that while we are debugging the program P,
we have no idea of what B is, let alone its combination
with A. Because A is observable in P, we are therefore
interested in whether the evaluation of A will give away
the error. If the evaluation of A in incorrect executions
significantly diverge from that in correct ones, the if

statement at line 6 may be regarded as bug-relevant,
which points to the exact error location.

A ¬A
B nAB nĀB

¬B nAB̄ = 0 nĀB̄

A ¬A
B n′

AB n′
ĀB

¬B n′
AB̄

≥ 1 n′
ĀB̄

Figure 2: A Correct and Incorrect Run in P

We therefore contrast how A is evaluated differently
between correct and incorrect executions of P. Figure
2 shows the number of true evaluations for the four
combinations of A and B in one correct (left) and
incorrect (right) run. The major difference is that in
the correct run, A∧¬B never evaluates true (nAB̄ = 0)
while n′

AB̄
must be nonzero for one execution to be

incorrect. Since the true evaluation of A ∧ ¬B implies
A = true, we therefore expect that the probability for
A to be true is different between correct and incorrect
executions. As we tested through 5,542 test cases,
the true evaluation probability is 0.727 in a correct
and 0.896 in an incorrect execution on average. This
divergence suggests that the error location (i.e., Line 6)
does exhibit detectable abnormal behaviors in incorrect
executions. Our method, as developed in Section 3,
nicely captures this divergence and ranks the dodash

function as the most suspicious function, isolating this
logic error.

The above discussion illustrates a simple, but moti-
vating example where we can use the branching statis-
tics to capture the control flow abnormality. Sometimes
when the error does not occur in a condition statement,
control flows may still disclose the error trace. In Pro-
gram 2, the programmer mistakenly assigns the variable
result with i+1 instead of i, which is a typical “off-
by-one” logic error.

The error in Program 2 literally has no relation
with any condition statements. However, the error is
triggered only when the variable junk is nonzero, which
is eventually associated with the if statement at Line
5. In this case, although the branching statement is not
directly involved in this off-by-one error, the abnormal
branching probability in incorrect runs can still reveal
the error trace. For example, the makepat function
is identified as the most suspicious function by our
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01 void makepat (char *arg, int start, char delim,

02 char *pat)

03 {

04 ...

05 if(!junk)

06 result = 0;

07 else

08 result = i + 1; /* off-by-one error */

09 /* should be result = i */

10 return result;

11 }

algorithms.
Inspired by the above two examples, we recognize

that given that the dependency structure of a program
is hard to untangle, there do exist simple statistics
that capture the abnormality caused by hidden errors.
Discovering these abnormalities by mining the program
executions can provide useful information for error
isolation. In the next section, we elaborate on the
statistical ranking model that identifies potential buggy
regions.

3 Ranking Model

Let T = {t1, t2, · · · , tn} be a test suite for a program
P. Each test case ti = (di, oi) (1 ≤ i ≤ n) has an
input di and the desired output oi. We execute P on
each ti, and obtain the output o′i = P(di). We say P
passes the test case ti (i.e., “a passing case”) if and only
if o′i is identical to oi; otherwise, P fails on ti (i.e., “a
failing case”). We thus partition the test suite T into
two disjoint subsets Tp and Tf , corresponding to the
passing and failing cases respectively,

Tp = {ti|o′i = P(di) matches oi},

Tf = {ti|o′i = P(di) does not match oi}.
Since program P passes test case ti if and only if P
executes correctly, we use “correct” and “passing”, “in-
correct” and “failing” interchangeably in the following
discussion.

Given a buggy program P together with a test suite
T = Tp ∪ Tf , our task is to isolate the suspicious error
region by contrasting P’s runtime behaviors on Tp and
Tf .

