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Abstract—In this work we study the hierarchical organization
of technical documents, where given a set of documents and
a hierarchy of categories, the goal is to assign documents to
their corresponding categories. Unlike prior work on supervised
hierarchical document categorization that relies on large amount
of labeled training data, which is expensive to obtain in closed
technical domain and tends to stale as new knowledge emerges,
we study this problem in a weak supervision setting, by leveraging
semantic information from concepts. The core idea is to project
both documents and categories into a common concept embedding
space, where their fine-grained similarity can be easily and
effectively computed. Experiments over real-world datasets from
the subject of computer science, physics & mathematics, and
medicine demonstrated the superior performance of our ap-
proach over a wide range of state of the art baseline approaches.

I. INTRODUCTION

The large volume of the scientific literature are becoming

prohibitive: according to the 2018 International Association

of Scientific, Technical and Medical Publisher’s report [1],

about 3 million journal articles are published every year with a

5% annual growth rate. Advanced techniques for better under-

standing and organizing the scientific literature are therefore

in great demand. According to cognitive science studies [2],

[3], [4], a key management strategy for such information is to

organize them into a hierarchy of categories, which has been

widely used in various domains such as library science [5],

internet directories1 2, patents3, among many others.

Traditional methods for this problem mostly focus on a

supervised setting [6], [7], [8], which relies on a significant

number of manually labeled document-class pairs and is in

general inapplicable to our setting, because of the following

two reasons: 1) manual labeling requires strong domain exper-

tise and thus is very expensive to obtain 2) the set of categories

can become obsolete quickly as the domain evolves and new

knowledge emerges [9]. Yet another line of research [10]

exploits distant supervision signal from external knowledge

bases [11], which are in general not available in many fine-

grained, closed technical domains.

We propose to study the problem of hierarchical document

categorization under a weak supervision setting. More specif-

1https://en.wikipedia.org/wiki/Yahoo! Directory
2https://dmoztools.net/
3https://www.wipo.int/classifications/ipc/en/

ically, given a set of documents and a category hierarchy, the

goal is to assign documents into the different categories based

on very few number of labeled documents. 4, where only a

few labeled documents are provided. The hierarchical nature

of the problem makes the problem even more challenging: the

weakly supervised classifier need to jointly consider the large

number of category labels as well as their relations between

each other.

There are a number of possible baselines to consider. One

may use a clustering approach, which detects coherent sets

of documents in an unsupervised fashion. The hierarchical

structure can be incorporated into the clustering process by

generating hierarchies along with the clustering [12], or by

employing flat clustering approaches and map clusters to the

leaf nodes of the hierarchy. A more flexible approach is to treat

each category as a keyword query, and leverage information

retrieval techniques such as query expansion to retrieve the

documents [13]. Finally, one could also adapt flat unsupervised

categorization models [9] to the hierarchical setting, e.g. by

following the top-down or bottom-up paradigm [12].

We explore a vastly different categorization paradigm. It is

based on the observation that technical documents are typically

organized around concepts [14], [15], which bear discrimina-

tive information about their topics (categories). For example,

a database paper usually involves concepts such as ”map and

reduce” and ”SQL”, while a machine learning paper involves

concepts like ”statistical inference” and ”convergence rate”.

Following this, we develop our concept based hierarchical

document categorization model, HierCon, which leverages

concepts in technical documents to form semantic represen-

tations for both the documents and hierarchical categories

and infer their associations. Unlike previous approaches that

rely on model specific engineering to incorporate hierarchical

structure, for example, by imposing similarity or orthogonality

constraints between parent and children classifiers [6], [16],

we propose to represent the categories as distributions over

concepts, which allows for more flexible combinations of the

semantics of neighboring nodes in the hierarchy.

Concept mining [14] can be leveraged to discover concepts

and their occurrence locations in the documents, and learn

4 We may use the set of terminologies ”organize”, ”categorize”, ”classify”
and the set of terminologies ”hierarchical label”, ”taxonomy node”, ”hierar-
chical category” interchangeably depending on the context.
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Fig. 1: HierCon Framework Overview.

their vectorized semantic embedding representation without

supervision signal. For example, given a text piece “support

vector machine”, one may recognize either “support vector

machine” as a concept, or other alternatives such as “support

vector” as a concept. The task now becomes, to select concepts

that are 1) most valid among different alternatives, and 2) most

important to the document’s main topic. To that end, we pro-

pose a novel, adaptive concept level document representation

model based on the hierarchical neural attention mechanism

[17], which models the validity and importance of the concept

recognition as a natural hierarchical process, and dynamically

adjust the concept representation and the associated model

weights based on downstream performance. Documents and

categories are thus projected into a common concept em-
bedding space, as a weight distribution over concepts along

with the vectorized, semantic embedding associated with each

concept.

However, there is still a large gap between the concept se-

mantics and the task of discriminatively associating documents

with the hierarchical categories. If there is a large amount of

labeled training data, we could simply treat this as a standard

supervised classification problem. Without that luxury, how-

ever, this task becomes more challenging. We propose a novel

approach to compute concept based relevance by exploiting

their inner structure. The main observation is that, many con-

cepts in the document bear strong, discriminative information

about the documents’ categories, via their associated concepts.

Motivated by this, we propose a principled approach for aggre-

gating all possible concept interactions between the documents

and each of the possible categories, to comparatively obtain

document-category relevance and perform categorization.

We evaluate our method on three real-world datasets from

the fields of computer science, physics & mathematics and

medicine, and compare it with a wide range of state of the

art baseline methods under various performance metrics. The

results show that our method consistently outperforms all the

baseline methods by a significant margin.

