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Abstract— Physical events in the real world are known to
trigger reactions and then discussions in online social media.
Mining these reactions through online social sensors offers a fast
and low cost way to understand what is happening in the physical
world. In some cases, however, further study of the affected
population’s emotional state can improve this understanding. In
our study we analyzed how car commuters react on Twitter
while stuck in heavy traffic. We discovered that the online social
footprint does not necessarily follow a strict linear correlation
with the volume of a traffic jam. Through our analysis we offer
a potential explanation: people’s mood could be an additional
factor, apart from traffic severity itself, that leads in fluctuations
of the observed reaction in social media. This finding can be
important for social sensing applications where external factors,
like sentiment, also contribute on how humans react. Ignoring
the existence of such factors can lead in reduced quality and
accuracy of a regression analysis.

We propose a novel traffic-congestion estimation model that
utilizes the volume of messages and complaints in online social
media, based on when they happen. We show through experimen-
tal evaluation that the proposed model can estimate, with higher
accuracy, traffic jam severity and compare the results with several
baselines. The model achieves at least 38% improvement of
absolute error and more than 45% improvement of relative error,
when compared with a baseline that assumes linear correlation
between traffic and social volume. To support our findings we
combined data from the California Department of Transportation
(CALTRANS) and Twitter, for a total of 6 months, and focused
on a major traffic-heavy freeway in Los Angeles, California.

I. INTRODUCTION

Since the establishment of online social media, real life
events frequently trigger a social reaction on the web. This
has led to an era where Big Data and social media content
are strongly tied together [3]. Utilizing this vast, but publicly
available, amount of information to mine the correlation be-
tween physical events and postings on Twitter or Facebook has
proven to unveil hidden behavioral patterns or validate social
and psychological theories that once required extensive and
expensive surveys [21]. Additionally, the discovery of what
is happening in the real world is now feasible through purely
automated and algorithmic tools that only require access to the
Internet. However, due to the noisy nature of the data, its size,
and in many cases our own lack of better understanding, the
quality of any data mining or machine learning product will
just approximate the actual reality.

In the current study we focus in particular on the fact that
the sentimental state or mood of the analyzed population (in
the context of social sensors and event discovery) is seldom
attributed. Most algorithms measure the levels of a disaster
or the magnitude of an event as a simple function of the
corresponding social media discussion volume. This simple
function can be anything from a linear model to an exponential
distribution. But what gets usually ignored is the state of the
people that participate in the online discussion. For example,
an overly enthusiastic crowd might give a false idea of the size
of a political demonstration. A shy demographic might lead to
the perception that a specific music trend is not as popular
as it really is. People complaining about their jobs during a
very hot day might give the false sense they are generally
unhappy with their work environment. To avoid arriving to
such false conclusions based on online social signals, a better
understanding is needed of when people publish on social
media, what emotional state they are in, and which factors
might have led them there.

For our experiments, a specific user behavioral pattern was
examined: complaining in social media while stuck in traffic
jams. We combined two publicly available datasets, one for
traffic in California and one for Twitter content, to study how
car drivers react in social media while driving during increased
traffic congestion. Driving a car is already known to be a
stressful activity for many and things can be much worse
during traffic jams; frustration and boredom may lead drivers to
make irrational decisions or behave relatively abnormally due
to anger. Unfortunately, both behaviors can increase traffic, be
dangerous, and cause accidents. Social Media have already
been utilized for some time now to help with traffic de-
congestion. From specialized social media apps like Waze [26]
- a crowd-sourced community that monitors traffic, accidents
and other events in real time - to regular use of Twitter to
automatically or manually publish reports and alerts of the
street conditions [8]. The purpose of such information tools
is for drivers to inform themselves about traffic conditions
before getting in their car and make the necessary choices
to optimize their commuting route and time. In reality, a non
trivial amount of smartphone owners are observed to use their
handheld devices while driving, despite laws that render the
use of handheld devices by drivers for texting purposes illegal,
for obvious safety reasons [7].
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Apart from getting informed about traffic, users resort to
social media to also complain or update their Twitter/Facebook
status about being stuck in traffic. Most frequently, such status
updates include humorous remarks, swearing, frustration, and
the occasional warning about traffic congestion on specific
freeways (for others to see). Some Twitter users state humor-
ously that the best time to tweet is during rush hour traffic, or
that the 405 freeway is the only freeway where there’s enough
traffic to stop and tweet about the traffic (I-405 is a freeway in
Los Angeles, California). We use this signal as a social sensor
to model the circumstances and traffic conditions, and how the
drivers’ frustration may have an impact in the observed social
discussion volume.