3.1 Feature Preparation

Motivated by previous examples, we decide to instru-
ment each condition statement in program P to col-
lect the evaluation frequencies at runtime. Specifically,
we take the entire boolean expression in each condition



statement as one distinct boolean feature. For exam-
ple, isalnum(src[*i-1]) && isalnum(src[*i+1]) in
Program 1 is treated as one feature. Since a feature
can be evaluated zero to multiple times as either true

or false in each execution, we define boolean bias to
summarize its exact evaluations.

Definition 1. (Boolean Bias) Let nt be the number
of times that a boolean feature B evaluates true, and nf

the number of times it evaluates false in one execution.
π(B) =

nt−nf

nt+nf
is the boolean bias of B in this execution.

π(B) varies in the range of [−1, 1]. It encodes the
distribution of B’s value: π(B) is equal to 1 if B always
assumes true and −1 as it sticks to false, and in
between for all other mixtures. If a conditional is never
touched during an execution, π(B) is defined to be 0
because of no evidence favoring either true or false.

3.2 Methodology Overview

Before detailed discussions about our method, we first
lay out the main idea in this subsection. Following
the convention of statistics, we use uppercase letters for
random variables and lowercases for their realizations.
Moreover, f(X|θ) is the probability density function
(pdf) of a distribution (or population) family indexed
by the parameter θ.

Let the entire test case space be T , which concep-
tually contains all possible input and output pairs. Ac-
cording to the correctness of P on cases from T , T can
be partitioned into two disjoint sets Tp and Tf for pass-
ing and failing cases. Therefore, T , Tp, and Tf can be
thought as random samples from T , Tp, and Tf respec-
tively. Let X be the random variable for the boolean
bias of boolean feature B, we use f(X|θp) and f(X|θf )
to denote underlying probability model that generates
the boolean bias of B for cases from Tp and Tf respec-
tively.

Definition 2. (Bug Relevance) A boolean feature
B is relevant to the program error if its underlying
probability model f(X|θf ) diverges from f(X|θp).

The above definition relates the probability model
f(X|θ) with the hidden program error. The more
significantly f(X|θf ) diverges from f(X|θp), the more
relevant B is to the hidden error. Let L(B) be a
similarity function,

(3.1) L(B) = Sim(f(X|θp), f(X|θf )),

and s(B), the bug relevance score of B can be defined
as

(3.2) s(B) = −log(L(B)).

Using the above measure, we can rank features
according to their relevance to the error. The ranking
problem boils down to finding a proper way to quantify
the similarity function. This includes two problems: (1)
what is a suitable similarity function? and (2) how to
compute it while we do not known the closed form of
f(X|θp) and f(X|θf )? In the following subsections, we
will examine these two problems in detail.

3.3 Feature Ranking

Because no prior knowledge of the closed form of
f(X|θp) is known, we can only characterize it through
general parameters, such as the population mean and
variance, µp = E(X|θp) and σ2

p = V ar(X|θp), i.e., we
take θ = (µ, σ2). While µ and σ2 are taken to char-
acterize f(X|θ), we do not regard their estimates as
sufficient statistics, and hence we do not take normality
assumptions on f(X|θ). Instead, the difference exhib-
ited through µ and σ2 is treated as a measure of the
model difference.

Given an independent and identically distributed
(i.i.d.) random sample X = (X1,X2, · · · ,Xn) from
f(X|θp), µp and σ2

p can be estimated by the sample

mean X and sample variance Sn,

µp = X =

∑n

i=1
Xi

n

and

σ2
p = Sn =

1

n − 1

n∑

i=1

(Xi − X)2,

where Xi represents the boolean bias of B from the ith
passing case. The population mean µf and variance σ2

f

of f(X|θf ) can be estimated in a similar way.
Given the estimations, it may be appealing to take

the differences of both mean and variance as the bug
relevance score. For example, s(B) can be defined as

s(B) = α ∗ |µp − µf | + β ∗ |σ2
p − σ2

f | (α, β ≥ 0).