In summary, our contribution is three-fold:

• We study a novel problem of hierarchical categorization

of technical documents according to a target taxonomy

without a large amount of labeled training data or existing

knowledge bases.

• We propose a novel concept based approach that represents

both the categories and the documents using concepts mined

from the unlabeled documents and project them into a

common concept embedding space, from which we obtain

direct relevance signal and assign documents to categories.

• We comprehensively evaluate our approaches in comparison

with the state-of-the-art hierarchical classification methods

over three real-world datasets in the fields of computer

science, physics & mathematics and medicine.

II. RELATED WORK

A. Hierachical text classification

Previous work on hierarchical document categorization [8]

usually follows a supervised approach. Hierarchical informa-

tion can be taken into account by either enforcing similarity

or dissimilarity constraints into the classification model [18],

[19], [6], [7], or by modifying the training data and prediction

results to enforce hierarchy consistency [20]. On the other

hand, distant supervision based methods such as dataless

hierarchical classification [10] employ large knowledge bases

such as Wikipedia to generate semantic representations of both

documents and labels, and associate them together via a top-

down or bottom-up scheme. These approaches either heavily

rely on the availability and quality of labeled training set

for specific classes, or expect the corpus to be covered by

an external knowledge base, which are inapplicable to our

setting. A recent work by Meng et.al [21] studied a very

similar problem, where they assume a set of labeled documents

for each category, and leverage these documents to represent

the category semantics and perform categorization following a

bootstrap procedure. Such an approach will be more sensitive

to the training data: one noisy labeled document for a category

could lead to much bigger error in the further bootstrapping

stages.

B. Concept/entity aware representation

Another line of related work is on concept/entity aware

representation, where they utilize information from a knowl-

edge base, such as entity description, entity type or even

links to other entities to improve different stages in the
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information retrieval pipeline such as query expansion [22],

[23] and ranking [24]. Follow up work directly makes use

of the annotated entities in the documents as its semantic

representation [25], [26], [27], [28], to derive insights about

the documents and serve downstream applications. The above

approaches provide evidence for the key roles of the concepts

in representing texts, and supports our further exploration of

hierarchical document organization based on concepts.

C. Classification without explicitly labeled training data

Yet another line of related work can be categorized as

performing classification without explicitly labeled training

data. The common characteristics of these approaches are to

exploit the extra information contained in the label. A highly

related approach is zero-shot learning from the computer

vision domain, which deals with the problem of categoriz-

ing against new unseen categories. These approaches mostly

follow a representation learning based approach, which relates

unseen classes and seen ones by extracting features of each

class [29] and/or inputs [30], [31], [32] and learn a vector

representation, in order to generalize training data to those new

labels. In text domain, neural embedding based technique [33],

[34], [35] has been the main workhorse to extract information

from unsupervised data and associate semantics with labels.

Li et.al [9] provides an initial study along this direction, where

they exploit concepts to best learn the embedding and perform

unsupervised categorization.

III. THE HierCon FRAMEWORK

We formulate the weakly supervised hierarchical catego-

rization task as follows: The first set of input is a corpus of

plain text documents D, each d ∈ D being a sequence of

words in the form of w1w2 . . . w|d|. In addition, we’re given

a set of target categories Y , organized into a tree structure

T , where of all the categories Y are nodes in the tree, and

each category y ∈ Y is associated with one parent P (y) ∈ Y ,

a set of ancestors A(y), e.g. its parent, grandparent, and so

forth. We study this problem in a weakly supervised setting,

where users are allowed to provide a set of labeled training

data, as a set of l� D document-label pairs. The end goal of

hierarchical organization is, then, to associate each document

d ∈ D with one or more relevant labels L(d) ⊆ Y .

Our proposed approach is illustrated in Figure 1. In order

to leverage concepts to represent documents and categories,

we first perform concept mining [14], i.e. identifying meaning

bearing units such as ”support vector machine” and ”gener-

ative adversarial network” from text. Specifically, the output

will be a concept vocabulary V as a set of concepts that occur

in the corpus, and further recognize the (possibly overlap-

ping) occurrences of each concept c ∈ V . Using techniques

described in section section IV, we will generate the concept

level representation ϕ : D → R
|V|, as a function that maps

each document d ∈ D to a V dimensional vector, where each

dimension denotes the weighted association to each specific

concept.

Fig. 2: An example hierarchy of categories showcasing the im-

portance of path semantics. The category node “Consistency”

under Software engineering and another node “Consistency”

concept under the Statistics can be distinguished by their

ancestors, descendents and neighbors.

By associating target categories with relevant concepts in

the concept vocabulary V based on string similarity, we can

derive the basic semantics for each category [9]. We encode it

as a |V| dimensional weight vector φ(b)(y) over all concepts

V . As an example, a node with the name “Consistency”

will be associated with concepts such as “consistency” and

“consistency principle”, and thus will have high value in the

corresponding dimensions in its concept representation. How-

ever, solely relying on basic semantics may miss important

hierarchy information and lead to ambiguity, as illustrated by

the example below.

Example 1 (basic semantics of category) Consider the

category hierarchy which we want to categorize documents

into as shown in Figure 2. The hierarchy is artificial but

manifests the following key observations: (1) Many interesting

and concrete concepts about a category node are buried deep

in its descendent, which is not directly recovered by the name

of the category itself. For example, descendent nodes such

as “Asymptotic theory” and “Central limit theorem” provide

much richer information to the ancestor category, “Statistics”,

compared to simply relying on its literal name. (2) Conversely,

the location of a category node in the hierarhcy, e.g. what

its parent and grandparent are, is essential for determining

the actual content it represents. For example, the category

“Consistency” under the “Software engineering - Software

functional properties - Correctness” hierarchy, and the cate-

gory “Consistency” under the “Statistics, Asymptotic theory”

hierarchy are two completely different categories which share

little overlap with each other. Without the hierarchy context,

it will be difficult to distinguish between these two.

