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Abstract—Biclustering is crucial in finding co-expressed genes
and their associated conditions in gene expression data. While
various biclustering algorithms (e.g., combinatorial, probabilistic
modelling, and matrix factorization) have been proposed and
constantly improved in the past decade, data noise and bicluster
overlaps make biclustering a still challenging task. It becomes
difficult to further improve biclustering performance, without
resorting to a new approach. Inspired by the recent progress
in unsupervised feature learning using deep neural networks
[1], in this work, we propose a novel model for biclustering,
named AutoDecoder (AD), by relating biclusters to features and
leveraging a neural network that is able to automatically learn
features from the input data. To suppress severe noise present in
gene expression data, we introduce a non-uniform signal recovery
mechanism: Instead of reconstructing the whole input data to
capture the bicluster patterns, AD weighs the zero and non-zero
parts of the input data differently and is more flexible in dealing
with different types of noise. AD is also properly regularized
to deal with bicluster overlaps. To the best of our knowledge,
this is the first biclustering algorithm that leverages neural
network techniques to recover overlapped biclusters hidden in
noisy gene expression data. We compared our approach with
four state-of-the-art biclustering algorithms on both synthetic
and real datasets. On three out of the four real datasets, AD
significantly outperforms the other approaches. On controlled
synthetic datasets, AD performs the best when noise level is
beyond 15%.

Source Code: http://grafia.cs.ucsbh.edu/autodecoder/
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I. INTRODUCTION

High-throughput gene expression profiling is readily ac-
cessible as the development of new technologies such as
the Affymetrix array plates and next-generation sequencing,
which necessiates advanced analysis tools to deal with massive
amounts of data. To analyze expression data, numerous com-
putational tools have been developed and steadily improved,
among which, biclustering becomes a dominant unsupervised
technique for gene expression analysis.

Biclustering refers to a process of grouping genes and
conditions simultaneously, producing a set of biclusters each
including a gene set and a condition set. Fig. 1 shows two
overlapped biclusters in a sample dataset. The gene expression
values “17, “-1” and “0” indicate upregulating, downregu-
lating, and unchanged, respectively. As shown in the figure,
several important characteristics exist in bicluster recognition:

(1) There are various kinds of biclusters: Genes (conditions)
can be positively and negatively correlated;
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Fig. 1. Biclusters in a Sample Dataset.

(2) Biclusters can overlap with each other in both gene
dimension and condition dimension since multiple path-
ways containing the same gene could be active under
different conditions;

It is not necessary that each gene (or condition) has to
participate in at least one bicluster (not necessarily full
coverage);

Bicluster detection shall be robust against heavy noise in
the input data.

3)

“4)

Due to these unique characteristics, many non-overlap, full-
coverage clustering methods are ineffective to recognize em-
bedded biclusters.

To tackle the aforementioned challenges, many biclustering
algorithms have been developed. We can roughly classify them
into three categories: combinatorial methods, e.g., CTWC [2],
OPSM [3], ISA [4], BIMAX [5], association analysis based
RAP [6], COALESCE [7], and QUBIC [8]; probabilistic and
generative approaches such as SAMBA [9], FABIA [10] and
many others [11], [12], [13]; matrix factorization methods like
spectral clustering [14], SSVD [15], and S4VD [16]. While
biclustering performance has been significantly improved in
the past decade, data noise and bicluster overlaps make the
problem still quite challenging. Our controlled experiments
will show that when noise level or bicluster overlap degree is
high, most of existing algorithms can only discover a small
percentage of biclusters. In this work, we are going to re-
examine the biclustering problem from a new perspective and
demonstrate the superior performance of our proposed model.

Inspired by the recent progress in unsupervised feature
learning through deep neural networks (i.e., deep learning) [1],
we relate the biclustering problem to feature learning where
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the expression pattern of the gene set under the condition set
in a bicluster can be regarded as a feature. Different variants
of deep neural networks, such as [17], [18], have recently been
tested to have tremendous power in extracting high-level fea-
tures in images. A deep neural network is composed of multi-
ple hidden layers, where a higher (lower) hidden layer extracts
features at a higher (lower) level. In our biclustering setting,
we relate the expression of one gene under all conditions
to the pixel values of one image. Our interested expression
pattern corresponds to the correlations among pixels, which are
essentially low-level features. Therefore, we save ourselves the
trouble of building a deep neural network; instead, we resort
to one neural network with a single hidden layer. Nevertheless,
we expect the unsupervised feature learning power of neural
networks will still boost the biclustering performance.
Particularly, we generalize sparse autoencoder (SAE), a
recently proposed neural network for unsupervised feature
learning [19], to mine biclusters. While SAE focuses on
reconstructing the whole data, we are less interested in data
reconstruction, than in extracting bicluster patterns. This mo-
tivates us to develop a model that can selectively reconstruct
the data by putting different penalties on reconstruction errors
in bicluster and non-bicluster areas in the input. This design
significantly improves the performance over SAE and makes
it possible to outperform the existing highly optimized biclus-
tering algorithms. We name this model AutoDecoder (AD).
Our method is also related to matrix factorization, but
significantly differs in the following aspects. First, matrix
factorization is a linear method while the neural network in
our model incorporates a non-linear activation layer. PCA or
SVD can be considered as a special case when the hidden layer
picks a linear activation function. Second, we do not search
for a low-dimensional approximation to the whole expression
data; instead, we allow partial false reconstructions based on
the location of noise, inside or outside biclusters. Third, a
sparse activation constraint is imposed on the hidden neurons,
which allows us to artificially control the number of genes to
be discovered in each bicluster. With these advantages, AD
is demonstrated to be more accuate than the leading matrix
factorization approaches such as SSVD [15] and S4VD [16].
To the best of our knowledge, this is the first work to
relate the biclustering problem to feature learning and apply
neural network approaches to biclustering gene expression
data. Our motivation is based on the conjecture that since
biclustering has been a long-standing topic, we might need
to tackle the problem from a new perspective that has nev-
er been explored by previous studies in detail. Our model
parameters are learnt using back propagation and a second
order optimization algorithm L-BFGS [21], which have been
popularly exploited in the deep learning literature. According
to the optimized model parameters, we then design a bicluster
embedding strategy to determine the genes and conditions in
a bicluster. Empirically, our biclustering method runs very fast
and outperforms the most up-to-date leading methods such as
QUBIC, COALESCE, FABIA, and S4VD.
The rest of the paper is organized as follows. We first
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Fig. 2. Graphical Representation of an Autoencoder.

