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ABSTRACT
Botnets, which are networks of compromised machines under the
control of a single malicious entity, are a serious threat to online
security. The fact that botnets, by definition, receive their com-
mands from a single entity can be leveraged to fight them. To this
end, one requires techniques that can detect command and control
(C&C) traffic, as well as the servers that host C&C services. Given
the knowledge of a C&C server’s IP address, one can use this
information to detect all hosts that attempt to contact such a server,
and subsequently disinfect, disable, or block the infected machines.
This information can also be used by law enforcement to take down
the C&C server.
In this paper, we present a new botnet C&C signature extraction
approach that can be used to find C&C communication in traffic
generated by executing malware samples in a dynamic analysis
system. This approach works in two steps. First, we extract all
frequent strings seen in the network traffic. Second, we use a
function that assigns a score to each string. This score represents
the likelihood that the string is indicative of C&C traffic. This
function allows us to rank strings and focus our attention on those
that likely represent good C&C signatures. We apply our technique
to almost 2.6 million network connections produced by running
more than 1.4 million malware samples. Using our technique, we
were able to automatically extract a set of signatures that are able
to identify C&C traffic. Furthermore, we compared our signatures
with those used by existing tools, such as Snort and BotHunter.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Invasive Software

General Terms
Security

1. INTRODUCTION
A botnet is a collection of compromised machines controlled by
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a single entity (botmaster). The botmaster communicates (sends
commands and receives information) with his/her bots over a com-
mand and control (C&C) channel. Nowadays, P2P, IRC, and HTTP
are the most popular protocols for implementing botnet C&C chan-
nels [22]. One way to defend against botnets is to detect the pres-
ence of botnet C&C communication. When C&C traffic is de-
tected, one can prevent commands from reaching the victims, track
the C&C servers and shut them down [22], or use this information
to dismantle the botnet infrastructure.

Previous work has attacked the problem of detecting bot-infected
machines from different perspectives. For example, some previous
systems (such as BotSniffer [11] and BotMiner [8]) attempt to de-
tect synchronized activity coming from multiple, infected hosts in
a network. Unfortunately, these approaches typically work only for
large networks, because, in a small network, there are not enough
infected hosts to expose synchronized or correlated activity. An-
other problem of these approaches is that they are able to detect the
bots only after they have observed enough synchronized activity.
Therefore, a bot can remain undetected for a considerable amount
of time, in which it can cause damage to the infected network.

Signature-based detection systems (e.g., intrusion detection sys-
tems such as Snort, Bro, and BotHunter [9]) work independently
of the monitored network size. These systems are able to detect an
infected host even if they observe only a single connection match-
ing one of their signatures. The problem with signature-based ap-
proaches is that they cannot detect new, previously-unknown, or
upgraded botnets. Thus, they require frequent updates to their sig-
nature databases. Unfortunately, the current approach to devel-
oping signatures is mostly manual. This process is tedious and
time-consuming.

To improve signature-based botnet detection, and to minimize
the amount of manual effort required for extracting new signatures
for a botnet, we propose an automated signature extraction method
for detecting C&C communication. Our approach starts with a pool
of network connections as input. These connections are recorded
by running bots in a controlled environment (in our case, in a sand-
box). The pool contains many C&C connections (belonging to
many different botnets) but also many non-C&C connections that
bots produce as part of their operations. Such connections are
often related to malicious activites (such as scans, exploits, or spam
emails) but can also contain benign requests to check for the current
time or for network connectivity. Our goal is to produce strings
(signatures) that characterize the C&C connections.

To produce C&C signatures, we first extract all frequent strings.
Of course, frequent strings are not necessarily associated with C&C
communications. Thus, we need a second step that allows us to
rank (score) strings so that a string receives a high score when it
likely captures C&C traffic, and a low score otherwise. The key
observation underlying our ranking process is that C&C connec-



tions (or, at least, the connections related to a single command)
that belong to one particular botnet are relatively similar to each
other. By similar, we mean that they exhibit similar network-level
properties. That is, the duration of these connections is similar,
they contain a similar number of packets of similar sizes exchanged
between bot and server, et cetera. The reason is that a C&C protocol
typically implements a simple data exchange in which the client
(bot) reports a fixed number of data items and/or the server sends
a command with a fixed structure. Although the content of the
connections might vary quite a bit, the more general network-level
properties are similar. The variance of non-C&C traffic, on the
other hand, is much larger.