However, heuristic methods like the above usually suffer
from the dilemma of parameter settings: no guidance is
available to properly set the parameters, like the α and β
in the above formula. In addition, parameters that work
perfectly with one program error may not generalize to
other errors or programs. Therefore, in the following, we
develop a principled statistical method to quantify the
bug relevance, which, as one will see, is parameter-free.

Our method takes an indirect approach to quantify-
ing the divergence between f(X|θp) and f(X|θf ), which
is supported by a similar rationale to hypothesis testing
[15]. Instead of writing a formula that explicitly spec-
ifies the difference, we first propose the null hypothesis



H0 that θp = θf (i.e., no divergence exists), and then
under the null hypothesis, we derive a statistic Y (X)
that conforms to a specific known distribution. Given
the realized random sample X = x, if Y (x) corresponds
to a small probability event, the null hypothesis H0 is
invalidated, which immediately suggests that f(X|θp)
and f(X|θf ) are divergent. Moreover, the divergence is
proportional to the extent to which the null hypothesis
is invalidated.

Specifically, the null hypothesis H0 is

(3.3) µp = µf and σp = σf .

Let X = (X1,X2, · · · ,Xm) be an i.i.d. random sample
from f(X|θf ). Under the null hypothesis, we have
E(Xi) = µf = µp and V ar(Xi) = σ2

f = σ2
p. Because

Xi ∈ [−1, 1], E(Xi) and V ar(Xi) are both finite.
According to the Central Limit Theorem, the following
statistic

(3.4) Y =

∑m

i=1
Xi

m
,

converges to the normal distribution N(µp,
σ2

p

m
) as m →

+∞.

Let f(Y |θp) be the pdf of N(µp,
σ2

p

m
), then the

likelihood of θp given the observation of Y is

(3.5) L(θp|Y ) = f(Y |θp).

A smaller likelihood implies that H0 is less likely
to hold and this, in consequence, indicates that a
larger divergence exists between f(X|θp) and f(X|θf ).
Therefore, we can reasonably set the similarity function
in Eq. (3.1) as the likelihood function,

(3.6) L(B) = L(θp|Y ).

According to the property of normal distribution,
the normalized statistic

Z =
Y − µp

σp/
√

m

conforms to the standard normal distribution N(0, 1),
and

(3.7) f(Y |θp) =

√
m

σp

ϕ(Z),

where ϕ(Z) is the pdf of N(0, 1),
Combining Eq. (3.2), (3.6), (3.5), and (3.7), we

finally have the bug relevance score for boolean feature
B as

(3.8) s(B) = −log(L(B)) = log(
σp√

mϕ(Z)
).

According to Eq. (3.8), we can rank all condition state-
ments of the buggy function [20]. However, we regard
that a ranking of suspicious functions is preferable to
that of individual statements because a highly relevant
condition statement is not necessarily the error root.
For example, the error in Program 2 does not take place
in the “if(!junk)” statement. Moreover, we generally
have higher confidence in the quality of function rank-
ing than that of individual statements in that function
abnormality is assessed by considering all of its compo-
nent features. In the following section, we discuss how
to combine individual s(B) to a global score s(F) for
each function F .

3.4 Function Ranking

Suppose a function F encompasses k boolean features
B1, · · · , Bk, and there are m failing test cases. Let Xij

denote the boolean bias of the ith boolean feature in the
jth test case, we tabulate the statistics in the following
table.

t1 t2 . . . tm
B1 X11 X12 . . . X1m X1 Y1 Z1

B2 X21 X22 . . . X2m X2 Y2 Z2

. . . . . . . . . . . . . . . . . . . . . . . .
Bk Xk1 Xk2 . . . Xkm Xk Yk Zk

In this table, Xi = (Xi1,Xi2, . . . ,Xim) represents
the observed boolean bias from the m failing runs and
Yi and Zi are similarly derived from Xi as in Section
3.3. For each feature Bi, we propose the null hypothesis
Hi

0 : θi
f = θi

p, and obtain

f(Yi|θi
p) =

√
m

σi
p

ϕ(Zi).(3.9)

Given that the function F has k features, we denote the
parameters in a vector form:

−→H0 = 〈H1
0,H2

0, · · · ,Hk
0〉,

−→
θp = 〈θ1

p, θ2
p, · · · , θk

p〉,
−→
Y = 〈Y1, Y2, · · · , Yk〉.