briefly introduce sparse autoencoder, the predecessor of our
to-be-proposed model, and make a connection between neural
networks and biclustering in Section II. Our method, AutoDe-
coder, is presented in Section III, with discussions on noise
resistance analysis and bicluster patterns. Experimental results
on both real and synthetic datasets are given in Section V.
Related works are reviewed in Section VI. Finally, we discuss
future work and conclude in Section VII.

II. PRELIMINARIES

In this section, we build a connection between biclustering
and the sparse autoencoder (SAE) [19]. Then we discuss the
necessity to develop a generalized model AutoDecoder .

The graphical representation of an autoencoder with a single
hidden layer is shown in Fig. 2. We begin with clarifying the
notations in the context of biclusering.

(I) X: an M x N gene expression matrix, where M is
the number of conditions and N is the number of genes. x,(fl)
denotes the expression value of the i;, gene under the myp,
condition.

(2) W: a K x M matrix, the combination weights between
the input layer and the hidden layer. Each element wy ,,
represents the contribution of the expression under the my,
condition to bicluster k, and determines whether the myy,
condition is a member in bicluster &£ or not. The weights in
the first layer and those in the second layer are optionally tied
together by W1=W2T=W [1]. b1: a K x 1 vector; by: an M x 1
vector. by and by work as the bias terms at the input layer and
the hidden layer respectively.

(3) a”: a K x 1 vector representing activation values of
the 4y, gene in K hidden neurons, where each of the K
hidden neurons denotes a potential bicluster. Unless otherwise
stated, we employ the popular element-wise sigmoid activation
function, i.e., () = sigmoid(W =z + b;). Each component
a,(:) € (0,1) encodes how likely a gene belongs to bicluster
k. Let A = [aM,a® ... a® ... a™)] be the activation
matrix of all the genes.

(4) X: reconstructed gene expression data. X
B, 4@ 50 2] where 20 = WTa® + by,



Parameters in an autoencoder are learnt by minimizing the
reconstruction error between X and X.

For each hidden neuron, its activation rate is defined as pj, =
Zf\il ag) /N.Let a K x 1 vector p be our expected activation
rates of the K hidden neurons. The Kullback-Leibler (KL)
divergence between a Bernoulli random variable with mean pj
and a Bernoulli random variable with mean py, is added to the
objective function as an additional penalty term. Autoencoder
with this sparsity penalty term is called sparse autoencoder
(SAE) [19]. This term can be entitled with more meanings
in our setting. In the biclustering context, pN can be regarded
as the number of genes each bicluster actually contains after
learning, which is regularized to be close to pN we expect each
bicluster to contain. Usually, it is a desideratum to obtain a
bicluster which is neither too small nor too large. By using this
term, the number of genes in one bicluster can be controlled
artificially, which cannot be achieved by most of the existing
biclustering algorithms.

SAE learns the optimal model parameters by minimizing
the cost 2% X — X2 + 8K, KL(plle) + 21W]2.
where || - || is the Frobenius norm. SAE can work well
when the expression data are uniformly corrupted by the same
Gaussian noise (the same mean and variance). However, in
practice, Gaussian random noise inside and outside biclusters
could be different. In such situation, putting equal weights
on reconstructing the bicluster part and non-bicluster part of
the expression data will hurt bicluster finding. Therefore, we
develop a non-uniform weighting strategy to discriminatively
treat the background and the patterns. We call the new model,
AutoDecoder (AD), to emphasize that it decodes the biclusters
rather than encodes the entire expression data.

III. FRAMEWORK

In this section, we introduce our model AutoDecoder (AD),
followed by discussions on model solution and bicluster recog-
nition processes.

