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Abstract

Querying Large-scale Knowledge Graphs

Shengqi Yang

With the rise of the Internet, social computing and numerous mobile applica-

tions have brought about a large amount of unstructured entity data, including

places, events, and things. On one hand, the entity data, populated by a vari-

ety of data sources, is growing at an ever increasing speed. On the other hand,

the service suppliers expect to render the entities pertinent to the things present

in the information need of the users, rather than the data that merely matches

the request strings. To meet these challenges, knowledge graph has been widely

adopted in practice and become a fundamental building block for many commer-

cial products from better recommendation systems to enhanced search engines.

As the knowledge graph subsumes humongous valuable content, there is an

emerging need for the querying techniques that can extract and deliver the in-

formation from the data to the users. However, querying the real-life knowledge

graph is not a trivial task. It has to deal with complex, unstructured graph data

that can’t fit a specific data model. Although there are many research efforts that

aim in this direction, they typically have not addressed the real challenges: (1)

In contrast to the complex and tedious graph data, the query from the end users

x



tends to be ambiguous and underspecified. (2) It requires semantic query under-

standing since the rigid string matching is often not desirable. (3) The querying

system must scale to large heterogeneous graph data.

In this thesis, we propose to tackle the challenges by primarily introducing

a novel framework, Schemaless Graph Querying (SLQ), which supplies a flexible

mechanism to querying large knowledge graphs. In essence, the query engine is

built upon a set of transformation functions that automatically map keywords and

linkages from a query to their matches in a graph. The end users are therefore

not required to describe their queries precisely as that by most querying systems.

To return the most relevant results in a fast way, SLQ also incorporates a learned

ranking model that shall not rely on manually labeled data especially when the

training data is difficult to obtain. This in turn gives rise to efficient top-K search

techniques.

SLQ is designed inherently to better understand the user query intent. Rather

than merely performing syntax based search, SLQ introduces the ontology base

matching technique that can as well produce semantically related results. By

leveraging an ontology index, an effective filtering mechanism is proposed to fast

extract the top-K results based on the similarity quality. Moreover, a result

summarization technique is invented to help the user inspect the excessive number

xi



of results: The users can enlarge and get detailed information on a summarized

result view based on their search intents.

Another key problem in the context of graph querying is that this process

needs to run under severe time constraints. The efficient search techniques are

introduced from both the algorithm and the system aspects. In terms of the

algorithm, we propose STAR, a framework for fast top-K searching for star queries.

The technique is further extended to tackle general graph queries. From the

system aspect, we investigate the distributed processing of large graphs in a cluster

and propose the graph partitioning approaches. The technique is able to adapt in

real time to changes in the query workload.

In summary, my research is introduced based on the hypotheses that as the

knowledge graph becomes more available, there is a great chance of serving user

queries in a better way. My contributions devote to realize this vision mainly for

the applications of graph querying.

Professor Xifeng Yan

Dissertation Committee Chair
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Chapter 1

Introduction

Graph querying is widely adopted to retrieve information from emerging graph

databases, e.g., knowledge graphs, information and social networks. Given a

query, it is to find reasonable top answers (i.e., matches for the query) from

a data graph. Searching real-life graphs, nevertheless, is not an easy task es-

pecially for non-professional users. (1) Either no standard schema is available

or schemas become too complicated for users to completely possess. (2) Graph

queries are hard to write and interpret. Structured queries (e.g., XQuery [23]

and SPARQL [66,117]) require the expertise in complex grammars while keyword

queries [119, 152] can be too ambiguous to reflect user search intent. Moreover,

most of these methods adopt predefined ranking model [66, 119], which is barely

able to bridge the gap between the queries and the true matches. (3) Moreover, it

is a daunting task for users to inspect a large number of matches produced from

querying large-scale heterogeneous graph data.

1



Chapter 1. Introduction

"Jaguar"

"history" "America"

"Jaguar" ...

"Panthera

On ca"

Panthera

"Black

Panther"

Melanism

ontology

Query

result summarization

G

history habitat

"America"

(continent)

offer company

city
history

Black

Panther

(animal)

history habitat

south American
(continent)

Panthera

On ca

(animal)

history habitat

north American
(continent)

result 1 result 2 result 3

USA
(country)

Jaguar XK

(car)

result

Dearborn

(country)
United States

history

(animal)

Ford
(company)

(city)

"America"

 (country)

Chicago(city)

offer1 ... offern

(city)New York

k

...

  (car)

XJ Line

schemaless & structureless search

ontology-based search

Figure 1.1: Searching a knowledge graph.

Example 1: Consider a query asking “tell me about the history of Jaguar in

America.” The query can be presented as either a keyword query “Jaguar history

America,” or a small graph in Figure 1.1. To find answers for such a simple query

is, nevertheless, not easy. There are several challenges problems: (1) How to find

matches that are semantically related to the query? A keyword e.g., “Jaguar”

may not have identical matches, but instead can be matched with entities that

are semantically close, i.e., luxury cars or animals. (2) Which answer is better?

A large number of possible answers can be identified by various matching mech-

anisms. For example, “Panthera Onca” is closely related with “Jaguar” as its

2
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scientific name, while “Jaguar XK” is another match obtained simply by string

transformations. A ranking model should be employed and tuned with or without

manual tuning effort. (3) How to deliver the good answers to the users in query

time? Since the end users are usually impatient, it is critical to quickly identify

the best among a large number of answers. (4) How to help users better under-

stand results without inspecting them one by one?. For example, different species

related to Jaguar (result 1 and result 2), or various car prototypes (result 3 to

result k). This kind of complexity contrasts to the impatience of web users who

are only interested in finding good answers in a short time. 2

To answer these questions, we propose SLQ, a novel graph querying system

for schemaless graph querying [160]. (1) To better understand search intent, SLQ

interprets queries with external ontology to find semantically close matches. (2)

It automatically supports multiple mapping functions, namely, transformations,

e.g., synonym, abbreviation, ontology, to identify reasonable answer via learning

to rank, and works with both (a) a cold-start strategy that requires no manual ef-

fort for system tuning, and (b) a warm-start strategy to adjust the ranking model

with available user feedback and query logs. (3) A fast top-k search strategy is

integrated with SLQ. It can fast retrieve the best matches of a graph, without

relying on precomputed index and match scores. (4) To help users better under-

stand results and refine their queries, it supports concise result summarization.
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Users may inspect small summaries, and then decide to (a) drill-down for details,

or (b) interactively refine queries with interesting summaries. (5) In response to

the widely adopted distributed solutions and the large-scale graph data, SLQ also

incorporates a distributed realization of graph querying processing by leveraging

novel and effective graph partitioning techniques.

In addition, SLQ supports a wide range of queries. Users may issue (1) a

keyword query as a set of keywords, where each keyword describes an entity; or

(2) a (not necessarily connected) graph query, where each query node has a set of

labels as conditions, and an edge between two nodes, if any, specifies the relation

constraints posed on two query nodes by users. We demonstrate SLQ over three

major knowledge graphs, i.e., DBpedia, YAGO2 and Freebase as described in the

table below. A single such knowledge graph could have more than 10K types of

entities, making it difficult for users to fully grasp.

Table 1.1: Real-life knowledge graphs.

Graphs entities relations node types relation types
DBpedia [1] 3.7M 20M 359 800
YAGO2 [66] 2.9M 11M 6,543 349
Freebase [2] 40.3M 180M 10,110 9,101

To the best of our knowledge, the innovations introduced in SLQ are not seen

before in any previous graph querying systems (e.g., [23, 66, 107, 117, 119]). Ac-

tually, SLQ system is among the first efforts to develop a unified framework for
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querying large-scale complex graph data. Our design is to help the user access the

graphs in a much easier and powerful manner. It is capable of finding high-quality

answers when prior structured query languages do not work.

Before formally presenting the techniques, we summarize our key contributions

in SLQ as follows.

1.1 Schemaless Graph Querying

In the core of SLQ is the schemaless querying approach, which introduces a

principled way to match the queries from the users to the data entities in the

knowledge graph. It consists of two main components, transformation based

matching and a ranking model that can be learned in both offline and online

manner. As remarked earlier, SLQ does not require a user to describe a query

precisely as required by most search applications. Hence to render this high flex-

ibility to the users, we propose a mechanism of transformation: given a query,

the query evaluation is conducted by checking if its matches in a graph database

can be reasonably “transformed” from the query through a set of transformation

functions.

Matching Quality Measurement. To measure the quality of the matches in-

duced by various transformations, SLQ adopts a ranking function of weighted
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transformations. The function incorporates two types of score functions: node

matching and edge matching score function. Each score function aggregates the

contribution of all the possible transformations with corresponding weights. More

specifically, by harnessing the probabilistic graphical model, we define the ranking

function with Conditional Random Fields [136], since it satisfies two key consid-

erations: using training data, its formulation could optimize the weights of the

transformations for good ranking quality; the inference on the model provides a

mechanism to search top-k matches quickly.

Ranking model learning. A key issue is how to select a ranking function by

determining reasonable weights for the transformations. Instead of assigning equal

weights or calibrating the weights by human effort, SLQ automatically learns the

weights from a set of training instances. Each instance is a pair of a query and one

of its relevant (labeled as “good”) answers. The learning aims to identify for each

transformation a weight, such that if applied, the model ranks the good answers

as high as possible for each instance.

SLQ begins with a cold-start stage where no manual effort is required for

instances labeling, and can be “self-trained” in the warm-start stage, using user

feedback and query logs. When no user query log is available, SLQ randomly

extracts a set of subgraphs from the data graph as “query templates.” It then

injects a few transformations to the template and generates a set of training
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queries. Intuitively, each training query should have the corresponding templates

as its “good matches,” since the query can be transformed back to the template.

Query Processing. SLQ efficiently finds top matches, leveraging approximate

inferencing [136]. It treats a query as a graphic model and the matches as assign-

ment to its random variables (query nodes). By propagating messages among the

nodes in the graphical model, the inference can identify top assignments (matches)

that maximize the joint probability (ranking score) for the model. Together with

a graph sketch data structure, this technique dramatically reduces the query pro-

cessing time, with only small loss of match quality (less than 1% in our validation).

We introduce schemaless graph querying in more details in Chapter 2.

1.2 Fast Top-k Graph Querying

Since the queries could be quite ambiguous, the search may result in an ex-

cessive number of answers. The top-k graph querying intends to quickly identify

the answers of high-quality w.r.t. a ranking function. Efficient top-k querying is a

well-studied problem in relational databases [70], XML [55,121], and RDFs [144].

In contrast to these class techniques, knowledge graph querying has its unique

properties and comes with new challenges and opportunities: (1) The matching

score that combines multiple similarity measures has to be calculated and ranked
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online, (2) query answers are often inexact, and (3) query graphs are usually small.

We show that a direct application of prior approaches in this new setting does not

work well.

In SLQ, we propose STAR, a framework to exploit fast top-k search for star

queries and efficiently assemble them to answer general graph queries. STAR has

two components: A fast top-k algorithm for single star-shaped queries and an

assembling algorithm for general graph queries. The assembling algorithm uses

fast star querying as building blocks and iteratively sweeps the star match lists

with dynamically adjusted bound. When the size of Q and k is bounded by a

constant, we show that the time complexity of answering single star queries is

linear to |E|, the edge number of G. For approximate graph matching where an

edge can be matched to a path with bounded length d, we extend the algorithm

using message passing and achieve time complexity O(d2|E|+md), where m is the

maximum node degree in G. Our algorithm does not require any pre-built indices.

Using three real-life knowledge graphs, we experimentally verify that STAR is 5-10

times faster than the state-of-the-art TA-style subgraph matching algorithm, and

10-100 times faster than a graph search algorithm based on belief propagation.

We discuss STAR framework in details in Chapter 3.
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1.3 Ontology-based Graph Querying

In contrast to conventional graph querying systems, SLQ does not limit itself

with single, fixed search semantic. Instead, it employs a set of matching functions

that are more capable to find good matches in heterogeneous graphs [160]. We

start by demonstrating ontology-based search, as an example for various matching

mechanisms integrated in SLQ.

One of the challenges is to find the semantically related matches. SLQ leverages

ontology-based search [157] to bridge the entities from queries and data graphs via

a set of ontology closeness metrics. Given external ontology graphs (e.g., DBPe-

dia Ontology [1]), SLQ finds the semantically related entities (specified by a close-

ness measure) in the ontology graphs for each entity (keyword) in a query [157].

A straightforward “substituting-and-querying” method may next interpret the

query by substituting the keywords with their related entities, which in turn have

matches in the data graph. Top matches can then be extracted by processing

each new query. However, it may yield a tremendous number of queries. Instead,

SLQ leverages an effective ontology index [157]. In a nutshell, it computes several

sketches of the data graph using the ontology graph. Each sketch is induced by

grouping the nodes that are semantically close. Upon receiving a query, SLQ can

efficiently identify the top matches by querying on these small sketches only.
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Example 2: While there are no similarly labeled entities for “Jaguar” in the

data graph (Figure 1.1), SLQ checks an ontology graph, and identifies its two

semantically related matches (as a type of animal): “Panthera Onca,” its scientific

name and “Black Panther,” its melanistic color variant. These can hardly be found

by conventional IR metrics or string similarity, or by using the query and data

graph alone. 2

SLQ wraps ontology-based searching with (a) an ontology transformation func-

tion that maps a keyword to a set of valid entities, and (b) an ontology index.

These are seamlessly integrated in the query processing of SLQ. We formally

introduce this component in Chapter 4.

1.4 Result Summarization

Due to the sheer volume of data, graph querying usually generates a lot of

results that are too many to inspect. This not only makes the understanding of

the results a daunting task, but also frustrates the users to continue refining the

search. The result summarization feature of SLQ addresses the two challenges in a

“two-birds-with-one-stone” way by leveraging [156]. (1) Given a query and a set of

matches, SLQ effectively describes all the matches (as graphs) with a few summary

graphs. A summary graph preserves the connectivity of the keyword pairs. By
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reviewing the summary graphs, users easily get intuitive “big pictures” of all the

matches. (2) The summary graphs can further be used to refine the search by

suggesting new query nodes or edges, or be issued directly as new queries.

Example 3: SLQ provides two intuitive summaries for the matches in Figure 1.1.

The first summary indicates that “Jaguar” refers to animals living in America

continents with evolution history. The second shows that it refers to a certain type

of cars sold by dealers and companies in major cities of USA, with the company

history in car industry. In addition, new nodes or keywords, e.g., “offer,” are

suggested to users to inspire queries with new interests. 2

We introduce the summarization technique in more details in Chapter 5.

1.5 Distributed Graph Query Processing

Knowledge graphs are often massive with millions, even billions of vertices,

making common graph operations computationally intensive. In the presence of

properties associated with nodes/edges, it is clear that graph data can easily scale

up to terabytes in size. The recent Linked Open Data project has published more

than 20 billion RDF triples [61]. Although the RDF data is generally represented

in triples, the data inherently presents graph structure and is therefore interlinked.

Not surprisingly, the scale and the flexibility rise to the major challenges to the
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knowledge graph management. Fortunately, as large-scale the commodity clus-

ters become available and affordable, various successful distributed platforms and

solutions [53, 54, 94, 99, 124, 129, 162] are emerging as a critical avenue for data

intensive computing on massive graphs.

In SLQ, we introduce a Self Evolving Distributed Graph Management Envi-

ronment (SEDGE), to minimize inter-machine communication during graph query

processing in a cluster environment. In order to improve query response time

and throughput, SEDGE introduces a two-level partition management architec-

ture with complimentary primary partitions and dynamic secondary partitions.

These two kinds of partitions are able to adapt in real time to changes in query

workload. Sedge also includes a set of workload analyzing algorithms whose time

complexity is linear or sublinear to graph size.

The details of SEDGE is discussed in Chapter 6.

1.6 Summary

With the ever-increasing volume and complexity of the real-world knowledge

graph, there is an urgent need to make use of the data effectively and efficiently.

Among the various applications, intelligent search has been emerging as a critical

approach in today’s major platforms, such as Apple’s Siri, Google’s Knowledge
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Graph, Microsoft’s Cortana, and Facebook’s Graph Search. In response to these

applications, however, the success of the traditional search techniques over tra-

ditional data, such as relational database, XML, and RDFs, cannot be restored

to support intelligent search since 1) the data is no long well structured so that

a good data schema can be leveraged in the search. In practice, the data is un-

structured and usually can be represented as a general graph with rich attributes.

Search over graphs of such kind is more complicated because even a simple key-

word search in graphs poses an NP-hard problem, i.e.,, Steiner Tree problem. 2)

the queries from the users are usually quite ambiguous and not well formulated.

Although the query models, like SQL, SPARQL, and XQuery, are expressive, they

require expert knowledge. This is prohibitive for non-professional users. 3) By

leveraging more information, such as the graph structure, node/edge content and

the semantic relation (e.g., Ontology), the search system should tend to capture

the latent meaning of the user’s query and return the most satisfying results in

online manner.

In summary, we propose SLQ, which aims at integrating innovative graph

querying techniques that allow the users to easily acquire their information need

from complex knowledge graph. We endeavor to design efficient algorithms that

can process user’s query in online manner, while without sacrificing any generality

in practice. SLQ is a real system that can not only demonstrate the usability of the
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proposed techniques, but also suggest great opportunities for leveraging knowledge

graphs in many real applications.

The dissertation is organized as follows. Chapter 2 introduces the schemaless

graph querying framework, which lies at the core of SLQ. Chapter 3 presents the

fast top-k graph querying methods. Chapter 4 discusses the semantic matching

when ontology information is available. Chapter 5 introduces the summarization

techniques on query results. We also present the distributed query processing in

Chapter 6 and the system architecture of SLQ in Chapter 7. We conclude the

work and outline the future directions in Chapter 8.
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Chapter 2

Schemaless Graph Querying

Querying complex graph databases such as knowledge graphs is a challenging

task for non-professional users. Due to their complex schemas and variational

information descriptions, it becomes very hard for users to formulate a query

that can be properly processed by the existing systems. We argue that for a user-

friendly graph query engine, it must support various kinds of transformations such

as synonym, abbreviation, and ontology. Furthermore, the derived query results

must be ranked in a principled manner.

In this chapter, we introduce a novel framework enabling schemaless graph

querying, where a user need not describe queries precisely as required by most

databases. The query engine is built on a set of transformation functions that

automatically map keywords and linkages from a query to their matches in a graph.

It automatically learns an effective ranking model, without assuming manually

labeled training examples, and can efficiently return top ranked matches using
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graph sketch and belief propagation. The architecture of SLQ is elastic for “plug-

in” new transformation functions and query logs. Our experimental results show

that this new graph querying paradigm is promising: It identifies high-quality

matches for both keyword and graph queries over real-life knowledge graphs, and

outperforms existing methods significantly in terms of effectiveness and efficiency.

2.1 Introduction

Graph querying is widely adopted to retrieve information from emerging graph

databases, e.g., knowledge graphs, information and social networks. Searching

these real-life graphs is not an easy task especially for non-professional users:

either no standard schema is available, or schemas become too complicated for

users to completely possess. For example, a single knowledge graph could have

more than 10K types of entities, as illustrated in Table 1.1, not to mention the

different presentations of entity attributes.

This kind of complexity contrasts to the impatience of web users who are

only interested in finding query answers in a short period. The existing struc-

tured query techniques such as XQuery [23] and SPARQL [117] are barely able

to address such challenge. There is a usability issue arising from query prepara-

tion. Keyword queries (e.g., [75,86,152]) were proposed to shield non-professional
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users from digesting complex schemas and data definitions. Unfortunately, most

of keyword query methods only support a predefined similarity measure, such

as approximate string matching [96] and ontology-based matching [157]. A gen-

eral, systematic approach that automatically supports multiple measures (e.g.,

synonym, abbreviation, ontology, and several more summarized in Table 2.1) all

together is lacking.

In this chapter, we present a principle that could take multiple matchings into

account. Under this principle, given a query Q, query evaluation is conducted

by checking if its matches in a graph database G can be “transformed” from Q

through a set of transformation functions.

Q
G

M:I
UCB

~30 yrs

(actor)

University of

California,

Berkeley
J.J.Abrams

Mission: Impossible

Chris Pine

(Born in 1980)

Figure 2.1: Searching with transformations.

Example 4: To find a movie star in a knowledge graph, a graph query Q is

issued (Figure 2.1), which aims to find an actor whose age is around 30 (“30

17
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Table 2.1: Transformations in SLQ.

Transformation Category Example
First or Last
token

String
‘Anne Hathaway’ → ‘Anne’, ‘Justin
Bieber’ → ‘Bieber’

Abbreviation String
‘Jeffrey Jacob Abrams’ → ‘J.J.
Abrams’

Drop String
‘US Airways Company’ → ‘US Air-
ways’

Bag of words String
‘Yankees hat’ → ‘Tom Cruise’
(‘. . . signs Yankees hat’)

Prefix String ‘Street’ → ‘Str’

Acronym String
‘International Business Machines’ →
‘IBM’

Synonym Semantic ‘lawyer’ → ‘attorney’
Ontology Semantic ‘teacher’ → ‘educator’
Date Gap Numeric ‘2010’ → ‘3 yrs ago’ (as of, e.g., 2013)
Range Numeric ‘∼30 yrs’ → ‘33 yrs’
Unit Conver-
sion

Numeric
‘0 Celsius’ → ‘32 Fahrenheit’, ‘3 mi’→
‘4.8 km’

Distance Topology
‘Pine’-‘M:I’ → ‘Pine’-‘J.J.Abrams’-
‘M:I’

yrs”), graduated from UC Berkely (“UCB”), and may relate to movie “Mission:

Impossible” (“M:I”). One may identify a match for Q as shown in Figure 2.1. The

match indicates that “30 yrs” in Q refers to an actor “Chris Pine” who was born

in 1980, “UCB” is matched to the University of California, Berkeley, and “M:I”

refers to the movie “Mission:Impossible.” Traditional keyword searching based on

IR methods or string similarity cannot identify such matches. 2

Given a few transformation functions, one might find many matches of Q

in a graph database. A transformation-friendly query engine must address the
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following two questions: (1) how to determine which match is better? (2) how to

efficiently identify the top ranked matches?

Intuitively, the selectivity, the popularity, and the complexity of transforma-

tion functions shall be considered and used as a ranking metric for these matches.

How to choose, from many possible transformations, an appropriate ranking met-

ric that leads to good matches? First, a searching algorithm should be deployed

to determine the best transformation for different portions of a query. For exam-

ple, “UCB” should be automatically transformed to entities using it as acronym,

rather than string edit distance. This requires a weighting function for various

transformations. Second, to identify such a function, manual tuning should be

reduced to a minimum level. Instead of asking users to tune the weights, learning

to rank [87, 139] is more appropriate. Unfortunately, it usually needs manually

labeled training data, again a daunting task for end users. Finally, since there

could be too many matches to inspect, it is important to only return top-k re-

sults. While desirable, this top-k search problem is much more challenging due to

the presence of different transformations, compared to its single transformation

counterpart.

Contributions. This work proposes a first-kind of graph querying framework

that answers all these questions.
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(1) We propose a new, generalized graph searching problem: Given a query Q,

a graph G and a library of transformation functions L, where there are multiple

matches in G that can be transformed from Q by applying L, it is to find the top-

k ranked matches for Q. In contrast to traditional graph searching using single,

predefined similarity metric such as string similarity, we use a metric combining

transformations of various kinds. The metric itself is automatically learned.

(2) We propose SLQ, a general graph query framework for schemaless querying.

It consists of two phases: offline learning and online query processing. (a) Given

multiple matches transformed from Q, how to decide a proper ranking metric?

Certainly a manually picked combination function, e.g., averaging, is not going

to work elegantly. We show that this problem can be solved by a parameterized

ranking model. We adopt conditional random fields [136], as it not only gives a

good ranking model, but also indicates a fast matching search algorithm. In the

offline learning phase, the framework needs to solve the cold-start problem, i.e.,,

where to find training samples to train the model. Manually labeled matches

might be too costly for a few sample queries. A systematic approach is hence

introduced to create sample queries and answers by extracting subgraph queries

from G, inject transformations to these queries, and form query-answer pairs for

training. (b) Given a ranking metric, how to efficiently find top ranked matches?

For general graph queries and keyword queries, we prove that the problem is
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NP-hard. We propose a polynomial time heuristic top-k algorithm for online

query processing. The problem is tractable for tree-structured queries, and an

exact, polynomial time algorithm is developed. Both algorithms stop once k best

matches are identified, without inspecting every match. In practice, they run very

fast.

(3) Using several real-life data/knowledge graphs, we experimentally verify the

performance of our graph querying engine. It outperforms traditional keyword

(Spark [96]) and approximate graph searching (NeMa [79]) algorithms in terms

of quality and efficiency. For example, it is able to find matches that cannot be

identified by the existing keyword or graph query methods. It is 2-4 times faster

than NeMa, and is orders of magnitude faster than a naive top-k algorithm that

inspects every match.

To the best of our knowledge, these results are among the first efforts of de-

veloping a unified framework for schemaless and structureless querying. SLQ is

designed to help non-professional users access complex graph databases in a much

easier manner. It is a flexible framework capable of finding good matches when

structured query languages do not work. New transformations and ranking met-

rics can be plugged in to this framework easily. The proposed framework can also

be extended to query relational data, where a similar usability problem exists.

The contribution of this study is not only at providing a novel graph querying
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paradigm, but also at the demonstration of unifying learning and searching for

much more intelligent query processing. The proposed techniques can be adapted

easily to a wide range of search applications in databases, documents and the

Web.

2.2 Preliminary

Property graph model. We adopt a property graph model [122]. A graph G

= (V, E) is a labeled graph with node set V and edge set E, where each node

v ∈ V has a property list consisting of multiple attribute-value pairs, and each

edge e ∈ E represents a relationship between two entities. The model is widely

adopted to present real-life schemaless graphs. To simplify our presentation, we

will first treat all the information associated with nodes and edges as keywords,

and then differentiate type and value in Section 2.7.

Queries. We formulate a query Q as a property graph (VQ, EQ). Each query

node in Q describes an entity, and an edge between two nodes, if any, specifies

the connectivity constraint posed on two query nodes. Q could be disconnected

when a user is not sure about a specific connection. This query definition covers

both keyword query [152] (query nodes only) and a graph pattern query [28]

(connected query graph). For the ease of discussion, we first focus on the query
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that is connected. How to handle disconnected queries including keyword queries

is given in Section 2.7.

Traditional graph querying assumes structured queries formulated from well-

defined syntax and vocabulary (e.g., XPath and SPARQL). We consider general

queries that might not exactly follow the structure and semantic specifications

coded in a graph database.

Transformations and matches. To characterize the matches of Q, we assume a

library L of transformation functions (or simply transformations). A transforma-

tion f can be defined on the attributes and values of both nodes and edges of Q.

The transformation functions can be specified in various forms, e.g., (string) trans-

formation rules [8]. Table 2.1 summarizes several common transformations. These

transformations consider string transformation, semantic transformation, numeric

transformation, and topological transformation (as edge transformations). For ex-

ample, “Synonym” allows a node with label “Tumor” to be mapped to the node

“Neoplasm.” All these transformations are supported in our implementation. New

transformations, such as string similarity (e.g., spelling error) [95] and Jaccard dis-

tance on word sets [79] can be readily plugged into L. Our focus is to show a design

combining different transformations, not to optimize a specific transformation.

A node or edge in Q matches its counterparts in a data graph G with a set of

transformed attributes/values, specified by a matching (function) φ. A match of
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Q, denoted as φ(Q), is a connected subgraph of G induced by the node and edge

matches. For each attribute/value, we only consider one-time transformation, as

the chance for transforming multiple times is significantly lower.

2.3 Schemaless Graph Querying

In this section, we provide an overview of SLQ, and its three key components:

matching quality measurement, offline learning, and online query processing.
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Figure 2.2: Schemaless graph querying framework.
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Matching quality measurement. Given Q and a matching φ of Q, we need to

measure the quality of φ(Q) by aggregating the matching quality of correspond-

ing nodes and edges. Intuitively, an identical match should always be ranked

highest; otherwise, φ(Q) shall be determined by the transformations, as well as

their weights to indicate how “important” they are in contributing to a reasonable

match. One possible strategy is to assign equal weight to all transformations. Cer-

tainly, it is not the best solution. For example, given a single node query, “Chris

Pine,” nodes with “C. Pine” (Abbreviation) shall be ranked higher than nodes

with “Pine” (Last token). A predefined weighting function is also not good, as

it is hard to compare transformations of different kinds. We introduce a novel

learning approach to figure out their weights (Section 2.4).

Offline model learning. There might exist multiple matches for Q in a graph

G using different transformations. An advanced model should be parameterized

and be able to adjust the weights of all possible transformations. If a historical

collection of queries and user-preferred answers is available, through a machine

learning process, one can automatically estimate weights so that the user-preferred

answers could be ranked as high as possible.

As suggested from previous work [87], the best practice for learning a model

is to employ a query log generated by real users. However, the log might not be

available at the beginning. On the other hand, the system does need a set of good-
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quality query-answer pairs to have its weights tuned. This becomes the chicken

or the egg dilemma. In Section 2.4.2, we introduce a method to automatically

generate training instances from the data graph.

Online top-k searching. Once the parameters of the ranking function are esti-

mated in the offline learning, one can process queries online. Fast query processing

techniques are required to identify top ranked matches based on the ranking func-

tion. This becomes even more challenging when multiple transformations are

applicable to the same query, and the answer pool becomes very large. While

the problem is in general intractable, we resort to fast heuristics. The idea is to

construct a small sketch graph by grouping the matches in terms of Q and the

transformations. The algorithm first finds the matches in the sketch graph that

are likely to contain the top-k answers. It then “drills down” these matches to

extract more accurate matches from the original graph G. This design avoids the

need of inspecting all the matches.