Indeed, we discovered that social reaction fluctuates in a
non trivial manner. Different circumstances lead to different
volumes of complaining about the traffic severity instead of
following a strictly linear correlation. And while in many
cases correlation is not equal to causality, for this particular
experiment, the observed correlation between the real world
(traffic) and the social reaction (tweets) is actually a causal
relationship. The measured social reaction - tweets made by
drivers stuck in traffic - is strictly caused by traffic congestion
and the two variables are strictly dependent.

Finally, due to privacy reasons, the social data used in
this study got anonymized, especially since as stated above,
there are legal issues involved when tweeting while driving.
It should be noted here that the processed social postings
(publicly available tweets) are made by Twitter users with non
private accounts and are openly provided by Twitter through
the streaming API. However, to satisfy privacy and ethical
concerns, we are not publishing any names, usernames, or
content that could lead to the identification of specific users.

Contributions: The contributions of this work are listed
below:
• We propose a novel model for traffic-severity regression

based solely on the generated social volume. The pro-
posed model exploits the fact that people complain in
different levels throughout the day and can be used to
estimate traffic congestion in areas that lack proper
traffic monitoring resources.

• We offer a better understanding of human behavior when
it comes to drivers and their social media actions while
behind the wheel.

II. RELATED WORK

There are two research fields related to the subject of the
current work: 1) Studying and modeling of Traffic Congestion
and 2) Social sensors utilized on online social media to mine
information about physical events.

Traffic Analysis: There has been a lot of work and many
studies that focus in the general analysis of traffic. They deal
with questions like: How does traffic correlate with urbaniza-
tion and economic growth? What causes traffic when there is
no apparent reason? How does human behavior contribute in
traffic congestion?

Traffic is studied in a plethora of areas, and a few of them
are listed here: (a) Financial/Political: measuring urban growth

[5], (b) Psychological: measuring human behavior, DUIs etc
[22], [14], (c) Transportation: improving roadway conditions
[11], and (d) Mathematics/Statistics: modeling traffic using
statistical and mathematical frameworks [13].

Online Social Sensors: Social sensors and the discovery of
what is happening in the real world through social media is
a well studied area. Some representative works are listed here
(list is not exhaustive): Kryvasheyeu et al. [15] examine how
social sensors performed during hurricane Sandy (disaster con-
trol), Garcı́a-Herranz et al. [10] utilized the social friendship
network to quickly detect viral diseases, Zhaoet al. [28] use
social media content to discover physical events in real time
with a focus on sports events, and finally, Aggarwal et al. [2]
wrote a book chapter that describes the current developments
and challenges on social sensing in the context of data mining.

Studies that focus on social sensors specifically for the
improvement of traffic reporting are closer to the problem
tackled in our work [18], [12], [19], [23], [9], [20], [17]. In
an ongoing Microsoft Research project [17] researchers try to
combine the vast amount of historical data (both social and
traffic) to create a single model for traffic prediction. Both
works from Daly et al. and Ribeiro et al. [9], [20] mine the
social sphere to identify/explain traffic conditions and events.
In a publication by Pan et al. [18] a system is proposed for
monitoring traffic via mobile cell signals in order to identify
anomalies in the usual traffic flow. In a work authored by
Jingrui He et al. [12], a way to improve traffic prediction is
proposed, by combining social data from Twitter and historical
traffic data. The authors use a raw, but localized, tweet stream
to discover the users’ future destinations and combine it with
historical traffic data to produce a near-term (5 minutes to
1 hour) traffic prediction. The results show an improvement
of the mean absolute percentage rate by almost 2% from the
baseline model that only utilizes historical traffic data. Finally,
[19] appears to be the only work that studies the correlation
between social volume and traffic, at different hours of the day,
but does not offer a model that captures their observations.

Approaches like the ones above can be improved with
a more fine grained modeling that improves the correlation
between social volume and traffic congestion. We propose such
a model and show in Section V how this kind of traffic
prediction can be potentially improved. To the best of our
knowledge, all models in the mentioned publications ignore
latent social factors that could skew the social volume related
to traffic.