Our key observation (namely, C&C connections for a specific
botnet are similar) can be exploited to identify likely C&C-related
strings. To this end, we first group (cluster) all connections into
classes that share similar network features. Then, we look for
frequent strings that appear only in few classes (or, optimally, in a
single class). These strings are highly indicative of the connections
in this class. Since C&C connections of a botnet tend to cluster
well, strings that provide significant information about an individ-
ual cluster are likely good C&C signatures. Non-C&C traffic, on
the other hand, is typically spread over many classes. As a result,
frequent strings in such traffic (many groups) are ranked low.

There is a subtle but important difference between our work
and previous signature extraction systems (from EarlyBird [21] to
Polygraph [19] and Lisabeth [4]). The difference is that previ-
ous systems either operate on a malicious pool that contains only
(or, at least, almost exclusively) known, malicious connections, or
they assume that there is a way to distinguish between a suspi-
cious/malicious connection and a legitimate one. As a result, these
systems try to find the smallest number of strings that cover most
elements in the malicious pool without matching connections in a
second pool that holds benign traffic. In our problem setting, we
do not assume such access to a pool that contains mostly C&C
connections. In fact, the key problem for us is to distinguish C&C
from non-C&C connections, even though both types of traffic are
produced by the same set of malware samples.
To summarize, the main contributions of this paper are the follow-
ing:

• We present a novel approach for automatically extracting string
signatures that capture botnet C&C messages.

• We apply different techniques to determine the quality of ex-
tracted signatures, based on the amount of information they
provide about the traffic.

• We apply our technique to almost 2.6 million network con-
nections produced by more than 1.4 million malware samples
running in a dynamic malware analysis system. Furthermore,
we evaluate the quality of the resulting candidate signatures,
and we found that our system generates signature candidates
with high accuracy.

2. FINDING C&C SIGNATURES
The signature mining process involves three main phases: ex-

tracting frequent strings, detecting distinguishing strings, and an
optional phase of merging candidate strings. This process is shown
in Figure 1.

We start with a pool of network connections recorded by exe-
cuting malware in a dynamic analysis system. First, the contents
of these connections are examined to extract the frequent strings.
These strings are extracted using a generalized suffix tree [24]. In
the second phase, we extract the statistical features of the connec-
tions and use these features to cluster the connections into classes
of similar traffic. The connection clusters, based on the traffic’s

Figure 1: Process Flowchart

statistical features, are then used to select the distinguishing strings
among the frequent strings. Finally, in the third (and optional)
phase, candidate strings are merged to produce more precise sig-
natures. The details of each phase are discussed in the following
sections.

2.1 Frequent String Extraction
In this phase, the most frequent substrings are extracted from

the traffic connections. We extract all substrings that appear at
leastn times with length greater than or equal tok characters. We
experimented with different values forn andk, and we selected
n = 10 andk = 5. These were the the smallest values that resulted
in a set of meaningful candidate signatures. In general, selecting a
largern makes string ranking more accurate, at the cost of losing
some candidate strings. On the other hand, ifn is too small, many
random combinations of characters will appear in the result set, and
it would be hard to claim anything about their value as a signature
(because they appeared in a very small number of cases only).
A larger value fork results in more accurate signatures, while it
prevents smaller strings from appearing in the result set. On the
other hand, a smallk value results in random strings of characters
to be returned as frequent strings. To extract the strings, we use a
generalized suffix tree [24].

At the end of this step, we have a set of frequent strings. This
set will likely contain valid C&C signatures, but also irrelevant
strings that are not related to C&C communication. We attempt
to eliminate the irrelevant strings in the next step.