Putting the above components together, Figure 2.2 illustrates the pipeline

of SLQ. It automatically generates training instances from data graphs and any

available query log. Using the training set, it learns a ranking model by estimating

proper weights for the transformations. In the online stage, it applies efficient top-

k searching to find best matches for new queries. A user can provide feedback by

specifying good answers in the top-k matches, which can be put back to the query
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log to further improve the ranking model. In the following sections, we discuss

each step in detail.

2.4 Offline Learning

Given G and a library L of transformations, the offline learning module gener-

ates a ranking model, without resorting to human labeling efforts. In this section,

we present two key components, the parameter estimation and automatic training

instance generation.

2.4.1 Ranking Function

Given Q and φ(Q), a node matching cost function FV (v, φ(v)) is introduced to

measure the transformation cost from a query node v to its match φ(v). It aggre-

gates the contribution of all the possible transformations {fi} with corresponding

weight {αi},

FV (v, φ(v)) =
∑

i

αifi(v, φ(v)) (2.1)

where each fi returns a binary value: it returns 1 if its two inputs can be matched

by the transformation, and 0 otherwise. Analogously, an edge matching cost
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function is defined as

FE(e, φ(e)) =
∑

i

βifi(e, φ(e)) (2.2)

which conveys the transformation(s) from a query edge e to its match φ(e). φ(e)

can be a path in φ(Q) with the two endpoints matched with those in e. {fi}

can be extended to support real-valued similarity functions. We instantiate our

querying framework with a set of commonly used transformations, as in Table 2.1.

Other user-specified transformations can also be plugged in.

We now introduce a ranking function that could combine multiple nodes and

edges matches together. There are two important factors to consider. First, using

training data, it shall be able to optimize parameters {αi} and {βi} for good

ranking quality. Second, the ranking function shall have a mechanism to search

top-k matchings quickly. Enumerating all possible matches of a query graph

and then sorting their scores is not a good mechanism. We give a probabilistic

formulation that satisfies both requirements. The superior performance of SLQ can

already be demonstrated by this formulation. We leave the search and comparison

of various probabilistic models in terms of ranking quality and query response time

to future work.
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Given Q and a match φ(Q), we use probability P (φ(Q)|Q) as a measure to

evaluate the matching quality,

P (φ(Q)|Q) =
1

Z
exp(

∑
v∈VQ

FV (v, φ(v)) +
∑
e∈EQ

FE(e, φ(e))) (2.3)

where Z is a normalization function so that P (·) ∈ [0, 1].

The ranking function P (φ(Q)|Q) can be naturally interpreted with conditional

random fields (CRFs), a widely applied graphical model (see [136] for more details).

In our formulation, the nodes and edges in each query Q are regarded as the

observed nodes and structures in CRFs; the nodes and edges in each match φ(Q)

to be predicted are regarded as the output variables. CRFs directly models the

distribution of the output variables given the observed variables, which naturally

serves as our matching quality measure.
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Figure 2.3: Ranking function.
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Example 5: Recall the Q and a match φ(Q) (Figure 2.3). Each node, e.g., 30

yrs, may have multiple matches via multiple transformations, as remarked earlier.

The quality of the match P (φ(Q)|Q) is computed by aggregating the quality of

each node and edge match in φ(Q), determined by a weighted function of all

transformations. 2

Two key differences between SLQ and the existing graph query algorithms are

(1) we support multiple transformations; and (2) the weight of these transforma-

tions are learned, rather than user-specified. The probabilistic ranking function

is a vehicle to enable these two differences.

2.4.2 Transformation Weights

To determine the weights of transformations W = {α1, α2, ...; β1, β2, ...}, SLQ

automatically learns from a set of training instances. Training instances can be

regarded as past query experiences, which can teach the system how to rank the

results when new queries arrive. Each training instance is a pair of a query and one

of its relevant answers. Intuitively, we want to identify the parameters W that

can rank relevant answers as high as possible for a given query in the training

set T . We choose parameters such that the log-likelihood of relevant matches is
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maximized,

W = arg max
W

∑
T

log P (φ(Q)|Q) (2.4)

Optimizing objective functions like Eqn. 2.4 has been studied extensively in

machine learning community [136]. We adopt the standard Limited-memory

BFGS (L-BFGS) [89] algorithm, as it requires less memory than other approaches.

Complexity. Based on the analysis of [136], the worst time complexity of training

CRFs in our problem setting is O(N |Q||Vm|2|T |), where (1) N is the number of

gradient computations performed by the optimization, (2) |Q| is the size of the

largest query in the training set, (3) |Vm| is the largest number of the matches

a query node or edge may have, and (4) |T | is the number of training instances.

Experimental results (Table 2.3 in Section 2.8) show that its training time is

affordable for large real-life graphs, as only a small sample of the graph is needed.

|Vm|2 is also not an issue here as one can avoid using less-selective queries.

2.4.3 Automatic Training Instance Generation

A key issue in SLQ is how to cold-start the system when no user query log

is available. We developed an innovative strategy to generate artificial training

instances. It turns out that this strategy works far better than just giving equal

weight to all transformations. Our system first randomly extracts a set of sub-
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graphs from the data graph and treat them as query templates. For each template

Q̂, it injects a few transformations to Q̂ and generates a set of training queries

Q. Intuitively, each training query Q should have Q̂ as its good match, since Q

can be transformed back to Q̂. The system also identifies exact matches of Q in

G. Consequently, the matches identical to Q form training instances too. The

weights of transformation functions are learned by ranking Q̂ as high as possible

in the matches of Q, but below those identical matches of Q in G.

The identical matches play a key role of determining the weight of transforma-

tions. For example, with respect to a query template “Barack Obama,” a match

“B. Obama” is more preferred than “Obama” as there are less identical matches of

“B. Obama” (i.e., with higher selectivity). Therefore, by populating the training

instances with random queries and results, the method can gauge the impact of

transformations automatically in terms of selectivity. The second reason for this

cold-start strategy to work well is that it covers different cases comprehensively,

as it randomly and uniformly samples subgraphs from the data graph.

2.5 Online Query Processing

In this section, we introduce the online query processing technique that finds

top-k ranked matches for Q in G with the highest scores. To simplify the discus-
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sion, we assume that each transformation fi checks if a query node (resp. edge)

matches a node (resp. path) in G in constant time.

The query processing problem is in general NP-hard, as one may verify that

subgraph isomorphism [113] is its special case. To precisely compute P (φ(Q)|Q),

one has to inspect every possible match, which is a daunting task. A straightfor-

ward algorithm identifies the match candidates for query node/edge via all trans-

formations in O(|Q||G||L|) time, enumerates all possible result matches, and com-

putes their rank scores to find top-k ones. Its complexity is O(|Q||G||L|+ |G||Q|),

which does not scale over large G.

Observing the hardness of the exact searching (e.g., subgraph isomorphism),

one shall not expect a fast solution with complete answers (except for tree queries).

Instead, we resort to two heuristics. The first one leverages an inference technique

in graphical models that has been verified to be efficient and accurate in prac-

tice [161] (Section 2.5.1). The second one further improves it by building a sketch

of G so that low-score matches can be pruned quickly (Section 2.5.2). Our top-k

algorithm based on these two techniques (Section 2.5.3) could reduce the query

processing time in orders of magnitude, while only small loss of answer quality

is observed (less than 1% in our experiments). Moreover, it can deliver exact

top-k matches when Q are trees (Section 2.5.4), which is desirable as many graph

queries are indeed trees.
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Section 2.5.1 briefly introduces the first heuristic, LoopyBP, which needs some

background knowledge to digest [153]. The readers may skip it without difficulty

in understanding the remaining sections.

2.5.1 Finding Matches

The idea of LoopyBP is to treat Q as a graphical model, where each node is

a random variable with a set of matches as possible assignments. It finds top

assignments (matches) that maximizes the joint probability for Q (with highest

matching quality). To this end, LoopyBP leverages inferencing techniques [153],

which iteratively propagates “messages” among the nodes to estimate the match-

ing quality.

Given Q, LoopyBP identifies a match φ(Q) that maximizes P (φ(Q)|Q) by seek-

ing maxui
b(ui) [161]. For each node vi ∈ VQ and its match ui, b(ui) is formulated

as:

b(ui) = max
ui

FV (vi, ui)Πvj∈N(vi)m
(t)
ji (ui), (2.5)

for each match ui of vi and each vj in the neighborhood set N(vi) of vi in Q. Here

m
(t)
ji (ui) is a message (as a value) sent to ui from the matches of vj ∈ N(vi) at the

34



Chapter 2. Schemaless Graph Querying

tth iteration:

m
(t)
ji (ui) = max

uj

FV (vj, uj)FE((vj, vi), (uj, ui)) (2.6)

·
∏

vk∈N(vj)\vi

m
(t−1)
kj (uj),

for each match uj of vj. (uj, ui) represents the match of the query edge (vj, vi).

Intuitively, the score b(ui) is determined by the quality of ui as a node match to

vi (FV ), the quality of edge matches, e.g., (uj, ui), attached to ui (FE), and the

match quality of its neighbors uj as messages (mji(ui)). Hence the node u with

the maximum b(·) and its “surrounded” node and edge matches naturally induce

a match with good quality in terms of matching probability.

Algorithm. Based on the formulation, LoopyBP finds top matches in three steps.

(1) It first initializes the messages of each node m(0)(·) = 1. (2) It iteratively up-

dates b(·) following message propagation until none of b(·) in successive iterations

changed by more than a small threshold. (3) LoopyBP identifies best node matches

u = argmaxub(u), and then extracts top-k matches φ(Q), following a backtracking

strategy [161]. More specifically, LoopyBP first selects a match u with the highest

score b(·), and induces a top 1 match φ(Q)1 following the node matches with top

b(·) scores connected to u. It then finds a next best match by performing two mes-

sage propagations: (a) it identifies a match u′ of a node v in Q with the second

highest score b(·) among all the matches and is not in φ(Q)1, and then performs a
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propagation to find a top match φ(Q)2, fixing φ(v) = u′; (b) it performs a second

round of propagation where φ(v) 6= u′, to “trace back” to an earlier state of the

scores in (a), and prepare to extract a next best match. It repeats the above

process until k matches are identified (see details in [161]).

Complexity. The propagation only sends messages following edge matches as

paths of bounded length d constrained by edge transformation in L. Thus each

propagation traverses, for each match u of v, up to the set Vd of d hops of u in

G. The algorithm takes O(I|Q||V ||Vd|) time for message propagation in total I

iterations, where a single iteration completes when each node exchanges a message

with each of its neighbors. In addition, it takes O(|Q|) time to construct a best

(top-1) matching φ for Q. Putting these together, the process of finding one

match takes overall O(I|Q||V ||Vd|) time. To find k matches, at most 2k rounds

of propagation are conducted with backtracking, where each round denotes the

start to the convergence of a propagation. Hence it identifies top k matches in

O(k∗I|Q||V ||Vd|) time. Note that d is typically small: Edges are usually matched

with short paths as observed in keyword and graph searching [79,86].

2.5.2 Sketch Graph

With LoopyBP, one still needs to inspect a large number of node and edge

matches. Observe that these matches can be naturally grouped in terms of trans-
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Figure 2.4: Graph sketch and top-k searching.

formations: Each match contributes the same matching score when it conducts

the same type of transformation. Following this, we construct a sketch graph Gh

from G induced by Q and L. The idea is to efficiently extract matches from a

much smaller Gh, and then drill down to find more accurate “lower level” ones.

We denote as σi the set of all matches for a node vi in Q. (1) A match partition

of σi is a set of partitions {σi1, . . . , σin} of σi, such that for any two nodes in σij,

they can be mapped to vi via the same transformation fj ∈ L. (2) The sketch

graph Gh of G contains a set of hyper nodes, where each hyper node u(vi,fj) denotes

a match set σij of vi in Q induced by fj. There is an edge connecting two hyper

nodes u(vi,fm) and u(vj ,fn) if and only if (vi, vj) is an edge of Q. Thus the match

score of an edge in Gh establishes an upper bound of its underlying edge matches

in G, since any edge in Gh is an exact match of an edge in Q. Intuitively, Gh
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sketches G by grouping the matches of each query node as a single node, as long as

they can match to the query node by the same transformation. Note that a sketch

graph Gh can also be queried by LoopyBP. We denoted as GR an “upper level

match” from Gh, and distinguish it from a “lower level match” Gr as a subgraph

of G. Gr is contained in GR if each node of Gr is in a hyper node of GR.

One may verify that the rank score of each upper level match GR indicates an

upper bound of the rank scores of all the lower level matches it contains:

Lemma 1: For any upper level match GR (specified by matching φR) and any

lower level match Gr contained in GR (specified by φr), maxφr(vi) b(φr(vi)) ≤

maxφR(vi) b(φR(vi)), where vi ranges over the query nodes in VQ. 2

Proof sketch: We prove by induction on the iterations that for any vi ∈ VQ at

any iteration t, m
(t)
ji (φr(vi)) ≤ m

(t)
ji (φR(vi)). (1) Let t = 1. Since FV (vi, φr(vi))

= FV (vi, φR(vi)) and FE(e, φr(e)) ≤ FE(e, φR(e)), we have m
(1)
ji (φr(vi)) ≤

m
(1)
ji (φR(vi)), by the definition of GR and Eqn. 2.6. (2) Assume m

(t)
ji (φr(vi)) ≤

m
(t)
ji (φR(vi)) for t < n. When t = n, one can verify that mn

ji(φr(vi)) is no larger

than mn
ji(φR(vi)), again with Eqn. 2.6. Hence, by Eqn. 2.5, b(φr(vi)) ≤ b(φR(vi)).

The Lemma hence follows. 2
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Note that the size of Gh is independent of |G|: it is bounded by O(|Q|2|L|2)

where |Q| and |L| are typically small. Moreover, Gh can be efficiently constructed

using indexing techniques (Section 2.6).

Example 6: A sketch graph Gh is illustrated for the query Q in Figure 2.4. A

node UCB with label “Acronym” in Gh points to a group of matches via trans-

formation “Acronym.” Given Q and Gh, LoopyBP provides an upper level match

GR1 , which contains two lower level matches φ1(Q) and φ2(Q), with rank scores

bounded by that of GR1 . 2

2.5.3 Top-k Search

Using LoopyBP and sketch graph as building blocks, we next present our top-k

searching algorithm. The algorithm, denoted as topK, is illustrated in Figure 1.

Given Q, G, L and integer k, topK initializes a top k match list L, and a

Boolean flag terminate to indicate if the termination condition (as will be dis-

cussed) is satisfied (line 1). It next constructs a sketch graph Gh (lines 2-4).

Given G, Q and Gh, it dynamically updates L with newly extracted matches, by

applying LoopyBP over the sketch graph Gh and G iteratively (lines 5-9). More

specifically, topK repeats the following two steps, until the termination condition

is satisfied (terminate = true).
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Algorithm 1 Algorithm topK
Input: G, Q, L, integer k;

Output: L: top k ranked matches;

1: top k list L = ∅; terminate =false;

2: for each v in Q do

3: initialize valid match candidates w.r.t. L;

4: end for

5: construct sketch graph Gh;

6: GR := LoopyBP(Gh);

7: while terminate = false do

8: update L with top k matches from LoopyBP(GR);

9: GR := LoopyBP(Gh);

10: update terminate;

11: end while

(1) The algorithm topK first performs LoopyBP over Gh, and produces a best

upper level match of Q, e.g., GR, as a subgraph of Gh (line 5). Note that GR

corresponds to a subgraph of G, induced by all the nodes in G that are contained

in the hyper nodes of GR following edge matches.

(2) topK then “drills down” GR to obtain the subgraph it corresponds to, and
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conducts LoopyBP over the subgraph to update L with more accurate lower level

matches (line 7). Matches in L are replaced with new matches with higher scores.

In addition, topK also performs necessary propagation over the subgraphs from

earlier upper level matches, if they contain nodes with updated scores due to

messages from the updated matches in L. It updates L with new lower level

matches from these subgraphs, if any, until no more new matches can be identified

to update L. It next extracts a next upper level match GR from Gh (line 8).

The above steps (lines 7-8) complete a round of processing. At the end of

each round, topK checks if the termination condition below is satisfied (line 9):

(a) L already contains k matches, and (b) the match ranked at k in L already

has a score higher than the next upper level match GR (if any) from Gh. If the

condition is satisfied (or all possible matches in G are visited), topK terminates

and returns L (line 10). Otherwise, it extracts a new high level match from Gh,

and repeats steps (1) and (2).

Analysis. topK always terminates, as the message (value) propagation stops

when the change of the value is below a threshold. Moreover, the top k matches

returned by topK will be the same as those returned by LoopyBP if sketch graph

is not involved, due to Lemma 1.

For the complexity, one may verify the following. (1) It takes O(|VQ||V ||L|)

time to identify all the partition sets, and construct Gh (lines 2-4). Note that
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we assume every transformation checking is done in constant time, as remarked

earlier. (2) The total runtime consists of two parts: the upper level LoopyBP (over

Gh) and the lower level LoopyBP (over G). The upper level LoopyBP (line 5,8)

takes in total O(I1|L|2|Q|3) time, since Gh has in total |VQ||L| nodes, and it

takes O(I1|Q|(|L||VQ|)2) time for upper level LoopyBP, where I1 denotes the total

number of upper level iteration. Note that the performance of upper level LoopyBP

is independent of the size |G|. (3) The lower level LoopyBP (line 7) takes in total

O(I2|Q||Vt|2) time, where I2 is the iteration number for lower level LoopyBP,

and |Vt| denotes the total number of nodes in G visited by lower level LoopyBP

when topK terminates. Putting these together, algorithm topK takes in total

O(|VQ||V ||L|+ I(|Q|3|L|2 + |Q||Vt|2)) time, for in total I (i.e., I1+I2) iterations.

In practice, |Q| and |L| are typically small. Moreover, indexing techniques to

efficiently identify node matches (lines 2-4) can be readily applied, reducing its

time complexity from O(|VQ||V ||L|) to O(|VQ|) (see Section 2.6). Our experiments

show that topK achieves near-linear runtime w.r.t. graph size (see Figure 2.10 in

Section 2.8). A possible reason is that most of possible node matches are not

connected with each other in terms of edge matches. The number of message

passing among them is much smaller than the worst case |Vt|2. They cannot form

a high quality subgraph that matches the entire query graph. In the first few

iterations, they are quickly pruned by LoopyBP.
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Example 7: Consider the query Q in Figure 2.4. The algorithm topK finds top

2 matches for Q in G as follows. (1) topK first computes a sketch graph Gh of G.

(2) It then computes a top ranked result GR1 from Gh, where the node UCB in Q

is matched (via transformation “Acronym”) with a hyper node that contains the

node University of California, Berkeley. topK then computes a top K list

by drilling down GR1 (Figure 2.4), and identifies two lower level matches φ1(Q)

and φ2(Q) from GR1 , indicating actors in the movie “Mission:Impossible.” (3) It

next identifies a second high level match GR2 , specified by “Bag of words” and

“Acronym.” Without drilling-down to lower level matches, topK identifies that

the ranking score of GR2 is already lower than φ2(Q). This indicates that no lower

level matches better than φ2(Q) can be found. topK thus returns φ1(Q) and φ2(Q)

as the top 2 matches. 2

2.5.4 Exact Matching for Trees

When Q is a tree, which is quite common in practice, topK can be readily

revised, leading to efficient exact top-k search.

Algorithm. The algorithm topK for tree queries iteratively performs LoopyBP

over Gh and G, similarly as for general graph queries. The difference is that it uses

a simplified propagation: it only performs two passes of propagation to extract an
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optimal match [153]. More specifically, given a tree query Q, it designates a root

in Q, and denotes all nodes as leaves. topK then computes a top ranked match

by conducting two passes of propagation: one from the matches for all leaves to

those of the root, and the other from the matches of the root to all the matches

of the leaves. It repeats the process to fetch top k best results.

Correctness and Complexity. Following [153], the two passes of propagation

in topK for a tree query Q is guaranteed to converge in at most m steps, where

m is the diameter of Q, i.e., the length of the longest shortest path between two

nodes in Q. Moreover, the propagation computes the exact rank value P (φ(Q)|Q)

(Section 2.4). The correctness of topK hence follows. One may verify that topK is

in total O(|VQ||V ||L|+ |Q|3|L|2 + |Q||Vt|2) time over tree queries, with (a) 2 passes

of propagations, and (b) each propagation directs messages up to a few steps in

both Gh and G. Here Vt is similarly defined as its counterpart for general queries.

2.6 Indexing

The remaining issue is to find transformed matches of query nodes quickly.

For example, a node in Q with label “Chris Pine” shall be matched to a node in

G has a label “Chris,” “Pine,” “C. Pine,” etc. A straightforward method rewrites

each label l from Q to a label set using all possible transformations, and inspects
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every node label in G to find matches. Obviously, scanning the entire graph is

expensive. For each (or each category of) transformation, an appropriate index is

needed to support fast search.

Several indices are adopted in SLQ, in accordance with the category of the

transformations it supports in Table 2.1. Nevertheless, experimenting various

kinds of indexing techniques is not the focus of this work.

(1) String index, StrIdx, is built for all the string labels in G. The index contains

a list of key-value pairs <l, Sl>, where (a) each key is a distinct label l, and (b) Sl

is a node set, such that each node v in Sl has a label lv, such that fi(l, lv) = 1 for

string transformation fi. In other words, Sl corresponds to the matches of nodes
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who have labels that can be transformed from label l via string transformations.

The nodes in Sl are further grouped in terms of their associated transformations

to form a partition of Sl.

Let D be the set of all the labels in G. To construct StrIdx, each transforma-

tion is applied on each label of all the nodes in G. The transformed label set is

denoted as Λ, which hence forms the keys in StrIdx. For each key l, nodes with la-

bels associated to l via a transformation are grouped as a set Sl. The pair <l, Sl>

is then inserted to StrIdx as an entry. One may verify that (1) the construction of

StrIdx takes O(|L||D|) time, and (2) the space cost of StrIdx is in O(|L||Λ||V |) for

at most |L| string transformations. SLQ does not necessarily build a specific index

for each transformation. (1) Transformations can be grouped according to their

category (e.g., “String”), supported by a single index (e.g., StrIdx). (2) Search-

ing for some transformations, e.g., Unit Conversion, can be trivially performed as

direct mapping. As demonstrated in Section 2.8, the worst case space cost is sel-

dom demonstrated. The index size can be further reduced by index optimization

e.g., [154].

(2) Semantic index, OntIdx, leverages the indexing techniques in [157] and [85], to

help identify the matches based on semantic transformations, e.g., Ontology and

Synonym.
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(3) Numeric index, NumIdx, is constructed for searching involving labels with

numeric values, e.g., ≤ 35 yrs (Range). SLQ builds NumIdx as B+ tree over

numeric values.

Figure 2.5 illustrates the above indexing techniques. As an example, for a

node v1 with label “Chris Pine” in G, StrIdx performs string transformations,

e.g., Last token, and identifies the label “Pine” as a key. It then insert node

v1 into the value entry corresponding to key “Pine.” Analogously, the nodes,

e.g., “Robert Pine” and “Peter Pine,” in G will be mapped to the same entry,

associated with key “Pine” and transformation Last token.

For each label l in every query node, SLQ searches for the node match can-

didates by looking up the label (key) in the indices StrIdx, NumIdx and SemIdx.

The candidates for label l refer to all the entry values in the indices corresponding

to the key l. Thus, it takes only O(|VQ|) to find the transformed match candi-

dates. Indeed, as verified in Section 2.8, with the indices, the time for finding

transformed match candidates accounts for less than 2% of the total search time.

2.7 Extensions

The architecture of SLQ can also support typed queries, and partially connected

queries.
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Typed queries. Users may pose explicit type constraints on queries. For exam-

ple, the query node “30 yrs” (Figure 2.1) can be specified with a type “actor.”

To cope with typed queries, SLQ defines a type feature function for a query node

v and its type sv as

FS(v, φ(v)) =
∑

i

γifi(sv, sφ(v)) (2.7)

with the transformations {fi} applied to the node types.

Partially connected queries. A partially connected query Q contains several

connected components. Note that a keyword query is a case of partially connected

queries. A user submits partially connected queries when he is not clear about

the connection among these nodes. To cope with such queries, a new query Q′

is constructed by inserting a set Ẽ of implicit edges, where each edge ẽ bridges a

pair of nodes from different components. An implicit edge feature function can be

readily introduced as

FẼ(ẽ, φ(ẽ)) =
∑

i

δifi(ẽ, φ(ẽ)) (2.8)

Both FS(v, φ(v)) and FẼ(ẽ, φ(ẽ)) can be plugged into the ranking function Eq.

2.3, where {γi} and {δi} can be learned using the same training strategy.
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2.8 Experimental Evaluation

In this section, we perform a set of experiments using real-life large graphs, to

demonstrate SLQ framework in terms of effectiveness, efficiency and scalability.

2.8.1 Experimental Settings

Datasets. We use three real knowledge graphs in Table 1.1. (1) DBpedia [1]

is a knowledge base. Each node represents an entity associated with a set of

properties, (e.g., name=‘california’, type=‘place’, area=‘163,696 sq mi’). The

labeled edges indicate various relationships. (2) YAGO2 [66] is a knowledge base

gathered from several open sources. Similarly as DBpedia, its nodes and edges

preserve rich information. (3) Freebase [2] is a collaboratively created graph base

that has over 40M topics (nodes) and 1.2B facts. As public repositories, these

graphs are maintained by multiple communities, containing highly diverse and

heterogeneous entities, attributes and values.

Transformations. Our system integrated all of the transformations in Table 2.1

including ontology [157]. More transformations can be seamlessly adopted.

Queries. In the experiments, two sets of query benchmarks are employed. (1) The

DBPSB benchmark [106] is derived from DBpedia. The benchmark is a set of 25

query templates that are originally expressed in SPARQL format. The templates
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resemble real query workload and cover queries with different complexity. The

queries can be converted to graph queries. (2) The templates in DBPSB have

limited types (e.g., “Person”) and simple topology (e.g., tree). We hence designed

a second set of 20 templates that explore more diverse topics and complex (e.g.,

cyclic) graph structures.

In offline learning, query templates are generated by instantiating the query

benchmarks with the labels from the data graphs. Here a label can be any property

of the corresponding entity. These instances also serve as ground truth for the

queries. We then perform transformations on randomly selected labels in each

query instance, which yield training queries. We show three such queries and

their matches in Figure 2.6. Query 1 is to find an athlete in football team “San

Francisco 49ers” who is about 30 years old. Query 2 is to find a person who served

in the Union army and attended a battle, and these information maybe related

with “Missouri.” Query 3 identifies a current US senator at his 60 who lives in

“NJ” and knows “F. Lautenberge.”

Algorithms. We chose the CRFs model as defined in Eq. 2.3 and developed SLQ

in Java. For comparison, the following algorithms are also developed with the

best effort.
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Baselines. To compare the match quality, we consider the following state-of-the-

art techniques. (1) Spark [96], a keyword-based search engine. It supports IR-style

ranking heuristics. Since Spark only supports exact string matching, we modified

it to accept transformed matches. Spark does not consider edge information in a

query as it is keyword oriented. (2) Unit is a variant of SLQ. The only difference is

it uses a revised ranking model with equal weight for all the transformations; (3)

Card also implements SLQ, while revises its ranking model with weights equal to

the selectivity of the transformations as 1
card(f)

. Here card(f) refers to the average

size of the matches for a randomly sampled node (or edge) in the graph using

transformation f .

For efficiency comparison, we compare SLQ with (1) Exact, which enumerates

all possible matches based on the subgraph search algorithm [86, 113], and then

rank them with the learned ranking model. This strategy ensures that all the

matches including the ground truth can be obtained and ranked. (2) Approximate

searching in NeMa [79]. The method directly applies a propagation strategy similar

to LoopyBP over data graphs. Note that NeMa only extracts the most probable

result, i.e., top 1 match. We enhanced it by applying the techniques in [161] to

identify top-k results. For fair comparison, the above baselines are also equipped

with our predefined transformations and the indices.
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Metrics. Given a query workload Q as a set of queries Q, we adopt sev-

eral metrics for the rank evaluation: (1) Precision at k (P@k), the number

of the top-k answers that contain the ground truth; (2) Mean Average Pre-

cision (MAP @k), which means MAP@k = 1
|Q|

∑
Q∈Q

1
k

∑k
i=1 P (i), where P (i)

is the precision at cut-off position i when the ith result is a true answer and

P (i) = 0, otherwise; (3) Normalized Discounted Cumulative Gain (NDCG@k), as

NDCG@k = 1
|Q|

∑
Q∈Q Zk

∑k
i=1

2ri−1
log2(i+1)

, where ri is the score of the result at rank

i. Following convention, we set ri as 3 for the good match, 1 for the relevant match

and 0 for the bad match. Zk is a normalization term to let the perfect ranking

have score 1. We also tested other metrics, such as SoftNDCG [139]. They share

similar intuition and thus are not elaborated. In the experiments, unless otherwise

specified, each query workload refers to 1, 000 randomly generated queries using

different query templates. Note that the set of training queries is different from

that for testing.

Setup. We compressed each data graph, e.g., same predicates in the RDFs, and

built index based on the transformations. The indexing time and the size is:

61.8min/1.02GB (DBpedia), 37.4min/0.78GB (YAGO2), 263min/12.91GB (Free-

base). All the experiments were performed on a machine with Intel Core i7 2.8GHz

CPU and 32GB RAM. For each test, we report the average value over 5 runs.
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Figure 2.6: Case study: querying knowledge graphs.