III. DATA

A. California Traffic Data
The first step towards a combined traffic and social analysis

is to obtain the necessary traffic congestion information and
establish the ground truth. We focused in the area of California
where the Department of Transportation (CALTRANS) col-
lects a wide range of traffic statistics and publishes them online
on the PEMS website [4]. CALTRANS maintains a plethora
of physical stations known as Vehicle Detector Stations (VDS)
on freeways across the state of California. Many sparsely
inhabited areas have no stations but most metropolitan areas
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like Los Angeles, San Francisco and San Diego are very well
monitored. Each VDS is located next to a freeway and reports
data like lane occupancy (if there are more than one lanes),
speed in each lane, and health status, with a frequency of 5
minutes. For the purposes of this analysis, we did not use the
raw data from the VDS stations since the PEMS website does
not provide a programmatic way to download data for many
stations. Instead, a very useful tool was utilized, provided by
PEMS, that computes and reports all traffic bottlenecks on a
daily basis.

Definition A traffic bottleneck occurs where the traffic de-
mand exceeds the available capacity of the roadway facility.

More specifically, a bottleneck between two station detectors
on the same freeway is observed under the following condi-
tions:
• There is a speed drop of at least 20 mph (32 Km/h).
• The overall speed is less than 40 mph (64 Km/h).
• The distance between the two stations (minimum extent

of a traffic jam) is at least 3 miles (4.8 km).
• The speed drop is observed for at least 70% of a 35

minute duration.
Note that these conditions have been chosen by CALTRANS.
It’s beyond the scope of this work to validate the above
numbers, conditions, and semantics of traffic congestion. Since
we are using the same definition across the whole analysis,
there is no bias that could skew our observations.

For each analyzed day, the full list of all reported bottlenecks
in California is obtained. Each bottleneck consists of a location
(VDS latitude and longitude), extent, duration, and delay.
Extent is the distance, in miles, of the reported traffic jam.
Delay is the total duration, in minutes, of the congestion.
Finally, delay is an artificial composite metric that describes
the total loss of time due to the bottleneck and is measured in
“vehicle-hours”:

TotalDelay = N× extent×duration×
(

1
speed

− 1
35

)
where N is the total number of cars affected by the conges-

tion and speed is the reported speed during a bottleneck. Note
that this is a simplified version of the total delay formula [16];
PEMS is actually using the non publicly available knowledge
of each lane’s occupancy and corresponding speeds to increase
the accuracy of the delay computation. In any case, due to
the nature of this formula to combine all the other metrics
(extent, speed, duration) as well as the total number of affected
drivers, it is commonly used by traffic analysts [6], [27] as
the indicator of how severe a traffic jam is. We will also be
referring to it as “traffic volume” or “bottleneck severity”.

One drawback of the PEMS-generated bottleneck report is
that it does not provide an accurate time for each bottleneck
(only the exact location). Instead, CALTRANS provides a low
granularity time attribute named “shift” which takes the values
AM, PM, and NOON. Therefore, bottlenecks can only be
studied on a shift basis, which for the purposes of our paper
is enough as shown later on. The AM shift includes the hours
between 5am and 10am, the NOON shift between 10am and

3pm, and the PM shift between 3pm and 8pm. Bottlenecks that
occur during the night or after hours are not reported and based
on the raw traffic data, traffic-jams during those hours are
extremely rare and would not be useful for a statistical analysis.
As we will show in Section IV, very low traffic periods may
occur even during the day, especially during weekend mornings
or national holidays.

Daily traffic data was collected for every day within the
period from May 2014 to October 2014. In order to match
traffic jams with a physical location, we use the corresponding
VDS station that observed each bottleneck, to identify the
county/city and more importantly the exact freeway the station
is measuring. Through the freeway name and number (e.g. US-
101) we can then process the social data and collect tweets that
correspond to a specific freeway’s traffic jam.

B. Social Data
We use Twitter as the social sensor platform to study traffic

jams. To obtain the necessary data we used the Streaming API
[25]. Another explored alternative was the use of the Search
API [24] which however does not provide any guarantees on
the distribution or the completeness of the search results and
therefore introduced statistical bias.

