SEARCHING SUBSTRUCTURES WITH SUPERIMPOSED DISTANCE

Xifeng Yan, Feida Zhu Jiawei Han, Philip S. Yu

University of Illinois at Urbana-Champaign IBM T. J Watson Research Center

GRAPHS ARE EVERYWHERE

GRAPH DATA

- Chem-informatics: chemical compounds
- Bioinformatics: protein structures, protein interaction networks, biological pathways, metabolic networks, ...
- Computer Vision: object models
- Software: program dependency graph, flow graph,...
- Social network
- Workflow

GRAPH INFORMATION SYSTEM

Applications

- Characterize graph objects
- Build indices for graph search
- Extract biologically conserved modules
- Discriminate drug complexes
- Classify protein structures
- Cluster gene networks
- Detect anomaly in program flows
- Graph registration system

Graph Mining	Graph Search
finding hidden patterns	processing graph queries

GRAPH SEARCH

VARIETY OF GRAPH SEARCH

- Full structure search
- Substructure search [Shasha et al. PODS'02, Yan et al. SIGMOD'04]
- Approximate substructure search [Yan et al. SIGMOD'05]
- Substructure search with constraints
 - Superimposed distance [this work, ICDE'06]
 - Other varieties

SUPERIMPOSED DISTANCE

Same Topological Structure But different Labels

 $MD = \sum_{v'=f(v)} D(l(v), l'(v')) + \sum_{e'=f(e)} D(l(e), l'(e'))$

SUPERIMPOSED DISTANCE

MINIMUM SUPERIMPOSED DISTANCE

Given two graphs, Q and G, let M be the set of subgraphs in G that are isomorphic to Q. The minimum superimposed distance between Q and G is the minimum distance between Q and Q' in M.

$$d(Q,G) = \min_{Q' \in M} d(Q,Q'),$$

where d(Q, Q') is a distance function of two isomorphic graphs Q and Q'.

SUBSTRUCTURE SEARCH WITH SUPERIMPOSED DISTANCE (SSSD)

Given a set of graphs $D=\{G_1, G_2, ..., G_n\}$ and a query graph Q, SSSD is to find all G_i in D such that

 $d(Q,G_i) \le \sigma$

INDEXING GRAPHS

□ Indexing is crucial

FEATURE-BASED INDEX

Feature:

- 1. Paths (Shasha et al. PODS'02)
- 2. Discriminative Frequent Substructures (Yan et al. SIGMOD'04)

STRUCTURAL EQUIVALENCE CLASS

Graphs G and G' belong to the same equivalence class if and only if G is isomorphic to G'. The structural equivalence class of G is written [G]

THE INDEX STRUCTURE

INDEX CONSTRUCTION

PARTITION-BASED SEARCH

We partition a query graph Q into nonoverlapping indexed features f₁, f₂, ..., f_m, and use them to do pruning. If the distance function satisfies the following inequality,

$$\sum_{i=1}^m d(f_i, G) \le d(Q, G)$$

we can get the lower bound of the superimposed distance between Q and G by adding up the superimposed distance between f_i and G.

MULTIPLE PARTITIONS

Pentagon + Path

OVERLAPPING RELATION GRAPH

Query graph Q

node: feature edge: overlapping node weight: minimum distance between f_i and G, $d(f_i, G)$

SEARCH OPTIMIZATION

Given a graph Q=(V, E), a partition of G is a set of subgraphs $\{f_1, f_2, ..., f_m\}$ such that

$$V(f_i) \subseteq V \text{ and } V(f_i) \cap V(f_j) = \emptyset$$

for any i!=j.

GIVEN A GRAPH G, OPTIMIZE $P_{opt(Q,G)} = \arg \max_{P} \sum_{i=1}^{m} d(f_i, G)$

FROM ONE TO MULTIPLE

GIVEN A GRAPH G, OPTIMIZE

$$P_{opt(Q,G)} = \arg \max_{P} \sum_{i=1}^{m} d(f_i, G)$$

For one graph G, select one partition

For another graph G', select another partition?

GIVEN A SET OF GRAPHS, OPTIMIZE

$$P_{opt(Q,G)} = \arg \max_{P} \sum_{\substack{j=1 \ m=1}}^{n} \sum_{\substack{i=1 \ m=1}}^{m} d(f_i, G_j)$$
$$= \arg \max_{P} \sum_{\substack{i=1 \ m=1}}^{m} \sum_{\substack{j=1 \ m=1}}^{n} d(f_i, G_j)$$

ACROSS MULTIPLE GRAPHS

node weight is redefined

Using average minimum distance between a feature f and the graphs G_i in the database, written as

$$w(f) = \frac{\sum_{i=1}^{n} d(f, G_i)}{n}$$

MAXIMUM WEIGHTED INDEPENDENT SET

[THEOREM] Index-based Partition Optimization is NP-hard.

GREEDY SOLUTION

 $w4 \ge w6 \ge w5 \ge w1 \ge w7 \ge w2 \ge w3$

Experiment Dataset

- The real dataset is from an AIDS antiviral screen database containing the structures of chemical compounds.
- This dataset is available on the website of the Developmental Therapeutics Program (NCI/NIH).
- In this dataset, thousands of compounds have been checked for evidence of anti-HIV activity. The dataset has around 44,000 structures.

Experiment Setting

- We build topoPrune and PIS based on the gIndex (SIGMOD'04). gIndex first mines frequent structures and then retains discriminative ones as indexing features.
- topoPrune and PIS are implemented in C++ with standard template library.
- All of the experiments are done on a 2.5GHZ, 1GB memory, Intel Xeon PC running Fedora 2.0.

Pruning Efficiency

Efficiency vs. Fragment Size

- A substructure search problem with additional similarity requirements
- A problem as a component in our graph information system
- Approach: feature-based index and partition-based search
- HIGHLIGHT: select "discriminative" features in a query space for search efficiency

THANK YOU