2.8.2 Case Study: SLQ vs. IR-based Search

We provide a case study using DBpedia. Consider the three queries in Fig-

ure 2.6. For each query, SLQ identifies meaningful matches of high quality. For

example, for Query 2, a historical figure, Colonel J.B. Plummer, is identified to

match Person who fought in the Battle of Fredericktown during the Civil War in

Missouri. Our framework is able to tell the importance of different transforma-

tions: for Person, Ontology is a proper transformation; while for Union, Bag of

words is promoted in the ranking. Missouri is selected as an exact match. In

addition, the match suggests a direct connection between Missouri and Battle in

Query 2, indicating a refinement of Query 2 in future. In all cases, Spark gives

low IR score and cannot identify matches for Query 2.
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2.8.3 Experimental Results

Exp-1: Manual evaluation. We first conduct manual evaluation on 75 queries

that are randomly constructed from the three datasets. 10 students help evaluate

the results returned by our search algorithm. For each result, a label, i.e., Good,

Relevant or Bad, was assigned by the students regarding the query. The labels are

thus considered as the ground truth. The students were not trained beforehand

and thus the labels were assigned merely based on their intuition. The metric,

NDCG@k, can be calculated based on the rank order of the results and the

corresponding labels. Table 2.2 presents the quality of top-5 returned answers.

The result confirms that SLQ shows a substantial improvement over the baselines.

In terms of answer quality, it is very close to the exhaustive search algorithm,

Exact. On the other hand, SLQ is up to 300 times faster than Exact (see Exp-3

for query processing time comparison).

Graph Spark Unit Card SLQ Exact
DBpedia 0.707 0.790 0.858 0.935 0.935
YAGO2 0.682 0.849 0.852 0.926 0.928
Freebase 0.636 0.751 0.768 0.859 0.865

Table 2.2: Manual evaluation (NDCG@5).

In the following experiments, we verify the performance of our algorithms by

varying query size and transformation ratio. Since finding good matches manually

is very costly, we focus on two kinds of intuitively good matches: the original
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subgraph from which a query is transformed from, and all the identical matches

of the query. A good algorithm shall at least rank these good matches as high as

possible.
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(b) Varying query size: YAGO2
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(c) Varying ratio: DBpedia
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Figure 2.7: Effectiveness of ranking (MAP@5).

Exp-2: Effectiveness of ranking. This experiment examines the answer qual-

ity of SLQ. There are several factors, such as query size, query topology, trans-

formation ratio and data graph, that may affect the ranking. We first study the
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impact of the query size and topology while fixing the others. The following test

is based on the evaluation of the query workload that are randomly sampled from

the data graph w.r.t. the query templates. Each query is modified by applying

random transformations with the ratio α = 0.3. The ranking model was trained

beforehand for each graph (see Exp-4 for the report on offline training).

Given the queries and the corresponding results, we employ MAP@k as the

metric to evaluate the rank and plot the scores in Figure 2.7(a-b) for DBpedia

and YAGO2, respectively. The results tell us that the methods Unit, Card and

SLQ significantly outperform the IR based technique, Spark. The ranking model

in Spark only considers a linear combination of keywords’ IR scores. It does

not take the selectivity of different transformable conventions and the relations

(connections) of the keywords into account. SLQ also achieves better ranking

result than its two variants, Unit and Card, indicating that automatic learning of

transformation weights could improve answer quality. Figure 2.7(a-b) also show

that when the query size increases, the score increases for all the methods. This

is due to the fact that a query with larger size provides more evidences, which

help identify good matches easily. This phenomenon implies great potential of the

schemaless and structureless querying model: As long as a user provides enough

evidences, she can find the answer even her query does not fully comply with the

schema and the structure of the underlying graph database.
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We next validate the ranking quality with respect to the transformation ratio

α. In this test, we derive a set of query workload by varying α of the queries

from 0.2 to 0.6. Intuitively, to raise the transformation ratio will increase the

“ambiguous” level of the query, making it more difficult to find the true match

in the top-k matches. The result is depicted in Figure 2.7(c-d). As expected, the

performance of all the algorithms degrades along with the increase of α. However,

our algorithm is still the best. We also examined the performance of Exact, which

is slightly better (by ≤ 1%) than SLQ and thus is not shown in Figure 2.7 for

simplicity.

Exp-3: Efficiency of top-k search. In this experiment, we demonstrate the

runtime improvement of SLQ over Exact and NeMa. SLQ employs graph sketch

to quickly skip the low-quality matches. We choose k = 20, and use the same

query workload as in the previous experiment. The runtime examined here also

contains the index search time, which accounts for less than 2% of the total time.

The runtime of Unit and Card is not reported as it is close to that of SLQ.

Figure 2.8(a-b) shows the runtime with varying query size, and fixed transfor-

mation ratio (0.3). For both graphs, SLQ and NeMa are 5-50 times faster than

Exact. This advantage is achieved by top-k search and the merit of approximate

search (LoopyBP). Meanwhile, SLQ is 2-4 times faster than NeMa. It implies the

graph sketch method can indeed avoid some unnecessary verification. We also
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(a) Varying query size: DBpedia
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(b) Varying query size: YAGO2
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(c) Varying ratio: DBpedia
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(d) Varying ratio: YAGO2

Figure 2.8: Efficiency of top-k search (k = 20).

evaluate the runtime of SLQ by varying the transformation ratio from 0.2 to 0.6.

Figure 2.8(c-d) show a clear advantage of SLQ over other approaches. For most

queries, SLQ can finish the execution within 1 second. Its runtime can further be

reduced by employing a multi-thread implementation.

Figure 2.9(a-b) plots the search time with different k values for DBpedia and

YAGO2, respectively. The test queries are randomly generated with transforma-
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Figure 2.9: Search time: effect of k (20 ∼ 100).

tion ratio 0.2 ∼ 0.6. Our algorithm again demonstrates outstanding performance

on runtime, which is up to 1/3 of the time by NeMa.

Exp-4: Offline learning. We study the impact of sample size and offline training

on the quality of ranking. Recall that the training queries along with the ground

truth are randomly sampled from the graph, the coverage of the queries plays a

pivotal role in the training. The coverage of a query workload Q is defined as

C(Q) =
|⋃Q∈QQ|

|G| . Since the graphs are highly heterogeneous, we speculate with

larger coverage, the learned model would have a better ranking result. To inspect

the effect, we conduct two tests with different workload coverage: 0.5% ∼ 2.0%

(DBpedia) and 0.05% ∼ 0.2% (Freebase). The queries in each training workload

are generated from randomly selected query templates.
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DBpedia
Sample Time P@5
0.5% 795s 0.650
1.0% 1, 588s 0.715
2.0% 3, 028s 0.722

Freebase
Sample Time P@5
0.05% 1, 695s 0.685
0.1% 3, 125s 0.712
0.2% 5, 828s 0.725

Table 2.3: Sample coverage for training.

The training time and the quality of ranking (P@k) are shown in Table 2.3.

The transformation ratio for each training set is controlled by a 5-fold cross vali-

dation. Note the test queries are different from those for training. For both of the

two datasets, the training time is nearly linear w.r.t. C(Q). It can be seen that

with higher coverage, we can achieve a clear better ranking performance, with

the cost of extra training time. For DBpedia, when the coverage increases from

1.0% to 2.0%, the improvement is marginal, i.e., ≤ 1.0%. The same effect can

be observed for Freebase, when we increase the coverage from 0.1% to 0.2%. The

experiment validates that only a small sample of the raw data for offline training

is enough for good performance.

Exp-5: Scalability w.r.t. graph size. We next evaluate the scalability of SLQ

by varying the size of the Freebase graph. Specifically, we initialize a subgraph

G1 from Freebase with size (10M, 51M) (i.e., 10M nodes and 51M edges) and

gradually grow it to G4(40M, 180M). This setting will test the performance of

SLQ in a streaming mode. Figure 2.10(a) depicts the result. Specifically in the
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Figure 2.10: Scalability evaluation on Freebase.

figure, SLQ shows the performance of the ranking model trained only based on the

initial graph (G1), while SLQinc shows the performance of the ranking model with

incremental update based on the growing graph. The test queries are generated

separately for each graph. With the growing of the graph, the rank performance

generally decreases since there are more data to confuse top-k ranking. Among the

four algorithms, SLQinr is the best. Moreover, although it degrades w.r.t. SLQinr,

SLQ still outperforms the other methods dramatically, indicating a comparatively

stable result.

In terms of search time, to illustrate the significant time difference, we plot the

runtime increasing ratio,
TimeGi

TimeG1
, in Figure 2.10(b), for top-k search (k = 20). All

the algorithms take more time for searching larger graphs. Moreover, despite the

significant difference on the search time on G1, i.e., TimeG1 as shown in the legend
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of Figure 2.10(b), SLQ achieves near-linear runtime increase regarding the size of

the graph. It takes up to 25% of the time by NeMa and is at least one order of

magnitude faster than Exact. We also inspect the runtime of SLQinr. Recall that

the model in SLQinr is continuously updated, the training time is negligible. With

the setting of 0.1% training sample coverage and 1000 test queries, the amortized

runtime of SLQinr is at least as twice as that of SLQ and thus is not shown in

Figure 2.10(b) for simplicity.
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Figure 2.11: Cross query evaluation on Freebase.

Exp-6: Training on YAGO2 and querying Freebase. Finally, we do a bold

experiment: Can we apply the model trained on one graph and query another

graph? To answer this question, we test the model trained on YAGO2 by ranking

the results of queries on Freebase (SLQY G), and compare it with the models trained

on Freebase (SLQFB). Figure 2.11(a) reports the result by varying the query size.
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The transformation ratio is 0.3. The model in SLQY G is the same as that trained

for YAGO2 in Exp-2. It shows SLQY G still works, and is even slightly better

than CardFB. This is a strong evidence showing that the knowledge learned (the

weights of different transformations) can be transferred between different graph

databases. A similar result is also observed when we vary the transformation

ratio, as shown in Figure 2.11(b).

2.9 Related Work

Graph searching is studied for structured queries (e.g., XQuery, SPARQL),

keyword queries [75,86,152] and graph pattern queries (e.g., [10]). These methods

focus on fixed schemas and ranking functions. To relax the constraints of schema

and structure, approximate matching is studied, for e.g., graph pattern match-

ing [28, 79], and for keyword queries over knowledge graphs [75]. The searching

semantics are relaxed to identify more meaningful matches with similar structures

or similar attributes to a given query.

Closer to our work is NeMa [79] and NAGA [75]. (1) NeMa defines node sim-

ilarity by comparing the neighborhood similarity of two nodes, and iteratively

infer the matching quality using similarity propagation as in a graphical model.

(2) NAGA supports keyword querying over the YAGO knowledge base. It de-
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fines match quality with confidence, informativeness and compactness, and ranks

the answers based on probabilistic models, where the parameters in the ranking

model are tuned by users. Nevertheless, all of these studies use predefined ranking

metrics. This significantly limits the power of these methods as it is hard to jus-

tify them. Our work shows that a ranking model shall be learned automatically

through the existing queries and their associated answers, not given beforehand.

Machine learning techniques are leveraged to find matched entity pairs by

combining multiple similarity metrics. For example, weights of various transfor-

mation rules are learned for object identification [140]. These methods differ from

ours in the following. (1) Time-consuming manual labeling and training data.

In contrast, our system requires no manual effort for generating training exam-

ples. (2) Homogeneous data. Thus, they can not be easily extended to deal with

heterogeneous graphs as studied in this work.

There are several other topics complementary to our focus, including keyword

search in graph data using IR techniques. Query interpretation [36] provides a

user with multiple plausible interpretations of a query. These techniques can be

combined with our framework to further improve the quality of query results.
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2.10 Summary

We identified a key problem that frustrates the users for accessing emerg-

ing graph databases. We argued that a user-friendly query engine must support

various kinds of transformations directly, such as synonym, abbreviation, and on-

tology. We developed a novel searching framework, SLQ, to (a) learn a ranking

model that combines multiple transformations, which does not require manually

labeled training instances; and (b) efficiently find top-k matches for graph and

keyword queries. As verified by our experiments, SLQ achieves much better query

results in comparison with the existing approaches and is able to process queries

quickly. Better still, SLQ can be readily extended to integrate new transforma-

tions, indices and query logs. Surrounding this new query paradigm, there are

a few emerging topics worth studying in the future, e.g., comparison of differ-

ent probabilistic ranking models, compact transformation-friendly indices, and

distributed implementation.
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Fast Top-k Search in Knowledge
Graphs

Top-k graph querying is routinely performed in real-life graph data. Given a

graph query Q posed on a knowledge graph G, the problem is to find k (approx-

imate) matches in G with highest matching scores. In contrast to conventional

graph databases, knowledge graph querying comes with new challenges and op-

portunities: (1) Matching scores are dynamically generated; pre-built indices are

not available, (2) Query answers are often inexact, and (3) Query graphs are usu-

ally small. We show that the threshold algorithm (TA) is not instance-optimal

any more in this new setting.

In this chapter, we introduce STAR, a framework to exploit fast top-k search

for star queries and efficiently assemble them to answer general graph queries.

STAR has two components: A fast top-k algorithm for single star-shaped queries

and an assembling algorithm for general graph queries. The assembling algorithm
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uses fast star querying as building blocks and iteratively sweeps the star match

lists with dynamically adjusted bound. When the size of Q and k is bounded by

a constant, we show that the time complexity of answering single star queries is

linear to |E|, the edge number of G. For approximate graph matching where an

edge can be matched to a path with bounded length d, we extend the algorithm

using message passing and achieve time complexity O(d2|E|+md), where m is the

maximum node degree in G. Our algorithm does not require any pre-built indices.

Using three real-life knowledge graphs, we experimentally verify that STAR is 5-10

times faster than the state-of-the-art TA-style subgraph matching algorithm, and

10-100 times faster than a graph search algorithm based on belief propagation.

3.1 Introduction

Top-k subgraph search has been applied to extract best answers from real-

world graphs, e.g., information and social network [44,58], knowledge graphs [67,

160, 169] and communication networks [166]. Given a data graph G, a scoring

function F , and a query Q, top-k subgraph search over G returns a set of k answers

with highest matching scores. Top-k subgraph search is fundamental in many

graph analytical tasks.
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A common practice in existing top-k subgraph querying [29,38,55,121,141,163,

167] assumes pre-sorted lists of matches for single nodes/edges or small subqueries,

and follows conventional top-k aggregation methods over relational databases, e.g.,

threshold algorithm [41], to find top matches by traversing the lists. Nevertheless,

emerging real-world graphs such as knowledge graphs having rich node/edge in-

formation often require inexact matches in terms of content and structure. This

new requirement, together with the large graph size, introduces new challenges

and opportunities.

(1) The matching scores are dynamically generated. That is, the matching score

of potential answers are computed at run time based on a similarity function

applied on the query graph and the matches, rather than predefined weights or

similarity matrix [167]. It is costly to sort all possible matches from scratch

for each individual query. Sorting all the node/edge lists takes O(|V | log |V | +

|E| log |E|) time for G with |V | nodes and |E| edges, which is not going to provide

real-time response to queries.

(2) Queries typically have inexact matches that can no longer be captured by strict

isomorphic mapping. A common example is subgraph searching in knowledge

bases [160]. A query node, often described as a few keywords, can be matched

ambiguously with a number of entities. A query edge could have valid matches
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with paths of bounded length. Finding such inexact matches are costly over big

graphs. While indices can be constructed to speedup searching, it often comes with

expensive preprocessing, e.g., O(|V |3) for computing transitive closure [55, 121].

This is no longer practical for big graphs in terms of time and space.

(3) Query graphs are usually not big. As observed in [47], most real-world

SPARQL queries in RDF stores such as DBpedia are star-like; and 98% of

knowledge-base graph queries have diameter 2. In this case, to optimize the

complex graph search is an overkill. Instead, it is good enough to construct a fast

query processing engine for simple structures.

Brad

director award

query Q

a top 1 match

    "The 

 Departed"

Academy 

  AwardRichard
(director)

(movie)

graph G

0.9 0.8

Brad Pitt
(actor)

 Brad Turner
(director)

...0.9

Figure 3.1: Top-k subgraph querying.

Example 8: Consider graph query Q on a movie knowledge graph, shown in

Figure 3.1. It searches for top-2 movie directors who worked with “Brad” and

have won awards.
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It is nontrivial to find the top answers. Each query node and edge may cor-

respond to an excessive number of possible matches. For example, a node Brad

may have matches with any person whose first or last name is Brad, e.g., Brad

Pitt and Brad Turner. An edge (director, award) may match a path through

an intermediate node movie. It is not practical to find the best answer for Q by

first enumerating all the possible matches and then ranking them.

Furthermore, the quality of a match for Q can only be dynamically evaluated

by a similarity function, rather than being aggregated from static, predefined

weights. It is not practical to assume there is a pre-sorted node and edge list, or

an index for all kinds of query nodes and edges. 2

This calls for an efficient top-k subgraph search framework to cope with the

new challenges. Specifically, we ask (1) How to find top answers in the presence

of dynamically generated scores, where expensive preprocessing (e.g., indices and

sorted lists) is no longer practical? (2) How to efficiently find top-k matches

for inexact (e.g., edge to path) matching over big graphs? Conventional top-k

querying strategies no longer fit the new demand.

In this chapter, we introduce STAR, a top-k subgraph matching framework that

copes with the new challenges. In a nutshell, it develops a fast query processing

engine for popular star-shaped queries and makes use of this engine to solve more

complex graph queries.
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(1) Given a star-shaped query Q∗ and data graph G, STAR finds top-1 matches

for the center query node (called pivot node) in G and expands new matches from

there. For each node matching the pivot node, it is able to generate the best

matches of Q∗ in decreasing order of matching score. The algorithm takes O(|E|)

time, assuming k and the size of Q∗ are bounded by a constant.

(2) We further extend the algorithm to support inexact matching where an edge

can be matched to a path with bounded length d. For each node/edge in data

graph, it propagates dynamically generated matching scores to their neighbors,

retains the maximal matching score and then propagates further. Since it does

not compute transitive closure, the time complexity is reduced to O(d2|E|+ md),

where m is the maximum node degree of G.

(3) Given a more complex graph query Q, STAR decomposes it to a set of star-

queries, and assembles top answers from individual star queries. Since STAR

generates top answers of star-queries in monotonic decreasing order of matching

score, the answer set is equivalent to a pre-sorted list! This nice property makes it

possible to apply monotonic ranked joins such as [121] to produce the final top-k

answers for Q.
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(4) Since a query Q can be decomposed to multiple star queries in different man-

ners, we introduce a few query optimization opportunities unique in our problem

setting. While this work is not going to test many optimization ideas developed

for relational databases, we experiment a few designs and demonstrate their ef-

fectiveness.

(5) We evaluate the scalability of our algorithms. In comparison with a highly-

optimized threshold-based algorithm (TA) and a belief propagation method (BP)

employed in [79, 160], it was found that STAR is 5-10 times faster than TA and

10-100 times faster than BP.

We conclude that optimizing star query processing not only solves the most

popular queries in knowledge graphs, but also contributes a building block for

answering more complicated graph queries. By effective query decomposition and

fast star query processing, top-k matches can be found in a much faster manner.

To the best of our knowledge, we are among the first to recognize the problem

of searching top-k (approximate) subgraph matches with dynamically generated

matching scores, and the difficulty of building indices and transitive closures to

facilitate such search in large graphs. Most of the existing algorithms for keyword-

based top-k search like [59], twig/tree queries [55,121], and ranked joins [112] that

rely on indices are not valid any more for this new setting. Approximate search
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that supports edge-path inexact matching using transitive closures [55] is not

scalable in terms of graph size. Traditional network alignment tools developed for

biological networks such as [131] are an overkill for small graph queries popular

in knowledge graphs and cannot provide real-time response. As shown in our

experiments, the recently proposed brief propagation method (BP) for top-k graph

search [160] is not competitive with STAR. STAR is one to two orders of magnitude

faster than the BP algorithm; it is able to answer graph queries for DBpedia in

100 milliseconds using a single Intel CPU core.

3.2 Preliminaries

We start with several notions and problem formulation of top-k subgraph

querying.

Data graphs. We consider data graph G as a labeled graph (V, E,L), with

node set V and edge set E. Each node v ∈ V (edge e ∈ E) has a description

L(v) (L(e)) that specifies node (edge) information, and each edge represents a

relationship between two nodes. L could be structured with a schema (e.g., in

XML, RDF, and Freebase), not structured (e.g., keywords only), or with mixed

structure, e.g., DBpedia. L may also include heterogeneous entities and relations

of various types, entity name or attribute values [95].
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Queries. We consider query Q as a graph (VQ, EQ). Each query node in Q

provides information/constraints about an entity, and an edge between two nodes

specifies the relationship or the connectivity constraint posed on the two nodes.

Specifically, we use Q∗ to denote star-shaped query.

Example 9: Figure 3.1 illustrates querying without node schema. The query Q

contains nodes as simple keywords, e.g., Brad, to describe the entities it refers to.

For each node in the data graph G, a node description L may specify a type (e.g.,

actor) and an entity name (e.g., Brad Pitt), or simply a keyword (e.g., Academy

Award). Note that L may also pertain to specified schema, where each node has

uniformed attributes, and attribute values in accordance. 2

Subgraph Matching. Given a graph query Q and a data graph G, a match

φ(Q) of Q in G is a subgraph of G, specified by a one-to-one matching function

φ. It maps each node u (resp. edge e=(u′, v)) in Q to a node match φ(u) (resp.

edge match φ(e)=(φ(u), φ(u′))) in φ(Q). In Section 3.5, we will relax the edge

mapping to path mapping to support approximate matching.

Assume there exists a similarity function FV (resp. FE) that determines a

similarity score from a node (resp. edge) to its match. Given Q and a match
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φ(Q), the matching score is computed by a function F (φ(Q)) as

F (φ(Q)) =
∑
v∈VQ

FV (v, φ(v)) +
∑
e∈EQ

FE(e, φ(e)) (3.1)

The function measures the matching quality as the total score of the node and

edge similarity it specifies. There are a plenty of similarity functions available. For

example, in Section 2.4.1, we adopt a probabilistic approach to learn a similarity

function based on similar matches automatically generated from data graphs.

When mapping a query node/edge to a data node/edge, it supports various kinds

of transformations such as synonym, abbreviation, and ontology. For example,

“teacher” can be matched with “educator,” and “J.J. Abrams” with “Jeffrey

Jacob Abrams.” Each match produces a similarity score. All the scores are

combined together with a learned weighting function to produce a final score

between query Q and its match φ(Q). In this work, we assume node and edge

similarity functions, FV and FE are given. When it is not ambiguious, we write

FV (v, φ(v)) as F (φ(v)), FE(e, φ(e)) as F (φ(e)) respectively.

Top-k subgraph querying. Given Q, G, and F (·), the top-k subgraph querying

is to find a set of k matches Q(G, k), such that for any match φ(Q) /∈ Q(G, k),

there exists a match φ′(Q) ∈ Q(G, k), where F (φ′(Q)) ≥ F (φ(Q)).

Example 10: For Q and G in Figure 3.1, a match φ(Q) consists of nodes

Brad Pitt, Richard and Academy Award, where the function φ maps Brad to
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Brad Pitt with score 0.9. Let the three edge match score be 1.0, 1.0 and 0.8,

then the total score F (φ(Q)) is 5.1, the sum of node and edge matching scores.

Note that an edge (director, award) in Q is matched with a path from Richard

to Academy Award in G. 2

3.3 Threshold Algorithm

We first introduce a top-k graph querying procedure based on threshold al-

gorithm (TA) [41]. The procedure is adopted in several state-of-the-art graph

pattern matching methods for e.g., knowledge graph searching [169] and informa-

tion network [58]. We analyze the limitation of this approach.

The threshold algorithm [41] finds the top-k best tuples from a relational table

by optimizing a monotonic aggregation function. The common practice in existing

top-k subgraph matching is to treat each query node and edge as an attribute, with

its matching score as an attribute value. If a set of matches can be joined to form a

complete match, they are selected to compute a threshold. An upper bound of the

matching score is estimated from the rest “unseen” matches. Following threshold

algorithm, top-k matches are identified when the upper bound is smaller than

the threshold. The procedure and its variants are invoked in a range of existing

subgraph matching methods [29,38,141,169].
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Figure 3.2: The enumerations in graphTA.

A TA-algorithm for subgraph matching. We outline the procedure, denoted

as graphTA, in Alg. 2. The procedure typically follows three steps. (1) It initializes

a candidate list L for each query node and edge. (2) It then sorts each list following

certain ranking function. For each sorted list, a cursor is assigned at the head of

the list. (3) graphTA iteratively starts an exploration based subgraph isomorphism

search to expand the node match pointed by each cursor, until a complete match

is identified. It moves all cursors one step forward. (4) The above step repeats

until k matches are identified and it is impossible to generate better matches, or

no match can be generated from the lists.

To achieve early termination, graphTA maintains a dynamically updated lower

bound θ as the smallest top-k match score so far. It also maintains an upper

bound to estimate the largest possible score of a complete match from unseen

matches. For example, an upper bound can be established by aggregating the
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Algorithm 2 Algorithm graphTA
Input: G, Q, integer k;

Output: top-k match set Q(G, k);

1: initialize candidate list L for each node and edge in Q;

2: sort each L following the ranking function;

3: Set a cursor to each list; set an upper bound U ;

4: for each cursor c in each list L do

5: generate a match that contains c; update Q(G, k);

6: update a threshold θ with the lowest score in Q(G, k);

7: move all cursors one step ahead;

8: update the upper bound U ;

9: break if k matches are identified and θ ≥ U ;

10: end for

score of the next match from each list. If the upper bound is smaller than the

current lower bound, graphTA terminates.

Limitation of graphTA. We use an example to demonstrate the limitations of

directly applying TA-style top-k algorithm. Consider a subgraph query Q and its

top-1 answer in Figure 3.2. We observe the following limitations.

(1) It is very costly to prepare the sorted lists for each node and edge. This invokes
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a great amount of online computation on the match scores and the examination

of the edges.

(2) Matches for nodes and edges with high matching score alone do not necessarily

indicate top answers. For example, the top-1 answer is joined from a set of

node and edge matches with quite low matching scores, if ranked independently

(Figure 3.2). Sorted accessing over single node and edge match lists, as in graphTA,

leads to an excessive amount of useless visits and enumeration of partial matches.

(3) To explore single node/edge match in a large graph often leads to expensive

match expansion, resulting in significant performance degradation. For example,

each time a new match is visited in a list, expanding from single node match

requires a subgraph isomorphism search [169].

(4) It is often hard to estimate a tight enough upper bound, by using the node or

edge matches alone. For example, if one follows sorted access to LB to b, while

all other cursors are at the top of LA, LC and LD, respectively, the current upper

bound, determined by 0.5, 0.9, 0.9 and 0.9, can be far from the “real” upper bound

determined by 0.5, 0.5, 0.6 and 0.6. Indeed, the upper bound in conventional TA

algorithm is designed for joining attribute values, where no topological linkage
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is enforced. This typically generates quite loose upper bound that reduce the

possibility of early termination.

3.4 Star-based Top-k Matching

Algorithm 3 Algorithm STAR
Input: G, Q, integer k;

Output: top-k match set Q(G, k);

1: decompose Q to a star query set Q;

2: while top-k matches are not identified do

3: invoke stark or stard to retrieve new top matches for queries in Q;

4: invoke starjoin to assemble new matches;

5: update Q(G, k);

6: end while

While a straightforward application of TA has the limitations in subgraph

querying, we next outline a framework to mitigate it by utilizing larger structures

as building blocks. The idea is to find maximal subqueries for which (a) top-k

matches can be quickly retrieved without any TA-based joins, and (b) the matches

of subqueries can be effectively assembled for the top-k complete matches. We

identified star shaped queries as such structures. This framework kills two birds

with one stone. First, it is observed that most of real-life subgraph queries on
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knowledge graphs are “star-like” queries [47, 67]. To deriving a fast solution for

star queries is very appealing. Second, as a basic building block, it will lead to

efficient top-k search for complex graph queries.

The top-k querying framework, denoted as STAR and illustrated in Alg. 3, has

the following steps.

(1) Query decomposition. Given a query Q, STAR invokes a procedure to decom-

pose Q to a set of star queries Q (Section 3.6.2). A star query contains a pivot

node and a set of leaves as its neighbors in Q. After query decomposition, Q is

sent to the star querying engine.

(2) Star querying engine. Using Q generated in (1) as input, a procedure, called

stark (resp. stard for approximate matching) efficiently generates a set of top

matches for each star query in Q (Section 3.5). stark guarantees that the matches

are generated progressively in the descending order of the match score for each

star query.

(3) Top-k rank join. The top matches produced by stark (or stard) from multiple

star queries are collected and joined together, following the procedure starjoin, to

produce top-k complete matches for Q (Section 3.6). It terminates once the top-k

matches are identified, and there is no chance to generate better matches.
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In the following sections we introduce the details of STAR.

3.5 Star Query

We first examine how to process star queries, the most popular query form in

knowledge graphs. For simplicity’s sake, we describe our algorithms only using

node matches; our implementation fully supports edge matches.

3.5.1 Top-k Search

Top-k tree pattern matching have been extensively studied, e.g., [55,121] and

its newest improvement [24]. Obviously, star query is a specific case. While the

design of these algorithms can be reused, there are two additional problems that

need special handling: (1) Most of these studies assume there is a pre-sorted

node(edge) match list with respect to query node (edge), which is not true in our

problem setting: FV (v, φ(v)) and FE(e, φ(e)) are computed online. We shall try to

avoid a complete sorting. (2) For edge-to-path approximate graph matching, the

existing studies typically require the construction of transitive closure, which is

infeasible over large graphs. In the following two sections, we are going to address

these two problems.
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It is a well-known result as there are O(n) selection algorithms finding the

k-th largest number in a list. Our goal is to sort as small number of node/edge

matches as possible in the course of finding the top-k star query answers.