Under the null hypothesis
−→H0, similar arguments sug-

gest that the bug relevance score s(F) can be chosen
as

(3.10) s(F) = −log(f(
−→
Y |−→θp)),

where f(
−→
Y |−→θp) is the joint pdf of Yi’s (i = 1, 2, · · · , k).

However, the above scoring function Eq. (3.10) does

not immediately apply because f(
−→
Y |−→θp) is a multivari-

ate density function. Because neither the closed forms



of f(Yi|θi
p) nor the dependencies among Yi’s are avail-

able, it is impossible to calculate the exact value of s(F).
Therefore, in the following discussion, we propose two
simple ways to approximate it.

3.4.1 CombineRank

One conventional approach to untangling joint distri-
bution is through the independence assumption. If we
assume that boolean features Bi’s are mutually indepen-
dent, the population of Yi is also mutually independent
with each other. Therefore, we have

(3.11) f(
−→
Y |−→θp) =

k∏

i=1

f(Yi|θi
p) =

k∏

i=1

√
m

σi
p

ϕ(Zi)

Following Eq. (3.10),

s(F) = −log(f(
−→
Y |−→θp)) =

k∑

i=1

log(
σi

p√
mϕ(Zi)

)(3.12)

=

k∑

i=1

s(Bi)

We name the above scoring schema (Eq. (3.12))
CombineRank as it sums over the bug relevance score
of each individual condition statement with the func-
tion. We note that the independence assumption is
practically unrealistic because condition statements are
usually intertwined, such as nested loops or the if state-
ments inside while loops. However, given that no as-
sumptions are made about the probability densities, one
should not expect for a devices more magic than the
independence assumption in decomposing the joint dis-
tribution.

From the other point of view, CombineRank does
make good sense in that the abnormal branchings at
one condition statement may likely trigger the abnormal
executions of other branches (like an avalanche) and
Eq. (3.12) just captures this systematical abnormality
and encode it into the final bug relevance score for
the function F . As we will see in the experiments,
CombineRank works really well in locating buggy
functions.

3.4.2 UpperRank

In this subsection, we propose another approach to

approximating f(
−→
Y |−→θp), and end up with another score

schema UpperRank. The main idea is based on the
following apparent inequality

(3.13) f(
−→
Y |−→θp) ≤ min

1≤i≤k
f(Yi|θi

p) = min
1≤i≤k

√
m

σi
p

ϕ(Zi).

Therefore, if we adopt the upper bound as an alternative

for f(
−→
Y |−→θp), s(F) can be derived as

s(F) = −log( min
1≤i≤k

√
m

σi
p

ϕ(Zi)) = max
1≤i≤k

s(Bi).(3.14)

This scoring schema, named UpperRank, essen-
tially picks the most suspicious feature as the “repre-
sentative” of the function. This is meaningful because if
one boolean expression is extremely abnormal, the func-
tion containing it is very likely to be abnormal. How-
ever, since UpperRank uses the upper bound as the

approximation to f(
−→
Y |−→θp), its ranking quality is infe-

rior to that of CombineRank when multiple peak ab-
normalities exist, as illustrated in the following example.
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Figure 3: CombineRank vs. UpperRank

Example 2. Figure 3 visualizes the bug relevance score
of boolean features in both function dodash and omatch,
calculated on the faulty Version 5 of the replace program.
From left to right, the first six stubs represent scores
for the six boolean features in dodash and the following
nine are for features in omatch. In this example,
the logic error is inside dodash. As one can see,
UpperRank will rank omatch over dodash due to the
maximal peak abnormality. However, it might be better
to credit the abnormality of each feature for function
ranking, as implemented by CombineRank. Therefore,
CombineRank correctly ranks dodash as the most
bug relevant. For this reason, we generally prefer
CombineRank to UpperRank, as is also supported
by experiments.