Using the streaming API, however, while guaranteeing com-
pleteness, has two drawbacks when compared to the search
API. First, one can only collect data starting from the time
the api calls begin and on (no historical data access). Second
and most important, the streaming API does not support geo-
enabled queries in a form that would be helpful to the current
analysis. One may query for all tweets from California OR
all tweets about traffic, but not their intersection. Alternatives
exist, like collecting all tweets from Los Angeles and sepa-
rately all tweets about traffic and then join them but due to
the rate-limiting imposed by Twitter it would not be feasible
to get all tweets from Los Angeles, given the large number
of Twitter users living there. Not having the ability to filter
tweets by location led us to collect any tweet that mentions
the keyword “traffic” and then proceed to filter down the
collected tweets using other heuristics. Specifically, only the
tweets that mention the freeway name we are studying are
kept, tweets from automated or traffic reporting accounts (like
police departments and radio stations) are removed, and finally,
human judges manually go through all remaining tweets and
keep only those that were made by people stuck in traffic. The
last step is consistently performed using basic rules like: tweet
text contains phrases with temporal hints like ”this traffic” or
”on my way”, tweet contains a picture of other cars in traffic
jam taken from inside a car, tweet contains a self-taken picture
of the driver (known as selfie).

The last filtering step to keep only tweets from people that
drive in traffic, is the only one that needs human assistance
to complete. It is still the most error prone step, since Twitter
users will not always be explicit about being behind the wheel
while tweeting. It’s important to note here that interacting
with a (smart)phone for purposes like texting, checking social
media, tweeting etc. while driving, even during stand-still
traffic, is considered illegal in California [7]. However, this
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does not discourage people from posting selfies (self-portrait
photographs) on Instagram, or tweeting about the annoying
traffic. Still, the fact that such actions are deemed illegal makes
it an interesting signal to study.

The final product of the social data collection is a set of
tweets (including all meta-data provided by Twitter), grouped
by date and shift (AM, NOON, PM), made by people while
stuck in traffic jams. In the rare cases where a user made more
than one tweets during a specific time period we counted only
one of them. We will be referring to the number of tweets as
“social volume” in this analysis.

In total, we gathered 3.2k tweets for the studied period of
6 months. Table II shows a more precise view of how these
tweets are distributed in an average week. While the numbers
might appear to be low, they are consistent in the duration of
these 6 months.

C. I-405 Freeway

Given the mentioned limitations posed by the collection of
social data, we focus on one major freeway, infamous for
its devastating traffic jams: San Diego Freeway I-405. I-405,
founded on 1964, has a length of 72 miles, passes through
the whole city of Los Angeles and is used by hundreds of
thousands drivers daily and there is always stand-still traffic
reported during rush hours. People even call it the “monster”
[1] as a humoristic acknowledgment of its size and severe
traffic. Traffic congestion on I-405 is not evenly distributed
but instead there are some specific points where traffic jams
mostly occur, which makes traffic at these points even more
severe during rush hour. We chose I-405 over US-101 (another
popular candidate) because it is limited in the area of Los
Angeles while US-101 covers the whole west coast of the
United States. However, we made sure that the traffic patterns
observed in I-405 are not unique. The traffic volume between
the two freeways was compared and we found that they follow
the exact same patterns for all days of the week and all shifts
of the day. Therefore, it is safe to say that the choice of I-405
does not introduce any freeway-specific traffic anomalies.

D. Tweets from Drivers

As explained in subsection III-B only tweets made by people
driving during traffic jams are counted, instead of every tweet
mentioning traffic and the freeway name. Utilizing the latter
as the social volume, would introduce cases where the raw
volume of noisy tweets is misleading for estimating the actual
traffic. There are two categories of “noisy” tweets. First, there
are tweets made by automated accounts (e.g. police dispatch,
highway patrol) or news agencies that report traffic on Twitter
[8]. Such tweets are published whenever traffic bottlenecks
occur and are usually agnostic of the exact severity of the
bottleneck or how much it really annoys the drivers. The
second category consists of tweets that are potentially about
traffic, posted by normal users, but not during their commute.
The problem posed by both categories is that those tweets
are not part of a direct social reaction to a traffic jam. Any
traffic jam estimation that utilizes those tweets would introduce

excessive noise and predictive bias. As an example of a case
where the raw volume of all tweets is misleading, on Friday
the 23rd of March 2014 a new carpool lane opened for freeway
I-405 which caused an abnormally high volume of discussion
among Twitter users. Most of this discussion included chatter
about the potential usefulness of this new lane or excitement
about it. On another similar case, a celebrity Twitter user made
a tweet about being stuck on traffic which triggered many
replies from fans and followers. In both cases, any conclusions
or traffic modeling based on the generated “social reaction”
will be very biased unless the data is correctly processed and
filtered.