Motivated by the first observation in the example, we

introduce aggregated semantics φ(a)(y), which enriches the

basic semantics of each node with all its descendent. It is

defined as

φ(a)(y) �
{
avg({φ(a)(y′)|y′ ∈ C(y)} ∪ φ(b)(y)) C(y) �= ∅
φ(b)(y) o.w.

(1)

where we use C(y) = P (−1)(y) to denote the set of children
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of node y, and avg to denote the aggregation function for

averaging the value, which in this work we instantiate as the

element-wise arithmetic mean.

Motivated by the second observation, we introduce path
semantics φ(p)(v) for each node y ∈ Y to take into account the

location of category node in the hierarchy in determining its

semantics, as an averaging over the aggregated semantics of

the current node y and its ancestorsA(y). 5 The path semantics

φ(p)(v) will then be used as the final representation for each

category node y, φ(y). Specifically,

φ(y) � φ(p)(y) � avg({φ(a)(y′)|y′ ∈ A(y)}), φ(a)(y)) ∀y ∈ Y
(2)

Given the concept representation of category nodes φ(·)
and documents ϕ(·), the task is then to learn to measure the

similarity S(φ(y), ϕ(d)) based on their concept representa-

tions. One possible choice is to follow traditional top-down

hierarchical classification, to sequentially make decisions on

which child from the current node one should descend to,

possibly incorporating future delayed rewards following the

reinforcement learning paradigm [36]. However, this will make

the model more sensitive to the amount of labeled training data

and therefore undesirable for the weakly supervised settings.

In this work instead, we follow the big-bang approach [8], that

classifies each document against all nodes at the same time,

and predict the label as the one that maximizes the similarity.

Specifically, for model inference, we obtain the prediction ŷ(d)
for each document d by

ŷ(d) � argmax
y∈Y

(S(φ(y), ϕ(d))) ∀d ∈ D (3)

Here we use the cross-entropy loss 6 as the objective function

to minimize for model training, where the relevance scores

S(φ(y), ϕ(d)) are used as the logits.

The overall procedure is summarized in Algorithm 1. Given

a large text corpus D, it first learns the concept vocabulary

V as well as the concept level representation ϕ(d) of each

document d ∈ D. Then, using the input hierarchical tree T ,

it derives the semantic representation of each label by first

computing basic semantics with respect to each label, followed

by a bottom up pass that recursively obtains the aggregated
semantics of category nodes using its children nodes. These are

followed by a top-down pass, that computes the path semantics
ϕ
(p)
v for each label. Based on the semantic representations of

labels and documents, a relevance function S(φ(y), ϕ(p)
d can

then be computed. Finally, for each document, we perform

categorization by choosing the top K category labels for each

document d that have the highest relevant scores.

The advantages are 3-folded: First, it can be directly com-

puted compared to reinforcement learning based sequential

approach, while flexible enough (by possibly changing the avg

5We overload the definition of avg when called with two arguments
avg(·, ·), to make it return the average over each argument. in other word,
the second argument, in our case the aggregated semantis of the current node,
will take exactly a half of the weight.

6https://en.wikipedia.org/wiki/Cross entropy

Algorithm 1 Categorization Framework

Input: a corpus of plain text documents D, set of target

categories organized as a hierarchy T , number of labels to

predict for each document K
Output: : top K labels L(d) for each document d ∈ D
Perform concept mining to obtain concept vocabulary V ,

concept representation { �ϕ(d)|d ∈ D}, and a set of concept

embedding vectors {θv|v ∈ V} from raw corpus D
for node y in the hierachy T do

Obtain basic semantics φ(b)(y) ∈ R
|V| based on the

concept vocabulary V and the category node y
end for
for level of tree T ∈ T , bottom up do

for node y in the level of tree T do
Compute aggregate semantics φ(a)(y) ∈ R

|V| accord-

ing to Eq. (2).

end for
end for
for level of tree T ∈ T , top down do

for node y in the level of tree T do
Compute the final representation as the path semantics
for category node y, as φ(y) ∈ R

|V| according to Eq.

(3).

end for
end for
Compute relevance scoring function S(ϕ(d), φ(y)) for each

d ∈ D and node y in the hierarchy T based on the

computed representation ϕ(·), φ(·) and concept embedding

vectors {θv|v ∈ V}.
return top K labels c ∈ C for each document d ∈ D that

has the highest relevance scores

computation) to model the influence of class hierarchy into the

node representation. Furthermore, it allows for more flexible

categorization decision between leaf nodes and internal nodes:

a document is assigned to leaf if it is more similar to a specific

sub-field; if it is equally similar to them, it should stay at a

more general level and get assigned to their parent node. Last

but not least, it is interpretable and naturally provides not only

the most likely category, but also the top K category to be

served as additional information for each document.

IV. CONCEPT REPRESENTATION FOR DOCUMENTS

In this section we discuss our approach for obtaining

the concept representation ϕ(d) of each document d ∈ D.

We follow a two-step approach: We start with a candidate

generation stage where we follow [14] to obtain a large pool

of potential concepts as candidates, which may contain false

positive ones, or ones that are less important to the major

topic of a document. For example, in the text shown in

Figure 3, where both “vector machine” and “support vector

machine” are recognized as concept candidate. The goal of the

next stage, candidate selection, is then to select concepts like

“support vector machine” as the correct concept occurrence,

and furthermore among the correct ones select the important
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Fig. 3: Illustration of the hierarchical attention mechanism.

concepts in the document to form the document’s concept

representation.