4 Experiment Results

In this section, we evaluate the effectiveness of both
CombineRank and UpperRank in isolating logic er-
rors. We implemented these two algorithms using C++
and Matlab and conducted the experiments on a 3.2GHz
Intel Pentium 4 PC with 1GB physical memory that
runs Fedora Core 2.



Version Buggy Function Fail Runs combineRank upperRank Error Description: How to Fix Cat.

1 dodash 68 2 1 change *i to *i -1 ¯
2 dodash 37 1 1 add one if branch ?
3 subline 130 3 3 add one && subclause ?
4 subline 143 8 11 change i to lastm 4
5 dodash 271 1 3 change < to <= ?
6 locate 96 3 3 change >= to > ?
7 in set 2 83 5 4 change c == ANY to c == EOL 4
8 in set 2 54 3 2 add one || subclause ?
9 dodash 30 1 1 add one && subclause ?
10 dodash 23 1 2 add one && subclause ?
11 dodash 30 1 1 change > to <= ?
12 Macro 309 5 5 change 50 to 100 in define MAXPAT 50 4
13 subline 175 5 5 add one if branch ?
14 omatch 137 1 1 add one && subclause ?
15 makepat 60 1 1 change i+1 to i in result = i+1 ¯
16 in set 2 83 5 4 remove one || subclause ?
17 esc 24 1 1 change result = NEWLINE to = ESCAPE 4
18 omatch 210 2 3 add one && subclause ?
19 change 3 15 8 rewrite the function change ¦
20 esc 22 1 1 change result = ENDSTR to = ESCAPE 4
21 getline 3 12 5 rewrite the function getline ¦
22 getccl 19 7 3 move one statement into if branch ¦
23 esc 22 1 2 change s[*i] to s[*i + 1] ¯
24 omatch 170 2 4 add one if branch ?
25 omatch 3 2 2 change <= to == ?
26 omatch 198 6 6 change j to j + 1 ¯
28 in set 2 142 4 3 remove one || subclause ?
29 in set 2 64 6 5 remove one || subclause ?
30 in set 2 284 1 1 remove one || subclause ?
31 omatch 210 2 3 change >= to != ?

Error Category Legend ?: Incorrect Branch Expression 4: Misuse of Variables or Constants ¯: Off-By-One ¦: Misc.

Table 1: Summary of Buggy Versions and Ranking Results

4.1 Subject Programs

We experimented on a package of standard test pro-
grams, called Siemens programs1. This package was
originally prepared by Siemens Corp. Research in study
of test adequacy criteria [12]. The Siemens programs
consist of seven programs: print tokens, print tokens2,
replace, schedule, schedule2, tcas, and tot info. For each
program, the Siemens researchers manually injected
multiple errors, obtaining multiple faulty versions, with
each version containing one and only one error. Be-
cause these injected errors rightly represent common
mistakes made in practice, the Siemens programs are
widely adopted as a benchmark in software engineering

1A variant is available at http://www.cc.gatech.edu/aristo-
tle/Tools/subjects.

research [12, 25, 9, 10]. Because these injected errors are
mainly logic faults, we choose them as the benchmark
to evaluate our algorithms.

Except tcas (141 lines), the size of these programs
ranges from 292 to 512 lines of C code, excluding blanks.
Because debugging tcas is pretty straightforward due to
its small size, we focus the experiment study on the
other six programs. In Section 4.2, we first analyze
the effectiveness of our algorithms on the 30 faulty
versions of the replace program. The replace program
deserves detailed examination in that (1) it is the
largest and most complex one among the six programs,
and (2) it covers the most varieties of logic errors.
After the examination of replace, we discuss about the
experiments on the other five programs in Section 4.3.