Lemma 2: [11] Given a set of n numbers and an integer k, finding the top-k

numbers in the set is O(n) and the sorted top-k numbers is O(n + k log k). 2

Proposition 3: Given graph G, star query Q∗ and k, when |Q∗| and k are bounded

by a small constant, the top-k matches Q∗(G, k) can be computed in O(|E|) time

and space. 2

Algorithm 4 Algorithm stark
Input: G, Q, integer k;

Output: top-k match set R;

1: initializes set R=∅;

2: initializes priority queue P=∅;

3: find top-1 match pivoted at each node v in G;

4: while |R| < k do

5: pop the best match M (pivoted at v) from P ; R = R ∪ {M};

6: generate next best match M ′ pivoted at v;

7: insert M ′ to P ;

8: end while
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Our star query processing engine stark takes the following steps (its pseudo

code is provided in Alg. 4):

Step 1: Treat each node in the knowledge graph as a possible match to the pivot

query node. Find the top-1 match for each of them, among which, select

top-k matches to form a candidate answer pool P .

Step 2: Pop up the best match M from P , insert it into the answer set R. For

the pivot node in M , generate the next best match M ′, insert it to P .

Step 3: Repeat Step 2 until |R| = k.

In the first step, stark performs pair-wise similarity calculation between query

nodes/edges and data nodes/edges. This takes |V ∗||V |+ |E∗||E| in the worst case

(both time and space). [160] discussed how to reduce the cost. After that, for each

node v ∈ V , stark treats it as a potential match to the pivot query node and tries

to find a top-1 match pivoted at v. Given a node v ∈ V , we define a match M

pivoted at v if v is matched to the pivot node in Q∗. stark finds the best matches

for the leaf nodes of Q∗ in v’s neighbors and assemble them as the top-1 match

pivoted at v. It scans all v’s neighbor nodes, thus taking |V ∗||E| time. It then

finds the k best matches among these matches. It takes O(|V |) time (Lemma 2).

Therefore, the first step takes O(|V ∗||V |+ |Q∗||E|) time, i.e., O(|E|) when |Q∗| is

bounded by a small constant. Its space complexity is O(|E|).
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Pivot Node Set Vp. Given G, Q, F , and k, let M be the set of top-1 matches

pivoted at each node in G. Pivot node set is defined as Vp = {v|M is among top-k

in M, M is pivoted at v}.

For the top-1 matches generated in Step 1, Vp is the set of nodes that match

the pivot node in Q∗.

Lemma 4: Top-k matches of Q∗ can only come from the matches pivoted at v,

v ∈ Vp. 2

In Step 2, stark retrieves the top-1 match M from P with pivot node v. It

then fetches the second best match pivoted at v. If v’s neighbor nodes are not

sorted with respect to their similarity to the leaf nodes in Q∗, one has to scan the

entire list of neighbors to find the second largest value w.r.t each query leaf node.

Assume the maximum degree in G is m. Since we need to find the second largest

match for each query leaf node, it will take O(m|V ∗|). The problem becomes

severe if all of the remaining top-k matches actually come from v. The cost will

grow to O(km|V ∗|) as Step 2 will run k-1 times on v. In such a case, it is better

to find top-k node matches w.r.t each query leaf node and sort them, taking time

O((m+k log k)|V ∗|). The following theorem shows that this result can be further

improved to O(m|V ∗|+ k log k), which is optimal in the worst case.
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Theorem 5: Given s lists of unsorted numbers L1, L2, . . ., Ls, and an aggregation

function,

F =
s∑

i=1

xi, xi ∈ Li,

there will be a set L̄ ⊆ L =
⋃

i Li, |L̄| ≤ k + s − 1, s.t., any number in L \ L̄ is

not going to contribute to the top-k values of F . It takes O(sm) to find L̄. 2

Proof: We first construct L̄. Denote the largest number in Li as xmax
i ,

L̂i = {x − xmax
i |x ∈ Li}, Lmax = {xmax

i } and L̂ =
⋃

i L̂i. Let L̄ = {x ∈

L \ Lmax|x − xmax
i ranks top-k+s-1 in L̂}. We then prove the theorem by con-

tradiction: Suppose x′ ∈ L \ (L̄ ∪ Lmax) contributes to one of the top-k sums,

denoted as F ′. It is easy to see F ′ ≤ x′ +
∑

j 6=1 xmax
j ≤ x′ − xmax

1 +
∑

j xmax
j ,

where w.l.o.g. x′ ∈ L1. However, besides the s largest numbers {xmax
i }, there are

at least k − 1 numbers xi ∈ L̄, such that x′ − xmax
1 ≤ xi − xmax

i . Thus F ′ is not

among the top-k sums since there are at least k sums no less than F ′. 2

Theorem 5 shows that in order to find top-k results w.r.t. F , we need not find

top-k numbers for each list Li. Instead, with a modification, we only need to find

k + s− 1 numbers in the union of the lists.

Example 11: Consider three lists LB, LC and LD in Figure 3.3, with the largest

number xmax
B =0.7, xmax

C =0.9 and xmax
D =0.8, respectively. To find the top-3 aggre-

gation values w.r.t. function F , it only requires the largest number in each list and
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Figure 3.3: Optimal match selection.

two additional numbers. For this purpose, a set L̂ is constructed by subtracting

the largest number in each list from each other numbers in the list, e.g., −0.2 in L̂

is from LB by 0.5− 0.7. The set L̄ is then obtained by including the three largest

numbers from each list and two additional numbers 0.7 and 0.5, corresponding to

the top-2 numbers, −0.1 and −0.2 in L̂, respectively. 2

Following Theorem 5, given a star query Q∗ = (V ∗, E∗) and a node v, we only

need retain the s + k − 1 numbers from
⋃

i Li to fetch the top-k matches pivoted

at v, where s = |V ∗| − 1.

The remaining algorithm of stark follows the concept of lattice search intro-

duced by [55] (Actually a slightly better algorithm can be derived from [24]). It

maintains a priority queue to remember the top-k matches it has found. The

priority queue size is at most k. For each match, it records its pivot node and a

cursor to remember the index of sorted lists. It takes O(k log k) to put the matches

generated by Step 1 into the priority queue. In Step 2, when it pops up the cur-
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rent best match from the the queue, it retrieves the cursor. Let s = |V ∗| − 1.

Assume the cursor index is (l1, l2, . . . ls), it is going to calculate the F value for

(l1 + 1, l2, . . . ls), (l1, l2 + 1, . . . ls), . . . , (l1, l2, . . . ls + 1). Hence, there are in to-

tal s matches, which shall be pushed into the queue if they are greater than the

minimum value in the queue. The time cost is s log k.

Combine all the above cost together. Step 2 takes O(m|V ∗|+k log k+|V ∗| log k)

time, which is iterated k−1 times. When k is a small constant, the time complexity

is governed by O(m|V ∗|), where m is the maximum node degree.

Analysis. For the time complexity, Step 1 takes O(|V ∗||V | + |Q∗||E|) time to

find best k top-1 matches. Step 2 takes O(mk|V ∗| + k2 log k + |V ∗|k log k), in

total. Assuming Q∗ and k bounded by a small constant, stark is linear in terms of

O(|E|). The above analysis completes the proof of Proposition 3. In practice, not

every node in G will be matched with the query pivot node. A cutoff threshold

will be applied to retain a few candidate nodes. Let n∗ be the size of candidate

nodes. In this case, Step 1 takes O(n∗m|V ∗|). When n∗ < k, the complexity

of Step 2 will dominate. The optimization of Step 2 will play a more important

role. When n∗ is very large, the aggregation overlay graph and a “push” strategy

from [105] could be applied to enable shared computation.
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3.5.2 d-bounded Star Query

As remarked earlier, an edge may be matched to a path of bounded length

in knowledge graphs. Given G, Q and an integer d, the d-bounded subgraph

querying extends subgraph querying by a matching function φd, such that each

edge e = (u, u′) can be mapped to a path φd(e), connecting two node matches

φ(u) and φ(u′) with the length bounded by d. In this work, we do not consider

the situation where two query nodes are matched to one node, as in knowledge

graphs, each node usually represents a unique entity or concept.

Edge-Path Similarity Function. When an edge e in a star query is matched

to a path φd(e) in G, we need to define a similarity function F (e, φd(e)). The

algorithm proposed in this section is valid as long as F (e, φh(e)) is monotonically

decreasing in terms of d. A typical example is F (e, φd(e)) = λ(h−1), λ ∈ (0, 1),

where h is the length of path φd(e).

For d-bounded star querying, a straightforward method is to traverse d-hop

neighborhood of a pivot node and run stark. This reduces the d-bounded star

querying to its 1-bounded counterpart. Nevertheless, the bottleneck becomes the

excessive cost of graph traversal. Precomputing d-hop neighborhood for each node

is no longer practical for large graphs. Let m̄ be the average degree of G. For d=2,
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it already visits O(m̄|E|) edges. Even such index is available, accessing O(m̄|E|)

edges is not going to scale well.

The major challenge of stark is to identify the pivot node set Vp by retrieving

top-1 matches from a potentially large number of matches. Vp contains pivot

nodes that have best top-1 matches among all top-1 matches pivoted at v ∈ V .

Following Lemma 4, the next step is to find top-k matches pivoted at nodes in Vp,

where traversing is typically more affordable for a small k. We have the following

result.

Proposition 6: Given G, Q∗, k, and d, when |Q∗| and k are bounded by a small

constant, there exists an algorithm that finds the pivot node set Vp in O(d2|E|)

time. 2

We next introduce a message propagation algorithm, stard, which achieves the

above time complexity. In a nutshell, it leverages message passing to exchange

the maximal node and edge matching scores.

Message propagation. The algorithm stard identifies all the node matches v for

each query leaf node u∗ in Q∗. Instead of “pulling” the neighbors’ score for each

potential pivot node match in G, it collects, aggregates and propagates messages

encoding the matching score of each node in G to its 1-hop neighbors and repeats

d times.
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Message. stard encodes a message m as a set of triples <(u∗, v), F, h>. If a node

receives such a message, it means in h hops, there is a node v matched to u∗ with

score F .

Example 12: Consider query Q∗ in Figure 3.4. A message m is initialized at

c1 as <(C, c1), 0.9, 0>, indicating that c1 is matched to query node C, with node

score 0.9, and the message resides at node c1 (with hop number 0). 2

Message propagation. stard initializes a message m that contains a single triple

<(u∗, v), F (u∗, v), h = 0> at each match v of u∗. It then propagates m by forking

it to multiple copies and distributing all the copies to its 1-hop neighbors at the

same time. For each node v that receives a message m1 = <(u∗, v1), F1, h1>, it

increases h1 to h1 + 1 and then performs the following aggregation task:

1. If v has no local copy of any message containing u∗, it keeps a copy of m1.

2. If v has a local copy of a message, m2 = <(u∗, v2), F2, h2>. If F1 ≤ F2 and

h1 ≥ h2, discard m1; Otherwise keep both m1 and m2.

Intuitively, stard always keeps track of the node match with a greater “poten-

tial” to be the top-1 match, measured by the sum of its node score and “up to

the moment” edge score F (e) at the hth hop of propagation.
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<(C,c ),0.9,0>1

<(B,b ) ,0.9,1> 1
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<(D,d ) ,0.9,2> 1

<(C,c ),0.9,1>1

Figure 3.4: d-bounded star querying.

Example 13: Given query Q∗ in Figure 3.4 for 3-bounded search, FE is defined

as 0.8h−1 for a path match of length h. stard iteratively propagates m from node

c1 to its neighbors. When m is propagated to node v, it finds a local copy of

message m′ with an entry <(C, c2), 0.4, 1>, indicating that a match c2 is 1 hop

away from v. stard replaces the entry of c2 with c1, and continue propagation with

m. 2

Algorithm stard. We now give an outline of the complete algorithm stard. Given

a d-bounded star query Q∗, it performs d-round message propagation from all the

leaf node matches in G. After that, it selects Vp along the same line as stark.

For each match in Vp, it performs a traversal to collect the distance and score

information to compute top-k d-bounded matches, similar to stark.

Ping-Pong effect. There is a possibility that a node v could have a similarity

score with both the pivot node and a leaf node u∗ in Q∗. When a message initiated

at v for matching u∗ is passed around, it is possible that it arrives at v again. When

92



Chapter 3. Fast Top-k Search in Knowledge Graphs

v is matched to the pivot node, it might lose the trace of any other node that could

be matched to u∗. In this case, we can not derive the top-1 match pivoted at v

correctly. One way to solve this problem is to record two best matches for u∗ and

pass them around. This will guarantee at least one match can be used later.

Analysis. Once the message propagation terminates, the algorithm stard cor-

rectly computes top-k matches for Q∗, following stark. Hence it suffices to show

that all the top-1 matches are correctly gathered and computed. Indeed, stard

keeps the invariant below: (1) at any time during message propagation, the mes-

sage which carries the information of top-1 node and edge matches are not replaced

by any other message; and (2) when the propagation terminates, all the message

in (1) are guaranteed to be fetched. The correctness of stard hence follows.

For the time complexity, the main time cost of stard is dominated by the

message passing. There are at most d rounds of message propagation for every

node. For each node in G, we need to maintain at most d|V ∗| messages. Hence the

total time is in O(d2|E||V ∗|) for finding the pivot node set Vp. Once it is found,

the time to find top-k matches is in O(md|V ∗|+ k2 log k + |V ∗|k log k). The space

complexity is d|V ∗||V |. When |Q∗| and k are bounded by a small constant, the

total time complexity is O(d2|E| + md). The above analysis completes the proof

of Proposition 6. The most recent work [24] on the top-k tree matching in graphs
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proposes an optimal solution that runs in O(mR + k(nT + log k)), where nT is

the node number of the tree and mR is the edge number of a runtime graph that

is extracted from a transitive closure of the data graph. Note that the average

degree of knowledge graph could be large, m̄ > 30 v.s. m̄ = 2 ∼ 3 in [24]. This

may lead to a huge runtime graph, making mR prohibitively large.

The implementation of stard allows multi-level of parallelism. In vertex-centric

programming [94], each node can exchange messages between their neighbors in

parallel. All message propagation can be done in at most d rounds.

3.6 Top-k Star Join

The star query processing engine stark can not only process star queries quickly,

but also serve as a foundation to answer general graph queries. A graph query Q

can be decomposed to a set of star-shaped queries {Q∗}. Top-k answers to Q can

be assembled by collecting the top matches of each Q∗, followed by a multi-way

join process.

There is a great advantage of leveraging star queries. First, stark is able to

quickly generate matches in a monotonic decreasing order of the matching score.

As manifested in Section 3.6.1, this property is critical when joining multiple

subqueries: It produces an upper bound for those matches that have not been
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seen yet. Second, although a similar method [121] exists for other basic structures

like edges, a bigger structure like star-shaped subqueries can reduce the number

of joins, thus improving query processing time. There are two challenges for star

match assembling:

1. Query decomposition. Consider different query decomposition strategies

and determine an efficient way to execute a query.

2. Top-k rank join. Efficiently construct the join matches from star matches

and derive an upper bound for the remaining possible matches.

We first investigate the top-k rank join problem and then develop the intuition

that can be applied to query optimization in Section 3.6.2.

3.6.1 Top-k Star Rank Join

Given a query Q decomposed to a set of star queries Q = {Q∗
1, Q

∗
2, . . . Q

∗
m}, the

rank join is to find the top-k matches for Q by assembling the matches retrieved

by stark on each Q∗
i . This is outlined as starjoin in Alg. 5.

starjoin performs in a similar way as the hash rank join strategy (HRJN [69]).

It iteratively fetches k matches for each star and joins them with the existing

matches for the other stars (line 5 and 6). In order to compute the joins, a hash

table for each Li maintains the mapping of the joint nodes to the matches seen so

95



Chapter 3. Fast Top-k Search in Knowledge Graphs

Algorithm 5 Algorithm starjoin

Input: Q = {Q∗
1, Q

∗
2, . . . Q

∗
m};

Output: top-k join matches;

1: while Q 6= ∅ do

2: for each Q∗
i ∈ Q do

3: invoke stark on Q∗
i to find the next match M ;

4: join M with Lj (j 6= i) and add the join results to R;

5: update θ as the k-th score in R if |R| ≥ k;

6: compute upper bound θi based on M ;

7: add M to Li; remove Q∗
i from Q if θi < θ;

8: end for

9: end while

10: return the first k results in R;

far. starjoin keeps track of lower bound θ as the k-th match in the priority queue

R (line 7). It can be seen that the efficiency of the algorithm relies on the upper

bound θi for each star (line 8 and 9).

Upper bound [69]. Consider m match lists {L1, . . . , Lm}. For a list Li of size

ni, denote φij as the jth ranked match in Li. The upper bound θi is defined as

θi = F (φini
) +

m∑

j=1,j 6=i

F (φj1). (3.2)
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Intuitively, an upper bound is estimated as the sum of the scores from the last

match in one list and the top-1 matches from all the others.

The HRJN strategy was widely adopted in RDBMS and demonstrated the

superior performance over the traditional join-then-sort approach [69]. However,

there is a difference between HRJN and starjoin. Directly applying θi as Eq. 2

results in an invalid upper bound, as the scores for the joint nodes shared by

several stars are counted multiple times. This can be seen as the example shown

in Figure 3.5(a). Given a query Q and the score function F , let (A = an, U = un)

and (B = b1, U = u1) be the n-th match and the first match in L1 and L2,

respectively. According to Eq. 2, θ1 = F (an) + F (un) + F (u1) + F (b1), which

cannot be considered as the upper bound and directly compared with the lower

bound θ for the top-k join results. To overcome this problem, we introduce the

starjoin with the α-scheme.

Rank Join with α-scheme. Let U be the set of the joint nodes for two stars

Q∗
1 and Q∗

2, and A (resp. B) is the set of nodes that appear only in query Q∗
1

(resp. Q∗
2). Then based on a parameter α, we introduce a new ranking function

scheme, denoted as F ′(φ(Q∗
1)) = F (φ(A)) + α · F (φ(U)) for Q∗

1 and F ′(φ(Q∗
2)) =

F (φ(B)) + (1 − α) · F (φ(U)) for Q∗
2. Accordingly, given the two match lists, L1

for Q∗
1 and L2 for Q∗

2, the upper bound can be refined as

θ′1 = F ′(φ1n1) + F ′(φ21), θ
′
2 = F ′(φ11) + F ′(φ2n2), (3.3)
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where φ1n1 and φ21 are the last match and top match in L1 and L2, φ11 and φ2n2

are the top match and last match in L1 and L2, respectively. When α ∈ [0, 1],

one may verify that θ′1 and θ′2 are valid upper bound for the search on Q∗
1 and Q∗

2,

respectively. It is worth mentioning that the selection of α affects the number of

matches to be fetched for assembling.

Example 14: Given query Q in Figure 3.5(a) that is decomposed to two stars

Q∗
1 and Q∗

2. Denote ai(j) in the figure as the i-th largest entry in the match list

for A with the match score j. For example in L1 in Figure 3.5(c), a2(0.9) in the

third entry refers to the match a2 for A with score 0.9 and u1(0.5) refers to the

match u1 for U with score 1.0 ∗ α = 0.5. To identify the top-4 join matches as in

Figure 3.5(b), it only needs to reach the top-3 matches in L1 and L2 with α = 0.5.

While for α = 0.9, at least top-3 and top-11 matches in L1 and L2, respectively,

are required. 2

The effectiveness of starjoin can be evaluated by the total search depth, D =

∑
i |Li|, when the algorithm terminates. Example 14 implicates that when using a

proper α, starjoin will likely require a smaller D to identify the top-k join matches,

e.g., D = 6 (resp. D = 14) when α = 0.5 (resp. α = 0.9) in the example. To

determine an optimal α value for minimizing D, nevertheless, is not trivial. We

introduce a principled way to determine α in Section 3.6.3.
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Figure 3.5: Selection of α value.

The α scheme works for assembling two star matches, i.e., two-way join. For

multiple stars, we perform a sequence of two-way join (as a left-deep pipeline [69])

and apply the α scheme for each two-way join.

3.6.2 Query Decomposition

We next discuss the query decomposition problem, which has been studied for

solving complex queries, e.g., twig queries on XML data [121,141] and SPARQL on

RDFs [67]. However, the traditional techniques are not applicable in our problem

setting since the match score has to be calculated online.

Given a query graph, we expect a decomposition to generate a set of star

subqueries that minimize the total depth D. Since all match scores are generated
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on the fly, it is very challenging to analyze the search depth accurately. We

investigate several heuristics and evaluate their performance on real-world graphs.

First, a reasonable decomposition derives as small number of stars as possible,

which intuitively reduces the number of join operations. Second, to lower down

the upper bound in Eq. 3.2 (Section 3.6.1), we shall make F (φini
) as small as

possible. Therefore, a large score decrement for the matches in Li will likely lead

to small search depth. Third, we observe that many real-world star queries share

the similar distribution of the match scores with a long-tail effect, as illustrated

in Figure 3.6. Given a query decomposed to several stars, the search for each star

that stops at similar positions, say nb, is likely to yield smaller D, in comparison

with the case that one star search stops at na while the others stop at nc with a

much larger position gap. Based on these observations, the third intuition is to

decompose a query to a few stars that have similar distribution of matching scores.

While it is hard to derive the actual distribution, we approximately characterize

it with similar size, similar top-1 match score or similar match score decrement.

Based on the above intuitions, given Q, the objective of the query decomposi-

tion is to derive a minimum number of stars with similar features, such that the

score decrement of the matches for each star Q∗
i can be maximized. This can be
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Figure 3.6: The distribution of the top-k matching score.

described as an optimization problem,

maximize
{Q∗1,...,Q∗m}

m∑
i=1

δ(Q∗
i )− λ

m∑
i=1

|f(Q∗
i )− f̄ | (3.4)

subject to minimum m, (3.5)

where δ(Q∗
i ) is the score decrement of the top matches in Li, f(Q∗

i ) is the feature

score of Q∗
i while f̄ is their average, i.e., 1

m

∑m
i=1 f(Q∗

i ). Intuitively, it aims to max-

imize the score decrement and minimize the feature difference of the subqueries,

where λ is a parameter to make a trade-off.

Since it is costly to accurately compute the score decrement δ and exhaust all

the feature measurements, we consider several simple but effective features below:

SimSize: f(Q∗
i ) = |E∗

i |: Star size.

SimTop: f(Q∗
i ) = F (φi1), where φi1 is the top-1 match for Q∗

i . Unfortunately,

φi1 is difficult to observe without executing Q∗
i . Hence we use the top-1 pivot
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node match score to represent F (φi1). In practice, we sample nodes in knowledge

graphs and calculate the match score.

SimDec: δ(Q∗
i ) = f(Q∗

i ) =
F (φi1)−F (φini

)

ni
, where ni is the number of top matches

checked for Q∗
i . SimDec measures the average match score decrement for Q∗

i . In

practice, we approximate ni by p|V
∗
i |−1

∏
v∈V ∗i

nv, where nv is the number of node

matches and p is the probability that two node matches are connected. p is a

parameter estimated off-line by conducting a set of edge queries. nv is estimated

by sampling nodes in knowledge graphs calculating their match score with the

pivot node of Q∗
i , and selecting relevant ones.

Query decomposition based on SimSize only considers query structures. Nev-

ertheless, such problems (balanced edge partition) are in general hard (NP-

hard) [132]. We employ the efficient greedy algorithm designed in [132] for SimSize.

In practice, since most queries would not have many star subqueries, we use

dynamic programming to enumerate possible star decompositions starting with

m = 2. For each m, the decomposition with the best score of Eq. 5 will be picked

and returned immediately.
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3.6.3 Optimization: Determine the Parameters

The above top-k rank join technique has two parameters, α and λ, which can

be learned off-line by a testing and validation method. Suppose we have a sample

query workload W . Our top-k join algorithm is assumed as a black-box A with

three input α, λ and W . The output of A is the aggregated total depth D for

the queries in W . Let α ∈ [0, 1.0] and λ ∈ [0, 2.0]. By iteratively running A and

setting a small constant e.g., 0.1 as the adjustment step for α and λ, we can derive

an optimal setting of α and λ that minimizes D. As verified in Section 3.7, with

proper α and λ, our query optimization technique can achieve up to 45% runtime

improvement over the baseline algorithms.

STAR is currently memory-based; it can be conveniently adapted to existing

distributed memory-based platforms, such as Spark [159], where a single machine

is not capable to handle a large-scale graph. stark can be executed in individual

machines managed by Spark, and starjoin can be performed in the master node.

A distributed implementation is under development.
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3.7 Experimental Evaluation

We conduct a set of experiments, using real-world knowledge graphs to exam-

ine the performance of STAR and its components including the star query engine,

stark/stard, and the top-k rank join, starjoin.

3.7.1 Experimental Setup

Datasets. We employ the same set of knowledge graphs as introduced in Sec-

tion 2.8 in the following evaluation.

Query workload. Two sets of query workload are designed for the evaluation.

(1) We adopt the DBPSB benchmark [106] and derive 50 star query templates.

Each template contains a set of nodes and edges which are augmented by either

the real labels, e.g., ‘Person’, or a variable label ‘? ’. The percent of the variable

label is ≤ 50% in each template. The variable node (resp. edge) in a template

query can be matched to any node (resp. edge) in the graph. To generate a query,

we search the template in the graphs and select the most common labels from the

data entity that are matched to the variables. The selected labels are then used

to instantiate the variable nodes/edges in the template. (2) Since the templates

are only stars, we extend the templates by adding nodes and edges to generate

queries with cycles or multiple star structures. Figure 3.1 shows a sample query.
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Algorithms. We implement the STAR framework, including algorithms stark,

stard and starjoin. In order to run stark for d-bounded star queries, d-hop traversal

is performed for each node match of the pivot node. For comparison, we also

developed two top-k search algorithms, graphTA and BP.

(1) The algorithm graphTA (Section 3.3) is a direct application of the threshold

(TA) algorithm over top-k subgraph querying [169]. For a fair comparison, we

implement graphTA with two optimizations. (a) The neighbors and their matching

scores are cached in each node when the node is visited during the traversal. The

cache serves as an index to reduce the unnecessary graph traversal when the

node is visited again; (b) Instead of using the widely adopted DFS traversal, it

adopts BFS traversal so that the neighbor nodes are sorted based on their scores

before carrying out the next round of exploration. These two strategies reduce

the runtime of graphTA by 90%.

(2) The label propagation based algorithm [79, 160], such as Belief Propaga-

tion (BP), was also employed recently for approximate top-k pattern matching.

BP [160] considers the nodes/edges in a query as a set of random variables and

converts the top-k matching problem to the probabilistic inference on the label

(match) for each random variable. It finds approximate matches for cyclic pat-

terns, by exchanging probability scores as messages among node matches. For
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acyclic queries, BP outputs the exact top-k matches. But for cyclic queries, dif-

ferent from the STAR framework, it does not guarantee the completeness. We did

not employ the graph sketch technique developed in [160] as it can benefit all the

search algorithms.

Metrics. Given the query workload, the search runtime corresponds to the end-

to-end query processing time, i.e., the total CPU time spent from receiving the

query to the output of the top-k results. The time includes not only the cost of

the top-k search time but also the cost of other tasks, such as node matching and

query decomposition, which account for a small amount of runtime (≤ 1%).

Setup. All the algorithms are implemented in Java. We conduct the experiments

on a server with Intel Core i7 2.8GHz CPU and 32GB RAM, running 64-bit

Linux. To serve online queries, the graph is stored in main memory while the

rich information attached to the nodes/edges is stored in a MongoDB server on a

512GB SSD. Each result reported in the following is averaged over 5 cold runs.

3.7.2 Evaluation Results

Exp-1: Runtime over star queries. In this experiment, we examine the im-

pact of the search bound d. We employ a query workload consisting of 1, 000

star queries which are randomly generated based on the query templates with
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Figure 3.7: The effect of search bound d.

different size. By fixing k=20 and varying d, we compare the performance

of stark, stard, graphTA and BP.

The results over DBpedia and YAGO2 are reported in Figure 3.7(a) and (b)

respectively, in log scale. The result shows that stark and stard outperform BP and

graphTA by almost one order of magnitude. Note that when d = 1, stard degrades

to stark, thus having the same runtime. The results also demonstrate superb

performance of stard when d ≥ 2. Indeed, for large d, BP, graphTA and stark may

incur a humongous amount of message passing and neighborhood exploration,

which can be reduced by stard.

Exp-2: Impact of k and query size. In this set of experiments, we evaluate the

impact of k and query size to the runtime. Fixing d = 2 and use the same query

workload as in the previous experiment, we vary k from 1 to 100. The results are

plotted in Figure 3.8(a-b), which shows that the runtime of BP and graphTA grows

dramatically when k increases. Indeed, both BP and graphTA use top scored node
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matches to find complete matches, which incurs considerable useless enumeration

and traversal, especially for larger k. The top scored node matches might not lead

to the best matches of the query. In contrast, stark and stard outperform all other

methods in orders of magnitude, and their performance is much less sensitive to

the growth of k. We observe that the main bottleneck for stark is the expensive

graph traversal, especially for larger d and denser graphs (DBpedia). stard copes

with this quite well: Almost all results are acquired in 1 second.

To evaluate the impact of query size, we use star query templates with different

numbers of nodes varying from 2 to 6. We generate 5 query workloads accordingly,

each contains 1, 000 instantiated queries. We fix d=2 and k=20. Figures 3.8(c-d)

show the exponential runtime growth of BP and graphTA, while stark and stard

are less sensitive. stark (resp. stard) improves BP and graphTA better over larger

queries, and is twice (resp. 8 times) faster than graphTA for even single edge query

with 2 nodes.