Specifically, we follow the assumption from the entity

recognition literature [37] and require that the resulted textual

occurrences of these concepts after the candidate selection

stage to not overlap with each other. More formally, given

a document d as a sequence of words, the outcome of

candidate generation will be a sequence of super-concepts
[14], u1, u2, u3, . . . , ul, l being the length of such sequence,

where each ui contains a set of overlapping candidate concepts

ci1, ci2, . . . , ci|ui|, |ui| being the number of candidates in

the super-concept, and each ui does not overlap with other

super-concepts. The goal of candidate selection, then, is to

disentangle the overlapping candidate concepts and select the

valid concept for each super-concept ui, and then to determine

the importance among the selected concepts from each super-
concept and generate the concept representation of documents

as a weighted distribution across concept vocabulary ϕ(d) ∈
R
|V|.
We propose an adaptive concept representation architecture

based on the hierarchical attention mechanism [17], which

directly combines noisy concept candidates into the final doc-

ument representation in an end-to-end fashion, simultaneously

performing the task of selecting valid concepts and the task

of selecting important ones. As shown in Figure 3, in the first

level of attention, inside each super-concept, the model will

choose to attend to one of its most probable candidates; in the

second level, a document-wise attention is drawn to select the

most important concepts from the selected valid concept from

each super-concepts.

Specifically, the attention score for the tth candidate in the

ith superconcept, denoted ait, for each 1 ≤ t ≤ |ui|, 1 ≤ i ≤ l,
can be obtained as follows.

a0it = fit ·W0 (4)

ait =
exp(a0it)∑
t(exp(a

0
it))

(5)

Here W0 is the model parameters for weighting different feasi-

bility features, and a0it are used to denoted intermediate output

in the network. fit referes to the feature vector associated

with the the tth candidate in the ith superconcept, which

is obtained based on the grammatical features, occurrence

frequency, statistical significance and context based features

such as the ones used in Autophrase [38] and ECON [14]

At the second level of attention, where the goal is to capture

concept importance, the attention score for the selected con-

cepts from the ith super-concept, denoted ai, can be obtained

as follows.

a0i = fi ·W1 (6)

ai =
exp(a0i )∑
t(exp(a

0
i ))

(7)

Here Wi is the weight parameters, a0i is the intermediate

model output. fi refers to the feature vector associated with the

selection concepts from the ith super-concept, and is obtained

based on features such as occurrence location, length of the

concept, which logical section the concept occurs in [39]. The

details of the feature used can be found at the full version of

the paper 7.

The concept representation ϕ(d) for each document d ∈ D,

as a |V| dimensional vector, will gather the attention weights

distributed to each concept. Specifically, if we index the |V|
dimensional vector ϕ(d) using each specific concept c ∈ V ,

then the value of ϕ(d) along that index, denoted (ϕ(d))c, can

be computed based on the two level attention, as

(ϕ(d))c =
∑

1≤i≤l

ai ·
∑

1≤t≤|ui|
(ait · I(cij = c)) (8)

V. CONCEPT BASED RELEVANCE

In this section, we describe the model for computing the

relevance S(ϕ(d), φ(y)) between each pair of category and

document (y, d) ∈ Y × D based on their concept representa-

tions.

The approach of measuring similarities between labels and

documents is relevant to several lines of previous work. Zero-

shot learning in computer vision embeds labels and input

instances into a latent embedding space, and tries to learn a

compatibility function between the embedding vectors [40];

Information retrieval extracts features from documents and

queries, and build a model to predict their relevance [41], [42].

These models are still supervised in nature which requires

standard training data for a subset of labels (“seen” classes).

There are also models that leverage an external knowledge

base to derive vector representation and relevance [10]. None

of the above are applicable to our scenario, where both training

examples and knowledge base coverage are scarce.

To address this, we leverage the fact that the documents

and category labels are projected into the same concept
embedding space, and obtain direct relevance signal based

on their aggregated distance in such space. We propose a

novel similarity aggregation framework that exploits the innate

similarities between concepts based on their semantic em-

bedding, comprehensively considers all possible interactions

between concepts in the documents and category labels, and

7https://sites.cs.ucsb.edu/∼klee/papers/ICDM19 HierCon.pdf
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dynamically learns the relevance signal as a function of the

innate similarities between concepts to flexibly aggregate them

together.

Formally, we assume we’re given the concept-wise similar-

ity function S(ci, cj) for all possible pairs of concepts ci, cj ∈
V , which in this work we instantiate as cosine similarity. Our

goal is, then, to aggregate the set of concept similarities for

each document d and category label y, based on their concept

weight distribution ϕ(d) and φ(y). The problem is that, the

individual similarity strengths, e.g. as measured by cosine

similarity, may not directly correspond to their contribution

in the document-category level relevance. How can we more

flexibly understand the concept similarity strength, while at the

same time respect their weights, as indicated by the document

and category’s concept representation?