A. Optimization Formulation

AutoDecoder shares the same neural network structure as
shown in Fig. 2. However, it enhances sparse autoencoder
(SAE) to be more robust against noise and bicluster overlaps.
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The above objective function is a sum of four terms, where
5, v, and \ take non-negative values and control the trade-off

among different regularization terms. We now explain each of
the terms in details:

o Term (I) quantifies the average reconstruction error with
non-uniform weights. I is an indicator matrix with I,,, ; =
0 denoting zg,? = 0 and I,,; = 1 denoting ngl) # 0.
o controls the relative weight of reconstructing the zero
values and non-zero values in the input data. One can
check that when oo = 1, AD will put the same emphasis
on reconstructing the zero values and non-zero values
(uniform weighting). In this case, this term degenerates
to the reconstruction function in SAE. Conceptually, our
model is suitable for any data with background as zeros
and patterns as non-zeros. In this work, we focus on the
discretized matrix with elements {-1, 0, 1}, representing
down-regulating, unchanged, and up-regulating.

e Term (II) is the sparsity penalty term as in SAE. To
make the activation of each hidden neuron as sparse as
we desire, we constrain the KL-divergence between the
sparsity parameter pj and the activation rate pg:

N K Kk 1—pg
KL(pllpr) = Yoy pr log 25 + (1 — pi) log 15~

e In Term (III), S is an M x M symmetric matrix, where
S, ; is the absolute value of cosine similarity between
the i, condition (row) and j;, condition in matrix X. If
S; ; is large enough, two conditions ¢ and j should have
similar membership after optimization (|Wp, ;| ~ |W ;],
for any k). This term prevents dramatic membership
change of two similar conditions, which will enhance the
robustness against bicluster overlaps.

o Term (IV) is a regularizer named as weight decay (Chap-
ter 5 in [20]), where |[W||; is the L; norm of W, i.e.,
Wi = 215:1 Z%zl |Wi,m|- L1 norm regularization
tends to recover W with more sparsity by forcing the
insignificant values to zeros, which will make easier the
bicluster membership interpretation. We neglect the bias
terms b; and by because their inclusion will make the
results of W depend on the choice of origin (Section 1.1
and 5.5.1 in [20]).

B. Model Solution

The classic L-BFGS algorithm [21], [22] is applied to min-
imize the objective function H. L-BFGS needs the derivatives
of parameters. They are calculated by the classic backprop-
agation algorithm [23], where error messages are split at
each neuron and then propagated to the neurons at previous
layers. Given the current parameters (W/*M pEx1 pllx1y
the backpropagation procedure is performed as follows:

1. Perform a forward pass, i.e, compute the activation matrix
A of the hidden layer and the reconstructed matrix X of the
output layer.

2. Let 6 € RE*N and §? ¢ RM*N denote the error
terms of the hidden layer and the output layer, respectively.
Compute the error terms 62 and 6(Y) as follows:

M

Pt 1=pryi (n n
80 =13 Wimd P + B35+ m)}a; (1 —al™)
m=1




3. Compute the derivatives of TWH*M plx1 phx1,

N
oH 1 (1)
b1, N Z5k,n
n=1
N
OH _ 1 (2)
8b2m - N nglém,n
oH LS ) ) 52) ()
e = 0 2O+ 6 el”)

+ ('Y Lm,(:)le:(:) + /\) Sgn(Wk,m)

where L is an M x M symmetric matrix with L; ; = —S; ;

when ¢ 7& j, and Li,i = Zlgng,j;éi S@j. Lm7(:), Wk’(;) are
the myy, and ky, row of L and W respectively. sgn(-) is the
sign function of a real number and takes O as the subgradient
of the absolute value function y = |z| at x = 0.

Once the objective function H and its derivatives are
computed, the L-BFGS algorithm is applied to minimize #.
During optimization, instead of storing the dense Hessian
approximation matrix, the L-BFGS algorithm saves only a
few vectors to represent the approximation implicitly, which
significantly decreases the memory requirement. Since L-
BFGS is a classic and well-established algorithm [21], [22], we
omit the detailed analysis on its complexity and convergence
rate. In practice, we observe that the L-BFGS algorithm
converges very fast (within around 1000 iterations on all the
real datasets).

C. Bicluster Recognition

In order to detect the embedded biclusters, we need to
select both genes and conditions for each bicluster. The weight
| W m| determines the contribution of the 1, condition to the
kqp, bicluster. If |Wy, .| is large enough, the bicluster should
contain the my, condition. Similarly for selecting genes into
one bicluster, if the activation value ag) is high, the 4, gene
should belong to bicluster k.

The bicluster embedding process is summarized as follows:

For each hidden neuron £, i.e., each potential bicluster,

o Gene selection )
Pick any gene i corresponding to |a§;)\>5 0 €(0,1));
« Condition selection
Pick any condition m corresponding to |Wj, ,,|>€ (e €
(0,1)).
The thresholds ¢ and € can be tuned by users; their values are
fixed at 0.7 and 0.3 respectively for all of our experiments
unless otherwise stated. Intuitively, the same threshold should
work for both the gene and condition selection; however,
elements in weight matrix W are usually much smaller due
to the weight decay regularizer; we pick different thresholds
respectively for the gene and condition selection.

D. Robustness Against Noise

One of the major contributions we made is the non-uniform
weighting of the zero values and non-zero values in the
input data. As shown in Fig. 1, biclusters contain expression
values representing upregulating (41) or downregulating (—1).
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Therefore, there are two kinds of noise: Type A noise cor-
responding to the cases where nonzeros appear outside the
biclusters, and Type B noise corresponding to the cases where
zeros appear inside a bicluster. Accordingly, there are two
kinds of reconstruction errors: (1) false negative error when
41 or —1 is reconstructed as 0; (2) false positive error when
0 is reconstructed as +1 or —1. According to Term (I) in
‘H, penalty weight on the false positive error is controlled by
« while penalty weight on the false negative error is set to
1. When « is greater than 1, AD allows more false negative
errors in the reconstruction process. In this situation, AD tends
to exclude +1’s out from the final patterns than to include 0’s
into the patterns, which is robust against Type A noise. In
real gene expression datasets, we first run existing algorithms
to detect biclusters and estimate the dominant noise type. In
the case where Type A noise occurs more often than Type B
noise, o > 1 is recommended.

