Searching substructures WITH SUPERIMPOSED DISTANCE

Xifeng Yan, Feida Zhu
Jiawei Han, Philip S. Yu
University of Illinois at Urbana-Champaign
I BM T. J Watson Research Center

GRAPHS ARE EVERYWHERE

GRAPH DATA

\square Chem-informatics: chemical compounds

- Bioinformatics: protein structures, protein interaction networks, biological pathways, metabolic networks, ...
- Computer Vision: object models
- Software: program dependency graph, flow graph,...
- Social network
- Workflow

GRAPH I NFORMATI ON SYSTEM

Applications

- Characterize graph objects
- Build indices for graph search
- Extract biologically conserved modules
- Discriminate drug complexes
- Classify protein structures
- Cluster gene networks
- Detect anomaly in program flows
- Graph registration system

Graph Mining

finding hidden patterns

Graph Search
processing graph queries

GRAPH SEARCH

- Chemical Compounds

(a) 1H-Indene
(b) Omephine
(c) Digitoxigenin
- Query Graph

VARI ETY OF GRAPH SEARCH

- Full structure search
- Substructure search [Shasha et al. PODS'02, Yan et al. SIGMOD'04]
- Approximate substructure search [Yan et al. SIGMOD'05]
- Substructure search with constraints
- Superimposed distance [this work, ICDE'06]
- Other varieties

SUPERI MPOSED DISTANCE

Same Topological Structure
But different Labels

$$
\mathbf{M D}=\sum_{v^{\prime}=f(v)} \mathbf{D}\left(l(v), l^{\prime}\left(v^{\prime}\right)\right)+\sum_{e^{\prime}=f(e)} \mathbf{D}\left(l(e), l^{\prime}\left(e^{\prime}\right)\right)
$$

SUPERIMPOSED DISTANCE

- Chemical Compounds

- Query Graph

MI NI MUM SUPERI MPOSED DI STANCE

Given two graphs, Q and G , let M be the set of subgraphs in G that are isomorphic to Q . The minimum superimposed distance between Q and G is the minimum distance between Q and Q^{\prime} in M.

$$
d(Q, G)=\min _{Q^{\prime} \in M} d\left(Q, Q^{\prime}\right),
$$

where $d\left(Q, Q^{\prime}\right)$ is a distance function of two isomorphic graphs Q and Q^{\prime}.

SUBSTRUCTURE SEARCH WITH SUPERI MPOSED DI STANCE (SSSD)

Given a set of graphs $D=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ and a query graph Q,
SSSD is to find all G_{i} in D such that

$$
d\left(Q, G_{i}\right) \leq \sigma
$$

I NDEXI NG GRAPHS

\square Indexing is crucial

without index

10,000 checkings
10,000 graphs

100 graphs

10,000 graphs

FEATURE-BASED INDEX

Feature:

1. Paths (Shasha et al. PODS'02)
2. Discriminative Frequent Substructures
(Yan et al. SIGMOD'04)

STRUCTURAL EQUIVALENCE CLASS

\square Graphs G and G^{\prime} belong to the same equivalence class if and only if G is isomorphic to G^{\prime}. The structural equivalence class of G is written [G]

THE I NDEX STRUCTURE

Hash Table
Trie, R-tree or
Metric-based Index

I NDEX CONSTRUCTI ON

PARTITI ON-BASED SEARCH

\square We partition a query graph Q into nonoverlapping indexed features f_{1}, f_{2}, \ldots, f_{m}, and use them to do pruning. If the distance function satisfies the following inequality,

$$
\sum_{i=1}^{m} d\left(f_{i}, G\right) \leq d(Q, G)
$$

we can get the lower bound of the superimposed distance between Q and G by adding up the superimposed distance between f_{i} and G.

MULTI PLE PARTITIONS

Target graph G

Query graph Q

Hexagon + Path

Partition II

Pentagon + Path

Partition I

OVERLAPPI NG RELATI ON GRAPH

Query graph Q

node: feature
edge: overlapping
node weight: minimum distance between f_{i} and G, $d\left(f_{i}, G\right)$

SEARCH OPTI MI ZATI ON

Given a graph $\mathrm{Q}=(\mathrm{V}, \mathrm{E})$, a partition of G is a set of subgraphs $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ such that

$$
V\left(f_{i}\right) \subseteq V \text { and } V\left(f_{i}\right) \cap V\left(f_{j}\right)=\emptyset
$$

for any $\mathrm{i}!=\mathrm{j}$.
GIVEN A GRAPH G, OPTI MI ZE

$$
P_{o p t}(Q, G)=\arg \max _{P} \sum_{i=1}^{m} d\left(f_{i}, G\right)
$$

FROM ONE TO MULTI PLE

GI VEN A GRAPH G, OPTI MI ZE

$$
P_{o p t}(Q, G)=\arg \max _{P} \sum_{i=1}^{m} d\left(f_{i}, G\right)
$$

For one graph \mathbf{G}, select one partition
For another graph \mathbf{G}^{\prime}, select another partition?
GI VEN A SET OF GRAPHS , OPTI MI ZE

$$
\begin{aligned}
P_{o p t}(Q, G) & =\arg \max _{P} \sum_{j=1}^{n} \sum_{i=1}^{m} d\left(f_{i}, G_{j}\right) \\
& =\arg \max _{P} \sum_{i=1}^{m} \sum_{j=1}^{n} d\left(f_{i}, G_{j}\right)
\end{aligned}
$$

ACROSS MULTI PLE GRAPHS

node weight is redefined

Using average minimum distance between a feature f and the graphs G_{i} in the database, written as

$$
w(f)=\frac{\sum_{i=1}^{n} d\left(f, G_{i}\right)}{n}
$$

MAXI MUM WEI GHTED I NDEPENDENT SET

[THEOREM]
I ndex-based Partition Optimization is NP-hard.

GREEDY SOLUTI ON

$$
w 4 \geq w 6 \geq w 5 \geq w 1 \geq w 7 \geq w 2 \geq w 3
$$

Experiment Dataset

\square The real dataset is from an AIDS antiviral screen database containing the structures of chemical compounds.
\square This dataset is available on the website of the Developmental Therapeutics Program (NCI/NIH).
\square In this dataset, thousands of compounds have been checked for evidence of anti-HIV activity. The dataset has around 44,000 structures.

Experiment Setting

\square We build topoPrune and PIS based on the gIndex (SIGMOD’04). gIndex first mines frequent structures and then retains discriminative ones as indexing features.

- topoPrune and PIS are implemented in C++ with standard template library.
\square All of the experiments are done on a 2.5GHZ, 1GB memory, Intel Xeon PC running Fedora 2.0.

Pruning Efficiency

Efficiency vs. Fragment Size

CONCLUSI ONS

\square A substructure search problem with additional similarity requirements
\square A problem as a component in our graph information system
\square Approach: feature-based index and partition-based search

- HIGHLIGHT: select "discriminative" features in a query space for search efficiency

Thank You

(c) X. Yan 2006