In Section V we will compare the traffic regression error
between a model that uses tweets only from drivers and a
model that uses tweets from every normal Twitter user that
talks about traffic (automated accounts, news stations, and bots
are still removed).

IV. ANALYSIS

The purpose of the current analysis is to discover hidden
features that could yield better results for estimating the
magnitude of traffic congestion through social media. Our
basic assumption is that there are cases where the size of
an event may be different from how humans perceive it.
Perception is a complicated process and there are many factors
that play their role (e.g. mood, enthusiasm, weather, family
status, political beliefs, etc). We assume that complaining about
traffic falls under the umbrella of such events and study the
correlation between traffic and complains to show that indeed
there are other latent factors that contribute in non-trivial
fluctuations of the social reaction volume. Traffic jams are
measured with high accuracy by automated traffic monitoring
stations but the human perception of a bottleneck may vary
under different circumstances. To the best of our knowledge
this is the first work to study how fluctuations, potentially due
to psychological factors like mood or sentiment, can improve
the accuracy of a social sensor.

A. Basic Data Statistics
To begin the analysis, a better understanding of the two

datasets (traffic volume and social volume) is necessary. As
mentioned at the end of Subsection III-B our analysis is
focused on the California freeway I-405. Table I and Figure
1 show the traffic volume on I-405, by day of the week
and shift of the day. Only weekdays are shown since traffic
congestion during weekends is extremely low. Note again that
these numbers describe the total delay and not the amount
of cars traveling. Close to zero traffic volume in our context
means that there is no introduced delay since the cars in the
freeway are running at a speed close to the limit and not
that there is no traffic at all. Our proposed model works for
weekends as well but they are omitted from the current analysis
for simplicity. The reader can view the actual statistics for
weekends in tables I and II. These tables also provide the
standard deviation for each average.

The first observation based on the traffic volume data is a
clear traffic increase towards the end of the day (PM). Also,
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Day of the week AM mean AM stdev NOON mean NOON stdev PM mean PM stdev
Monday 16840.25 2927.09 3462.38 1271.59 21234.75 3234.97
Tuesday 18747.29 1907.23 5299.43 3212.63 27126.57 3705.78
Wednesday 19708.20 2741.86 5451.60 2473.53 34484.80 2725.18
Thursday 19167.00 3225.76 7585.11 1764.80 40134.67 4830.19
Friday 11997.67 2857.14 13364.78 2270.96 41370.00 3769.05
Saturday 200.25 50.77 7038.50 2332.95 9759.00 2767.73
Sunday 54.50 91.71 2893.25 1231.31 3020.25 907.63

TABLE I. TRAFFIC VOLUME (TOTAL DELAY) STATISTICS FOR I-405 (LOS ANGELES) BY DAY OF THE WEEK. TO MEASURE TRAFFIC VOLUME WE SUM
UP THE TOTAL DELAY OF EACH REPORTED BOTTLENECK ACROSS I-405 DURING EACH DAY’S SHIFT.

Fig. 1. Traffic averages for each day of the week and shift of the day. The
general trend for most of the weekdays (no weekend) is that PM traffic is
always worse than AM and NOON and AM is worse than NOON except on
Fridays.

for every weekday, the morning and noon traffic fluctuate far
less than the evening’s. The second observation is that evening
traffic gets worse towards the end of the week (Thursday and
Friday) as can be seen in Figure 1. There are many potential
explanations as of why these patterns occur. Arguably, the
reasons why most people drive during rush hours are work
related. Therefore, most patterns could be explained by how
people schedule their work hours. For example, it could be
that during Fridays people tend to leave earlier from their work
and cause a more concentrated traffic congestion around 4pm
and 5pm. Regardless of the reason, the fact remains that traffic
volume is higher on evenings and towards the end of the week,
and lower in the noons and mornings.

Similarly to the traffic volume, Table II and Figure 2 show
statistics about the social volume (number of tweets), again on
a day-of-the-week and shift-of-the-day basis.