We conduct the above experiments on more complicated graph queries and had

very similar observations. The reason is obvious. Since stark and stard optimize

the search based on bigger structures (star vs. single node/edge), their search will

have a lower chance to be stuck in local optimum.

Exp-3: Efficiency of top-k join. This experiment examines the proposed top-

k rank join technique. The three query decomposition methods, i.e., SimSize,
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(b) Varying k: YAGO2
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(c) Varying query size: DBpedia
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Figure 3.8: Efficiency of star querying.

SimTop and SimDec, are inspected, respectively. The node score variance in

SimTop and SimDec is estimated online by randomly sampling 200 matches for

each query node. The sampling time only accounts for ≤ 1% of the total search

time and hence is not reported separately. In SimDec, p = 4.5× 10−4, estimated

by checking a set of edge queries. Additionally, two baselines are compared: (1)

Rand refers to a method that randomly selects the pivot nodes to generate star
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Figure 3.9: Evaluation on the top-k join.

subqueries; (2) MaxDeg greedily selects the pivots with the highest degree in the

query graph.

We first test the effect of the α-schema. A query workload is generated using

randomly selected query templates. We choose k=100 and d=1 in the experiment.

Figure 3.9(a) depicts the average search time by varying α. It shows that a well

selected α value indeed leads to less runtime. Considering each method, the best

performance can be achieved when α = 0.3 for MaxDeg, α = 0.3 for SimTop

and α = 0.9 for SimDec (λ = 1.0), respectively. These α values are used in the
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following tests. We choose α = 0.5 for Rand and SimSize due to their random

and symmetrical nature (verified by real test). We also evaluate each method

by varying k and plot the time efficiency in Figure 3.9(b). The result tells when

k increases, the search time increases accordingly. Moreover, SimSize, SimTop

and SimDec demonstrate constantly better runtime performance than Rand and

MaxDeg for each k setting. Among all the methods, SimDec performs best, saving

up to 45% w.r.t. Rand in terms of search time.

The experiment in Figure 3.9(c) examines top-k join by the query workloads

with different query size, ranging from Q(3, 3) to Q(5, 6). We observe when the

query size increases, the runtime increases for all the methods. This is because

a larger query is usually decomposed into more stars, leading to more expensive

multi-way joins. In the figure, SimDec shows the best time efficiency compared

with the others. Moreover, the top-k join incurs large search depth for each

star subquery. This effect can be seen in Figure 3.9(d), which reports the average

search depth. Among all the methods, SimDec results in the smallest search depth

for each query workload. Figure 3.9(d) also shows the average standard deviation

as the error bar for each workload. When serving a query, small depth deviation

indicates similar search depth for each star subquery, leading to a balanced search

effort. As shown in the figure, the heuristic employed in SimDec is quite effective,

showing the smallest deviation. Note that this balance merit might have signifi-
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cant impact on distributed graph query processing and thus is worth investigating

in the future.
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Figure 3.10: Scalability evaluation of top-k search on Freebase.

Exp-5: Scalability. This experiment studies the scalability of the algorithms

over Freebase. Specifically, we extract a graph G1(10M, 51M), i.e., 10M nodes

and 51M edges, from Freebase and expand it in a BFS manner (each time ran-

domly pick up a node and add the new edge from Freebase) to three larger graphs

G2(20M, 91M), G3(30M, 130M) and G4(40M, 180M). We use a query workload

with 1, 000 randomly generated queries and fixed k = 20 and d = 2. Since k is

fixed, the runtime might not increase linearly w.r.t the graph size. Figure 3.10(a)

reports the result of top-k star querying in log scale. When the graph size in-

creases, the runtime of all the algorithms increases, as expected. stark and stard

outperform their competitors by at least one order of magnitude. Moreover, stard

further improve stark by 35%− 45%.
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We also verify the scalability of starjoin and report the result in Figure 3.10(b).

Using the α schema, the proposed decomposition techniques, SimSize, SimTop and

SimDec, are 20% − 44% faster than the baselines Rand and MaxDeg. This again

demonstrates the effectiveness of the α-scheme and the decomposition heuristics.

3.8 Related Work

The top-k search has been studied extensively in various contexts, including

relational data, XML and graph.

Relational data. Top-k search over relational data is to find top-k tuples for

a scoring function [70]. Given a monotonic aggregation function, and a sorted

list for each attribute, Fagin’s algorithm [40] reads the attribute values from the

lists and constructs tuples with the attributes. It stops when k tuples are found

from the top-ranked attributes that have been seen. It then performs random

access to find missing scores. The algorithm is optimal with high probability for

some monotonic scoring functions. The threshold algorithm [41] improves Fagin’s

algorithm in that it is optimal for all monotonic scoring functions, and allows early

termination. In a nutshell, it reads the scores of a tuple from the lists and performs

sorted access to tuples by predicting maximum possible score in the unseen ones,
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until top-k tuples are identified. Besides simple aggregation, selection queries are

studied in [17] following a similar idea.

Ranked join queries are studied over relational data [69, 109, 158, 168]. As-

suming that random access is not available, J∗ search [109] tries to identify a

combination of attributes at the top of priority queues by selecting the stream to

be joined, and pulls the next tuple from the selected stream. Ranked join queries

are also studied in NoSQL databases [112], which leverage indices and MapRe-

duce optimization, as well as statistical structures (histogram and bloom filter)

to reduce the cost and identify promising values. Distance join index is proposed

in [168] to find matches with static scores for graph patterns, where edges can

be matched to paths. A recent work [123] introduces the hybrid indexing on

weighted attribute graphs. The indexing considers the weights of the attributes

on the nodes as well as the structure of the graph.

In this work we study top-k queries on knowledge graphs. (1) We do not as-

sume static node/edge weights; instead, the matching scores are computed online.

(2) We study a general graph matching problem, where the matching quality is

determined by scores from nodes and edges, and edges can be matched to paths

of bounded length.

Keyword search. Keyword search in XML finds top-k subtrees of a XML docu-

ments that contain all the required keywords, instead of a subgraph that matches
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a pattern query [56, 59]. When XPath and XQuery are considered, it is to

find top ranked matches for tree patterns in terms of keywords and IR metrics,

e.g., TFIDF [101].

Twig query. In a more general setting, top-k graph pattern matching for twig

queries are studied [24, 55, 121]. A bottom-up strategy is studied [55] where

sorted access is used to generate matches for the leaf nodes in the twig query,

and top matches for subqueries are obtained by merging top matches from their

leaf nodes. [121] studies top-k graph pattern matching when strict monotonic-

ity may not hold for some twig queries. These studies typically require sorted

node/edge matches and the construction of transitive closure for the data graph,

which are expensive over large graphs. In contrast, our method does not require

transitive closure and is able to perform top-k join using partial matching lists

generated online.

Graph query. Top-k search for general graph queries was studied [29,38,141,150,

163,169]. The common practice in these studies for early termination is, in general,

conservative TA-style test, while combined with scheduling approaches and tuning

elements. They often follow several steps as follows: (1) Fetch matching lists for

nodes and edges; (2) iteratively perform sorted access over a selected list, and

expand a partial match by joining node and edge matches from other list, and

(3) update top-k matches with seen matches. A threshold derived from seen
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matches and an upper bound estimation from unseen matches are adjusted, to

dynamically determine a termination condition. A closely related method is [29],

which uses multiple match lists of spanning trees from a pattern to answer top-k

graph pattern matching. Instead of accessing node/edge matches in the list, we

resort to big structure – star subquery, which can be solved in a very efficient

manner. This is not addressed in [29]. Furthermore, our decomposition technique

identifies promising stars as the subqueries when serving the general graph query.

Another related work is the best-effort algorithm [143]. It returns k matches

based on heuristic rules, i.e., first finding the most promising match vertex v

and then extending it to a complete match for the remaining nodes and edges.

However, this method do not guarantee that the k discovered matches are the

best ones over all matches.

3.9 Summary

We developed STAR, a top-k subgraph pattern matching framework over

knowledge graphs. We have shown that STAR can efficiently solve popular star

queries posed on knowledge graphs. It can also be conveniently exploited for large

graph queries with cycles, by incorporating a top-k rank join algorithm and an

upper bound scheme. STAR does not require any pre-built index. Experimental
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results show that STAR is 5-10 times faster than the state-of-the-art TA-style

subgraph matching algorithm.
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Chapter 4

Ontology-based Graph Querying

Traditional subgraph querying based on subgraph isomorphism requires iden-

tical label matching, which is often too restrictive to capture the matches that

are semantically close to the query graphs. This chapter extends subgraph query-

ing to identify semantically related matches by leveraging ontology information.

(1) We introduce the ontology-based subgraph querying, which revises subgraph

isomorphism by mapping a query to semantically related subgraphs in terms of

a given ontology graph. We introduce a metric to measure the similarity of the

matches. Based on the metric, we introduce an optimization problem to find top

K best matches. (2) We provide a filtering-and-verification framework to identify

(top-K) matches for ontology-based subgraph queries. The framework efficiently

extracts a small subgraph of the data graph from an ontology index, and further

computes the matches by only accessing the extracted subgraph. (3) In addition,

we show that the ontology index can be efficiently updated upon the changes to
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the data graphs, enabling the framework to cope with dynamic data graphs. (4)

We experimentally verify the effectiveness and efficiency of our framework using

both synthetic and real-life graphs, comparing with traditional subgraph querying

methods.

4.1 Introduction

Traditional subgraph querying adopts identical label matching, where a query

node in Q can only be mapped to a node in G with the same label. This is,

however, an overkill in identifying matches with similar interpretations to the

query in some domain of interest. In such matches, a query node may correspond

to a data node in G which is semantically related, instead of a node with an

identical label. The need for this is evident in querying social networks [30],

biological networks [146] and semantic Web, among others.

Example 15: Consider the graph G shown in Figure 4.1 which depicts a frac-

tion of a social travel network [5]. Each node represents an entity of types

such as tourist groups (Holiday Tours (HT), Culture Tours (CT)), attrac-

tions (Disneyland, Royal Gallery (RG)), leisure centers (Holiday Plaza (HP),

Royal Palace (RP)), or restaurants (Holiday Cafe (HC), riverside); and each
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edge represents a relation between two entities, e.g., “has guides for” (guide), or

“recommend” (recom).

Consider a query Q given in Figure 4.1 from a tourist. It is to find some other

tourists who (1) recommend museum tours with guide services, and (2) favor a

restaurant named “moonlight,” which in turn is close to the museum. Traditional

subgraph isomorphism cannot identify any match for Q in G with identical labels.

Indeed, there is no node in G with the same, or even textually similar labels for the

labels in Q. However, there are data nodes in G which are semantically close to the

query nodes, and thus should be considered as potential matches. For example,

node Royal Gallery in G is intuitively a kind of museum in Q. Nevertheless, it

is also difficult to determine their closeness by using Q and G alone. 2

The above example illustrates the need to identify node matches that are close

to the query nodes, rather than those with identical or similar labels. Several

extensions for subgraph isomorphism have been proposed to identify matches with

node similarity [31, 43, 148], while assuming as input the similarity information

between query nodes and data nodes. However, as observed in [33], users may not

have the full knowledge to provide such information.

To this end, we need to understand the semantic relationships among the

query nodes and data nodes, i.e., given the label of a query node, which labels

are semantically close to the label, in terms of standard description of entities.
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Figure 4.1: Searching a graph for traveling.

This is possible given the emerging development of ontology graphs [27, 37, 146].

An ontology graph typically consists of (1) a set of concepts or entities, and (2) a

set of semantic relationships among the nodes. The ontology graphs may benefit

the subgraph query evaluation by providing additional information about the

relationships and similarity among the entities. Consider the following example.

Example 16: Figure 4.2 illustrates a travel ontology graph Og [30] provided

by a travel social network service, which illustrates the relationships between

the entities in G (Figure 4.1). According to Og, (a) RG is a kind of Museum,

while Disneyland is not, (b) riverside and moonlight refer to the same

restaurant in Og, while HC is a different restaurant, and (c) CT and HT are
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both close to the term tourists. Given this, the subgraph G′ of G given

in Figure 4.2 should be a match close to Q. Indeed, each edge of Q (e.g.,

(museum, tourist)) can be mapped to an edge of G′ with highly related nodes

(e.g., (Royal Gallery, Cultural Tour Community)). earlier.

On the other hand, consider the subgraph G′′ (not shown) induced by

Disneyland, Holiday Cafe and Holiday tours. Although its three nodes are

related with Museum, tourists and moonlight, respectively, they are not as close

as the nodes in G′ according to Og. For example, Disneyland is more similar to

the term Park than Museum. Thus, G′ should be considered as a better match for

Q, according to Og. 2

The ontology information has been used in e.g., keyword searching [65], se-

mantic queries [33, 37, 80], and social networks [30]. Nevertheless, little is known

on how to exploit ontology graphs for effective subgraph querying. Moreover, it

is important to develop efficient query evaluation techniques, especially when a

query may have multiple “interpretations” and matches in terms of ontology-based

similarity [65].

Contributions. We develop query evaluation techniques to efficiently identify

matches that are close to a given query graph, by exploiting the ontology graphs.

(1) We propose ontology-based subgraph querying in Section 4.2. (a) Given a data
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Figure 4.2: Ontology-based matching.

graph G, a query graph Q, and an ontology graph O which provides the semantic

relationships among different ontologies, the ontology-based subgraph querying

is to identify the matches for Q in G, where the nodes in the matches and the

query are semantically close according to O. In contrast to subgraph isomorphism

and its extensions, ontology-based subgraph querying measures the similarity of

the nodes by exploiting the ontology graphs. (b) We introduce a metric to rank

the matches of Q, based on the overall similarity of the labels between the query

nodes and their matches, in terms of the ontology graphs. The metric gives rise

to the the top K matches problem, which is to identify the K closest matches of

Q in G.

(2) Based on the metric, we propose a filtering-and-verification framework for

123



Chapter 4. Ontology-based Graph Querying

computing top-K matches (Section 4.4). (a) We introduce an ontology index

based on a set of concept graphs, which are abstractions of the data graph G

w.r.t. O. We show that the index can be constructed in quadratic time, by

providing such an algorithm. (b) Using the index, we develop a filtering strategy,

which extracts a small subgraph of G as a compact representation of the query

results, in quadratic time. The time complexity is determined only by the size

of the index and the query, rather than the size of entire G. (c) We provide a

query evaluation algorithm (Section 4.3) to compute the (top-K) matches following

the filtering-and-verification strategy, which computes matches directly from the

extracted subgraph without searching G.

(3) We experimentally verify the effectiveness and efficiency of our querying algo-

rithms, using real-life data and synthetic data. We find that the ontology-based

subgraph querying can identify much more meaningful matches than traditional

subgraph querying methods. Our query evaluation framework is efficient, and

scales well with the size of the data graphs, queries and ontology graphs. For

example, our evaluation algorithm only takes up to 22% of the running time of

a traditional subgraph querying method over graphs with 7.7M nodes and edges.

Moreover, the construction and incremental maintenance of the index is efficient.

The incremental algorithm outperforms the batch computation, and only takes
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up to 20% of the running time of batch computation in our tests. We contend

that the framework serves as a promising method for subgraph querying using

ontology graphs in practice.

4.2 Ontology-based Subgraph Querying

Below we introduce data graphs and query graphs, as well as the ontology

graphs. We then introduce the notion of the ontology-based subgraph querying.

4.2.1 Graphs, Queries and Ontology Graphs

Data graph. A data graph is a directed graph G = (V, E, L), where V is a finite

set of data nodes, E is the edge set where (u, u′) ∈ E denotes a data edge from

node u to u′; and L is a labeling function which assigns a label L(v) (resp. L(e))

to a node v ∈ V (resp. an edge e ∈ E)

In practice the function L may specify (1) the node labels as the description

of entities, e.g., URL, location, name, job, age; and (2) the edge labels as rela-

tionships between entities, e.g., links, friendship, work, advice, support, exchange,

co-membership [102].

Query graph. A query graph is a directed graph defined as Q = (Vq, Eq, Lq),

where (1) Vq and Eq are a set of query nodes and query edges, respectively; and
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(2) Lq is a labeling function such that for each node v ∈ Vq (resp. e ∈ Eq), Lq(u)

(resp. Lq(e)) is a node (resp. edge) label.

Ontology graph. In real applications the ontologies and their relationships

can typically be represented as standardized ontology graphs [13, 27, 37, 80]. An

ontology graph O=(Vr, Er) is an undirected graph, where (1) Vr is a node set,

where each node vr ∈ Vr is a label referring to an entity; and (2) Er is a set of

edges among the labels, where each edge er ∈ Er represents a semantic relation

(e.g., “refer to,” “is a,” “specialization” [80]) between two nodes.

In addition, we denote as sim(vr1 , vr2) a similarity function, which computes the

similarity of two nodes vr1 and vr2 in O as a real value in [0, 1]. Following ontology-

based querying [80], (1) sim(vr1 , vr2) is a monotonically decreasing function of the

distance from vr1 to vr2 in O, and (2) sim(vr1 , vr2) = sim(vr2 , vr1). Intuitively, the

closer vr1 and vr2 are in O, the more similar they are [33, 34, 80]. For example,

sim(vr1 , vr2) can be defined as 0.9dist(vr1 ,vr2 ), where dist(vr1 , vr2) is the distance from

vr1 to vr2 in O [80].

Remarks. In practice, the ontology graphs and sim () can be obtained from, e.g.,

semantic Web applications [37], Web mining [83], or domain experts [13]. While

proposing more sophisticated models for ontologies and similarity functions are

beyond the scope of this work, we focus on technique that applies to a class
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of similarity functions sim (). Note that sim () can also be revised for directed

ontology graphs.

pink rose
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Figure 4.3: Data graph and ontology graph.

Example 17: The graph Q (resp. G) in Figure 4.1 depicts a query graph (resp. a

data graph). There are three types of edge relations in both G and Q, i.e., recom,

near, and guide. All the other edges in G share a same type (not shown). The

ontology graph Og in Figure 4.3 illustrates the relationships among the entities in

G, e.g., moonlight is relocated as riverside (edge e(moonlight, riverside)). A

similarity function sim(vr1 , vr2) for Og can be defined as 0.9dist(vr1 ,vr2 ). For example,

sim(museum, Disneyland) = 0.92 = 0.81.

As another example, consider the data graph Gc and an ontology graph Ogc

given in Figure 4.3. The nodes in Gc are labeled with colors (e.g., blue). All the

edges in Gc indicates the relationship “similar with,” e.g., the edge (red, rose)
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indicates that red is close to rose. Similarly, we define sim(vr1 , vr2) as 0.9dist(vr1 ,vr2 )

for nodes vr1 and vr2 in Ogc . 2

4.2.2 Ontology-based Subgraph Querying

Given a query graph Q = (Vq, Eq, Lq), an ontology graph O, a data graph G

= (V, E, L), a similarity function sim() and a similarity threshold θ, the ontology-

based querying is to find the subgraphs G′ = (V ′, E ′, L′) of G, such that there is

a bijective function h from Vq to V ′ where (a) sim(L(h(u)), Lq(u)) ≥ θ, and (b)

(u, u′) is a query edge if and only if (h(u), h(u′)) is a data edge, and they have the

same edge label. We refer to G′ as a match of Q in G induced by the mapping h,

and denote all the matches in G for Q as Q(G). In addition, the candidate set for

a query node u as the set of nodes v where sim(u, v) ≥ θ. Here we assume w.l.o.g.

that all the node labels in G are from O.

Top-K subgraph querying. In practice one often wants to identify the matches

that are semantically “closest” to a query. We present a quantitative metric for

the overall similarity between a query graph Q and its match G′ induced by a

mapping h, defined by a function C as follows.

C(h) =
∑

sim(Lq(u), L(h(u))), u ∈ Vq.
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The metric favors the matches that are semantically close to the query: the

larger the similarity score C(h) is, the better the mapping is. On the other hand,

if a subgraph G′ matches Q with identical node labels, i.e., via a subgraph isomor-

phism mapping h, C(h) has the maximum value. Indeed, traditional subgraph

isomorphism is a special case of the ontology-based subgraph querying, when the

similarity threshold θ = 1.

The metric naturally gives rise to an optimization problem. Given Q, G, O

and an integer K, the top K matches problem is to identify K matches for Q in

G with the largest similarity.

Example 18: Recall the query Q, the data graph G in Figure 4.1 and the on-

tology graph Og in Figure 4.2. Assume the similarity threshold θ = 0.9. One

may verify that the candidate set of query node museum can(museum)= {Royal

Gallery,attractions, park}, and similarly, can(moonlight) = {riverside,

Holiday Cafe, Holiday Plaza}. The match G′ for Q in G has the maximum sim-

ilarity sim(museum, Royal Gallery) + sim(tourists, Culture Tour Community)

+ sim(moonlight, riverside) = 0.9 ∗ 3 = 2.7. 2

One may verify that the top K matches problem is NP-hard. Indeed, the

traditional subgraph isomorphism is a special case of the problem, which is known
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to be NP-complete [148]. We next provide a query evaluation framework for the

problem.

4.3 Querying Framework

Traditional ontology-based querying, by and large, relies on query rewriting

techniques [20], which replaces query nodes with its candidates and may yield

an exponential number of queries. These queries are then evaluated to produce

all the results. This may not be practical for ontology-based subgraph querying.

Alternatively, a similarity matrix can be computed, where each entry records

the similarity between the query nodes and its candidates. Nevertheless, (1)

the matrix incurs high space and construction cost (O(|Q||G|)), and needs to be

computed upon each query, and (2) the time complexity is relatively high for

both the exact algorithms (e.g., [148]) and approximation algorithms [43] over

the entire data graph.

Using ontology graphs, we can do better. Since it is hard to reduce the com-

plexity of the isomorphism test, we develop a filtering-and-verification framework

to reduce the input of the ontology-based querying. Upon receiving a query, the

framework evaluates the query as follows. (1) During the filtering phase, the

framework uses an ontology index to either extract a small subgraph of the data
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graph that contains all the matches, or determine the nonexistence of the match,

in polynomial time; and (2) during the verification phase, the framework extracts

the best matches from the small subgraph in (1), without searching the entire data

graph.

Q

Rg
G

Index construction

Ontology graph views
filter

verification

Q(G)

Go
Q

Gs

Q

Q(Gs)

Figure 4.4: Ontology-based querying framework.

Overview of the framework. The framework has three components, as illus-

trated in Figure 4.4. The ontology index is constructed once for all in the first

phase, while the query is evaluated via the filtering and verification phases.

Index construction. The framework first constructs an ontology index for a data

graph G, as a set of concept graphs. Each concept graph is an abstraction of G

by merging the nodes with similar labels in the ontology graph. The index is

precomputed once, and is dynamically maintained upon changes to G.

Filtering. Upon receiving a query Q, the framework extracts a small subgraph as

a compact representation of all the matches that are similar to Q, by visiting the
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concept graphs iteratively. If such a subgraph is empty, the framework determines

that Q has no match in G. Otherwise, the matches can be extracted from the

subgraph directly without accessing G.

Verification. The framework then performs isomorphism checking between the

query and the extracted subgraph to extract the (top K) matches for Q.

We next provide the details of each phase of the framework.

4.4 Ontology-based Indexing

In this section we introduce the indexing and filtering phases of the ontology-

based subgraph querying framework. We introduce the ontology index in Sec-

tion 4.4.1, and present the filtering phase in Section 4.4.2 based on the index.

4.4.1 Ontology Index

The ontology index consists of a set of abstractions of a data graph G. Each

abstraction, denoted as a concept graph, is constructed by grouping and merging

the nodes in G, which all have a label similar to a label in the ontology graph O.

Given a data graph G = (V, E, L) and an ontology graph O (with similarity

function sim), as well as a similarity threshold β, a concept graph Go = (Vo, Eo, Lo)

is a directed graph where (1) Vo is a partition of V , where each vo ∈ Vo is a set
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of data nodes, (2) each vo has a label Lo(vo) from O, such that for any data node

v ∈ vo and its label L(v), sim(L(v), Lo(vo)) ≥ β, and (3) (vo1 , vo2) is an edge in

Eo if and only if for each node v1 in vo1 (resp. v2 in vo2), there is a node v2 in vo2

(resp. v1 in vo1), such that (v1, v2) (resp. (v2, v1)) is an edge in G. We refer the

set of the labels Lo(vo) to as concept labels.

Intuitively, a concept graph provides a “perspective” of the data graph in terms

of several concept labels from the ontology graph. (1) Each node in the concept

graph represents a group of nodes that are all similar to (extended from) a same

label as a “concept” [80]. (2) Each edge in the concept graph represents a set

of edges connecting the nodes in the two groups of nodes corresponding to two

concepts. Hence, a concept graph is an abstraction of a data graph, by capturing

both the semantics of its node labels as well as its topology.

Remarks. The abstraction of a graph is typically constructed by grouping a set

of similar or equivalent nodes. Bisimulation [114] and regular equivalence [14] are

used to generate abstract views of graphs [103], where two nodes are equivalent

if they have a set of equivalent children with the same set of labels. In contrast,

the nodes in a concept graph contains the nodes that are similar to a same label

in a given ontology graphs, even they themselves may not have the same label.

Based on the concept graphs, an ontology index I of G is a set of concept

graphs {Go1 , . . . , Gom}, where each concept graph Goi
has distinct concept label
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Figure 4.5: Ontology index and concept graphs.

set and similarity threshold β. Note that we distinguish the similarity threshold

β for generating concept graphs from the threshold θ for the queries (Section 4.2),

although they may have the same value.

Example 19: Consider the data graph Gc and the ontology graph Ogc in Fig-

ure 4.3. Fixing a similarity threshold β = 0.81, and setting Σ = {red, blue, green}

in Ogc as concept labels, a concept graph G′
c w.r.t. Σ is as shown in Figure 4.5.

Each node in G′
c represents a set of nodes with labels similar to a concept label,

e.g., the node red is a set {rose, pink}, where sim(red, rose) and sim(red, pink)

are both 0.9 (as defined in Example 17). On the other hand, although the node

violet is similar to a concept label blue, it is not grouped with the node sky in

G′
c. Indeed, while violet has a parent olive similar with the concept label green,

the node sky has no such parent. Figure 4.5 illustrates two concept graphs Go1 and

Go2 for the data graph G in Figure 4.1, where the similarity threshold β is 0.81.
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The concept graphs Go1 and Go2 are constructed in terms of two sets of concept

labels {museum,tourists,moonlight, leisure center}, and {park,,riverside,

leisure center}, respectively. An ontology index I is the set {Go1 , Go2}. 2

Index construction. We next present an algorithm to construct the ontology

index for a given data graph, in quadratic time.

Proposition 7: Given a data graph G(V, E, L), an ontology index can be con-

structed in O(|E| log |V |) time. 2

Algorithm 6 Algorithm OntoIdx
Input: O, G, similarity threshold β, integer N ;

Output: Ontology index I;

1: I=∅;

2: generate N distinct concept label sets {C1, . . . , CN};

3: for each Ci do

4: I=I ∪ CGraph(β, Ci, O, G);

5: end for

The algorithm, denoted as OntoIdx, takes as input the graphs G and O, a

similarity threshold β, and an integer N as the number of the concept graphs to

be generated. As shown in Alg. 6, the algorithm first initializes a set I as the

ontology index (line 1). It then performs the following two steps.
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Algorithm 7 Algorithm CGraph

Input: O, G, threshold β, concept label set C={l1, . . . , lm};

Output: concept graph Go = (Vo, Eo, Lo);

1: construct partition Vo of V as {V1, . . . , Vm}, where Lo(Vi)=li, Vi =

{v|sim(L(v), li) ≥ β};

2: set Eo := {(V1, V2)|(v1, v2 ∈ E), v1 ∈ V1, v2 ∈ V2};

3: while there is change in Vo do

4: if there is an edge (vo1 , vo2) where v1 ∈ vo1 has no child in vo2 (resp.

v2 ∈ vo2 has no parent in vo1 ) then

5: SplitMerge(vo1 , Go) (resp. SplitMerge(vo2 , Go));

6: update Go;

7: end if

8: end while

9: return Go := (Vo, Eo, Lo);

Concept labels selection (line 2). OntoIdx uses the following strategy to generate

concept label sets by exploiting the partition techniques. For a given similarity

threshold β, (1) it partitions O via graph clustering or ontology partitioning tech-

niques [4,126,134], where the nodes in O are partitioned into several clusters, and

(2) for each cluster, OntoIdx iteratively selects a label l and add it into a set C,

and removes all the labels l′ where sim(l, l′) ≥ β in the cluster. The process re-
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peats until there is no label remains in the cluster, and the set C is returned after

all the clusters are processed in O. One may verify that the strategy produces a

set of concept labels C, such that for any label in a data graph l′, there exists a

concept label l ∈ C where sim(l, l′) ≥ β. OntoIdx uses the strategy to generate N

distinct sets of concept labels (line 2).

Concept graph construction (lines 3-5). After the concept labels are selected,

OntoIdx then invokes procedure CGraph to compute a concept graph and extend

I (lines 3-4) for each concept label set Ci, until all Ci are processed (line 5).