We leverage the techniques of bin-pooling [41], and first

discretizes the similarities into K bins, with the kth bin

counting the number of values between the range [stk, endk),
1 ≤ k ≤ K. As a result, the similarities of each pair of concept

(ci, cj) ∈ V × V will be mapped to a specific bin, denoted

as bin(S(ci, cj)). Next, we embed each bin into an (arbitrar-

ily) learned representation using the embedding parameters

ω ∈ R
K , whose k-th dimension describes the embedding

signal for the k-th bin. As a result, each concept pair (ci, cj)
can then be mapped to a representation M(ci, cj |ω) which

directly corresponds to its contribution to the final relevance

score:

M(ci, cj |ω) � ωbin(S(ci,cj)) ∀(ci, cj) ∈ V × V (9)

Given the concept pairs M(ci, cj |ω), we directly weigh it

with the document’s weight towards the specific concept ci,
(ϕ(d))(ci), as well as the category’ weight towards concept

cj , (φ(y))cj , and obtain the final relevance as

S(ϕ(d), φ(y)|ω) �
∑

(ci,cj)∈V×V
(ϕ(d))ci · (φ(y))cj ·M(ci, cj |ω)

(10)

Intuitively, the above model can be viewed as a process of

dynamically generating a matching histogram between docu-

ment and labels based on learn-able weight distribution for

both categories and documents, and then map the raw match-

ing histogram to the final relevance score through a learned

function. We therefore denote this model as dynamic bin
pooling. The process of dynamically generating the matching

histogram is fully differentiable and therefore allows us to fine-

tune both the document and category’s concept representation

as well as the mapping from the raw matching histogram to

the final relevance score, in an end-to-end manner.

Gradient path saving Directly optimizing the similarity ag-

gregation model via current hardware may be hard due to the

large number of possible concepts and their interactions. For

example, it can be shown that there are at least Ω(K|Y||V|2)
gradients that need to be stored and back-propagated which

can easily exceed the capacity of modern GPU; even if we

store the concepts as a sparse matrix to only keep the non-

zero entries, the set of concepts in the category’s concept

Fig. 4: Dynamic bin-pooling for similarity aggregation.

representation could still be large due to path semantics
computation, and we need to consider the relevance for all

y in Y for both training and prediction.

To address this, we propose the gradient path saving ap-

proach, which explores the cheapest path for back-propagating

the gradients based on the re-parameterization trick. Specifi-

cally, it can be shown that the gradients associated with the

bin-weight ω can be obtained by

∂S(ϕ(d), φ(y)|ω)
∂ωk

= (ϕ(d)⊗ φ(y))�Mk 1 ≤ k ≤ K

(11)

where ⊗ denotes vector outer-product, � denote element-wise

sum, and each entry in the matrix Mk stores the look-up results

of corresponding elements in M for the kth bin, as

Mk(ci, cj |ω) = I(bin(S(ci, cj)) = k) (12)

By pre-computing (ϕ(d) ⊗ φ(y)) � Mk and treating it as

fixed value, the amount of gradient computation can be cut

down to O(|Y|). Similarly, we can show the gradient for the

document’s concept representation and the category’s concept

representation can also be reduced to O(|Y|), allowing for

efficient implementation even on a single GPU card.

Monotonicity enforcement A common mode of failure for

learning the bin weight {ωk, 1 ≤ k ≤ K} is to have the values

”scattered around”, where bins with lower similarity strength

have even higher weight than those with higher similarity

strength, which is against our design. To ensure that the bin

weights have meaningful values, we follow a monotonicity
enforcement approach, that leverages re-parameterization trick

to impose monotonicity constraint for the bin-weights. Specifi-

cally, instead of storing the raw bin weights ωk for 1 ≤ k ≤ K,

we store the differential of bin weights, denoted ω′k. And the

kth bin-weight ωk, now a computed value, will be obtained

by

ωk =
∑

1≤j≤k

ReLU (ω
′
j) ∀k, 1 ≤ k ≤ K (13)

where ReLU refers to the relu activation function8 which

enforces monotonicity. In other words, only the positive weight

differences will be counted, and the network is constrained to

8https://en.wikipedia.org/wiki/Rectifier (neural networks)
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TABLE I: Dataset Statistics

Computer Science Physics & Math Medicine

# docs 47K 127K 55K
# words 9M 22M 9M

size of hierarchy 31 28 17
height of hierarchy 3 5 3

either learn to increase the bin-weights with higher similarity

strength, or to keep it at the same level as the bin-weights with

lower similarity strength.

Since the parameters in the similarity aggregation model

are only associated with concepts as well as their similarity

strength, and that each labeled document-category pair will

correspond to a much larger number of concepts that we train

these parameters on, we can effectively tune these parameters

using much smaller number of labeled training examples. In

addition, because it trained on the concept level information

and not limited to knowledge about specific classes, it also nat-

urally extends to zero-shot setting and make predictions about

unseen classes labels based on their concept representation.

VI. EXPERIMENT

In this section, we evaluate the proposed methods with

extensive experiments across several technical domains and

demonstrate its efficiency and effectiveness.

A. Experiment settings

1) Computing environment: All the model training and

evaluation pipeline are conducted on a lab server with with 3

GeForce RTX 2080 GPU card and 2 6-core Intel(R) Core(TM)

i7-6800K CPU @ 3.40GHz CPU with 12GB memory. The

longest run took less than 1 hour.

2) Datasets: We have collected the following corpus, cov-

ering the domain of computer science, physics & mathematics

and medicine. The statistics of these datasets are summarized

in Table I, and the details are described below.

Computer Science The Computer Science corpus is obtained

by crawling paper abstracts from arXiv.org under the top

level category ”computer science”, with category hierarchy

obtained by aligning arXiv’s category label 9 with aminer.org’s

academic conference classification 10.

Physics & Mathematics The Physics & Mathematics corpus

is also obtained from arXiv.org, by crawling paper abstracts

under the top level category ”physics” and ”mathematics”, and

aligning them with the math subject headings11 and the physics

subject headings12.