Here we verify our analysis on AD’s robustness against
noise. We generate a set of matrices of size 100 x 500. In
each matrix, 100 of the 500 columns are 1’s while the others
are 0’s. The area in the matrix containing 1’s is called pattern
area while the area containing 0’s is called background area.
We consider two simple, yet illustrative, scenarios. In the first
scenario, the elements in background area are flipped to 1’s
with probability p ranging from 0 to 1, whereas the pattern
area is kept clean (Type A noise). The flipping probability p
is named noise level. Oppositely, in the second scenario, the
elements in pattern area are flipped to 0’s with probability
p (noise level) ranging from 0 to 1 whereas the background
area is kept clean (Type B noise). At each noise level, we
generate 50 matrices and compute the average F score (See
Section V-A). We show the result of AD with a = 0.5,1,1.5
in Fig. 3. @ = 1 corresponds to the uniform weighting as in
SAE. Obviously, with an appropriate o our proposed model
is more robust than the classic SAE approach.

E. Robustness Against Bicluster Overlaps

Many of existing biclustering algorithms cannot detect
biclusters accurately when biclusters overlap at both gene and
condition dimensions. Term (III) in A is designed to deal
with such two-dimension overlaps. Our intuition is that if two
conditions (genes) have similar expression values, they should
have similar bicluster membership. That is, for a condition
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Fig. 4. Bicluster Patterns that Can Be Discovered by AD.

pair (i,7) and any bicluster k, (|Wj,| — |[W ;|)* should
be as small as possible if the gene expression values in
condition % is similar to that in condition j. Furthermore, if
one condition is similar to conditions in multiple bicluster-
s, it should belong to these biclusters simultaneously, thus
resulting in biclusters overlapped in conditions. Formally,

DO Si(g-ondmo")(\Wk,i — |Wk;])? should be minimized
where Si((;ond’tw") is the similarity between the expression

values under condition i and condition j. Similarly for a gene
pair (i, 7), Zszl D it S,f)gjene)(a,(cz) - a,(j))2 should be mini-
mized where Si(,gje"e) is the similarity between the expression
values of gene ¢ and gene j across all the conditions. Due to
our neural network structure a(? = sigmoid(Wz) + by), if
two genes have similar expression values (z(*) ~ z()), they
will naturally have similar activation values (a9 ~ a(9).
Therefore, in AD, only the condition term is included, and
G(condition) s replaced with S for simplicity.

IV. BICLUSTER PATTERNS

AutoDecoder can identify a broad range of bicluster patterns
in one trial. Fig. 4 shows five types of bicluster patterns that
can be found by AD.

(I-III) In these three patterns, conditions can be either
positively or negatively correlated under the gene set whereas
genes are positively correlated under the condition set. Our
AD model can directly discover such patterns. For some k,
the weights W, ,,, corresponding to the condition set will be
large in magnitude. The sign of the W}, ,,, will be the same as
that of the expressions under the my;, condition. The gene set
will have large activation values in the k;;, neuron.

(IV-V) In the fourth and fifth patterns, conditions can be
either positively or negatively correlated under the gene set
whereas genes can also be either positively or negatively
correlated under the condition set. For such patterns, our AD
model with a sigmoid hidden layer splits the bicluster into
two subclusters in which the two subsets of genes behave
oppositely. This is because column 1 (3) and column 2 (4)
cannot simultaneously have large activation values under the
same hidden neuron. Since both subclusters are associated with

711

Pattern: 10%10

1.5 1
H Q
% g
2 3 05
o ! o
Q
2 g
- E
gos 3 -05
S z
s <
0 -1
0 4 6 8 10 0 10 20 40 50
Row Index Column Index
Fig. 5. Bicluster Recognition with Pattern IV.

Background: 10%40

1.4 1
5 o]
(_:)’ S 05
m 05 o
® 2
£ T 0
< £
<
£ 05 2
(=] ®© -0.5
° 4 2
= <
% 8 10 o 10 20 30 40 50

Column Index

Fig. 6. Bicluster Recognition with Pattern V.

the same condition set in our embedding process, they can be
combined through postprocessing. Alternatively, if the sigmoid
activation function in the hidden layer is replaced by a tanh
activation function, these patterns can be directly discovered.