The social volume statistics confirm our intuition that social
reaction is proportional to the traffic volume. Same as with
the traffic, during morning and noon hours social volume
is generally low across all days of the week but peaks up
during the evening hours. Also, the evening social volume
becomes higher towards the last days of the week (Thursday
and Friday).

B. Naive Approach: Linear Model
From the basic statistics we listed in Subsection IV-A it

would be reasonable to expect a linear relation between traffic
volume and social volume. It makes absolute sense that social

Fig. 2. Social volume averages by day of the week and shift of the day. The
general trend of social reaction appears to be in sync with the traffic volume
(if compared with the plots in Figure 1.

reaction becomes stronger when traffic jam conditions worsen.
Based on this hypothesis we can use linear (least squares)
regression to compute a linear model that can estimate traffic
based on the number of generated tweets (a typical example of
social sensors). Figure 3 depicts the linear model as a straight
line:

Tra f f icVolume = 1850.0×SocialVolume+5299.1

Note that the model’s coefficient of determination (R2)
is 0.6597 which can be considered high depending on the
application and desired level of regression precision. We list
in Section V the absolute and relative errors yielded by this
model when trying to estimate (predict) traffic.

We also tried to fit a second degree polynomial model to
the data. The result was a minor improvement of the R2 value
but unfortunately, due to physical limits, greater traffic volume
values that could validate a polynomial model do not exist.
Without loss of generality or introducing any bias for further
findings, we assume a linear fit for the purpose of this study.

While the linear model appears to be relatively accurate,
certain underlying patterns exist, which are ignored. Plotting
the same data from Figure 3 and grouping datapoints by
shift of the day in Figure 4, makes it clear that each group
extends in it’s own space in the graph. The conclusion from
this observation is that latent features might describe the
connection between traffic and social reaction in a better way.
This conclusion lead us to the hypothesis that a different model
that exploits such patterns could fit better than the naive linear
model.
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Day of the week AM mean AM stdev NOON mean NOON stdev PM mean PM stdev
Monday 5.00 1.51 2.88 1.64 7.12 2.47
Tuesday 5.71 2.36 4.71 3.64 8.14 2.41
Wednesday 6.60 2.51 3.40 2.30 12.40 2.19
Thursday 5.78 2.54 4.89 1.69 15.11 3.41
Friday 3.33 2.06 6.78 3.07 15.78 5.63
Saturday 1.25 1.04 4.88 2.36 5.38 4.24
Sunday 0.25 0.71 2.00 0.93 1.00 1.07

TABLE II. SOCIAL VOLUME (NUMBER OF TWEETS) STATISTICS. THESE ONLY INCLUDE TWEETS MADE BY DRIVERS STUCK ON I-405 TRAFFIC JAMS.

Fig. 3. Plot of traffic volume vs social volume. Each point describes the data
of a single day and shift. The x-axis measures the social volume (number
of tweets) and the y-axis measures the traffic volume as total delay (vehicle-
hours). We can fit a linear model with R2 value of .6597.

Fig. 4. Same datapoints from Figure 3 but grouped by shift of the day.
PM datapoints are mostly located on the upper-right, AM datapoints at the
center-left, and NOON datapoints at the lower-left.

C. Analysis by Time of the Day

To evaluate whether traffic is perceived differently under dif-
ferent circumstances we computed the ratio of Traffic Volume
over Social Volume for different times of the day (averaged
across all weekdays). We also tried to explore correlations with
the day of the week or the weather (temperature) but the time

Shift of the Day Social (SV) to Traffic (TV) Model R2

AM TV = 974.79 ·SV +12122 0.2761
NOON TV = 916.09 ·SV +2928.6 0.3990

PM TV = 1211.2 ·SV +17849 0.5941
TABLE III. SOCIAL-TO-TRAFFIC MODELING, BY SHIFT OF THE DAY

(SHIFT-BASED MODEL).

of the day proved to be by far the strongest feature. The ratio of
traffic volume over social volume measures how much drivers
complain per traffic delay and lower values indicate higher
complaining. Note that due to the limitation of the traffic
jam dataset, the analysis is performed on a shift basis (AM
shift: 5AM-10AM, NOON shift: 10AM-3PM, PM shift: 3PM-
8PM). A plot of these ratios can be found in Figure 5. On the
right-most column of the chart, the average ratios across all
weekdays are shown.