Medicine The Medicine corpus is obtained by crawling ab-

stracts from Pubmed13, and retaining documents associated

with the top 3 level of the Medicine subject headings (Mesh)
14 under the top ”Organisms”, ”Analytical, Diagnostic and

9https://arxiv.org/corr/subjectclasses
10https://aminer.org/ranks/conf
11https://www.maa.org/press/periodicals/loci/joma/subject-taxonomy
12https://physh.aps.org/
13https://www.ncbi.nlm.nih.gov/pubmed/
14https://www.nlm.nih.gov/mesh/meshhome.html

Therapeutic Techniques, and Equipment” and ”Psychiatry and

Psychology”.

3) Compared methods: We compare our method with a

wide range of state-of-the-art approaches, as described below:

WeSHClass [21] is a state-of-the-art approach for weakly

supervised hierarchical classification. It first generates a set of

pseudo-documents for each class based on supervised signal

such as labeled documents to train the classification model,

then bootstrap on unlabeled data. We follow the author’s

implementation15 and use their recommended settings.

Dataless refers to the hierarchical dataless classifcation ap-

proach [10], which is a state-of-the-art distant supervision

based method in the hierarchical classification literature. It

works by first obtaining vector representations of documents

and class labels via its similarity with Wikipedia articles [43],

and associate documents with class labels based on their

vector representations. We have follow the original dataless

classification implementation from the authors16, and then

apply it with a bottom-up scheme.

Pretrain BERT is currently the state-of-the-art deep learning

approach for downstream NLP tasks, which leverage deep self-

attention network based architecture with weights pretrained

on large training corpus. Specifically, we add a classification

layer upon the sentence representation from the last trans-

former layer, similar to the setup for the BERT in GLUE

classification tasks [44], and fine-tune all the layers and report

the performance under the best hyper-parameter settings.

Hierarchical SVM [19] augments SVM classifier with hi-

erarchical information with a top-down paradigm [8], where

training documents for child nodes are included in their

ancestors.

UNEC [9] is a state-of-the-art unsupervised text categoriza-

tion method that extracts concepts by segmenting the corpus

into phrases and then learning a concept embedding graph,

where similarity to categories are propagated. We follow the

personalized page rank approach17 to propagate the similarity

on the concept graph due to its stability for larger number of

categories.

refers to our proposed approach. We utilize the concept mining

technique ECON [14] to obtain concepts for representing

documents and categories. The concept embedding vector

used for similarity computation is trained using the Skip-gram

objective as a 50 dimensional embedding vector. And in the

dynamic bin pooling stage, we divide the concept similarities

into K = 16 bins, 15 of which are equally spaced bins between

[−0.5, 1) with an addition bin counting for exact matches.

4) Evaluation methodology: In order to evaluate the above

methods in a weakly supervised setting, we randomly select 3

documents for each class label and combine them together as

the training set, similar to previous work [21], and use all the

remaining documents as the test set. Because the category label

from each class may contain noise, and that each document

15https://github.com/yumeng5/WeSHClass/
16https://cogcomp.org/page/download view/Descartes
17https://networkx.github.io/documentation/networkx-1.10/reference/

generated/networkx.algorithms.link analysis.pagerank alg.pagerank.html
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TABLE II: Overall performance comparison measured by prediction accuracy. The top-K prediction score among all possible

category nodes are recorded and compared against the ground truth according to both flat classification accuracy and tree based

accuracy

WeSHClass Pretrain BERT Hier-SVM Dataless UNEC
Dataset Accuracy Measure Flat Tree Flat Tree Flat Tree Flat Tree Flat Tree Flat Tree

Computer Science Top 1 0.3082 0.4453 0.4354 0.6207 0.1095 0.4156 0.2094 0.5453 0.1742 0.3502 0.7927 0.8763
Top 3 0.4984 0.6672 0.6665 0.8676 0.2894 0.4747 - - 0.3405 0.6633 0.9486 0.9613
top 5 0.6004 0.7870 0.7728 0.9305 0.3685 0.6758 - - 0.4358 0.8072 0.9803 0.9846

Physics & Mathematics Top 1 0.3551 0.7100 0.3292 0.7262 0.0508 0.0555 0.2403 0.6229 0.2507 0.4149 0.7223 0.9270
Top 3 0.6086 0.8692 0.6355 0.8450 0.0605 0.0605 - - 0.4939 0.7329 0.9450 0.9791
top 5 0.7292 0.9233 0.7985 0.9061 0.0608 0.0710 - - 0.6157 0.8444 0.9787 0.9871

Medicine Top 1 0.2478 0.7208 0.3550 0.7943 0.0000 0.5491 0.1641 0.6193 0.3275 0.5130 0.5296 0.8375
Top 3 0.5562 0.8563 0.6775 0.9394 0.0512 0.7500 - - 0.5932 0.8347 0.8399 0.9146
top 5 0.7249 0.9567 0.8145 0.9805 0.3661 0.7903 - - 0.7361 0.9256 0.9437 0.9864

Average (Top 1) - 0.3037 0.6254 0.3732 0.7137 0.0534 0.3401 0.2046 0.5958 0.2865 0.5331 0.6815 0.8803

Fig. 5: Detailed Performance evaluation divided by the subject categories. The flat classification accuracy for each sub-fields

are recorded top-K prediction score are displayed along specific vertical axis.

may be associated with multiple labels, we adopt the top k =
1, 3, 5 accuracy measure [45] to evaluate the performance of

each method.

In order to further incorporate tree structure into the eval-

uation and to encourage the predicting category nodes that

are closer to the ground truth category nodes are less ”wrong”

than predicting those that are farther away, we follow previous

hierarchical classification literature [46] and evaluate our ap-

proaches with the tree based accuracy. We calculate this using

the following procedures: we also return 1 if the prediction is

the “direct relative”, i.e. the sibling or the parent node of the

ground truth node, and 0 otherwise.