We are going to show that AD with a tanh activation layer
is able to discover Patterns IV and V. Recall that in Section II,
a® = sigmoid(Wz® + by). Now we replace sigmoid with
a tanh function, i.e., a® = tanh(Wz 4+ b)) € (=1,1). As
long as \a(i)| is large, we regard the i;, gene to be active.
In this case, the original definition of the sparsity parameter

e = SN, agf) /N is problematic; therefore, we re-define

=N, a,(;)g/N. One can also use j = S, |a,(;)|/N,
however, we favor the former due to its smoothness. All other
components in our original AD model are kept unchanged.
We generate two toy matrices of size 10 x 50, in which the
10 rows and the first 10 columns form a bicluster with Pattern
IV and Pattern V respectively. The number of biclusters K
is set at 1. Fig. 5 and 6 show the membership of rows and



columns for a bicluster with Pattern IV and V respectively.
The upper subfigure shows a simulated matrix with Pattern
IV or V. The lower left subfigure provides the learnt weights
of the 10 rows (Wi ,, : m = 1,...,10) while the lower right
subfigure illustrates the activation values of the 50 columns
(A1, :n=1,...,50). According to the bicluster recognition
process discussed in Section III-C, both the columns and rows
belonging to the bicluster can be successfully identified due
to a high magnitude in either weights or activation values.

V. EXPERIMENTS

In this section, we present empirical studies of AutoDecoder
(AD) on both real gene expression datasets and controlled
synthetic datasets, and compare AD with the state-of-the-art
biclustering algorithms in different categories: (1) Combina-
torial search, Qubic [8] and COALESCE[7], (2) Probabilistic
model, FABIA [10], and (3) Matrix factorization, S4VD [16].
These four algorithms represent the best results in their own
category after a decade of efforts in searching high-quality
biclusters in gene expression data. A detailed comparison of
many other existing algorithms with FABIA is available in
[10].

AD was implemented in MATLAB. All the experiments
were conducted on a 3.4GHZ, 16GB, Intel PC running Win-
dows 7.

A. Evaluation Measures

To assess various biclustering approaches, we use the av-
erage Relevance and Recovery scores, which were widely
adopted in biclustering literature, such as S4VD [16], QUBIC
[8], and BIMAX [5]. Overall, these two scores quantify the
similarity between the set of computed biclusters and the set
of true biclusters in the data.

Suppose M* is the set of true biclusters, and M is the set
of discovered biclusters each of which contains a gene set G
and a condition set C. We denote M* and M respectively
as M* = {M{,M5,....M}.} and M = {My, M, ..., M, }.
Let M} = G x C} and M; = G; x C;, where X is the
Cartesian product. The average Relevance and Recovery scores
are defined as follows:

1 & M; N M*
Relevance = — max ———
m ;jeu,z..,m*} M; U MJ*
1 M0 M,
Recovery = max ———J
SARRE ;j6{1,2,“,m}1v1; UM,

MmMj*

where is the well-known Jaccard coefficient [24].

M,UM?*
The average 'Relevance evaluates to what degree the dis-
covered biclusters represent the true biclusters, whereas the
average Recovery measures how well the true biclusters are
recovered by the current biclustering algorithm. We calculate
the harmonic mean of the Relevance and Recovery scores,
F = 2fcleficc. in order to jointly consider them. Note
that although there are various kinds of evaluation measures
available for general clustering problems, for biclustering,
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we select the most widely adopted Relevance and Recovery
measures in the literature.

The performance on all the simulated datasets is evaluated
using F' score computed as above. However, for real gene ex-
pression datasets, ground truth on the bicluster membership of
genes is usually not available, therefore we can only compute
the scores on the condition clusters each of which corresponds
to the condition set within a bicluster, i.e., M = C;} and
M; = C;. Meanwhile, the biological significance of the gene
set within a detected bicluster is evaluated. This strategy was
also adopted in our competing algorithms [10], [16].

B. Gene Expression Datasets

We experimented four real gene expression datasets widely
used in biclustering studies: breast cancer, multiple tissue
types, diffuse large-B-cell lymphoma, and lung cancer. For
the first three datasets, Hoshida et al. [25] clustered the
conditions using additional datasets and verified the clusters
by gene set enrichment analysis. FABIA [10] studied how well
biclustering algorithms can re-identify these clusters without
any additional information. Similarly, for the lung cancer
dataset, S4VD [16] and SSVD [15] first compared the ob-
tained condition clusters with ground truth and then evaluated
gene sets within biclusters by doing enrichment analysis. We
adopted a similar approach to evaluate the detected biclusters.
We briefly describe the datasets as follows:

(a) Breast cancer dataset [26]. As stated in [10], the sample
(i.e., condition) S54 is an outlier and was removed from the
original data. The dataset has 1,213 genes and 97 samples.

(b) Multiple tissue types dataset [27]. It contains 5,565
genes and 102 samples from diverse tissues and cell lines.
Hoshida et al. [25] discovered four sample clusters from this
dataset.

(c) Diffuse large-B-cell lymphoma (DLBCL) dataset [28].
This dataset was to predict the survival after chemotherapy,
and contains 3,795 genes and 58 samples. Four sample clusters
were discovered in [25].

(d) Lung cancer dataset [29]. It was previously analyzed
in [16], [15]. 12,625 genes under 56 samples were measured
using the Affymetrix 95av2 GeneChip.