Procedure CGraph constructs a concept graph Go as follows. It constructs the

node set Vo as a node partition of the data graph G, where each node of Vo consists

of the nodes with similarity to a concept label bounded by β (line 1). The edge

set Eo is also constructed accordingly (line 2). It then checks the condition that

whether for each edge (vo1 , vo2) of Go, each node in vo1 (resp. vo2) has a child in vo2

(resp. parent in vo1) (line 4). If not, it invokes a procedure SplitMerge (omitted) to

refine Vo by splitting and merging the node vo1 (resp. vo2) to make the condition

satisfied (line 5). The graph Go is updated accordingly with the new node and

edge set (line 6). The refinement process repeats until a fixpoint is reached, and

Go is returned as a concept graph (line 7).
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Example 20: Recall the data graph Gc and ontology graph Ogc in Figure 4.3.

To compute a concept graph of Gc, The algorithm OntoIdx first generates a set

of concept labels as {red, blue, green} (line 2). It then invokes CGraph to con-

struct a node partition of G as the node set of Gc (line 4), and generates Gc0 as

shown in Figure 4.6. Each node and edge is refined according to the definition

of the concept graph (lines 3-6). For example, the node (green, lime, olive)

labeled with green is split into two nodes (green, lime) and olive by invoking

procedure SplitMerge (line 5), which updates Gc0 to Gc1 (Figure 4.6). Similarly,

CGraph (1) splits the node (blue, sky, violet) into (blue, sky) and violet,

and updates Gc1 to Gc2 , and (2) splits the node (pink, rose, flame) to produce

G′
c (Figure 4.5) as the final concept graph. 2

Correctness and Complexity. The algorithm CGraph correctly computes a set of

concept graphs as the ontology index. For the complexity, (a) the concept labels

can be selected in O(|O|) time; (b) the time complexity of SplitMerge and CGraph

is O(|V | + |E|) and O(|E| log |V |), respectively; and (c) the procedure CGraph is

invoked at most N times (lines 4-5). Thus, the total time complexity of OntoIdx is

O(N ∗|E| log |V |). As N is typically small comparing with |V | and |E|, the overall

complexity of OntoIdx is thus O(|E| log |V |). The above analysis also completes

the proof of Proposition 7.
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Figure 4.6: Construction of concept graphs.

4.4.2 Ontology-based Filtering

In this section, we illustrate the filtering phase of the query evaluation frame-

work based on the ontology index. As remarked earlier, instead of performing

subgraph isomorphism directly over the data graph G, we extract a (typically

small) subgraph of G that contains all the matches of the query. Ideally, one wants

to identify the minimum subgraph which is simply the union of all its matches.

Nevertheless, to find such an optimal subgraph is already NP-complete [48].

Instead, we use ontology index to efficiently reduce the nodes and edges that

are not in any matches as much as possible, and extract a subgraph Gv of G,

which is induced by a relation M between the query nodes in a query Q and the

nodes in a concept graphs Gc. The relation M is a relaxation of the subgraph

isomorphism which guarantees the following condition: (1) for each query node u
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in Q and its matches v (if any), v is in a node M(u) in Gc, (2) for each query node

u and each edge (u, u1) (resp. (u2, u)) in Q, (M(u),M(u1)) (resp. (M(u2),M(u))

is an edge in Gc. The subgraph Gv is extracted from Gc by “collapsing” M(u) for

each query node u to a set of corresponding data nodes in G. If multiple matching

relations are computed from a set of concept graphs in I, for each query node

u, M(u) is refined as
⋂

Mi(u), where Mi(u) is collected from Gci
in the ontology

index.

The following result shows the relationship between the subgraph Gv and on-

tology index.

Proposition 8: Given an ontology index I, a query graph Q and a data graph

G, if the subgraph Gv is empty, then Q(G) is empty; otherwise, Q(G) = Q(Gv),

and (2) Gv can be computed in O(|Q||I|) time, where |I| (resp. |Q|) is the total

number of nodes and edges in I (resp. |Q|). 2

To see Proposition 8 (1), observe that if Q has a match G′ induced by an

ontology-based isomorphism mapping h, then a relation M can be constructed

such that for any query node u, h(u) ∈ M(u). Thus, Gv contains all the matches

of Q, and Q(G) = Q(Gv). On the other hand, if Gv is empty, then no match exists

in G for Q and Q(G) is empty, since no relation M exists even as a relaxation of

subgraph isomorphism.
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To prove Proposition 8 (2), we introduce an algorithm, denoted as Gview, to

generate Gv from I in O(|Q||I|) time.

Algorithm. The algorithm Gview takes as input a query Q, data graph G and a

user-defined similarity threshold θ. It has the following three steps.

Initialization. For each query node vq, it initializes a match set mat(vq), to record

the final matches identified by the matching relation M (as remarked earlier),

as well as the candidate set can(vq) to keep track of the matches when a single

concept graph is processed.

Matching and refinement. Gview computes the relation M as follows. It first ini-

tializes the candidate set can(vq) for each query node vq, using a “lazy” strategy

(as will be discussed) (line 4). It then conducts a fixpoint computation, by check-

ing if there exists a query edge (vq1 , vq2), such that there is a node vo1 ∈ can(vq1)

which has no child in can(vq2). If so, vq1 (and all the data nodes contained in it)

is no longer a candidate for vq. Gview thus removes vq1 from can(vq1). If can(vq1)

is empty, then query node q1 has no valid candidate in some concept graph, and

Gview returns ∅. Otherwise, mat(vq1) is refined by can(vq1): if mat(vq1) is empty,

it is initialized with can(vq1); otherwise, mat(vq1) only keeps those candidates that

are in can(vq1). If mat(vq1) becomes empty, no candidate can be find in G for vq1 ,

and Gview returns ∅.

141



Chapter 4. Ontology-based Graph Querying

Gv construction. After all the concept graphs in I are processed, Gview con-

structs Gv with a node set Vqv , which contains a node for each match set, and a

corresponding edge set Eqv . Gv is then returned.

It is costly to identify the candidates for the query nodes in Q by accessing

the ontology graph O and G, which may take up to O(|Q||G|) time. Instead

of identifying the candidates for a query node vq and the user-defined similarity

threshold θ, a “lazy” strategy only identifies a set of nodes (as can(vq)) in the

concept graph Go, such that the candidates of vq are contained in these nodes.

To this end, it simply selects the nodes in Go labeled with the concept labels l,

where the distance of l and the label of vq in O is less than sim−1(θ) + sim−1(β).

Here β is the similarity threshold adopted to generate Go. One may verify that

each candidate of vq w.r.t. the similarity threshold θ is in one of such nodes,

since the similarity function sim() is a monotonically decreasing function of the

label distances in O. Moreover, the total candidate selection time is reduced to

as O(|Q||O|). Note that |Q| and |O| are typically small comparing to |G|.

Example 21: Recall the query Q in Example. 15. Using the ontology in-

dex I = { Go1 Go2 } (Figure 4.5), Gview extracts Gv as follows. (1) Using

Go1 , Gview initializes can(moonlight) with the node moonlight in Go1 , and sim-

ilarly initializes can(museum) and can(tourists) (line 4). For e.g., query edge

{tourist, moonlight}, Gview refines can(tourists) by checking if every node in
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can(tourists) has a child in can(moonlight) (line 5-10). After the refinement,

mat(moonlight) = {HC, riverside}, mat(museum) = {Disneyland, RG} and

mat(tourists) = {HT, CT}. (2) Using Go2 , Gview identifies that can(tourists) =

{CT}, can(museum) = {RG}, and can(moonlight) = {riverside, RP}. (3) Putting

these together, the final match sets mat(moonlight) = {riverside}, mat(tourists)

= {CT} ∩{HT, CT} = CT, and mat(museum) = {RG} ∩{Disneyland, RG} = {RG}.

Gv (as shown in Figure 4.7) is then constructed as the subgraph of G induced by

the nodes riverside, CT, and RG. 2

Correctness and complexity. The algorithm Gview correctly computes a sub-

graph Gv. To see this, observe that (1) Gv is initialized using the lazy strategy

contains all the possible matches; (2) for each query edge (vq1 , vq2), Gview uses

can(vq2) to refine can(vq1) in each concept graph, and only removes those nodes

that are not matches (non-matches) for vq1 ; and (3) if can(vq) is empty when pro-

cessing a concept graph, then there is no match in G for vq. Since if there indeed

exists a data node v that can match vq, then for every query edge (vq, v
′
q), there

must exist a corresponding edge (vo, v
′
o) (v ∈ vo) in every concept graph. Thus,

Gview only removes non-matches of Q from the initialized Gv. The correctness

of Gview thus follows.
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For the complexity, (1) it takes O(|Vq||C|) to identify the candidates for the

query nodes using lazy strategy, where |C| is the total number of concept labels

. The filtering process can be implemented in time O(|Eq||I|). The construction

of Gv is in time O(|I|). Putting these together, the total time of Gview is in

O(|Eq||I|). In practice |Eq| is typically small, and the complexity of Gview can be

considered as near-linear w.r.t. |I|.
tourists
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moonlight
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RG CT

Gv

park park
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Figure 4.7: Generating subgraph Gv.

4.5 Subgraph Query Processing

In the verification phase, the framework performs the subgraph isomorphism

tests over the subgraph extracted from the ontology index. We provide a global

ontology-based subgraph querying algorithm for the top K matches problem. The

algorithm, denoted as KMatch.
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Algorithm. Upon receiving a query Q, the algorithm KMatch first extracts the

subgraph Gs by invoking the procedure Gview (see Section 4.4), For each query

node vq, it constructs a candidate list L(vq), sorted in the descending order of the

similarity. KMatch then iteratively constructs a subgraph Gs using the candidates

with the largest similarity from the candidate lists, and if Gs is a match, it inserts

Gs to a heap H. The above process repeats until all such Gs is processed, or H

contains the top K matches with maximum similarity scores.

It takes O(|Q||I|) time to compute Gs, as remarked earlier. The total time

of KMatch is thus in (|Q||I| + |Gs||Vq |). As verified in our experiment, in practice

Gs is significantly smaller than G (see Section 4.6).

Remarks. The ontology-based subgraph querying framework can be easily

adapted to support traditional subgraph isomorphism. Indeed, when the user-

defined similarity threshold is 1.0, (1) the ontology index can be used to extract

a subgraph Gv, which only contains the candidate nodes with identical labels for

the query nodes, and (2) any match extracted from Gs is a subgraph isomorphic

to Q in terms of identical subgraph isomorphism.
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4.6 Experimental Evaluation

We next present an experimental study using real-life graph data. We con-

ducted three sets of experiments to evaluate: (1) the effectiveness of the ontology-

based subgraph querying, (2) the efficiency of the query evaluation framework,

and (3) the performance and cost of the ontology index.

Datasets. (a) CrossDomain is taken from a benchmark suite FebBench [127],

which consists of (i) an RDF data graph with 1.07M nodes and 3.86M edges

where nodes represent entities from different domains (e.g., Wikipedia, locations,

biology, music, newspapers), and edges represent the relationship between the

entities (e.g., born in, locate at, favors); and (ii) an ontology graph with 1.44M

concepts and 5.30M relations. The data graph takes in total 150Mb physical

memory. (b) Flickr contains a data graph taken from http://press.liacs.nl/

mirflickr/ with 1.3M nodes and 6.42M edges, where the nodes represent images,

tags, users or locations, and edges represent their relationship. It also contains

an ontology graph from DBpedia (http://dbpedia.org) with more than 3.64

million entities. The data graph takes in total 194Mb physical memory. In our

experiments, we employ the ontology graph to describe the tags in Flickr.
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Following [80], we set the similarity function as sim(l′, l) = 0.9dist(l′,l) for all the

ontology graphs O, where dist(l′, l) is the distance between two nodes l′ and l in

O. For example, if a label l is 2 hops away from l′ in O, sim(l′, l) = 0.81.

Implementation. We implemented the following algorithms in C++: (1) al-

gorithm OntoIdx; (2) algorithm KMatch; (3) SubIso, the subgraph isomorphism

algorithm in [147], which identifies the matches using identical label matching;

(4) SubIsor, which, as a comparison to KMatch, is revised from [147] that rewrites

the query graph, and directly computes all the matches and select the best ones;

(5) VF2, which computes the minimum weighted matches, by exploiting a simi-

larity matrix between the query label and all the labels in the data nodes;

To favor VF2, we precomputed a similarity matrix, where each entry records

sim(u, v) as the similarity between a query node u and a data node v w.r.t. the

ontology graph O. We also optimized VF2 such that it terminates as soon as the

top K matches are identified. The time cost of computing the similarity matrix

is not counted for VF2.

We used a machine powered by an Intel(R) Core 2.8GHz CPU and 8GB of

RAM, using Ubuntu 10.10. Each experiment was run 5 times and the average is

reported here.

Experimental results. We next present our findings.
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Exp-1: Effectiveness and flexibility. In this set of experiments, we first

evaluated the effectiveness of KMatch and SubIso. We generated 5 query templates

for CrossDomain, and 4 query templates for Flickr. We use (|Vp|, |Ep|, |Lp|) to

denote the size of a query Q(Vp, Ep, Lp). For CrossDomain, (1) QT1 is a tree

of size (4, 3, 3) searching for movies, directors and distributors, and QT2 of size

(4, 4, 3) is a cycle obtained by inserting an edge to QT1 ; (2) QT3 of size (4, 6, 4) is

to search pop stars, record companies, albums and songs, and Q4 is obtained by

only “generalizing” the query label of QT3 , e.g., from “Green Record Company” to

“Record Company”; and (3) QT5 of size (5, 6, 4) is to identify the soccer stars, clubs

and their teammates. Similarly, for Flickr the 4 queries QT6 to QT9 are to identify

photos of animals taken at specified locations. Each template QTi
is populated

as a query set of 100 queries (also denoted as QTi
) by varying the node labels

only. For ontology index, we employ the graph partitioning algorithm in [126]

to generate concept labels with similarity threshold β = 0.8, unless otherwise

specified.

CrossDomain
Query

θ=1θ=0.9 θ=0.8

QT1 1 2,687 9,099
QT2 0 24 271
QT3 1 170 342
QT4 0 405 991
QT5 0 30,85448,225

Flickr
Query

θ=1θ=0.9θ=0.8

QT6 2 6 307
QT7 0 177 2,160
QT8 0 448 6,028
QT9 0 799 15,052

Table 4.1: Effectiveness of querying real-life graphs.
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Figure 4.8: Evaluation on ontology-based subgraph querying.

Effectiveness. We first compared the number of matches found by SubIso and

KMatch over CrossDomain and Flickr, as shown in Table 4.1. Fixing card I = 1,

i.e., the ontology index I contains a single concept graph, we varied the similarity

threshold of the queries from 1.0 to 0.8, and identify all the matches. For all the

queries over CrossDomain, SubIso only finds in average 1 exact match for query set

QT1 and QT3 , and no match for all other queries. In contrast, KMatch identifies

much more matches that are semantically close to the query according to our

observation. It also finds more meaningful matches than SubIso over Flickr.
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Two sample patterns and their closest matches are shown in Figure 4.9. (1)

Query Q2 in QT2 (Figure 4.9(a)) over CrossDomain is to find two movies distributed

by Walt Disney and directed by James Cameron, where one is screened out of

competition at Cannes Film Festival, and the other is related with Aliens.

The closest match is shown in Figure 4.9(b) where Aliens is matched to the

movie Aliens of the Deep, and Cannes Film Festival has a match Ghosts

of the Abyss. (2) Query Q3 (Figure 4.9(c)) of Flickr is to identify two photos

both related with ‘‘Flamingo’’ with color ‘‘Pink’’, and one is taken in San

Diego while the other in Miami. The closest match is given in Figure 4.9(d) where

Miami is matched to “Seaworld” in Florida.

The algorithm VF2, via carefully processed similarity matrix, identifies the

same set of matches as KMatch (thus is not shown) with much more running

time, as will be shown.

Query flexibility. As shown in Table 4.1, (a) for all the queries, the match number

increases when the similarity threshold θ decreases, since more data nodes become

candidates and more subgraphs become matches; (b) fixing node number and

labels, the insertion of edges increases the topological complexity of the query,

e.g., from Q1 to Q2, and thus, reduces the number of matches; and (c) fixing

the structure, the query label generalization (from e.g., Q3 to Q4) increases the

candidates of the query nodes, which in turn increases the match number.
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Exp-2: Efficiency and scalability. We evaluated the performance of KMatch,

SubIsor and VF2 using real-life datasets and synthetic data, and their scalability

using synthetic data. In these experiments, the indexes were precomputed, and

thus their construction time were not counted.

Real-life graphs. Figure 4.8(a) and Figure 4.8(b) (both in log scale) show the

running time of KMatch and VF2 for evaluating QT1 to QT5 over CrossDomain in

Table 4.1. The results tells us the following. (1) KMatch always outperform VF2.

For example, KMatch takes only 1% of the running time of VF2 to evaluate QT2 .

When θ = 0.9 (resp. θ = 0.8), KMatch takes 30% (resp. 22%) of the running time

of VF2 in average for all the queries. (2) When θ decreases, both algorithms takes

more time due to more candidates. In addition, KMatch improves the efficiency

of VF2 better for larger θ due to the filtering power of the ontology index even

with only a single concept graph.

To evaluate the scalability with card(I), i.e., the number of concept graphs,

we used CrossDomain, varied card(I) from 1 to 7, and tested the cases where θ

is 0.9 and 0.8, respectively. The results, shown in Figure 4.8(c), tells us that the

running time of KMatch, decreases while card(I) increases. Specifically, when θ

= 0.8, the verification (resp. filtering) time decreases (resp. increases) from 396

(resp. 2) seconds to 110 (resp. 30) seconds when card(I) increases from 1 to 4,

and the total time decreases from 398 seconds to 168 seconds. The total time
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increases when card(I) is increased from 4 to 7. This is because (a) more concept

graphs effectively filter more candidates, and reduce the verification time, and (b)

when card(I) > 4, while the index spends more time in filtering phase, it cannot

further reduce the verification time, thus the total time increases. Similarly, the

running time of KMatch decreases when θ= 0.9 and card(I) < 3.

The efficiency of KMatch and VF2 over Flickr is given in Figure 4.8(d), Fig-

ure 4.8(e), and Figure 4.8(f), which verify the results of their CrossDomain coun-

terparts Figure 4.8(a), Figure 4.8(b), and Figure 4.8(c), respectively. In average,

the running time of KMatch is 30% of that of VF2 over Flickr when θ = 0.9. When

θ = 0.8, VF2 does not run to complete for QT4 .

Exp-3: Effectiveness of ontology index. We next investigate (1) ctime, i.e.,

the running time of algorithm OntoIdx; (2) the compression rate cr = |Eo|
|E| , where

|Eo| is the average edge size in I, and |E| is the edge size of the data graph, (3)

the memory reduction mr = |Mo|
|M | , where |Mo| and M are the physical memory cost

of I and the data graph, respectively; and (4) the filtering rate fr = |Gv |
|Gsub| , where

|Gv| is the average size of the induced subgraphs Gv in filtering phase, and |Gsub|

is the size of all the nodes and edges visited by VF2. We fixed card I = 1, and β

= 0.8. The result is shown below in Table 4.2

The above results tell us the following. (1) For both data sets, the efficiency

of OntoIdx is comparable to that of VF2 for processing a single query (see Exp-2).
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(c) Query: Q3
San Diego Miami

(d) An answer

Flamingo

Pink San Diego Seaworld 
(Florida)

Flamingo

Pink

Picture Picture

(a) Query: Q2

James Cameron

“Aliens”Cannes Festival

Walt Disney Pictures

James Cameron

“Ghosts of 
the Abyss”

“Aliens of 
the Deep”

Walt Disney Pictures
(b) An answer

Figure 4.9: Case study: queries and the matches.

(2) I contains much less nodes and edges over the data graph, and takes only half

of of its physical memory cost. (3) Even when only a single concept graph is used,

the index effectively filters the search space. Indeed, the size of Gv for verification

is only 6% and 24% of |Gsub| over CrossDomain and Flickr, respectively.

Table 4.2: Effectiveness of indexing

Dataset ctime cr mr fr

CrossDomain 694s 0.43 0.51 0.06
Flickr 383.83s 0.71 0.52 0.24
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4.7 Related Work

Ontology-based graph queries. The ontology information has been used for pat-

tern mining [20], keyword searching [65] and the semantic Web [33, 88]. The On-

togator [97] exploits an ontology-based multi-facet search paradigm, which links

keyword queries to a set of entities in multiple distinct ontology views, created via

ontology projection. [20] proposes techniques to mine the frequent patterns over

graphs with generalized labels in the input taxonomies. Classes hierarchy are

used to evaluate queries specified by a SPARQL-style language over RDF graphs

in [33], where approximate answers are identified, measured by a distance metric.

Our work differs from theirs in the following. (a) We consider general ontology

graphs rather than hierarchical taxonomies or class lattice. (b) We find matches

for a given query graph, instead of discovering frequent patterns in graphs as

in [20]. (c) The queries in [33] are defined in terms of a query language speci-

fied for semantic Web. In contrast, we study general subgraph queries with node

and edge labels. Moreover, the queries in [33] are posed over RDF graphs with

predefined schema, where we consider subgraph queries over general data graphs

without any schema. (d) The query evaluation is not discussed in [33,88].

Closer to our work is [88], which extends template graph searching by inter-

polating ontologies to data graphs. The data graphs are recursively extended by
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a set of ontologies from ontology queries, and are then queried by a template

graph. Our work differs from theirs in (a) instead of merging ontology graphs

with data graphs, we leverage ontology graph to develop filtering strategies to

identify matches, and (b) we provide query evaluation and indexing techniques,

while [88] focus on data fusion techniques. The incremental querying techniques

are also not addressed in [88].

Graph abstraction. The concepts of bisimulation [114] and regular equivalence [14]

are proposed to define the equivalent graph nodes, which can be grouped to form

abstracted graphs as indexes [103]. In this work we use the similar idea to con-

struct the ontology index, by abstracting data graphs as a set of concept graphs for

efficient subgraph filtering and querying. However, while the notions in [14, 114]

are based on label equality, a concept graph groups nodes in a data graph in terms

of an external ontology graph, thus unifies the ontology similarity and graph ab-

straction, as discussed in Section 4.4.

4.8 Summary

We have proposed the ontology-based subgraph querying, based on a quan-

titative metric for the matches. These notions support finding matches that are

semantically close to the query graphs. We have proposed a framework for finding
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the top-k closest matches, via a filtering and verification strategy using ontology

index. In addition, we have proposed an incremental algorithm to update in-

dexes upon data graph changes. Our experimental study have verified that the

framework is able to efficiently identify the matches, which cannot be found by

conventional subgraph isomorphism and its extensions.
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Summarizing Answer Graphs

Graph querying might generate an excessive number of matches, referred to as

“answer graphs”, that could include different relationships among keywords. An

ignored yet important task is to group and summarize answer graphs that share

similar structures and contents for better query interpretation and result under-

standing. This chapter studies the summarization problem for the answer graphs

induced by a keyword query Q. (1) A notion of summary graph is proposed to

characterize the summarization of answer graphs. Given Q and a set of answer

graphs G, a summary graph preserves the relation of the keywords in Q by sum-

marizing the paths connecting the keywords nodes in G. (2) A quality metric of

summary graphs, called coverage ratio, is developed to measure information loss

of summarization. (3) Based on the metric, a set of summarization problems are

formulated, which aim to find minimized summary graphs with certain coverage

ratio. (a) We show that the complexity of these summarization problems ranges
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from PTIME to NP-complete. (b) We provide exact and heuristic summarization

algorithms. (4) Using real-life and synthetic graphs, we experimentally verify the

effectiveness and the efficiency of our techniques.

5.1 Introduction

Keyword queries have been widely used for querying graph data, such as infor-

mation networks, knowledge graphs, and social networks [152]. A keyword query

Q is a set of keywords {k1, . . . , kn}. The evaluation of Q over graphs is to extract

data related with the keywords in Q [26, 152].

Various methods were developed to process keyword queries. In practice, these

methods typically generate a set of graphs G induced by Q. Generally speaking,

(a) the keywords in Q correspond to a set of nodes in these graphs, and (b) a path

connecting two nodes related with keywords k1, k2 in Q suggests how the keywords

are connected, i.e., the relationship between the keyword pair (k1, k2). We refer

to these graphs as answer graphs induced by Q. For example, (1) a host of work

on keyword querying [57, 60, 72, 86, 115, 152] defines the query results as answer

graphs; (2) keyword query interpretation [22, 145] transforms a keyword query

into graph structured queries via the answer graphs extracted for the keyword;
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(3) result summarization [68, 91] generates answer graphs as e.g., “snippets” for

keyword query results.

Nevertheless, keyword queries usually generate a great number of answer

graphs (as intermediate or final results) that are too many to inspect, due to

the sheer volume of data. This calls for effective techniques to summarize answer

graphs with representative structures and contents. Better still, the summariza-

tion of answer graphs can be further used for a range of important keyword search

applications.

keyword

 queries

structured/graph queries 

      (SPARQL, pattern 

       queries, XQuery...)

  keyword induced

graph summarization

query interpretation

query suggestion

query refinement
   query evaluation

result summarization

query transformation

(this paper)

Figure 5.1: Graph summarization.

Enhance Search with Structure. It is known that there is an usability-

expressivity tradeoff between keyword query and graph query [138] (as illustrated

in Figure 5.1). For searching graph data, keyword queries are easy to formu-

late; however, they might be ambiguous due to the lack of structure support.

In contrast, graph queries are more accurate and selective, but difficult to de-

scribe. Query interpretation targets the trade-off by constructing graph queries,
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e.g., SPARQL [130], to find more accurate results. Nevertheless, there may exist

many interpretations as answer graphs for a single keyword query [46]. A sum-

marization technique may generate a small set of summaries, from which graph

queries can be induced. That is, a user can first submit keyword queries and then

pick up the desired graph queries, thus taking advantage of both keyword query

and graph query.

Improve Result Understanding and Query Refinement. Due to query

ambiguity and the sheer volume of data, keyword query evaluation often generates

a large number of results [68, 82]. This calls for effective result summarization,

such that users may easily understand the results without checking them one by

one. Moreover, users may come up with better queries that are less ambiguous,

by inspecting the connection of the keywords reflected in the summary. Based on

the summarization result, efficient query refinement and suggestion [92,125] may

also be proposed.

Example 22: Consider a keyword query Q = { Jaguar, America, history }

issued over a knowledge graph. Suppose there are three graphs G1, G2 and G3

induced by the keywords in Q as e.g., query results [86,115], as shown in Figure 5.1.

Each node in an answer graph has a type, as well as its unique id. It is either
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(a) a keyword node marked with ′∗′ (e.g., Jaguar XK∗) which corresponds to a

keyword (e.g., Jaguar), or (b) a node connecting two keyword nodes.

The induced graphs for Q illustrate different relations among the same set of

keywords. For example, G1 suggests that “Jaguar” is a brand of cars with multiple

offers in many cities of USA, while G3 suggests that “Jaguar” is a kind of animals

found in America. To find out the answers the users need, reasonable graph

structured queries are required for more accurate searching [22]. To this end, one

may construct a summarization over the answer graphs. Two such summaries can

be constructed as Gs1 and Gs2 , which suggest two graph queries where “Jaguar”

refers to a brand of car, and a kind of animal, respectively. Better still, by

summarizing the relation between two keywords, more useful information can be

provided to the users. For example, Gs1 suggests that users may search for “offers”

and “company” of “Jaguar,” as well as their locations.

Assume that the user wants to find out how “Jaguar” and “America” are

related in the search results. This requires a summarization that only considers

the connection between the nodes containing the keywords. Graph Gs depicts

such a summarization: it shows that (1) “Jaguar” relates to “America” as a type

of car produced and sold in cities of USA, or (2) it is a kind of animal living in

the continents of America. Moreover, in practice one often place a budget for

summarizations [52,137]. This calls for quality metrics and techniques for concise
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summaries that illustrate the connection information between keywords as much

as possible. 2

The above example suggests that we may summarize answer graphs G induced

by a keyword query Q, to help keyword query processing. We ask the following

questions. (1) How to define “query-aware” summaries of G in terms of Q? (2)

How to characterize the quality of a summary for Q? (3) How to efficiently identify

good summaries under a budget?

G2

Q = 'Jaguar', 'America', 'history'

G1

(car)
Jaguar XJ*

Gs

company company...

history*city city...

offer offer...

United States 

of America*
(country)

city city...

(car)
Jaguar XK*

(car)
Jaguar XK*

... (animal)
white Jaguar*

(animal)
black Jaguar*

north america*

(continent)

sorth america*

(continent)

history* history* habitat

G3

Q' = 'Jaguar', 'America'

offer company

'America'

'Jaguar'

city

'history'

Gs1 Gs2

'Jaguar'

'history'

'America' habitat

company

city
'Jaguar'

(car)

'Jaguar'
(animal)

'habitat'

(car)

(animal)

(country)
(continent)

1 n

1 m

1 k 1 p

1 l

'America'
(continent)

(country)

offer

United States 

of America*
(country)

'America'

Figure 5.2: Keyword query on a knowledge graph.

We study the above problems for summarizing keyword induced answer graphs.

(1) We formulate the concept of answer graphs for a keyword query Q (Sec-
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tion 5.2). To characterize the summarization for answer graphs, we propose a

notion of summary graph. Given Q and G, a summary graph captures the rela-

tionship among the keywords from Q in G.

(2) We introduce quality metrics for summary graphs (Section 5.3). One is defined

as the size of a summary graph, and the other is based on coverage ratio α, which

measures the number of keyword pairs a summary graph can cover by summarizing

pairwise relationships in G.

Based on the quality metrics, we introduce two summarization problems.

Given Q and G, (a) the α-summarization problem is to find a minimum summary

graph with a certain coverage ratio α; we consider 1-summarization problem as

its special case where α = 1; (b) the K summarization problem is to identify K

summary graphs for G, where each one summarizes a subset of answer graphs

in G. We show that the complexity of these problems ranges from PTIME to

NP-complete. For the NP-hard problems, they are also hard to approximate.