4.2 Experimental Study on Replace

The replace program contains 32 versions in total,
among which Version 0 is error free. Each of the other
31 faulty versions contains one and only one error in
comparison with Version 0. In this setting, Version 0
serves as the oracle in labelling whether a particular
execution is correct or incorrect.

Table 1 lists the error characteristics for each
faulty version and the ranking results provided by
CombineRank and UpperRank. Because we focus
on isolating logic errors that do not incur segmenta-
tion faults, Version 27 is excluded from examination.
In Table 1, the second column lists the name of the
buggy function for each version and the third column
shows the number of failing runs out of the 5542 test
cases. The final ranks of the buggy function provided
by CombineRank and UpperRank are presented in
the fourth and fifth columns respectively. Taking ver-
sion 1 for an example, the buggy function is dodash

and the error causes incorrect outputs for 68 out of the
5542 test cases. For this case, CombineRank ranks the
dodash function at the second place and UpperRank
identifies it as the most suspicious. Finally, the last two
columns briefly describe each error and the category the
error belongs to (Section 4.2.2). Because we cannot list
the buggy code for each error due to the space limit, we
concisely describe how to fix each error in the “Error De-
scription” column. Interested readers are encouraged to
download “Siemens Programs” from the public domain
for detailed examination.

4.2.1 Overall Effectiveness

The rankings in Table 1 indicate that both
CombineRank and UpperRank work very well
with the replace program. Among the 30 faulty versions
under examination, both methods rank the buggy
function within the top five for 24 versions except
Versions 4, 19, 21, 22, 26, and 29. This implies that
the developer can locate 24 out of the 30 errors if he
only examines the top five functions of the ranked
list. Although this proposition is drawn across various
errors on a specific subject program, we believe that
this does shed light on the effectiveness of the isolation
algorithms.

In order to quantify the isolation quality of the
algorithms, we choose to measure how many errors
are located if a programmer examines the suggested
ranked list from the top down. For example, because
CombineRank ranks the buggy function at the first
place for 11 faulty versions, the programmer will locate
11 out of the 30 errors if he only examines the first func-
tion of the ranked list for each faulty version. Moreover,

because the buggy function of another five versions is
ranked at the second place by CombineRank, the pro-
grammer can locate 16 out of the 30 errors if he takes
the top-2 functions seriously. In this way, Figure 4 plots
the number of located errors with respect to the top-k
examination.
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Figure 4: Isolation Quality: replace

In order to assess the effectiveness of the algorithms,
we also plot the curve for random rankings in Figure 4.
Because a random ranking puts the buggy function at
any place with equal probability, the buggy function has
a probability of k

m
to be within the top-k of the entire

m functions. Furthermore, this also suggests that given
n faulty versions, k

m
n errors are expected to be located

if the programmer only examines the top-k functions.
For the replace program under study, where m = 20
and n = 30, only 1.5 errors are expected to be located if
top-1 function is examined. In contrast, UpperRank
and CombineRank locates 9 and 11 errors respectively.
Furthermore, when top-2 functions are examined, the
number for UpperRank and CombineRank is lever-
aged to 13 and 16 respectively whereas it is merely 3 for
random rankings. Considering the tricky nature of these
logic errors, we regard that the result shown in Figure 4
is excitingly good because our method infers about the
buggy function purely from the execution statistics, and
assumes no more program semantics than the random
ranking. As one will see in Section 4.3, similar results
are also observed on other programs.

4.2.2 Effectiveness for Various Errors

After the discussion about the overall effectiveness, one
may also find it instructive to explore for what kinds of
errors our method works well (or not). We thus break
down errors in Table 1 into the following four categories
and examine the effectiveness of our method on each of
them.