1) Preprocessing: For those gene expression datasets
that are not valued among {-1,0,1}, we adopted
a discretization procedure similar to QUBIC [8].
Specifically, for each gene, sort its original expression

values on M conditions in the increasing order as
fOIIOWS:(:ETr(l)v'rW(2)a oy Tr(s—1)s Tr(s)s -+ s Lr(e—1)»
Tr(e)s Ta(et1)s s Ta(M—s4+1) Lr(M—s+2)5- -+ amﬂ(l\/l))T’

where 7(j) is the permutated jy, index, ¢ = [M/2]
and s — 1 = |Mgq|. Same as [8], we set g at 0.06. A
condition is considered as downregulating (—1) for a
gene if its expression value is less than x,) —d and as
upregulating (4-1) if it is greater than x.( 4 d, where
d = min{Zr(c) = Tr(s), Tr(M—s4+1) — Tr(c)}s Otherwise, the
gene is not activated (i.e., 0). The rationale to choose this
procedure is given in the Supplementary Data of [8]. The
choice is not exclusive; other discretization methods can



also be applied here. Since we find that FABIA, S4VD, and
COALESCE do not work better on preprocessed data, the
raw data are used as their input.

2) Parameter Setting: Biclustering algorithms generally in-
volve many parameters. We explored the number of biclusters
in all the methods except COALESCE from 5 to 8, slightly
larger than the true number in each dataset, as suggested in
FABIA. COALESCE can find any number of biclusters that
satisfy their criteria. In these popularly used real datasets, only
a small number of biclusters are present; nevertheless, we will
later synthesize datasets with more biclusters embedded for
comprehensive comparison. For each competing algorithm, we
tuned 2 to 4 important parameters according to their manual

to show their best performance on each dataset.

For AD, we observe that a fixed setting of parameters
generalize very well across different datasets. Particularly, we
set § = 2—%, v = %2, and A = %L Two important parameters
in AD are « and p. There are three typical values for a: 1.5,
0.5, and 1, which can deal with Type A noise, Type B noise,
and balanced Type A and B noise as discussed in Section III-D.
For p, it will be easier to set if one has any prior knowledge or
preference over the number of genes contained in biclusters. In
our experiments, we first run other algorithms to get a rough
idea about the noise type and gene cluster size. In the real gene
expression datasets we tested, Type A noise occurs more often
than Type B noise, and therefore, we set «v at 1.5. We randomly
draw each component of p from the interval [0.01,0.03], as
we expect a bicluster to contain 1% ~ 3% the total number
of genes.

3) Performance Comparisons: On all of these datasets,
AD completes biclustering within 2 minutes. The results are
summarized in Fig. 7. Columns “Rel.”, “Rec.”, and “F’
respectively provide the average Relevance score, average
Recovery score and their harmonic mean. The columns “#g”,
“#s”, and “#bc” give the average number of genes, conditions
in each bicluster, and the number of discovered biclusters
respectively. “TN” gives the true number of condition clusters
in each dataset. For the breast cancer dataset, FABIA performs
the best. For the remaining three datasets, AD significantly out-
performs other tuned biclustering algorithms. Understanding
the differences between the breast cancer dataset and other
datasets will be helpful to further improve the performance,
which we leave for future study. The superiority of AD over
SAE verifies the effectiveness of our proposed strategy in
dealing with real data. Moreover, AD can achieve better per-
formance once the parameters are tuned as in our competing
algorithms.

To evaluate the biological significance of the gene set in a
discovered bicluster, as in [8], [10], [16], we conducted gene
ontology (GO) enrichment analysis by computing the P-value
[8] of each biological category w.r.t the gene set. Particularly,
we caclulate the probability of having r (r > 0) genes of the
same biological category in a bicluster with n genes as:

() ()
()

Pr(r|N,m,n) = )
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Breast Cancer (TN: 3)
Methods Rel. | Rec. | F #g | #s | #bc
AD 044 | 042 | 043 | 15 | 23| 3
SAE 047 | 048 | 048 | 20 [ 30| 6
QUBIC 042 | 0.14 | 0.21 | 33 | 15 1
COALESCE | 0.34 | 052 | 041 | 79 | 36 | 11
FABIA 0.67 | 0.49 | 057 | 98 |31 | 4
S4VD 0.60 | 0.41 | 049 | 124 | 27 | 2
Multiple Tissue (TN: 4)
Methods Rel. | Rec. | F #g | #s | #bc
AD 0751 089 | 082|290 | 23| 5
SAE 0.63 | 0.70 | 0.66 | 270 | 34 | 5
QUBIC 0.58 | 0.67 | 0.63 | 103 | 18 | 5
COALESCE | 0.52 | 0.44 | 047 | 546 | 77 | 3
FABIA 077 | 077 | 077 | 98 | 31| 4
S4VD 0.19 | 0.07 | 0.10 | 245 | 8 1
DLBCL (TN: 4)
Methods Rel. | Rec. | F | #g | #s | #ibc
AD 048 | 0.53 | 050 | 103 | 17 | 5
SAE 048 | 0.48 | 048 | 118 | 24 | 5
QUBIC 034 | 035|034 | 174 | 7 6
COALESCE | 0.36 | 039 | 038 | 289 | 40 | 6
FABIA 0.55 | 018 | 027 | 99 | 17 1
S4VD 034 | 024 | 028 | 270 | 18 | 2
Lung Cancer (TN: 4)
Methods Rel. | Rec. | F | #g | #s | #ibc
AD 0.89 | 096 | 092 | 442 | 14| 5
SAE 0.60 | 0.76 | 0.67 | 476 | 15| 6
QUBIC 0.65 | 059 | 0.62 | 130 | 12 | 4
COALESCE | 0.29 | 048 | 0.36 | 167 | 14 | 89
FABIA 0.85 | 085 | 085|607 | 13| 4
S4VD 0.78 | 0.68 | 0.72 | 445 | 16 | 3
Fig. 7. Results on Real Datasets.

where N is the total number of genes in the input, and m is the
number of genes from that biological category and encoded
in the input. For each biological category with » > 0 in one
bicluster, we calculate its P-value w.r.t the gene set in the
bicluster using the probability defined by (1). We then use
the smallest P-value among all possible biological categories
as the P-value of the current bicluster. The smaller the P-
value, the more biologically significant the bicluster [8], [16],
[10]. Our model can generally discover biclusters with P-value
around or less than 104, much often less than 10710 on all the
datasets, which is comparable to the gene set analysis result
shown by FABIA [10] and S4VD [16]. Due to space limit, we
only show the summarized gene enrichment analysis results
on the last three datasets.