(3) We propose exact and heuristic algorithms for the summarization problems.

(a) For 1-summarization, we present an exact, quadratic-time algorithm to find a

minimum 1-summary (Section 5.4). For a given keyword query, it is to identify

a set of “redundant” (resp. “equivalent”) nodes in G for Q, and construct the
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summary by removing (resp. mergeing) these nodes. (b) We provide heuristic

algorithms for the α-summarization (Section 5.4) and k summarization problems

(Section 5.5), respectively. These algorithms greedily select and summarize answer

graphs with the minimum estimated cost in terms of size and coverage.

(4) We experimentally verify the effectiveness and efficiency of our summarization

techniques using both synthetic data and real-life datasets. We find that our

algorithms effectively summarize the answer graphs. For example, they generate

summary graphs that cover every pair of keywords with size in average 24% of

the answer graphs. They also scale well with the size of the answer graphs. These

effectively support summarization over answer graphs.

5.2 Preliminary

In this section, we formulate the concept of answer graphs induced by keyword

queries, and their summarizations.

5.2.1 Keyword Induced Answer Graphs

Answer graphs. Given a keyword query Q as a set of keywords {k1, . . . , kn} [152],

an answer graph induced by Q is a connected undirected graph G = (V, E, L),
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where V is a node set, E ⊆ V × V is an edge set, and L is a labeling function

which assigns, for each node v, a label L(v) and a unique identity. In practice,

the node labels may represent the type information in e.g., RDF [115], or node

attributes [165]. The node identity may represent a name, a property value, a

URI, e.g., “dbpedia.org/resource/Jaguar,” and so on. Each node v ∈ V is either

a keyword node that corresponds to a keyword k in Q, or an intermediate node

on a path between keyword nodes. We denote as vk a keyword node of k. The

keyword nodes and intermediate nodes are typically specified by the process that

generates the answer graphs, e.g., keyword query evaluation algorithms [152]. A

path connecting two keyword nodes usually suggests a relation, or “connection

pattern,” as observed in e.g., [45].

We shall use the following notations. (1) A path from keyword nodes vk to

v′k is a nonempty simple node sequence {vk, v1 . . . , vn, v
′
k}, where vi (i ∈ [1, n])

are intermediate nodes. The label of a path ρ from vk to v′k, denoted as L(ρ), is

the concatenation of all the node labels on ρ. (2) The union of a set of answer

graphs Gi = (Vi, Ei, Li) is a graph G = (V, E, L), where V =
⋃

Vi, E =
⋃

Ei,

and each node in V has a unique node id. (3) Given a set of answer graphs

G, we denote as card(G) the number of the answer graphs G contains, and |G|

the total number of its nodes and edges. Note that an answer graph does not
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necessarily contain keyword nodes for all the keywords in Q, as common found in

e.g., keyword querying [152].

Example 23: Figure 5.2 illustrates a keyword query Q and a set of answer graphs

G = {G1, G2, G3} induced by Q. Each node in an answer graph has a label as its

type (e.g., car), and a unique string as its id (e.g., Jaguar XK1).

Consider the answer graph G1. (a) The keyword nodes for the keyword

Jaguar are JaguarXKi
(i ∈ [1, n]), and the node United States of America

is a keyword node for America. (b) The nodes offeri (i ∈ [1,m]) and cityj

(j ∈ [1, k]) are the intermediate nodes connecting the keyword nodes of Jaguar

and America. (c) A path from Jaguar to USA passing the nodes offer1 and

city1 has a label {car,offer, city,country}. Note that (1) nodes with different

labels (e.g., JaguarXK1 labeled by “car” and black jaguar by “animal”) may

correspond to the same keyword (e.g., Jaguar), and (2) a node (e.g., city1) may

appear in different answer graphs (e.g., G1 and G2). 2

5.2.2 Answer Graph Summarization

Summary graph. A summary graph of G for Q is an undirected graph Gs =

(Vs, Es, Ls), where Vs and Es are the node and edge set, and Ls is a labeling

function. Moreover, (1) each node vs ∈ Vs labeled with Ls(vs) represents a node
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set [vs] from G, such that (a) [vs] is either a keyword node set, or an intermediate

node set from G, and (b) the nodes v in [vs] have the same label L(v) = Ls(vs).

We say vsk
is a keyword node for a keyword k, if [vsk

] is a set of keyword nodes

of k; (2) For any path ρs between keyword nodes vs1 and vs2 of Gs, there exists a

path ρ with the same label of ρs from v1 to v2 in the union of the answer graphs

in G, where v1 ∈ [vs1 ], v2 ∈ [vs2 ]. Here the path label in Gs is similarly defined as

its counterpart in an answer graph.

Hence, a summary graph Gs never introduces “false” paths by definition: if

vs1 and vs2 are connected via a path ρs in Gs, it suggests that there is a path ρ

of the same label connecting two keyword nodes in [vs1 ] and [vs2 ], respectively, in

the union of the answer graphs. It might, however, “lose” information, i.e., not

all the labels of the paths connecting two keyword nodes are preserved in Gs.

a*

e*

d

G's2

a*1 a*2

f*1 c*1 e*1

b1 b2 d1

G'1

a*3

d2 d3

e*2 g*1e*1

G'2

a*

b

c*

d

G's1

a*4

g*g*2e*3

d4 d6d5 d7 d8 d9
...

G'3

Figure 5.3: Answer graphs and summary graphs.

Example 24: Consider Q and G from Figure 5.2. One may verify that Gs1 ,

Gs2 and Gs are summary graphs of G for Q. Specifically, (1) the nodes Jaguar,
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history and America are three keyword nodes in Gs1 , and the rest nodes are

intermediate ones; (2) Gs2 contains a keyword node Jaguar which corresponds

to keyword nodes {black jaguar, white jaguar} of the same label animal in

G. (3) For any path connecting two keyword nodes (e.g., {Jaguar, offer, city,

America}) in Gs1 , there is a path with the same label in the union of G1 and G2

(e.g., {JaguarXK1 , offer1, city1, United States of America}).

As another example, consider the answer graphs G′
1, G′

2 and G′
3 induced by

a keyword query Q′ = {a, c, e, f, g} in Figure 5.3. Each node ai (marked

with ∗ if it is a keyword node) in an answer graph has a label a and an id ai,

similarly for the rest nodes. One may verify the following. (1) Both G′
s1

and G′
s2

are summary graphs for the answer graph set {G′
1, G

′
2}; while G′

s1
(resp. G′

s2
)

only preserves the labels of the paths connecting keywords a and c (resp. a, e

and g). (2) G′
s2

is not a summary graph for G′
3. Although it correctly suggests

the relation between keywords (a, e) and (a, g), it contains a “false” path labeled

(e, d, g), while there is no path in G′
3 with the same label between e3 and g2. 2

Remarks. One can readily extend summary graphs to support directed, edge

labeled answer graphs by incorporating edge directions and labels into the path

label. We can also extend summary graphs for preserving path labels for each
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answer graph, instead of for the union of answer graphs, by reassigning node

identification to answer graphs.

5.3 Quality Measurement

We next introduce two metrics to measure the quality of summary graphs,

based on information coverage and summarization conciseness, respectively. We

then introduce a set of summarization problems. To simplify the discussion, we

assume that the union of the answer graphs contains keyword nodes for each

keyword in Q.

5.3.1 Coverage Measurement

It is recognized that a summarization should summarize as much information

as possible, i.e., to maximize the information coverage [52]. In this context, a

summary graph should capture the relationship among the query keywords as

much as possible. To capture this, we first present a notion of keywords coverage.

Keywords coverage. Given a keyword pair (ki, kj) (ki, kj ∈ Q and ki 6= kj) and

answer graphs G induced by Q, a summary graph Gs covers (ki, kj) if for any path

ρ from keyword nodes vki
to vkj

in the union of the answer graphs in G, there is a

path ρs in Gs from vsi
to vsj

with the same label of ρ, where vki
∈ [vsi

], vkj
∈ [vsj

].
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Note that the coverage of a keyword pair is “symmetric” over undirected answer

graphs. Given Q and G, if Gs covers a keyword pair (ki, kj), it also covers (kj, ki).

Coverage ratio. Given a keyword query Q and G, we define the coverage ratio

α of a summary graph Gs of G as

α =
2 ·M

|Q| · (|Q| − 1)

where M is the total number of the keyword pairs (k, k′) covered by Gs. Note

that there are in total |Q||Q|−1
2

pairs of keywords from Q. Thus, α measures the

information coverage of Gs based on the coverage of the keywords.

We refer to as α-summary graph the summary graph for G induced by Q with

coverage ratio α. The coverage ratio measurement favors a summary graph that

covers more keyword pairs, i.e., with larger α.

Example 25: Consider Q and G from Figure 5.2. Treating Gs1 and Gs2 as a

single graph Gs0 , one may verify that Gs0 is a 1-summary graph: for any keyword

pair from Q and any path between the keyword nodes in G, there is a path of the

same label in Gs0 . On the other hand, Gs is a 1
3

summary graph for Q: it only

covers the keyword pairs (Jaguar, America). Similarly, one may verify that G′
s1

(resp. G′
s2

) in Figure 5.3 is a 0.1-summary graph (resp. 0.3-summary graph), for

answer graphs {G′
1, G

′
2, G

′
3} and Q = {a, c, e, f, g}. 2
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5.3.2 Conciseness Measurement

A summary graph should also be concise, without introducing too much detail

of answer graphs, as commonly used in information summarization [52,137].

Summarization size. We define the size of a summary graph Gs, (denoted as

|Gs|) as the total number of the nodes and edges it has. For example, the summary

graph Gs1 and Gs2 (Figure 5.2) are of size 12 and 7, respectively. The smaller a

summary graph is, the more concise it is.

Putting the information coverage and conciseness measurements together, We

say a summary graph Gs is a minimum α-summary graph, if for any other α-

summary graph G′
s of G for Q, |Gs| ≤ |G′

s|.

Example 26: Bisimulation relation [49] constraints the node equivalence via a

recursively defined neighborhood label equivalence, which is an overkill for con-

cise summaries over keyword relations. For example, the nodes b1 and b2 cannot

be represented by a single node as in Gs1 via bisimulation (Figure 5.3), due to

different neighborhood. One the other hand, error-tolerant [110], structure-based

summaries [142] and schema extraction [145] may generate summary graphs with

“false paths,” such as G′
s2

for G′
3. To prevent this, auxiliary structures and pa-

rameters are required. In contrast in our work, a summary graph preserves path

labels for keywords without any auxiliary structures. 2
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5.3.3 Summarization Problems

Based on the quality metrics, we next introduce two summarization problems

for keyword induced answer graphs. These problems are to find summary graphs

with high quality, in terms of information coverage and conciseness.

Minimum α-Summarization. Given a keyword query Q and its induced answer

graphs G, and a user-specified coverage ratio α, the minimum α-summarization

problem, denoted as MSUM, is to find an α-summary graph of G with minimum

size. Intuitively, the problem aims to find the smallest summary graph [137] which

can cover the keyword pairs no less than user-specified coverage requirement.

Theorem 9: MSUM is NP-complete (for decision version) and APX-hard (as an

optimization problem). 2

The APX-hard class consists of all problems that cannot be approximated in

polynomial time within arbitrary small approximation ratio [149]. We prove the

complexity result and provide a heuristic algorithm for MSUM in Section 5.4.

Minimum 1-summarization. We also consider the problem of finding a summary

graph that covers every pair of keywords (ki, kj) (ki, kj ∈ Q and i 6= j) as concise

as possible, i.e., the minimum 1-summarization problem (denoted as PSUM). Note

that PSUM is a special case of MSUM, by setting α = 1. In contrast to MSUM,

PSUM is in PTIME.
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Theorem 10: Given Q and G, PSUM is in O(|Q|2|G| + |G|2) time, i.e., it takes

O(|Q|2|G|+ |G|2) time to find a minimum 1-summary graph, where |G| is the size

of G. 2

We will prove the above result in Section 5.4.

K Summarization. In practice, users may expect a set of summary graphs

instead of a single one, where each summary graph captures the keyword rela-

tionships for a set of “similar” answer graphs in terms of path labels. Indeed, as

observed in text summarization (e.g., [52]), a summarization should be able to

cluster a set of similar objects.

Given Q, G, and an integer K, the K summarization problem (denoted as

KSUM) is to find a summary graph set GS, such that (1) each summary graph

Gsi
∈ GS is a 1-summary graph of a group of answer graphs Gpi

⊆ G, (2) the

answer graph sets Gpi
form a K-partition of G, i.e., G =

⋃
Gpi

, and Gpi
∩Gpj

= ∅

(i, j ∈ [1, K], i 6= j); and (3) the total size of GS, i.e.,
∑

Gsi∈GS
|Gsi

| is minimized.

The KSUM problem can also be extended to support α-summarization.

The following result tells us that the problem is hard to approximate. We will

prove the result in Section 5.5, and provide a heuristic algorithm for KSUM.

Theorem 11: KSUM is NP-complete and APX-hard. 2
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Remarks. The techniques for MSUM and KSUM can be used in a host of appli-

cations. (a) The α-summaries from MSUM can be used to suggest (structured)

keyword queries [22], as well as graph (pattern) queries [42, 130, 145]. The inter-

mediate nodes in the summaries also benefit reasonable query expansion [125].

(b) In practice the answer graphs can be too many to inspect. The techniques for

KSUM naturally serve as post-processing for result summarizations [68]. Better

still, KSUM also provides a reasonable clustering for answer graphs [52]. The gen-

erated K summaries can further be used for query expansion based on clustered

results [92].

While determining the optimal value of α and K remain to be open issues, α

can be usually set according to e.g., “budget” of comprehansion [137], and K can

be determined following empirical rules [100] or information theory.

5.4 Computing α-Summarization

In this section we investigate the α-summarization problem. We first investi-

gate PSUM in Section 5.4.1, as a special case of MSUM. We then discuss MSUM

in Section 5.4.2.
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5.4.1 Computing 1-Summary Graphs

To show Theorem 10, we characterize the 1-summary graph with a sufficient

and necessary condition. We then provide an algorithm to check the condition in

polynomial time. We first introduce the notion of dominance relation.

Dominance relation. The dominance relation R¹(k, k′) for keyword pair (k, k′)

over an answer graph G =(V, E, L) is a binary relation over the intermediate

nodes of G, such that for each node pair (v1, v2) ∈ R¹(k, k′), (1) L(v1) = L(v2),

and (2) for any path ρ1 between keyword node pair vk1 of k and vk2 of k′ passing

v1, there is a path ρ2 with the same label between two keyword nodes v′k1
of k

and vk′2 of k′ passing v2. We say v2 dominates v1 w.r.t. (k, k′); moreover, v1 is

equivalent to v2 if they dominate each other. In addition, two keyword nodes are

equivalent if they have the same label, and correspond to the same keyword.

k

k'

v1

k

k'

v2

...

... ...

...

ρ1 ρ2

a*1 a*2

f*1 c*1 e*1

b1 b2 d1

G'1

Figure 5.4: Dominance relation.
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The dominance relation is as illustrated in Figure 5.4. Intuitively, (1) R¹(k, k′)

captures the nodes that are “redundant” in describing the relationship between a

keyword pair (k, k′) in G; (2) moreover, if two nodes are equivalent, they play the

same “role” in connecting keywords k and k′, i.e., they cannot be distinguished

in terms of path labels. For example, when the keyword pair (a, c) is considered

in G′
1, the node b1 is dominated by b2, as illustrated in Figure 5.4.

Remarks. The relation R¹ is similar to the simulation relation [19, 64], which

computes node similarity over the entire graph by neighborhood similarity. In

contrast to simulation, R¹ captures dominance relation induced by the paths

connecting keyword nodes only, and only consider intermediate nodes. For exam-

ple, the node b1 and b2 is not in a simulation relation in G′
1, unless the keyword

pair (a, c) is considered (Figure 5.4). We shall see that this leads to effective

summarizations for specified keyword pairs.

Sufficient and necessary condition. We now present the sufficient and neces-

sary condition, which shows the connection between R¹ and a 1-summary graph.

Proposition 12: Given Q and G, a summary graph Gs is a minimum 1-summary

graph for G and Q, if and only if for each keyword pair (k, k′) from Q, (a) for

each intermediate node vs in Gs, there is a node vi in [vs], such that for any other

node vj in [vs], (vj, vi) ∈ R¹(k, k′); and (b) for any intermediate nodes vs1 and
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vs2 in Gs with same label and any nodes v1 ∈ [vs1 ], v2 ∈ [vs2 ], (v2, v1) /∈ R¹(k, k′).

2

Proof sketch: We prove Proposition 12 as follows.

(1) We first proof by contradiction that Gs is a 1-summary graph if and only if

Condition (a) holds. Assume Gs is a 1-summary graph while Condition (a) does

not hold. Then there exists an intermediate node vs, and two nodes vi and vj that

cannot dominate each other. Thus, there must exist two paths in the union of an-

swer graphs as ρ = {v1, . . . , vi, vi+1, . . . , vm} and ρ′ = {v′1, . . . , vj, vj+1, . . . , vn} with

different labels, for a keyword pair (k, k′). Since vi, vj is merged as vs in Gs, there

exists, w.l.o.g., a false path in Gs as ρ′′ with label L(v1) . . . L(vi)L(vj+1) . . . L(vm),

which contradicts the assumption that Gs is a 1-summary graph. Now assume

Condition (a) holds while Gs is not a 1-summary graph. Then there at least exists

a path from keywords k to k′ that is not in Gs. Thus, there exists at least an

intermediate node vs on the path with [vs] in Gs which contains two nodes that

cannot dominate each other. This contradicts the assumption that Condition (a)

holds.

(2) For the summary minimization, we show that Conditions (a) and (b) together

guarantee if there exists a 1-summary G′
s where |G′

s| ≤ |Gs|, there exists a one to
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one function mapping each node (resp. edge) in G′
s to a node (resp. edge) in Gs,

i.e., |Gs| = |G′
s|. Hence, Gs is a minimum 1-summary graph by definition. 2

We next present an algorithm for PSUM following the sufficient and necessary

condition, in polynomial time.

Algorithm. pSum has the following two steps.

Initialization. pSum first initializes an empty summary graph Gs. For each key-

word pair (k, k′) from Q, pSum computes a “connection” graph of (k, k′) induced

from G. Let G be the union of the answer graphs in G. A connection graph of

(k, k′) is a subgraph of G induced by (1) the keyword nodes of k and k′, and (2)

the intermediate nodes on the paths between the keyword nodes of k and those of

k′. Once G(k,k′) is computed, pSum sets Gs as the union graph of Gs and G(k,k′).

Reducing. pSum then constructs a summary graph by removing nodes and edges

from Gs. It computes the dominance relation R¹ by invoking a procedure DomR,

which removes the nodes v as well as the edges connected to them, if they are

dominated by some other nodes. It next merges the nodes in Gs that have domi-

nate relation (as defined in 12(a)), into a set [vs], until no more nodes in Gs can

be merged. For each set [vs], a new node vs as well as its edges connected to

other nodes are created. Gs is then updated with the new nodes and edges, and

is returned as a minimum 1-summary graph.
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Procedure DomR. Similar as the process to compute a simulation [64], DomR

extends the process to undirected graphs. For each node v in Gs, DomR initializes

a dominant set [v], as {v′|L(v′) = L(v)}. For each edge (u, v) ∈ Gs, it identifies

the neighborhood set of u (resp. v) as N(u) (resp. N(v)), and removes the nodes

that are not in N(v) (resp. N(u)) from [u] (resp. [v]) (lines 4). Indeed, a node

u′ ∈ [u] cannot dominant u if u′ /∈ N(v), since a path connecting two keyword

nodes passing edge (u, v) contains “L(u)L(v)” in its label, while for u′, such path

does not exist. The process repeats until no changes can be made. R¹ is then

collected from the dominant sets and returned.

Analysis. pSum correctly returns a summary graph Gs. Indeed, Gs is initialized

as the union of the connection graphs, which is a summary graph. Each time Gs

is updated, pSum keeps the invariants that Gs remains to be a summary graph.

When pSum terminates, one may verify that the sufficient and necessary condition

as in Proposition 12 is satisfied. Thus, the correctness of pSum follows.

It takes O(|Q|2|G|) to construct Gs as the union of the connection graphs for

each keyword pairs. It takes DomR in total O(|G|2) time to compute R¹. To see

this, observe that (a) it takes O(|G|2) time to initialize the dominant sets, (b)

during each iteration, once a node is removed from [u], it will no longer be put

back, i.e., there are in total |Gs|2 iterations, and (c) the checking at line 4 can

be done in constant time, by looking up a dynamically maintained map recording
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|[u] \N(v)| for each edge (u, v), leveraging the techniques in [64]. Thus, the total

time complexity of pSum is in O(|Q|2|G|+ |G|2). Hence, Theorem 10 follows.

Table 5.1: Summarization examples.

Nodes in Gs dominance sets
offer {offeri}(i ∈ [1,m])
city {cityi}(i ∈ [1, k]), {cityj}(j ∈ [k + 1, p])

company {companyi}(i ∈ [1, l − 1]), {companyl}

Example 27: Recall the query Q and the answer graph set G in Figure 5.2. The

algorithm pSum constructs a minimum 1-summary graph Gs for G as follows. It

initializes Gs as the union of the connection graphs for the keyword pairs in Q,

which is the union graph of G1, G2 and G3. It then invokes procedure DomR,

which computes dominance sets for each intermediate node in Gs, partly shown

as follows (k <p). pSum then reduces Gs by removing dominated nodes and

merging equivalent nodes until no change can be made. For example, (1) companyx

(x ∈ [1, l − 1]) are removed, as all are dominated by companyl; (2) all the offer

nodes are merged as a single node, as they dominate each other. Gs is then

updated as the union of Gs1 and Gs2 (Figure 5.2). 2

From Theorem 10, the result below immediately follows.

Corollary 13: It is in O(|S||G| + |G|2) to find a minimum 1-summary graph of

G for a given keyword pair set S. 2
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Indeed, pSum can be readily adapted for specified keyword pair set S, by

specifying Gs as the union of the connection graphs induced by S (line 4). The

need to find 1-summary graphs for specified keyword pairs is evident in the context

of e.g., relation discovery [45], where users may propose specified keyword pairs

to find their relationships in graph data.

5.4.2 Minimum α-Summarization

We next investigate the MSUM problem: finding the minimum α-

summarization. We first prove Theorem 9, i.e., the decision problem for MSUM is

NP-complete. Given Q, a set of answer graphs G induced by Q, a coverage ratio

α, and a size bound B, the decision problem of MSUM is to determine if there

exists a α-summary graph Gs with size no more than B. Observe that MSUM

is equivalent to the following problem (denoted as MSUM∗): find an m-element

set Sm ⊆ S from a set of keyword pairs S, such that |Gs| ≤ B, where (a) m

= α · |Q||Q−1|
2

, (b) S = {(k, k′)|k, k′ ∈ Q, k 6= k′}, and (c) Gs is the minimum

1-summary graph for G and Sm. It then suffices to show MSUM∗ is NP-complete.

Complexity. We show that MSUM∗ is NP-complete as follows. (1) MSUM∗ is in

NP, since there exists a polynomial time algorithm to compute Gs for a keyword

pair set S, and determine if |Gs| ≤ B (Corollary 13). (2) To show the lower

bound, we construct a reduction from the maximum coverage problem, a known
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NP-complete problem [48]. Given a set X and a set T of its subsets {T1, . . . , Tn},

as well as integers K and N , the problem is to find a set T ′ ⊆ T with no more

than K subsets, where |⋃ T ′∩X| ≥ N . Given an instance of maximum coverage,

we construct an instance of MSUM∗ as follows. (a) For each element xi ∈ X,

we construct an intermediate node vi. (b) For each set Tj ∈ T , we introduce

a keyword pair (kTj
, k′Tj

), and construct an answer graph GTj
which consists of

edges (kTj
, vi) and (vi, k

′
Tj

), for each vi corresponding to xi ∈ Tj. We set S as all

such (kTj
, k′Tj

) pairs. (c) We set m = |T |-K, and B = |X|-N . One may verify

that there exists at most K subsets that covers at least N elements in X, if and

only if there exists a 1-summary graph that covers at least |S|-K keyword pairs,

with size at most 2 ∗ (|X|-N+ m). Thus, MSUM∗ is NP-hard. Putting (1) and

(2) together, MSUM∗ is NP-complete.

The APX-hardness can be proved by constructing an approximation ratio-

preserving reduction [149] from the weighted maximum coverage problem, a known

APX-hard problem, via a similar transformation as discussed above.

The above analysis completes the proof of Theorem 9.

The APX-hardness of MSUM indicates that it is unlikely to find a polynomial-

time algorithm for MSUM with every fixed approximation ratio [149]. Instead, we

resort to an efficient heuristic algorithm, mSum.
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A greedy heuristic algorithm. Given Q and G, mSum (1) dynamically main-

tains a set of connection graphs GC , and (2) greedily selects a keyword pair (k, k′)

and its connection graph Gc, such that the following “merge cost” is minimized:

δr(GC ,Gc) = |Gs(GC∪{Gc})| − |Gs(GC)|

where Gs(GC∪{Gc}) (resp. Gs(GC)) is the 1-summary graph of the answer graph set

GC ∪ {Gc} (resp. (GC)). Intuitively, the strategy always chooses a keyword pair

with a connection graph that “minimally” introduces new nodes and edges to the

dynamically maintained 1-summary graph.

The algorithm mSum is shown in Alg. 8. It first initializes a summary graph

Gs (as empty), as well as an empty answer graph set GC to maintain the answer

graphs to be selected for summarizing (line 1). For each keyword pair (k, k′), it

computes the connection graph Gc(k,k′) from the union of the answer graphs in G,

and puts Gc(k,k′) to GC (line 2-3). This yields a set GC which contains in total

O( |Q|(|Q|−1)
2

) connection graphs. It then identifies a subset of connection graphs

in G by greedily choosing a connection graph Gc that minimizes a dynamically

updated merge cost δr(GC ,Gc), as remarked earlier (line 5). In particular, we use

an efficiently estimated merge cost, instead of the accurate cost via summarizing

computation (as will be discussed). Next, it either computes Gs as a 1-summary

graph for Gc(k,k′) if Gs is ∅, by invoking pSum (line 6), or updates Gs with the newly

selected Gc, by invoking a procedure merge (line 7). Gc is then removed from GS
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(line 8), and the merge cost of all the rest connection graphs in GC are updated

according to the selected connection graphs (line 10-11). The process repeats until

m = dα|Q|(|Q|−1)
2

e pairs of keywords are covered by Gs, i.e., m connection graphs

are processed (line 9). The updated Gs is returned (line 12).

Procedure. The procedure merge is invoked to update Gs upon new connection

graphs. It takes as input a summary graph Gs and a connection graph Gc. It

also keeps track of the union of the connection graphs Gs corresponds to. It then

updates Gs via the following actions: (1) it removes all the nodes in Gc that are

dominated by the nodes in itself or the union graph; (2) it identifies equivalent

nodes from the union graph and Gc (or have the same identification); (3) it then

splits node vs in Gs if [vs] contains two nodes that cannot dominate each other,

or merge all the nodes in Gs that have dominance relation. Gs is then returned if

no more nodes in Gs can be further updated.

Optimization. The merge cost (line 5) of mSum takes in total O(|G|2) time.

To reduce the merging time, we efficiently estimate the merge cost. Given G, a

neighborhood containment relation Rr captures the containment of the label sets

from the neighborhood of two nodes in the union of the graphs in G. Formally,

Rr is a binary relation over the nodes in G, such that a pair of nodes (u, v) ∈ Rr

if and only if they have the same label, and for each neighbor u′ of u, there is a
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neighbor v′ of v with the same label of u′. Denoting as D(Rr) the union of the

edges attached to the node u, for all (u, v) ∈ Rr, we have the following result.

Lemma 14: For a set of answer graphs G and its 1-summary Gs, |G| ≥ |Gs| ≥

|G| - |Rr(G)| - |D(Rr)|. 2

To see this, observe the following. (1) |G| is clearly no less than |Gs|. (2)

Denote G as the union of the answer graphs in G, we have |Gs| ≥ |G| - |R≺(G)| -

|D(R≺|), where R≺(G) is the dominance relation over G, and D(R≺) is similarly

defined as D(Rr). (3) For any (u, v) ∈ R≺(G), (u, v) is in Rr(G). In other words,

|R≺(G)| ≤ |Rr(G)|, and |D(R≺)| ≤ |D(Rr)|. Putting these together, the result

follows.

The above result tells us that |G| - |Rr(G)| - |D(Rr)| is a lower bound for Gs of

G. We define the merge cost δr(GC ,Gc) as |G| - |Rr(G)| - |D(Rr)| - |Gs(GC)|. Using

an index structure that keeps track of the neighborhood labels of a node in G,

δr(GC ,Gc) can be evaluated in O(|G|) time.

Analysis. The algorithm mSum correctly outputs an α-summary graph, by pre-

serving the following invariants. (1) During each operation in merge, Gs is cor-

rectly maintained as a minimum summary graph for a selected keyword pair set.

(2) Each time a new connection graph is selected, Gs is updated to a summary
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graph that covers one more pair of keywords, until m pairs of keywords are covered

by Gs.

For complexity, (1) it takes in total O(m · |G|) time to induce the connection

graphs (line 1-3); (2) the While loop is conducted m times (line 4); In each loop,

it takes O((|G|2) time to select a Gc with minimum merge cost, and to update Gs

(line 7). Thus, the total time complexity is O(m|G|2). Note that in practice m is

typically small.