1. Incorrect Branch Expression (IBE): This cat-
egory generally refers to errors that directly influ-



ence program control flows. For example, it includes
omitted (e.g., in Versions 3, 9, 10 etc.) or un-wanted
(e.g., in Version 16) logic subclauses, and misuses of
comparators (e.g., in Versions 5, 6 etc.). These er-
rors usually sneak in when the programmer fails to
think fully of the program logic.

2. Misuse of Variables or Constants (MVC):
Since similar data structures can exist in programs,
developers may misuse one variable for another.
One typical scenario of introducing this kind of
error is through the notorious copy-pastes: when
a programmer copies and pastes one segment of
code, he may forget to change certain variables
for the destination contexts. Some tools, like CP-
Miner [18], can automatically detect such copy-paste
errors.

3. Off-By-One (OBO): A variable is used with the
value one more or less than it is expected. For
example, in Version 15, result = i is mistakenly
written as result = i + 1.

4. Misc. (MIS): Other types of errors that include,
but not limited to, function reformulations (e.g.,
in Versions 19 and 21) and moving one statement
around (e.g., in Version 22).

We label the category that each faulty ver-
sion belongs to in Table 1. The isolation quality of
CombineRank for each category on replace is listed
in Table 2. Notice that the third column only lists the
number of faulty versions where the buggy function is
ranked at the top by CombineRank.

Error Category Error # Located (top-1)

IBE 18 7
MVC 5 2
OBO 4 2
MIS 3 0

Table 2: Isolation Quality by Categories

Table 2 also indicates that CombineRank ranks
the buggy function at the top not only for errors that
literally reside on condition statements but for errors
that involve variable values as well. Similar conclusions
can be also drawn for UpperRank based on Table 1.
This result reaffirms our belief that value related errors
may also incur control flow abnormality, which justifies
our choice of branching abnormality for error isolation.

Finally, we note that there do exist some logic errors
that are extremely hard for machines to isolate. Con-
sidering the error description in Table 1, we believe that

it is also a non-trivial task for experienced programmers
to isolate these errors. Therefore, we cannot unpracti-
cally expect one method to work well for all kinds of
errors.

4.2.3 CombineRank vs. UpperRank

In terms of the isolation quality, an overview of Fig-
ure 4 may suggest that UpperRank outperforms
CombineRank because the curve of UpperRank is
above CombineRank for a large portion of k’s. How-
ever, we believe that considering the utility to pro-
grammers, the top-5 ranking is less appealing than the
top-2 or even top-1 ranking. From this point of view,
CombineRank is apparently better than UpperRank:
in terms of top-1, CombineRank identifies 11 while
UpperRank gets 9, and CombineRank locates in 16
within top-2’s whereas UpperRank hits 13. Results
from other subject programs as examined in Section 4.3
also support this conclusion.

4.3 More Subject Programs

We also tested our algorithms on the other five programs
in the Siemens program package. They are two lexical
analyzers print tokens and print tokens2, two priority
schedulers schedule and schedule2, and tot info that
computes the statistics of given input data. Although
print tokens and print tokens2 merely differ a little bit in
name, they are two completely different programs, and
so are schedule and schedule2.

Program Functions Error # Located (top-2)

replace 20 30 16
print tokens 18 7 3
print tokens2 19 10 7

schedule 18 5 4
schedule2 16 10 2
tot info 7 23 16

Table 3: Isolation Quality across Programs

Table 3 lists the isolation quality of CombineRank
across the six programs. The second column gives
the total number of functions in each program. With
the third column telling how many errors are under
examination, the last column tabulates how many of
them are actually located within the top-2’s. Overall,
except on schedule2, CombineRank achieves similar
or better quality than it does on replace. Especially,
the isolation quality on print tokens2 and schedule is
amazingly good. However, echoing the saying that “no
silver bullets exist”, CombineRank also fail to work
well on certain programs. For instance, CombineRank



only locates 2 out of the 10 errors in schedule2 within
the top-1, and fail to work on the other 8 errors.
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Figure 5: Isolation Quality: print tokens2

We also compared the isolation quality between
CombineRank and UpperRank on these five pro-
grams. Results suggest that they are generally com-
parable, and CombineRank tends to outperform
UpperRank at the top rank range. Figure 5 plots their
comparison on print tokens2, in which we can see a pat-
tern similar to Figure 4.