B. Overall Performance with Automatic Evaluation

Overall performance We present the results of the overall

performance evaluation in Table II. achieves the best perfor-

mance overall by effectively deriving concept representation

for documents and hierarchy labels, and comprehensively

utilizing all the concept similarity, and allowing them to flow

to downstream relevance computation. Pretrained BERT also

works relatively well, which confirms the validity of training

label, and the generalizability of pre-trained weights; WeSH-

Class is able to improve it by efficiently utilizing training

signals. Dataless is able to achieve coarse level categorization,

as seen by the tree accuracy, but in general suffers from bad

performance when the knowledge base coverage is low.

Performance by subject category We show in Figure 5 the

detailed performance for each categories. For better visual-

ization, categories are grouped according to the immediate

children categories for each subject field. From the results we

can see that although the performance of each method varies

by category depending on the difficulty, the relative trend stays

similar: almost always outperform other baseline approaches,

with its top 3 predictions covering the right class most of

the time, followed by other methods such as WeSHClass.

There are very few cases where doesn’t perform well, for

example, the category ”Logic” in the Physics and Mathematics

dataset, possibly due to less accurate concept representation

for that category, which is remediable in practice as we revise

the concept representations and associate more descriptive

concepts with that category.

Performance evaluation with varying numbers of training
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Concepts
discriminative indiscriminative

Computer Science
fpga (Hardware) framework

nash equilibria (Game Theory) goal
attacks (Security) technique

Physics Maths
entanglement (Quantum Physics) correspondance

Jupyter (Planet astrophysics) metric
complete graph (Combinatorics) series

Medicine
MRI (Diagnosis) levels

treatment (Therapeutics) ability
HIV (Viruses) regression

TABLE III: Example discriminative vs indiscriminative con-

cepts discovered in each dataset

Fig. 6: Ablation study of over the number of training examples.

The performance are measured by the relative (top-1) accuracy

of the original performance.

examples To further investigate how well our model utilizes

the training data, we perform an ablation study over the

number of training examples given to the model. The results

are shown in Figure 6, where we plot the number of training

examples along with the accuracy relative to the corresponding

model trained with the complete training set, as its relative
performance measure. From the results we can clearly see

that can efficiently fine-tune the model weights using very

little number of examples. With 10 training examples, it

already reaches a considerable level of accuracy; with 20-30

training examples, the model is able to almost recover original

performance trained with the full training set.

C. Qualitative Study

Discriminative & indiscriminative concepts If we treat each

concept as a document and perform classification, we can

obtain the direct relevance between concepts and categories.

Table III shows some of the most discriminative & indiscrim-

inative concepts. We can see that the concept representation

of categories is able to capture latent semantics and make

meaningful distinctions at the concept level.

Error case analysis with concept attention The relevance

between documents and categories can be viewed as a com-

bination of its individual concepts’ relevance, weighted by

the attention. Figure 5 utilizes this to perform error cases

analysis, where concept’s attention-weighted relevance to the

top-5 predicted category is visualized. From the figure we can

clearly see what concepts and how much they contribute to

(a) Database confused as Logic (Computer Scicence)

(b) Database confused as Hardware & Architecture

Fig. 7: Error case analysis with concept attention. The ma-

trix of attention weights distribution are illustrated colors of

various densities.

the final prediction. For example, in Figure 7a concepts such

as ”relational algebra” and ”decomposition trees” confuse the

model to associate the document with more theoretic subject

such as logic (coded ”cs.LO”) and formal languages (coded

”cs.FL”). At the meantime, other evidence such as ”tpc-h”

and ”probabilistic database” support the model to partially

correctly predict it as database. Similarly, in Figure 7b con-

cepts such as ”grid computing” and ”load balancing” strongly

support the model to predict the document as ”Hardware &

Architecture” (coded ”cs.AR”).

VII. CONCLUSION

In this work, we studied the problem of hierarchical organi-

zation of technical documents, where given a set of documents

and a set of category organized as a hierarchy, the goal is to

assign each document into the categories using very few train-

ing examples. We proposed a novel concept based framework

that learns to represent documents and hierarchy nodes using

the concepts mined from large amount of corpus, and obtain

their relevance by aggregating the interactions of individual

concepts. We extensively evaluated the proposed approach

with state of the art baseline methods, and demonstrated its

effectiveness in a wide range of technical domains. One of

several promising future directions is to jointly optimize the

generation of category hierarchy and hierarchical organization

of technical documents. Another direction is to leverage the

concept semantics to improve more general text mining and

downstream analytical tasks.

REFERENCES

[1] R. Johnson, A. Watkinson, and M. Mabe, “The stm report.”

387

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 19,2022 at 00:33:43 UTC from IEEE Xplore.  Restrictions apply. 



[2] G. Murphy, The big book of concepts. MIT press, 2004.
[3] K. Lamberts, Knowledge Concepts and Categories. Psychology Press,

2013.
[4] J. S. Wilkins, “What is systematics and what is taxonomy,” Google

Scholar, 2011.
[5] B. S. Wynar, A. G. Taylor, and J. Osborn, Introduction to cataloging

and classification. Libraries Unlimited Englewood, CO, 1992.
[6] S. Gopal and Y. Yang, “Recursive regularization for large-scale classifi-

cation with hierarchical and graphical dependencies,” in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2013, pp. 257–265.

[7] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classi-
fication,” in Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004, p. 27.

[8] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification
across different application domains,” Data Mining and Knowledge
Discovery, vol. 22, no. 1-2, pp. 31–72, 2011.