For Multiple Tissue dataset, Bicluster 1 is enriched with
genes related to the acyl-CoA metabolic process and the
thioester metabolic process (P-value 2.8 x 107%). Genes
related to collagen fibril organization enrich Bicluster 2 (P-
value 4.0 x 1076). The most significant GO terms in Bicluster
3 are related to immune response (P-value 1.2x 10720). Genes



in Bicluster 4 are related to positive regulation of superoxide
anion generation (P-value 6.9 x 1073). The most significant
GO terms in Bicluster 5 are related to G-protein coupled
receptor protein signaling pathway (P-value 6.9 x 10~7).

For DLBCL dataset, genes in Bicluster 1 are most related
to the regulation of transcription involved in G1/S phase of
mitotic cell cycle (P-value 1.1 x 10~%). Bicluster 2 is highly
related to defense response (P-value 6.3 x 10~1°). Bicluster 3
is enriched by genes from the regulation of peptide hormone
secretion. The most significant GO terms in Bicluster 5 are
highly related to the regulation of phospholipase activity (P-
value 5.3 x 10~%). Bicluster 4 is too small to allow for a
reliable biological interpretation.

In the discovered biclusters from Lung Cancer dataset,
Bicluster 1 is enriched with genes related to positive regulation
of kidney development (P-value 2.2 x 10~6). The most signifi-
cant GO terms in Bicluster 2 are highly related to cell division
(P-value 9.2 x 1072%). Bicluster 3 is related to interferon-
gamma-mediated signaling pathway (P-value 1.2 x 107!2).
Genes related to mitochondrial electron transport enrich Bi-
cluster 4 (P-value 3.9 x 10~8). The most significant biological
category in Bicluster 5 is related to cell adhesion (P-value
2.2 x 10710).

The evaluation of biclustering results illustrates that our
approach not only improves the performance on condition
clusters of these datasets, but also guarantees the biological
significance of the gene sets discovered in the biclusters.

4) Sensitivity Analysis: For most of the learning prob-
lems, model selection is a critical problem. The learning
performance might vary significantly under different parameter
settings. (3, v, and A\ are our model parameters that control

the trade-off among the regularization terms. We fix § = %,
v = %2 and A = %L on the previous experiments. In this

subsection, we study the impact of the parameters on the
performance of AD. Specifically, we fix other parameters as
before and let one of {3, 7, A} vary. As shown in Fig. 8, AD is
generally not very sensitive with respect to these parameters,
since high quality scores can be achieved under a large range
of the studied parameters.

C. Synthetic Datasets

Our algorithm is also tested on a set of controlled synthetic
datasets, which are generated as follows: Given the matrix
size 100 x 500 and the number of biclusters K, the number
of rows r in a bicluster is randomly selected from the interval
[10,30], and the number of columns ¢ is randomly selected
from [50,100]; then we randomly choose r rows from the
total 100 rows and ¢ columns from the total 500 columns as
the members of the bicluster. The matrix is initially filled with
“0”. Each bicluster is filled with “1”. In total, K biclusters are
generated. We then inject noise to each matrix by flipping the
value of elements. Specifically, we flip the 1’s inside biclusters
to be zeros with probability p and flip the 0’s outside biclusters
to be 1 or —1 respectively with probability £. The flipping
probability p is named noise level.

714

1 — 1
0.81 0.8

0.6

——K=6 TPR 0.6
-B-K=6 FPR
—#—K=10 TPR
—8-K=10 FPR
K=20 TPR
K=20 FPR

——K=6 TPR
—B—K=6 FPR
—#—K=10 TPR
—8-K=10 FPR
K=20 TPR
K=20 FPR

0.4 0.4

0.2

0.2

.5 0.6 0.7 0.8 0.9 Al 0.2 0.3 0.4
Threshold & on Gene Selection Threshold € on Condition Selection

Fig. 10. True Positive Rate (TPR) and False Positive Rate (FPR) of AD.

For each parameter setting K and p, 100 matrices are
generated and the average performance of each algorithm on
these 100 matrices is measured. We tune parameters in our
competing algorithms and show their best performance. For
AD, we still use a fixed parameter setting, where v = 1 and
Pk = 0.1,Vk.

Fig. 9 illustrates the performance of five algorithms. It
is observed that AD significantly outperforms all the other
algorithms when noise level is beyond 15%. When we increase
the number of biclusters, recognition becomes more and more
difficult because overlapping among biclusters also increases
significantly. For example, around 12% of the nonzeros belong
to two biclusters when K = 10, whereas the ratio increases to
22% when K = 20. In such situation, all the competitors
are only able to detect a much smaller percentage of true
biclusters, while AD still maintains a much higher F score.
Fig. 9 shows that AD covers the situation (high noise and high
overlaps) where the existing algorithms cannot work well.