Fig. 5. Traffic volume / Social volume ratios. Lower values indicate
heavier social reaction. Morning social reaction to traffic appears to be the
lightest while noon reaction is the heaviest. Humans react to traffic congestion
differently based on the hour of the day. Even though NOON traffic is the
lightest (Figure 1) it causes the most severe social reaction.

Through these ratios the conclusion is made that a different
time of the day indeed results in different levels of traffic
reaction. In Figure 6 the datapoints are plotted based on the
shift (AM, NOON, and PM). We can then fit individual models
on each subset of the data. In Figure 6 the linear models are
plotted using least squares regression. As with the naive liner
model (subsection IV-B), we also tried to fit other models
(polynomial, exponential) but the linear yields the best results
even if not all individual R2 values are high enough. The
3 individual sub-models for each shift of the day and the
corresponding R2 values are listed in Table III.

Note that the individual R2 values for each shift are lower
than the R2 value of the linear model (which is 0.66). While
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Fig. 6. Shift-based linear model: A mixture of 3 different linear models, one
for each shift of the day (AM, NOON, PM).

this could be interpreted as a bad fit of the proposed model to
the data, we will show in our experimental analysis in Section
V how the proposed model compares to the naive linear model
and other baselines, when used in the context of estimating
traffic through social volume. Generally, R2 values are not
always the best indicator of well-fitness and in cases where
residuals form specific patterns, can be misleading. In any case,
the actual superiority of our model will be shown through its
regression accuracy.

V. TRAFFIC CONGESTION PREDICTION THROUGH SOCIAL
SENSORS

In this section we describe the exact details of the shift-based
model and provide comparisons between the proposed model,
the naive linear approach and some additional baselines. Note
that the term prediction is used in the context of statistical
regression and social sensors and not predicting future traffic.

A. Models
To measure the regression improvement of the proposed

shift-based model we introduce some baseline models. The
first baseline model is the naive linear model that was described
in Subsection IV-B (denoted as NAIVE). Since the shift-based
model is practically splitting the datapoints in three categories,
it should be compared with a 3-random-partitions model that
just picks 3 random partitions and fits a linear model on each
one (denoted as RAND3). Random partitioning makes sense
as a baseline because if the proposed shift-based model had
no statistical significance, then it should yield similar results
with the random partitioning.

Similarly to the shift-based model we also tried to fit the data
on a daily basis – one linear fit for each day, from Monday to
Friday (baseline denoted as DAY-BASED). Finally, two more
models are introduced that use the naive linear model (NAIVE)
to fit the datapoints of each day of the week (NAIVE-DAY)

Model Mean Error R2
Squared Absolute Relative

Naive Linear 5.5856 6062.0 0.6619 0.6596
Random 3 Partitions 5.8604 6209.8 0.6783 0.6611

Day-based 5.9272 6374.8 0.6658 0.6064
Naive by Day 5.406 5983.5 0.6607 0.6064
Naive by Shift 5.3690 5958.2 0.6584 0.4230

Shift-based 2.4245 3739.8 0.3598 0.4230
TABLE IV. ERROR COMPARISON FOR EACH REGRESSION MODEL.

SQUARED ERROR VALUES ARE ×107 .

Model Mean Error R2
Squared Absolute Relative

Naive Linear 8.5558 7378.3 0.7259 0.4948
Shift-based 3.5027 4527.4 0.3919 0.2571

TABLE V. ERROR COMPARISON FOR THE LINEAR AND SHIFT-BASED
MODEL WITH ALL TWEETS ABOUT TRAFFIC (NO DRIVER-BASED

FILTERING). WHEN TWEETS ARE NOT COMING DIRECTLY FROM DRIVERS
IN TRAFFIC JAM THE ERROR IS SIGNIFICANTLY HIGHER.

and the datapoints of each shift (NAIVE-SHIFT). The last two
models are fixed, not generated by training data, and don’t
require cross validation; we measure their fitness purely for
comparison purposes.

The shift-based model (denoted as SHIFT-BASED) is a
composite model that consists of three linear submodels, one
for each shift of the day (AM, NOON, PM). Since the number
of datapoints for each shift is equal, the overall precision of
the shift-based model can be defined as the average precision
of each submodel. For example, when measuring the squared
error of the model we need to compute the squared error for
each submodel and then get their average.