2.2 Ranking Frequent Strings
In this phase, we use a string-ranking mechanism to remove the

non-distinguishing strings from the result set. A distinguishing
string is a string that appears frequently in one class of connections
(the traffic generated by the C&C mechanism of one malware fam-
ily) and infrequently in other ones [12]. Non-distinguishing strings
cannot be good signatures, because they appear in a number of
different classes of traffic, and hence, they cannot identify a specific
C&C protocol.

Not all frequent strings are good signature candidates. For ex-
ample, many of the frequent patterns are indicative of the transport
or application protocol (strings such as “HTTP,” “GET,” “POST,”
etc.). These strings appear in a wide range of applications that
use the protocol. The goal of the ranking method is to rank the
strings so that more distinguishing strings are placed higher in the
ranking. We use the information gain of different frequent strings
for ranking them.

2.2.1 Traffic Clustering
As mentioned previously, as a prerequisite for the information

theoretic ranking, it is necessary to cluster all network connections
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Figure 2: Hierarchical clustering minimum distance

first. To this end, we use the following statistical features extracted
from each network connection:

• connection duration in milliseconds

• number of bytes sent by client/server (2 attributes)

• variance of data size sent by client/server (2 attributes)

• average/variance of inter-arrival time of the packets (2 attributes)

• number of packets with specific size ranges [0-99, 100-199,
200-299, 300-399, 400-499,>=500] (6 attributes)

• whether the connection is initiated from/to the remote site (2
attributes)

• number of packets sent by client/server (2 attributes)

We use the K-means clustering algorithm with the Euclidean
distance function on the normalized values of the features during
the clustering process.

To find an appropriateK (i.e., the optimal number of clusters
to be used by the K-means algorithm), we iterated over increasing
values forK while observing the resulting minimum distance be-
tween clusters. As shown in Figure 2, we have a steep decrease in
the minimum distance of the clusters as we increase the number of
clusters until we reach 50 clusters. At this point, increasingK no
longer yields significantly smaller clusters distances.

2.2.2 Information Theoretic Ranking Criterion
From an information theoretic point of view, a good signature

is one with the higher information gain. A similar approach is
used in machine learning for selecting features for building deci-
sion trees [18]. IfX andY are two random quantities, andX is
the quantity to learn about (e.g., the class of traffic), andY is the
feature used to determineX (e.g., the features), the information
gain of featureY is computed byI(X;Y ) = H(X)−H(X|Y ), in
whichH(X|Y ) is the conditional entropy ofX whenY is known.
I(X;Y ) is sometimes called the average mutual information be-
tweenX andY [7]. A feature with a higher information gain is a
better feature to learn the target function.

We define the normalized information gain (In) asIn(X;Y ) =
I(X;Y )
H(X)

= 1 − H(X|Y )
H(X)

. We callEn = H(X|Y )
H(X)

the normalized
entropy, and minimizing it is equivalent to maximizing the infor-
mation gain.

To compute the normalized entropy of a string, we count the
number of its instances in each cluster. If a string does not pro-
vide any information about the clusters, we expect it to appear
in each of them uniformly. In other words,H(X), which is the
entropy without any knowledge ofY , will be the entropy of the
uniform distribution of the string among all clusters. On the other
hand,H(X|Y ) is the entropy of the actual distribution of the string
among the clusters. We compute the normalized entropy using
these values.

The actual entropy can be expressed asEnt(dist) =
∑

n

k=1 Pk∗
ln(Pk), wheren is the number of clusters andPk is the probability
of appearance of a given string in clusterk. Pk is computed by
taking the number of appearances of the given string in clusterk

divided by the total number of its appearances. The normalized en-
tropyEn is computed using the following formula:En = Ent

Entmax

.
Entmax = Ent(uniform_distribution), where
Ent(uniform_distribution) is the entropy of the given string
being distributed as uniformly as possible among clusters (all clus-
ters having the same number of strings or at most a difference of
1).