We further show the change of the true positive rate (T-
PR) and false positive rate (FPR) of AD, when varying the
recognition thresholds d and € in Section III-C. We detail how
to caculate the TPR and FPR in our biclustering setting: We
first map each detected bicluster M; to a true bicluster M

o . . M;NM?
by maximizing the Jaccard coefficient, i.e, by mjaxm
We compute the TPR and FPR for each true bicluster, and
then obtain their average as the overall TPR and FPR of AD.
The above synthetic datasets with noise level at 0.2 are used
for study. Fig. 10 shows at 0.2 noise level, AD generally still
achieves a high TPR while keeping the FPR at a low level.
On the other hand, AD turns out to be not very sensitive to
the thresholds, since similar results can be achieved under a
large range of the thresholds.

VI. RELATED WORK

The first biclustering algorithm for gene expression analysis
was proposed in the year 2000 by Cheng and Church [30].
Since then, various combinatorial biclustering algorithms have
been developed, including the Coupled Two-Way Cluster-
ing [2], the Order-Preserving SubMatrix [3], the Iterative
Signature Algorithm [4], BIMAX developed by [5], QUBIC
[8], and COALESCE [7]. An association rule based method
RAP [6] also falls into this category. We include the recent
QUBIC and COALESCE for comparative studies in our ex-
periments. Computational complexity and performance have
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Fig. 9. Results on Synthetic Datasets

been steadily improved as the development of new algorithms.
Probabilistic and generative methods are also available for
biclustering gene expression data. The statistical-algorithmic
method for bicluster analysis (SAMBA [9]) is one of the ear-
liest probabilistic approaches to biclustering. Other approaches
include those proposed in [11], [12], [13]. FABIA [10] is
one of the recently developed probabilistic approaches, and
has demonstrated good performance on various real datasets.
Another category of biclustering algorithms is based on matrix
factorization. Spectral biclustering [14] applies singular vector
decomposition (SVD) to extracting expression patterns in a
matrix. It is indicated in [31] that SVD is capable of finding
biclusters. Lee er al. [15] developed a sparse SVD (SSVD)
algorithm. S4VD [16] improved SSVD [15] by incorporating
a stability selection technique. Recently, query-based bicluster-
ing algorithms [32], [33] are developed, which utilize a set of
seed genes provided by the user to prune the search space and
guide the biclustering algorithm. Hanczar et al. [34] focus
on the corrected measurement of the biclustering methods.
Despite of many existing studies on biclustering, we are
motivated to further improve the performance by approaching
the problem from a novel perspective.

Cross association [35], co-clustering [36], [37], [38], [39],
exclusive row biclustering [40], monochromatic biclustering
proposed in [41], block models [42], Boolean Matrix Factor-
ization [43], [44], and techniques on noisy information theo-
retic tiles detection [45] have been applied to group rows and
columns simultaneously in a matrix. Each of these methods
also falls into one of the three previously mentioned categories,
i.e., combinatorial approach, probabilistic modelling, or matrix
factorization. These existing models usually have one or more
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of the following characteristics: (1) Only 0-1 binary input can
be handled, which is impossible to detect negative correlations;
(2) Disjoint/non-overlapping or full-coverage biclusters are
generated, which is different from our emphasis introduced
in Section I; (3) They rely on stochastic approximation to do
inference due to lack of computationally efficient algorithms.

Our work is inspired by deep learning, i.e., unsupervised
feature learning using deep neural networks. Since the break-
through on training multi-layer neural networks was made by
Hinton and Salakhutdinov[1], numerous studies on learning
deep feature hierarchies have been conducted. Among them,
the most related one is sparse autoencoder proposed in [19].
Different from sparse autoencoder, our model is more resistant
against noise by differently reconstructing the bicluster and
background part of the input data. Besides, we also enhance
the ability of sparse autoencoder to deal with bicluster over-
laps. Through extensive experiments, we clearly demonstrate
that our neural network based approach can outperform the
existing biclustering algorithms, as well as the original sparse
autoencoder.

VII. CONCLUSION AND FUTURE WORK

We developed a novel biclustering approach, AutoDecoder,
to effectively discover biclusters in highly noisy expression
data. To the best of our knowledge, this is the first attempt
to relate the biclustering problem to unsupervised feature
learning methods and apply neural network approaches to
biclustering gene expression data. AutoDecoder associates the
activation of hidden neurons in a two-layer neural network
with the membership of genes and conditions in biclusters.
Compared with four state-of-the-art algorithms, AutoDecoder



performs better on both real and synthetic datasets, especially
when there are more overlapped biclusters and higher noise.
Our experimental results show that neural network is a promis-
ing approach to biclustering, a long-standing problem in gene
expression data analysis.

Apart from evaluation in terms of Relevance and Recovery
scores, and P-value, it will be interesting to verify whether
the biclusters recognized by AutoDecoder are more useful to
biologists in the future. Biclustering methods usually involve
many parameters. Another very useful future work will be to
test different parameter settings to fully explore their potential,
especially for AutoDecoder. Since biclustering has been a
long-standing topic, to further improve the performance, one
might need to explore new ideas different from existing
biclustering methodologies.
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