5 Related Work

As the software becomes increasingly bulky in size, its
complexity has exceeded the capability of human un-
derstandings. This stimulates the wide applications of
data mining techniques in solving software engineering
problems. For example, Livshits et al. apply frequent
itemset mining algorithms to software revision histories,
and relate mining results with programming patterns
that programmers should conform to [22]. Going one
step further, Li et al. construct the PR-Miner [19], which
detects programming rules (PR) more general than that
from [22]. PR-Miner first tokenizes the program source
code and then applies CloSpan [27] to discover program-
ming rules implicitly embedded in source code. Differ-
ent from the above static analysis approaches, whose
analysis is based on the static entities, like the source
codes and revision history, our method in this paper at-
tempts to isolate logic errors from the program dynamic
behaviors in executions.

For tracking down program logic errors, there are
two conventional methods: software testing [4, 13] and
model checking [26]. The aim of testings is to find test
cases that induce unexpected behaviors. Once a fail-
ing case is found, it is the developer’s responsibility to
trace and eradicate the hidden error. By prioritizing the
potential buggy functions, our method actually comple-
ments the necessary human efforts in debugging. On
the other hand, model checking can detect logic errors

based on a well-specified program model. Theoretically,
when the model is accurate and complete, model check-
ing can detect all hidden errors, regardless of the time
it may take. However, quality models are usually too
expensive to construct in practice [26]. In comparison,
our method does not rely on any semantic specification
from human beings, and automatically infers about the
error location from program runtime statistics.

There exist some automated debugging tools that
do not rely on specifications either. AskIgor [28], which
is available online, tries to outline the cause-effect chains
of program failures by narrowing down the difference
between an incorrect and a correct execution. However,
since its analysis relies on memory abnormality, AskIgor
does not work with logic errors, as is confirmed by our
practice.

Finally, our method also relates to outlier detection
[24, 1, 14] or deviation detection [3] in general. Different
from previous methods that directly measure the devi-
ation within a certain metric spaces, like the Euclidean
space, our method quantifies the abnormality through
an indirect approach that is supported by a similar ra-
tionale to hypothesis testing. Since this method makes
no assumption of the metric space structure, nor re-
quires users to set any parameters, it is more principled
and alleviates users from the common dilemma of pa-
rameter settings. To the best of our knowledge, this is
the first piece of work that calibrates deviations in a hy-
pothesis testing alike approach. In addition, this study
also demonstrates the power and usefulness of this ap-
proach at detecting subtle deviations in complex and
intertwined environments, like the softwares.

6 Conclusions

In this paper, we investigate the capability of data
mining methods in isolating suspicious buggy regions
through abnormality analysis of program control flows.
For the first time, through mining software trace data,
we are able to, if not fully impossible, locate logic errors
without knowing the program semantics. It is observed
from our study that the abnormality of program traces
from incorrect executions can actually provide inside
information that could reveal the error location. The
statistical approach, together with two ranking algo-
rithms we developed, can successfully detect and score
suspicious buggy regions. A thorough examination of
our approach on a set of standard test programs clearly
demonstrates the effectiveness of this approach.

There are still many unsolved issues related to soft-
ware error isolation, such as what if multiple errors exist
in a program and/or only a few test cases are available.
Moreover, it could be more systematic and enlightening
if the problem of error localization is viewed from fea-



ture selection point of view. These are interesting issues
in our future research.
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