For example, assume we have four clusters, and the strings

appears four times, namely two times in cluster1, and two times
in cluster2. Let us consider the uniform distribution ofs among
clusters is the case in whichs appears once in each cluster:
H(X) = 1
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Intuitively, strings that are indicative of a certain C&C protocol
will appear in the same cluster, or a few number of clusters, be-
cause the corresponding connections have the same traffic statistics.
Patterns that appear in many clusters are typically associated with
transport or general application protocols (such as HTTP).

2.3 Combining Patterns
In the third and optional phase, strings that appear in the same set

of connections can be combined to obtain longer and more precise
signature patterns. That is, smaller string fragments that are part of
the same C&C connection can be combined into longer, more pre-
cise signatures. For combining the extracted strings, we used a doc-
ument clustering algorithm, called suffix tree algorithm, introduced
by Zamir et al. [26]. This algorithm creates clusters based on the
phrases shared among the documents. In this document clustering
algorithm, each key term (a signature in our case) is represented as
a node in a graph. An edge is introduced between two nodes (terms)
when there is a relationship between these terms (for example,
if the number of documents they both appear in is greater than
some predetermined percentage of the number of documents each
of them appears in). The nodes corresponding tos1 ands2 will

be connected to each other if
|Ds1

∩Ds2
|

|Ds1
|

≥ c and
|Ds1

∩Ds2
|

|Ds2
|

≥ c

whereDs is the set of documents in which phrases appears, andc
is a predetermined constant. Such relationships express situations
where words frequently appear together in documents, or when
words appear in similar documents. After building the graph, the
algorithm considers each connected component a cluster.

A similar approach can be used to cluster candidate signatures.
We use similar notions of relationships between strings. We adopted
the suffix tree clustering algorithm in three different versions: (1)
Two strings are connected when they frequently appear together in
the sameconnection. (2) Alternatively, two strings are connected
if they frequently appear in connections to the same destinations
(based on remote IP address, protocol, and remote port number).
(3) Two strings are connected when they appear in many pairs of



different connections, where each pair is produced by one malware
program. An example for the last case can be a pattern for a bot
where one strings appears in the bot’s HTTP connection, followed
by a pattern in that bot’s subsequent SMTP traffic.

3. EXPERIMENTS
We applied our approach to a set of network trace files generated

by a dynamic malware analysis system.

3.1 Dataset
We received the network dump data for binary files from Anu-

bis [16], a popular dynamic malware analysis tool that offers a pub-
lic submission interface. Anubis is frequently used by researchers
and security companies, and it processes thousands of currently
active malware samples every day. Anubis runs each program in
a sandbox environment, recording the program’s interactions with
the operating system. It also stores the network traffic generated by
each sample in atcpdump. We used thesetcpdumpfiles as the only
input to our system.

To avoid infecting publicly accessible machines on the Internet,
Anubis relies on a containment policy that blocks a sample from
accessing services on the Internet that are frequently the target of
attacks but that are typically not used for command and control
(examples include SMTP, IMAP, and SMB).

It should be noted that Anubis runs each binary (using md5 hash
value of the binary as the identifier of the binary) only once and
only for five minutes. Therefore, if samples of a certain malware
family are infrequent in the provided data set, we may not be able
to detect their C&C protocol.

For our experiments, we used 1,427,798tcpdumpfiles present
in a snapshot of the system database (with an overall data volume
of 260GB). After filtering out non TCP/UDP traffic, traffic with
no payload, and local SMB/NetBIOS traffic, there were 2,588,729
“interesting” network connections. These form the input for the
remaining analysis.

3.2 Results
Using 2.6 million network connections as input, the frequent

string extraction step found 69,780 frequent strings. These frequent
strings were then sorted using both the heuristic and the informa-
tion theoretic ranking approach.

At this point, we needed to evaluate the ranking that our sys-
tem produced. This turned out to be very challenging: When our
system produces a token (snippet of characters), it is not trivial to
determine whether this token is a good signature or not. Of course,
there is also no ground truth available. After all, our system was
developed with the goal of distinguishing C&C connections from
benign traffic.