[9] K. Li, H. Zha, Y. Su, and X. Yan, “Unsupervised neural categorization
for scientific publications,” in Proceedings of the 2018 SIAM Interna-
tional Conference on Data Mining. SIAM, 2018, pp. 37–45.

[10] Y. Song and D. Roth, “On dataless hierarchical text classification.” in
AAAI, vol. 7, 2014.

[11] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in ACL 2009, Proceedings of
the 47th Annual Meeting of the Association for Computational Linguis-
tics and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, 2-7 August 2009, Singapore, 2009, pp. 1003–
1011.

[12] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and
knowledge discovery handbook. Springer, 2005, pp. 321–352.

[13] C. Carpineto and G. Romano, “A survey of automatic query expansion in
information retrieval,” ACM Computing Surveys (CSUR), vol. 44, no. 1,
p. 1, 2012.

[14] K. Li, H. Zha, Y. Su, and X. Yan, “Concept mining via embedding,” in
2018 IEEE International Conference on Data Mining (ICDM). IEEE,
2018, pp. 267–276.

[15] K. Li, Y. He, and K. Ganjam, “Discovering enterprise concepts using
spreadsheet tables,” in Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2017, pp. 1873–1882.

[16] D. Zhou, L. Xiao, and M. Wu, “Hierarchical classification via orthogonal
transfer,” 2011.

[17] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
1480–1489.

[18] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, “Improving
text classification by shrinkage in a hierarchy of classes.” in ICML,
vol. 98, 1998, pp. 359–367.

[19] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma, “Support
vector machines classification with a very large-scale taxonomy,” Acm
Sigkdd Explorations Newsletter, vol. 7, no. 1, pp. 36–43, 2005.

[20] S. Kiritchenko, S. Matwin, R. Nock, and A. F. Famili, “Learning and
evaluation in the presence of class hierarchies: Application to text cat-
egorization,” in Conference of the Canadian Society for Computational
Studies of Intelligence. Springer, 2006, pp. 395–406.

[21] Y. Meng, J. Shen, C. Zhang, and J. Han, “Weakly-supervised hierarchical
text classification,” arXiv preprint arXiv:1812.11270, 2018.

[22] C. Xiong and J. Callan, “Query expansion with freebase,” in Proceedings
of the 2015 International Conference on The Theory of Information
Retrieval. ACM, 2015, pp. 111–120.

[23] J. Dalton, L. Dietz, and J. Allan, “Entity query feature expansion using
knowledge base links,” in Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval.
ACM, 2014, pp. 365–374.

[24] C. Xiong and J. Callan, “Esdrank: Connecting query and documents
through external semi-structured data,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment. ACM, 2015, pp. 951–960.

[25] C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for
academic search via knowledge graph embedding,” in Proceedings of
the 26th international conference on world wide web. International
World Wide Web Conferences Steering Committee, 2017, pp. 1271–
1279.

[26] C. Xiong, J. Callan, and T.-Y. Liu, “Word-entity duet representations for
document ranking,” arXiv preprint arXiv:1706.06636, 2017.

[27] J. Shen, J. Xiao, X. He, J. Shang, S. Sinha, and J. Han, “Entity set
search of scientific literature: An unsupervised ranking approach,” arXiv
preprint arXiv:1804.10877, 2018.

[28] K. Li, P. Zhang, H. Liu, H. Zha, and X. Yan, “Poqaa: Text mining and
knowledge sharing for scientific publications,” 2018.

[29] Z. Zhang and V. Saligrama, “Learning joint feature adaptation for zero-
shot recognition,” arXiv preprint arXiv:1611.07593, 2016.

[30] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, “Evaluation of
output embeddings for fine-grained image classification,” in Computer
Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on.
IEEE, 2015, pp. 2927–2936.

[31] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classifi-
cation for zero-shot visual object categorization,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–465,
2014.

[32] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learn-
ing through cross-modal transfer,” in Advances in neural information
processing systems, 2013, pp. 935–943.

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[34] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[35] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” 2016.

[36] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[37] D. Carmel, M.-W. Chang, E. Gabrilovich, B.-J. P. Hsu, and K. Wang,
“Erd’14: entity recognition and disambiguation challenge,” in ACM
SIGIR Forum, vol. 48, no. 2. ACM, 2014, pp. 63–77.

[38] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han, “Auto-
mated phrase mining from massive text corpora,” IEEE Transactions
on Knowledge and Data Engineering, vol. 30, no. 10, pp. 1825–1837,
2018.

[39] T. D. Nguyen and M.-Y. Kan, “Keyphrase extraction in scientific
publications,” in International conference on Asian digital libraries.
Springer, 2007, pp. 317–326.

[40] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the bad
and the ugly,” arXiv preprint arXiv:1703.04394, 2017.

[41] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, “A deep relevance matching
model for ad-hoc retrieval,” in Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2016, pp. 55–64.

[42] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” in Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2013,
pp. 2333–2338.

[43] O. Egozi, S. Markovitch, and E. Gabrilovich, “Concept-based informa-
tion retrieval using explicit semantic analysis,” ACM Transactions on
Information Systems (TOIS), vol. 29, no. 2, p. 8, 2011.

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[45] M. Lapin, M. Hein, and B. Schiele, “Top-k multiclass svm,” in Advances
in Neural Information Processing Systems, 2015, pp. 325–333.

[46] A. Kosmopoulos, I. Partalas, E. Gaussier, G. Paliouras, and I. Androut-
sopoulos, “Evaluation measures for hierarchical classification: a unified
view and novel approaches,” Data Mining and Knowledge Discovery,
vol. 29, no. 3, pp. 820–865, 2015.

388

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 19,2022 at 00:33:43 UTC from IEEE Xplore.  Restrictions apply. 