B. Model Comparison
To compare the predictive power of each model the fol-

lowing cross validation setup is used: Repeated random sub-
sampling validation. For each model, the data points are
randomly ordered and then the first 80% of the datapoints
is picked as training dataset and the rest 20% as validation
dataset. Using least square regression we fit a linear model to
the training data and then calculated the estimation error on
the validation data. This process is repeated 1000 times and
the average errors across all splittings are calculated. For the
relative errors, all cases where the expected traffic volume is
close to 0 were ignored, since it was introducing very large
values.

The average squared, absolute, and relative errors for each
model are listed in Table IV. For the sake of analysis-
completeness we also provide the coefficient of determination
in each case. The Shift-based model significantly outperforms
all the baseline models which proves that focusing on the
different shifts of the day has a statistically significant effect
while other approaches like day-based perform poorly. In terms
of absolute error, we observe a 38% improvement between
the Naive Linear approach and the shift-based model. In terms
of relative error we observe more than 45% improvement.

In Table V we list the average errors for the linear and
shift-based models without having applied the driver constraint
(tweets must originate by drivers while they are stuck in
traffic). Basic filtering that removes tweets from automated
accounts and bots is still applied but all the rest of the tweets
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from normal Twitter users remain. Using this raw dataset for
regression, results in an increased error for both linear and
shift-based models. The conclusion from this comparison is
that filtering of social posting based on users directly affected
by traffic congestion results in a better model and accuracy.

Note again, that even though the Coefficient of Determina-
tion is lower for the proposed model compared to the majority
of the baselines, the Shift-based model can achieve a very
significant improvement in traffic estimation which shows that
R2 is not a good measure of fitness when modeling this
particular traffic/social dataset.

VI. CONCLUSIONS AND FUTURE WORK

Social sensors offer a fast and low cost way to understand
the physical world through online content on social media.
Mining the correct correlation between the crowd’s reaction
and an event’s magnitude can be very critical and improves our
understanding of what is happening and how much it effects
our lives. Using the correlation between traffic congestion
and social reaction on Twitter as a showcase we show that
exploring dimensions that have different psychological links,
like the time of the day, can lead to a better grasp of the
traffic severity. We propose a novel model to estimate traffic
jams using social sensors, that utilizes three linear submodels,
one for each shift of the day (AM, NOON, PM) and social
posting from car drivers. We show that the proposed model
can be at least 38% better than the naive linear approach
and performed several comparisons with different baselines to
prove that these findings are statistically significant. Finally,
we offer the exact linear sub-models that describe the relation
between complaints and traffic, for different times of the day.

The next step for this study is to create an automated tweet
classifier that could identify tweets made by drivers during
traffic jams which for the current paper had to be done man-
ually by human evaluators. Another interesting direction is to
analyze additional signals that may alter the traffic complains
patterns, like the time of the day does. Namely, the temperature
in the area of the traffic bottleneck could have a negative effect
and make drivers complaint more intensely, although our initial
experiments have shown no strong correlation.
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Gonçalves, and G. L. Pappa. Traffic observatory: A system to detect
and locate traffic events and conditions using twitter. In Proceedings of
the 5th ACM SIGSPATIAL International Workshop on Location-Based
Social Networks, LBSN ’12, pages 5–11, New York, NY, USA, 2012.
ACM.

[21] R. Singleton, B. Straits, and M. Straits. Approaches to social research.
Oxford University Press, 1993.

[22] H. Summala. Accident risk and driver behaviour. Safety Science, 22(1-
3):103 – 117, 1996. Risk Homeostasis and Risk Assessment.



9

[23] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson. Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems, SenSys
’09, pages 85–98, New York, NY, USA, 2009. ACM.

[24] Twitter search api. https://dev.twitter.com/docs/using-search.
[25] Twitter streaming api. https://dev.twitter.com/docs/streaming-apis/

streams/public.
[26] Waze: Community-based traffic app. https://www.waze.com.
[27] C. Winston. On the performance of the u.s. transportation system:

Caution ahead. Journal of Economic Literature, 51(3):773–824, 2013.
[28] S. Zhao, L. Zhong, J. Wickramasuriya, and V. Vasudevan. Human as

real-time sensors of social and physical events: A case study of twitter
and sports games. CoRR, abs/1106.4300, 2011.