In a first step, we manually looked into the ranked list of can-
didate signatures. We focused on 100 entries on the top of the
list, the middle, and the bottom, respectively. We then tried to
understand whether a string was meaningful as a signature. To
this end, we manually examined the payloads that were matched
by each string. We then used our expert knowledge to make a
judgment of whether the connections were likely malicious (hence,
the signature is good), likely benign (the signature is not good), or
suspicious (in this case, the signature likely matches bad traffic, but
we could not confirm for certain). We found that many signatures in
the top 100 correspond to malicious and suspicious traffic. Often,
these signatures were quite specific and captured requests to certain
web locations (confirmed as HTTP-based C&C), emails (spam),
and IRC messages (confirmed as IRC-based C&C). In contrast, the
bottom of the list mostly contained generic strings that are used
by different applications. These include protocol headers (such as

Table 1: Comparison with Autograph
Our method Autograph

good benign susp. good benign susp.

Top 100 29 41 30 4 85 11
Middle 100 8 53 39 13 67 20
Bottom 100 8 56 37 11 41 38

GET, POST, HTTP 1.1, etc.). An overview of results produced by
this analysis process can be found in Table 1.

3.3 Comparison with Prior Work
Autograph [13] is a well-known system for the automated extrac-

tion of signatures from network traffic. As mentioned previously, it
relies on a pool of (mostly) malicious traffic and a pool of benign
traffic. Unfortunately, in our case, all traffic is produced by mal-
ware, and we do not knowa priori what are the C&C connections
and what are unrelated, and ultimately benign, connections.

When using Autograph on our data set, the system basically sorts
all strings based on their frequency. We manually checked the top
100, middle 100, and bottom 100 string produced by Autograph to
determine which of these are likely good signatures, which are bad
(i.e., they relate to benign traffic), and which are suspicious (maybe
bad, but not obviously good either).

The result is shown on the right side in Table 1. The number of
good signatures in the top 100 is 4, which is much lower than our
results. This is because Autograph is designed to find the most fre-
quent signatures first, whereas, in the case of C&C communication,
being frequent is not a distinguishing property. Instead, scanning,
spam, and exploit payloads are the most frequent signatures in the
traffic.

We observed that only four out of the top 100 signatures, sorted
based on their frequency, are related to C&C communications. This
should be compared to the fact that 13 out of the top 20 signatures
produced by our system are good (and at least 29 of the top 100).
The reason for this behavior is that the C&C communication is
occurring less frequently than scanning, exploitation, and spam
payloads. Therefore, the most frequent strings correspond to such
activities and not to C&C communication.

We also compared our top 100 signatures with Bothunter and a
standard Snort installation (with the default signature set). In the
comparison with Bothunter, we only used their ruleset for C&C
detection (filee4.rules in the rules directory). Table 2 shows
the results of running our system, Bothunter, and Snort on two data
sets. The first data set was traffic gathered from a research lab in
the computer science department of our university during one week
of operation. This data set contains 400GB of network packets,
produced by two dozen hosts. The second data set contained mostly
malicious traffic, again recorded by the dynamic malware analysis
system (but different from the set from which the signatures were
extracted). Note that we found two signatures in Bothunter and
two signatures among our signatures that produced a huge amount
(more than a thousand) of false positives. We removed these four
signatures from our analysis (this would be easy to do for a sys-
tem administrator). As Table 2 shows, our approach had a better
detection rate than both Snort and the Bothunter C&C detection
signatures. Moreover, we did not produce any false positives on a
week of this data set (after removing the two offending signatures).

3.4 Malware Family Classification
Previously, we made a claim that it is possible to use traffic

clustering to group connections that belong to the same malware
family. In particular, our system relies on the assumption that traffic



Table 2: Comparison with Bothunter and Snort
Data set Our method Bothunter Snort

tp fp tp fp tp fp.

Malicious traffic 6,766 0 2,223 0 85 11
Lab traffic 0 0 0 0 0 657

produced by a specific malware family is similar enough so that it
will end up in the same cluster (or in very few clusters). In this
section, we describe an experiment that supports this claim.

For this experiment, we first obtained the results from VirusTotal
for each malware that produced network traffic. VirusTotal is an on-
line service that accepts binary files, submits them to 42 anti-virus
(AV) tools, and then returns the labels that each of these AV tools
assigns to the binary. That is, VirusTotal outputs for a file the mal-
ware family labels generated by each AV tool. Unfortunately, each
anti-virus program has its own convention for naming malware
families, and often, labels for a single sample are contradictory.
Thus, to obtain a single family name for each sample, we first
removed the final (specific) part of each label, and then took the
majority vote among all AV tools. This step produced (at most)
one label for each sample.

Next, we discarded all families with less than 20 samples. This
step resulted in 336 malware families. From each family, we ran-
domly selected 20 samples. We then filtered out all samples that
generated less than five network connections. Only 25 families re-
mained for which each sample produced five or more connections.

For each sample that remained in our data set, we extracted the
connection information and ran our clustering algorithm (described
in Section 2.2.1). We then used the clustering results for clas-
sifying malware samples into 25 known malware families. More
specifically, we used the RIPPER classifier [5] with 10-fold cross-
validation. The classification achieved an accuracy of 56.8%. While
this accuracy is clearly not sufficient for a detection tool, it supports
our claim that connection clusters convey considerable amount of
information about the malware families generating them. The ex-
periment also demonstrated that network connections from the same
malware family were grouped together in the same cluster. More
specifically, more than 50% of the connections produced by each
malware family were grouped in only one or two clusters.

It should be further noted that our achieved accuracy reflects
a worst case scenario, as it has been negatively affected by sev-
eral factors: First, the malware family names are not completely
accurate as different AV tools use different naming standards for
malware family names. Second, malware samples are run only for
five minutes, which is a short period compared to the lifetime of
a malware sample. Thus, a sample may not generate any network
connections that are specific to its family in this period. Finally, we
used only 20 samples for each malware class. A classifier accuracy
can be improved by providing more training data. Despite these
limitations, we found that traffic clusters reflect malware families
quite accurately. This is important so that our system can extract
meaningful command and control strings.

3.5 Limitations
There are three main limitations of the proposed approach. First,

the system can be used only when the C&C traffic is not encrypted.
If the C&C traffic is encrypted, content-based signatures cannot be
extracted. This problem is shared by all systems that use signatures
that operate on the traffic content. Second, the system cannot pro-
vide a guarantee that all strings that receive high scores are indeed
related to C&C traffic. Thus, a certain amount of involvement from
a human analyst is beneficial to remove irrelevant strings. How-

ever, our system reduces the manual effort significantly by focusing
the analysis effort onlikely C&C candidate signatures. Also, one
could further remove possibly irrelevant strings by matching the
results against benign traffic, discarding all strings that trigger too
frequently on benign connections.

4. RELATED WORK
There has been a considerable amount of work on how to detect

and mitigate botnets. Bailey et al. classified botnet detection tech-
niques into three classes [1]:1- Detecting cooperative behavior:
One intrinsic aspect of botnet activity is that the machines in a
botnet cooperate towards the same goal. This cooperation could be
detected by various correlation techniques.2- Detecting by signa-
ture: These approaches are based on detecting botnets using some
predefined patterns of activity.3- Detecting by attack behavior:
Detecting botnets by detecting the patterns of the attacks botnets
perform.
Correlation-based detection.A number of previous systems fo-
cus on the large-scale, correlated behavior of bots. For example,
Gu et al. presented BotSniffer [11], which uses the temporal
correlation between the activity of infected machines to detect bot-
nets. In follow-up work, Gu et al. used correlation between connec-
tion behavior (C-plane) and attack behavior (A-plane) [8]. Strayer
et al. used correlation between traffic characteristics of different
IRC connections to identify botnets [23]. Zhao et al. presented a
correlation-based approach to detect webmail user accounts used
by botnets [27]. Coskun et al. proposed graph-based algorithm to
detect P2P bots [6]. The problem with correlation approaches is
they require access to a large-scale network with many active bots.
Moreover, there is often a non-trivial amount of time that passes
before enough evidence of a bot infection is collected.
Signature-based detection.Some previous work attempts to dis-
tinguish botnet IRC command and control messages from legiti-
mate, real-user IRC communications. Livadas et al. used naïve
Bayesian networks to distinguish between real IRC communication
and the one used by bots [17]. Gu et al. used an active probing
approach to intervene in ongoing suspicious IRC communications
to distinguish a human conversation from a bot conversation [10].
Kondo et al. used SVM techniques on packet characteristics to
differentiate between legitimate IRC traffic and IRC C&C chan-
nels [14]. The problem with these approaches is that they try to
find C&C communication only in IRC communication, while bot-
nets are actively using other types of protocols to carry their C&C
messages. Therefore, a more general C&C detection method is
needed. Bilge et al. [2] use machine learning to train classifiers to
detect C&C servers.

Gu et al. proposed a more-general bot lifecycle model, and they
tried to detect botnets by correlating the events that represent dif-
ferent stages of this lifecycle [9]. At its core, this system, together
with more traditional, misuse-based intrusion detection systems,
relies on a database of signatures that identify C&C botnet traffic.
Unfortunately, these approaches suffer from the same problems
that all misuse-based detection mechanisms have: When malicious
software changes its behavior, it will no longer be detected. In most
cases, signatures are generated manually, and this is the process that
our work seeks to automate.

The work closest to ours is the system presented by Wurzinger
et al. [25]. The authors introduce a system for automatically gen-
erating botnet C&C signatures, and leverage the fact that, after
receiving a command, the behavior of the bot changes consider-
ably. This change can be detected using network behavior analysis.
Wurzinger et al. then look into the traffic seen before this change
of behavior to extract possible commands. While effective, this
approach can only detect commands that lead to significant changes



in the bots’ network behavior, such as commands that trigger denial
of service attacks or spam runs. Commands that results in less
obvious reactions, such as data leakage or “phoning home,” cannot
be extracted.
Automated signature generation. There has been a significant
amount of previous work on automated signature generation for
Internet worms [3, 4, 13, 15, 19, 21, 28]. As previously mentioned,
the key difference is that these systems are provided with a pool of
traffic that contains mostly malicious connections. The goal is sim-
ply to find strings that cover this pool without matching too many
legitimate connections. Unfortunately, we do not knowa priori
which of the connections in our input are C&C traffic. Hence, we
need to introduce a ranking function that assigns a higher score to
likely C&C signatures.

Perdisci et al. [20] propose a system to extract signatures for
HTTP-based bots. To this end, the authors first cluster similar
HTTP requests. Then, for each cluster, a generalized signature is
extracted. The difference to our approach is twofold. First, the
system by Perdisci et al. only works for HTTP-based C&C traf-
fic. Second, the system cannot distinguish between signatures that
match HTTP-based command and control traffic and HTTP con-
nections that are unrelated to C&C connections. Thus, the system
produces signatures for all non-C&C traffic as well. Our system,
on the other hand, introduces a ranking function that will assign a
higher score to signatures capturing C&C traffic.

5. CONCLUSIONS
In this paper, we presented a novel approach for extracting C&C

signatures. Our approach automates the tedious, manual work cur-
rently necessary when deriving botnet signatures for network in-
trusion detection systems. Our system takes as input a pool of
network connections that are produced by running bot samples in
Anubis. The system first extracts all frequent strings from the
traffic. Then, a ranking function is invoked that assigns a high
score to traffic-class distinguishing strings. These strings are likely
good C&C signatures. The reason is that C&C connections for a
botnet, or an individual command of a botnet, share network-level
similarities, while non-C&C traffic is more diverse. We applied our
approach to traffic collected by a dynamic malware analysis sys-
tem. Furthermore, we showed that our method has a better accuracy
than Autograph. We also compared detection accuracy of our C&C
signatures with those of Bothunter and Snort. The system analyzed
almost 2.6 million connections produced by more than 1.4 million
samples. The results demonstrate that our system has real-world
applicability and can extract meaningful C&C signatures.
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