Example 28: Recall the query Q′ = {a, c, e, f, g} and the answer graph set G =

{G′
1, G

′
2} in Figure 5.3. There are in total 10 keyword pairs. To find a minimum

0.3-summary graph, MSUM starts with a smallest connection graph induced by

e.g., (a, g), and computes a 1-summary graph as G′′
s1

shown in Figure 5.5. It then

identifies the connection graph Gc induced by (e, g), with least merge cost. Thus,

Gs1 is updated to Gs2 by merging Gc, with one more node e2 and edge (d3, e2)

inserted. It then updates the merge cost, and merges the connection graph of

(a, e) to G′′
s2

to form G′′
s3

, by invoking merge. merge identifies that in G′′
s3

(1) a1 is

dominated by a2, (2) the two e∗1 nodes refer to the same node. Thus, it removes a1

and merges e∗1, updating G′′
s3

to G′′
s , and returns G′′

s as a minimum 0.3-summary

graph. 2

186



Chapter 5. Summarizing Answer Graphs

a*3

d3

g*1

(a,g)

a*3

d3

e*2 g*1

+ (e,g) (a,g) (e,g)(a,e)

d

a*2

e*1

d1

a*3

d2 d3

e*2 g*1e*1

+ (a,e)

G''s

b2

a*1
G''s1 G''s2 G''s3

a*3a*2

db 1 32 d2

e*2 g*1e*1

Figure 5.5: Computing minimum α-summary graph.

5.5 Computing K Summarizations

In this section we study how to construct K summary graphs for answer

graphs, i.e., the KSUM problem.

Complexity. We start by proving Theorem 11 (Section 5.2). Given Q, G, an

integer K and a size bound B, the decision problem of KSUM asks if there exists

a K-partition of G, such that the sum of the 1-summary graph for each partition

is no more than B. The problem is in NP. To show the lower bound, we construct

a reduction from the graph decomposition problem shown to be NP-hard [118].

Given a complete graph G where each edge is assigned with an integer weight, the

problem is to identify K ′ partitions of edges, such that the sum of the maximum

edge weight in each partition is no greater than a bound W . Given an instance of

the problem, (a) We identify the maximum edge weight wm in G, and construct

wm intermediate nodes VI = {v1, . . . , vwm}, where each intermediate node has a
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distinct label. (b) For each edge in G with weight wi, we construct an answer

graph with two fixed keyword nodes k1, k2 and edges (k1, vj) and (vj, k2), where

vj ∈ VI , and j ∈ [1, wi]. (c) We set K = K ′, and B = W . One may verify that

if a K ′-partition of edges in G has a total weight within W , then there exists a

K-partition of G with total summary size within 3W +2K, and vice versa. Thus,

KSUM is NP-hard. This verifies that KSUM is NP-complete.

The APX-hardness of the K summarization problem can be shown similarly, by

conducting an approximation preserving reduction from the graph decomposition

problem, which is shown to be APX-hard [118]. The above analysis completes the

proof of Theorem 11.

We next present a heuristic algorithm for KSUM. We first introduce a distance

measure for answer graphs.

Graph distance metric. Given two answer graphs G1 and G2, we introduce

a similarity function F (G1, G2) as |Rr(G1,2)|+|D(Rr)|
|G1|+|G2| , where G1,2 is the union of G1

and G2, and Rr(G1,2) and D(Rr) are as defined in Section 5.4. Intuitively, the

similarity function F captures the similarity of two answer graphs, by measuring

“how well” a summary graph may compress the union of the two graphs [52].

Thus a distance function δ(G1, G2) can be defined as 1 - F (G1, G2).
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Based on the distance measure, we propose an algorithm, kSum, which parti-

tions G into K clusters GP , such that the total set distance F (Gpi
) in each cluster

Gpi
is minimized. This intuitively leads to K small summary graphs.

Algorithm. The algorithm kSum works similarly as a K-center clustering pro-

cess [25]. It first initializes a set GP to maintain the partition of G, an answer

graph set GK with randomly selected K answer graphs from G as K “centers,”

and a summary set GS to keep record of K 1-summary graphs, each corresponds

to a cluster Gpi
in GP ; in addition, the total difference θ is initialized as a large

number, e.g., K |G|2. It then iteratively refines the partition GP as follows. (1)

For each answer graph G ∈ G, it selects the “center” graph Gcj
which minimizes

δ(G,Gcj
), i.e., is the closest one to G, and extends the cluster Gpj

with G. (2)

The updated clusters GP forms a partition of G. For each cluster Gpi
∈ GP , a

new “center” graph G′
ci

is selected, which minimizes the sum of the distance from

G′
ci

to all the rest graphs in Gpi
. The newly identified K graphs replace the origi-

nal graphs in GK . (3) The overall distance θ=
∑

i

∑
G∈Gpi

δ(G,Gci
) is recomputed

for GP . kSum repeats the above process until θ converges. It then computes

and returns K 1-summary graph by invoking the algorithm pSum for each cluster

Gpi
∈ GP .
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Figure 5.6: Summary graphs for a 2-partition.

Example 29: Recall the answer graph set G ={G′
1, G

′
2, G

′
3} in Figure 5.3. Let

K= 2. The algorithm pSum first selects two graphs as “center” graphs, e.g., G′
1

and G′
3, and computes the distance between the graphs. One may verify that

δ(G′
1, G

′
2) > δ(G′

2, G
′
3). Thus, G′

2 and G′
3 are much “closer,” and are grouped

together to form a cluster. This produces a 2-partition of G as {{G′
1}, {G′

2, G
′
3}}.

The 1-summary graphs are then computed for each cluster. pSum finally returns

G′
s1

and G′
s2

as the minimized 2 1-summary graphs, with total size 22 (Figure 5.6).

2

Analysis. The algorithm kSum correctly computes K 1-summary graphs for a K-

partition of G. It heuristically identifies K clusters with minimized total distance

of each answer graph in the cluster to its “center” graph. kSum can also be used

to compute K α-summary graphs.
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For complexity, (1) it takes kSum O(G) time for initialization; (2) the clustering

phase takes in total O(I ·K · |Gm|2) time, where I is the number of iterations, and

Gm is the largest answer graph in G; and (3) the total time of summarization is

in O(|Q|2||G|+ |G|2). In our experiments, we found that I is typically small (no

more than 3).

5.6 Experimental Evaluation

5.6.1 Experimental Settings

Datasets. We use the following three real-life datasets in our tests. DBLP (http:

//dblp.uni-trier.de/xml/), a bibliographic dataset with in total 2.47 mil-

lion nodes and edges, where (a) each node has a type from in total 24 types

(e.g.,’paper’, ’book’, ’author’), and a set of attribute values (e.g.,’network’,

’database’, etc), and (b) each edge denotes e.g., authorship or citation. We also

employ DBpedia and YAGO as described in Section 2.8.

Keyword queries. (1) For DBLP, we select 5 common queries as shown in

Table 5.2. The keyword queries are for searching information related with various

topics or authors. For example, Q1 is to search the mining techniques for temporal

graphs. (2) For DBpedia and YAGO, we design 6 query templates QT1 to QT6 ,
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Query Keywords card(G) |V |, |E|
Q1 mining temporal graphs 355 (5,6)

Q2

david parallel
computing
ACM

1222 (5,4)

Q3
distributed graphs
meta-data integration

563 (5,5)

Q4

improving query
uncertain
database conference

1617 (9,14)

Q5

keyword search
algorithm
evaluation XML
conference

7635 (7,8)

Table 5.2: Keywords queries for DBLP.

each consists of type keywords and value keywords. The type keywords are taken

from the type information in DBpedia (resp. YAGO), e.g., country in QT5 , and the

value keywords are from the attribute values of a node, e.g.,United States in QT2 .

Each query template QTi
is then extended to a set of keyword queries (simply

denoted as QTi
), by keeping all the value keywords, and by replacing some type

keywords (e.g.,place) with a corresponding value (e.g.,America). Table 5.3 shows

the query templates QT and the total number of its corresponding queries |QT |.

For example, for QT1 , 136 keyword queries are generated for DBpedia. One such

query is {’Jaguar’, ’America’}.

Answer graph generator. We generate a set of answer graphs G for each

keyword query, leveraging [72, 86]. Specifically, (1) the keyword search algorithm

in [72] is used to produce a set of trees connecting all the keywords, and (2)
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Query Keywords tem-
plate

|QT | card(G) |V |, |E|

QT1 Jaguar place 136 75 (5,7)

QT2

united states
politician award

235 177 (6,7)

QT3

album music
genre
american music awards

168 550 (11,25)

QT4

fish bird mammal
protected area
north american

217 1351 (12,24)

QT5

player club
manager
league city
country

52 1231 (17,28)

QT6

actor film award
company holly-
wood

214 1777 (12,27)

Table 5.3: Keywords queries and the answer graphs for DBpedia and YAGO.

the trees are expanded to a graph containing all the keywords, with a bounded

diameter 5, using the techniques in [86]. Table 5.2 and Table 5.3 report the average

number of the generated answer graphs card(G) and their average size, for DBLP

and DBpedia, respectively. For example, for QT3 , an answer graph has 11 nodes

and 25 edges (denoted as (11, 25)) on average. For YAGO, card(G) ranges from

200 to 2000, with answer graph size from (5, 7) to (10, 20). On the other hand,

various methods exist e.g., top-k graph selection [145], to reduce possibly large

answer graphs.

Implementation. We implemented the following algorithms in Java: (1) pSum,

mSum and kSum for answer graph summarization; (2) SNAP [142] to compare
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with pSum, which generates a summarized graph for a single graph, by grouping

nodes such that the pairwise group connectivity strength is maximized; (3) kSum

td, a revised kSum using a top-down strategy: (a) it randomly selects two answer

graphs G1 and G2, and constructs 2 clusters by grouping the graphs that are close

to G1 (resp. G2) together; (b) it then iteratively splits the cluster with larger

total inter-cluster distance to two clusters by performing (a), until K clusters are

constructed, and the K summary graphs are computed.

All experiments were run on a machine with an Intel Core2 Duo 3.0GHz CPU

and 4GB RAM, using Linux. Each experiment was run 5 times and the average

is reported here.

5.6.2 Performance on Real-life Datasets

Exp-1: Effectiveness of pSum. We first evaluate the effectiveness of pSum. To

compare the effectiveness, we define the compression ratio cr of a summarization

algorithm as |Gs|
|G| , where |Gs| and |G| are the size of the summary and answer

graphs. For pSum, Gs refers to the 1-summary graph for G and Q. Since SNAP

is not designed to summarize a set of graphs, we first union all the answer graphs

in G to produce a single graph, and then use SNAP to produce a summarized

graph Gs. To guarantee that SNAP preserves path information between keywords,
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we carefully selected parameters e.g., participation ratio [142]. We verify the

effectiveness by comparing cr of pSum with that of SNAP.

Fixing the query set as in Table 5.2, we compared cr of pSum and SNAP

over DBLP. Figure 5.7(a) tells us the following. (a) pSum generates summary

graphs much smaller than the original answer graph set. For example, cr of pSum

is only 7% for Q2, and is on average 23%. (b) pSum generates much smaller

summary graphs than SNAP. For example, for Q2 over DBLP, the Gs generated

by pSum reduces the size of its counterparts from SNAP by 67%. On average, pSum

outperforms SNAP by 50% over all the datasets. While SNAP may guarantee path

preserving via carefully set parameters, it cannot identify dominated nodes, thus

produces larger Gs.

Using QTi
(i ∈ [1, 6]), we comapred cr of pSum and SNAP over DBpedia (Fig-

ure 5.7(b)) and YAGO (Figure 5.7(c)). (1) pSum produces summaries on average

50% (resp. 80%) smaller of the answer graphs, and on average 62% (resp. 72%)

smaller than their counterparts generated by SNAP over DBpedia (resp. YAGO).

(2) For both algorithms, cr is highest over DBpedia. The reason is that DBpedia

has more node labels than DBLP, and the answer graphs from DBpedia are denser

(Table 5.3). Hence, fewer nodes can be removed or grouped in the answer graphs

for DBpedia, leading to larger summaries. To further increase the compression

ratio, one can resort to α-summarization with information loss.
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Exp-2: Effectiveness of mSum. In this set of experiments, we verify the effec-

tiveness of mSum. We compare the average size of α-summary graphs by mSum

(denoted as |Gα
s |) with that of 1-summary graphs by pSum (denoted as |Gs|).

Using real-life datasets, we evaluated |Gα
s |

|Gs| by varying α.

Fixing the keyword query set as {Q3, Q4, Q5}, we show the results over DBLP

in Figure 5.7(d). (1) |Gα
s | increases for larger α. Indeed, the smaller coverage

ratio a summary graph has, the fewer keyword pair nodes and the paths are sum-

marized, which usually reduce |Gα
s | and make it more compact. (2) The growth

of |Gα
s | is slower for larger α. This is because new keyword pairs are more likely

to have already been covered with the increment of α. Figure 5.7(e) and Fig-

ure 5.7(f) illustrate the results over DBpedia and YAGO using the query templates

{QT4 , QT5 , QT6} (Table 5.3). The results are consistent with Figure 5.7(d).

We also evaluated the recall merit of mSum as follows. Given a keyword query

Q, we denote the recall of mSum as |P ′|
|P | , where P (resp. P ′) is the set of path

labels between the keyword nodes of k and k′ in G (resp. α-summary graph by

mSum), for all (k, k′) ∈ Q. Figures 5.7(g), 5.7(h) and 5.7(i) illustrate the results

over the three real-life datasets. The recall increases with larger α, since more

path labels are preserved in summary graphs, as expected. Moreover, we found

that mSum covers on average more than 85% path labels for all keyword pairs

over DBLP, even when α = 0.6.
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In addition, we compared the performance of mSum with an algorithm that

identifies the minimum summary graph by exhaust searching. Using DBpedia and

its query templates, and varying α from 0.1 to 1 (we used pSum when α = 1.0),

we found that mSum always identifies summary graphs with size no larger than

1.07 times of the minimum size.

Exp-3: Effectiveness of kSum. We next evaluate the effectiveness of kSum, by

evaluating the average compression ratio, crK= 1
K

∑K
i=1

|Gsi |
|Gpi |

for each cluster Gpi

and its corresponding 1-summary graph Gsi
.

Fixing the query set {Q3, Q4, Q5} and varying K, we tested crK over DBLP.

Figure 5.7(j) tells us the following. (1) For all queries, crK first decreases and

then increases with the increase of K. This is because a too small K induces

large clusters that contain many intermediate nodes that are not dominated by

any node, while a too large K leads to many small clusters that “split” similar

intermediate nodes. Both cases increase crK . (2) crK is always no more than

0.3, and is also smaller than its counterpart of pSum in Figure 5.7(a). By using

kSum, each cluster Gpi
contains a set of similar answer graphs that can be better

summarized.

The results in Figure 5.7(k) and 5.7(l) are consistent with their counterparts

in Figure 5.7(a). In addition, crK is in general higher in DBpedia than its coun-
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terparts over DBLP and YAGO. This is also consistent with the observation in

Exp-1.

The space cost of the algorithms is mainly on storing answer graphs and dom-

inance relations. In general, pSum takes at most 100M over DBLP and YAGO,

which is less than 1% of the cost for storing the original data graphs. The space

cost of mSum and kSum are similar to that of pSum.

5.7 Related Work

Graph compression and summarization. Graph summarization is to (approxi-

mately) describe graph data with small amount of information. (1) Graph com-

pression [110] uses MDL principle to compress graphs with bounded error. How-

ever, the goal is to reduce space cost while the original graph can be restored,

by using auxiliary structures as “corrections.” (2) Summarization techniques are

proposed based on (a) bisimulation equivalence relation [104], or (b) relaxed bisim-

ulation relation that preserves paths with length up to K [76, 104]. Simulation

based minimization [19] reduces a transition system based on simulation equiv-

alence relation. These work preserve paths for every pair of nodes, i.e., all-pair

connectivity, which can be too restrictive to generate concise summaries for key-

word queries. (3) Summary techniques in [142,165] enable flexible summarization
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over graphs with multiple node and edge attributes, while the path information is

approximately preserved, controlled by additional parameters, e.g., participation

ratio [142].

In contrast to these work, we find concise summaries that preserve relation-

ships among keywords, rather than all-pair connectivity [76,104] or entire original

graph [110]. Moreover, in contrast to [110, 142], these summaries require no aux-

iliary structure for preserving the relationships.

Graph clustering. A number of graph clustering approaches have also been pro-

posed to group similar graphs [4]. As remarked earlier, these techniques are not

query-aware, and may not be directly applied for summarizing query results as

graphs [90]. In contrast, we propose algorithms to (1) group answer graphs in

terms of a set of keywords, and (2) find best summaries for each group.

Result Summarization. Result summarization over relational databases and XML

are proposed to help users understand the query results. [68] generates summaries

for XML results as trees, where a snippet is produced for each result tree. This

may produce snippets with similar structures that should be grouped for better

understanding [90]. To address this issue, [91] clusters the query results based

on the classification of their search predicates. Our work differs in that (1) we

generate summaries for and as general graphs rather than trees [68], (2) we study
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how to summarize connections “induced” by keywords, while the main focus of [91]

is to identify proper return nodes.

5.8 Summary

We have developed summarization techniques for keyword search in graph

data. By providing a succinct summary of answer graphs induced by keyword

queries, these techniques can improve query interpretation and result understand-

ing. We have proposed a new concept of summary graphs and their quality met-

rics. Three summarization problems were introduced to find the best summa-

rizations with minimum size. We established the complexity of these problems,

which range from PTIME to NP-complete. We proposed exact and heuristic algo-

rithms to find the best summarizations. As experimentally verified, the proposed

summarization methods effectively compute small summary graphs for capturing

keyword relationships in answer graphs.

200



Chapter 5. Summarizing Answer Graphs

Algorithm 8 Algorithm mSum
Input: Q, answer graphs G, coverage ratio α;

Output: α-summary graph Gs;

1: initialize Gs; Set GC := ∅;

2: for each pair (k, k′) where k, k′ ∈ Q do

3: compute connection graph Gc(k,k′); GC := GC ∪ {Gc(k,k′)};

4: end for

5: while GS 6= ∅ do

6: for each Gc(k,k′) ∈ GC with minimum merge cost do

7: if Gs = ∅ then Gs := pSum((k, k′),G);

8: else merge(Gs, Gc(k,k′));

9: GC := GC \ {Gc(k,k′)};

10: if m connection graphs are merged then break;

11: for each Gc ∈ GC do update merge cost of Gc;

12: end for

13: end while
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Figure 5.7: Evaluation on summarization.
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Chapter 6

Distributed Graph Processing

Scalable processing of large graphs requires careful partitioning and distribu-

tion of graphs across clusters. In this chapter, we investigate the problem of

managing large-scale graphs in clusters and study access characteristics of local

graph queries such as breadth-first search, random walk, and SPARQL queries,

which are popular in real applications. These queries exhibit strong access locality,

and therefore require specific data partitioning strategies.

In this work, we propose a Self Evolving Distributed Graph Management Envi-

ronment (Sedge), to minimize inter-machine communication during graph query

processing in multiple machines. In order to improve query response time and

throughput, Sedge introduces a two-level partition management architecture with

complimentary primary partitions and dynamic secondary partitions. These two

kinds of partitions are able to adapt in real time to changes in query workload.

Sedge also includes a set of workload analyzing algorithms whose time complexity
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is linear or sublinear to graph size. Empirical results show that it significantly

improves distributed graph processing on today’s commodity clusters.

6.1 Introduction

The graphs of interest are often massive with millions, even billions of vertices,

making common graph operations computationally intensive. In the presence of

data objects associated with vertices, it is clear that graph data can easily scale

up to terabytes in size. Moreover, with the advance of the Semantic Web, efficient

management of massive RDF data is becoming increasingly important as Semantic

Web technology is applied to real-world applications [3,9]. The recent Linked Open

Data project has published more then 20 billion RDF triples [61]. Although the

RDF data is generally represented in triples, the data inherently presents graph

structure and is therefore interlinked. Not surprisingly, the scale and the flexibility

rise to the major challenges to the RDF graph management.

The massive scale of graph data easily overwhelms memory and computation

resources on commodity servers. Yet online services must answer user queries on

these graphs in near real time. In these cases, achieving fast query response time

and high throughput requires partitioning/distributing and parallel processing of

graph data across large clusters of servers. An appealing solution is to divide a
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graph into smaller partitions that have minimum connections between them, as

adopted by Pregel [98] and SPAR [120]. As long as the graph is clustered to

similar-size partitions, the workload of machines holding these partitions will be

quite balanced. However, the assumption becomes invalid for local graph queries

when they are concentrated on a subset of vertices (hotspots), e.g., find/aggregate

the attributes of h-hop neighbors around a vertex, calculate personalized PageR-

ank [71], perform a random walk starting at a vertex, and calculate hitting time.

When these queries are not uniformly distributed or hitting partition boundaries,

we will either have an imbalance of workload or intensive inter-machine com-

munications. A good graph partition management policy should consider these

situations and adapt dynamically to changing workload.

(a) random/complete (b) internal (c) cross-partition   

Figure 6.1: Distributed query access pattern.

There could be three kinds of query workload in graphs. For random access

or complete traversal of an entire graph shown in Figure 6.1(a), a static bal-

anced partition scheme might be the best solution. For queries whose access is
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bounded by partition boundaries, as shown in Figure 6.1(b), they shall be served

efficiently by the balanced partition scheme too. However, if there are many

graph queries crossing the partition boundaries shown in Figure 6.1(c), the static

partition scheme might fail due to inter-machine communications. One partition

scheme cannot fit all. Instead, one shall generate multiple partitions with com-

plementary boundaries or new partitions on-the-fly so that these queries can be

answered efficiently.

Graph partitioning is a hard and old problem, which has been extensively

studied in various communities since 1970s [74, 78]. Graph partitioning is also

widely used in parallel computing (e.g., [62]). The best approaches often depend

on the properties of the graphs and the structure of the access patterns. Much

of the previous work has focused on graphs arising from scientific applications

(meshes [50], etc) that have a different structure than social networks and RDFs

focused in this study, where well-defined partitions often do not exist [84]. In

this study, our focus is not to design new graph partition algorithms, but to ad-

just partitions to serve queries efficiently. We design a Self Evolving Distributed

Graph Management Environment (Sedge). While Sedge adopts the same compu-

tation model and programming APIs of Pregel [98], it emphasizes graph partition

management, which is the key to query performance. It adds important functions

to support overlapping partitions, with the goal of minimizing inter-machine com-
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munication and increasing parallelism by dynamically adapting graph partitions

to query workload change.

Our contributions. A major contribution of this study is an examination of an

increasingly important data management problem in large-scale graphs and the

proposal of a graph partition management strategy that supports overlapping par-

titions and replicates for fast graph query processing. Dynamic graph partition-

ing and overlap graph partitioning were widely investigated before (e.g., [151]).

However, few methods study how to adapt partitions to satisfy dynamic query

workload in social and information networks. We addressed this issue and pro-

posed Sedge, a workload driven method to manage partitions in large graphs. We

eliminate a constraint in Pregel [98] that does not allow duplicate vertices in par-

titions. This constraint makes it difficult to handle skewed query workload. It is

able to replicate some regions of a graph and distribute them in multiple machines

to serve queries in parallel. For this goal, we develop three techniques in Sedge:

(1) Complementary Partitioning; (2) Partition Replication; and (3) Dynamic Par-

titioning. Complementary Partitioning is to find multiple partition schemes such

that their partition boundaries are different from one another. Partition replica-

tion is to replicate the same partitions in multiple machines to share the workload

on these partitions. Dynamic Partitioning is to construct new partitions to serve

cross-partition queries locally. In order to perform dynamic partitioning efficiently,
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we propose an innovative technique to profile graph queries. As manifested later,

it is too expensive to log all of the vertices accessed by each query. We introduced

the concept of color-blocks and coverage envelope to bound the portion of a graph

that has been accessed by a query. An efficient algorithm to merging these en-

velopes to formulate new partitions is thus developed. The partition replication

and dynamic partitioning are together termed on-demand partitioning since the

two techniques are primarily employed during the runtime of the system to adapt

evolving queries. Additionally, a two-level partition architecture is developed to

connect newly generated partitions with primary partitions.

We implement Sedge based on Pregel. However, the concepts proposed and

verified in this work are also valid to other systems. The performance of Sedge

is validated with several large graph datasets as well as a public SPARQL perfor-

mance benchmark. The experimental results show that the proposed partitioning

approaches significantly outperform the existing approach and demonstrate supe-

rior scaling properties.

6.2 System Design

Many applications [35,120] employ graph partitioning methods for distributed

processing. Unfortunately, real-life networks such as social networks might not
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Figure 6.2: Sedge: system design.

have well-defined clusters [84], indicating that many cross-partition edges could

exist for any kind of balanced partitions. For queries that visit these edges, the

inter-machine communication latency will affect query response time significantly.

To alleviate this problem, we propose Sedge, which is based on multi partition

sets (Figure 6.2).

Sedge is designed to eliminate the inter-machine communication as much as

possible. As shown in Figure 6.2, the offline part first partitions the input graph

in a distributed manner and distributes them to multiple workers. It creates

multiple partition sets so that each set runs independently. Pregel [98] is a

scalable distributed graph processing framework that works in a bulk synchronous

mode. Pregel is used as a computing platform that is able to execute local graph

queries. There are various kinds of local graph queries including breadth-first
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search, random walk, and SPARQL queries. Unlike many graph algorithms, a

local query usually starts at one vertex and only involves a limited number of

vertices (termed active vertice). In each iteration, a Pregel instance only accesses

active vertices, thus eliminating many synchronous steps. Section 6.5 will discuss

synchronization for the queries with writes and updates.

The online part collects statistical information from workers and actively gen-

erates and removes partitions to accommodate the changing workload. Therefore

the set of online techniques built in Sedge must be very efficient to minimize over-

head. Our study is focused on partition management. For fault-tolerance and live

partition migration with ACID properties, detailed explorations of these issues

are given in [39, 98] and similar techniques can be applied here. In the following

discussion, we overview major components including complementary partition-

ing, on-demand partitioning, the mechanism to connect primary and secondary

partitions, the meta-data to facilitate query routing and performance optimizer.

6.2.1 Graph Partitioning

Definition 1:[Graph Partitioning] Given a graph G = (V, E), graph partitioning,

C, is to divide V into partitions {P1, P2, . . . , Pn} such that ∪iPi = V , and Pi∩Pj =

∅ for any i 6= j. The edge cut set Ec is the set of edges whose vertices belong to

different partitions. 2
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AB C D AB CD(a) Partition set S1 (b) S2 : Complementarypartition set of S1e R e R
Figure 6.3: Complementary partitioning.

Graph partitioning needs to achieve dual goals. On the one hand, in order to

achieve the minimum response time, the best partitioning strategy is to split the

graph using the minimum cut. On the other hand, taking the system throughput

into consideration, the partitions should be as balanced as possible. This is exactly

what the normalized cut algorithm can do [74]. Techniques derived from graph

compression, e.g., [12] can also be applied here. However, partitioning a graph

using a random hash function might not work very well.

Complementary Partitioning is to repartition a graph such that the orig-

inal cross-partition edges become internal ones. Figure 6.3(b) shows an example

of complementary graph partitions of Figure 6.3(a). In the new partition set, the

queries (shaded area R) on original cross-partition edge, e, will be served within

the same partition. Therefore, the new partition set can handle graph queries that

have trouble in the original partition set. If there is room to hold both S1 and S2

in clusters, for a query Q visiting the shaded area R in S1, the system shall route it
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to S2 to eliminate communication cost. Meanwhile, the new partition set can also

share the workload with original partition set. This complementary partitioning

idea can be applied multiple times to generate a series of partition sets. We call

each partition set a “primary partition set.” Each primary partition set is self

complete, where a Pregel instance can run independently.

Primary partition set can serve queries that are uniformly distributed in the

graph. However, they are not good at dealing with unbalanced query workload:

queries that are concentrated in one part of the graph. It will be necessary to

either create a replicated partition (Figure 6.4(a)) or generate a new overlapping

partition (Figure 6.4(b)) in an idle machine so that the workload can be shared

appropriately. This strategy, called On-demand Partitioning, will generate

new partitions online. These add-on partitions, called “secondary partitions,”

could last until their corresponding workload diminishes.

6.2.2 Two-Level Partition Management

Given many primary/secondary partitions, it is natural to inquire how to man-

age these partitions. Here we propose the concept of Two-Level Partition

Management. Figure 6.4 depicts one example, where there are intensive work-

loads on two shaded areas. Based on a primary partition set, {A,B,C,D}, two

secondary partitions, B′ and E, are created to share the unbalanced workload on
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Figure 6.4: Two-level partition architecture.

primary partitions. Since the vertices in secondary partitions are the duplicates of

vertices in primary partitions, some of the vertices might connect to the vertices

in primary partitions. Therefore it is necessary to maintain the linkage between

vertices in secondary partitions and those in primary partitions. In our design, the

linkage is only recorded in secondary partitions. It is not necessary to maintain

such links in primary partitions. For example, for partition B′, it has to maintain

the linkage to A and C. While for A and C, they only maintain links to B, but

not to B′.

During the runtime, each primary partition set and the corresponding sec-

ondary partitions are maintained by a Pregel instance that is running on a set of

worker machines as indicated in Figure 6.2. Multiple isolated independent Pregel

instances are coordinated by meta-data management.
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6.2.3 Meta-data Management

Meta-data is maintained by both the master and the Pregel instances. As in

Figure 6.2, the meta-data manager in the master node maintains the informa-

tion about each live Pregel instance and a fine-grained table mapping vertices to

the Pregel instances. An index mapping vertices to partitions is also maintained

by each live Pregel instance. This two-level indexing strategy is used to facilitate

fast query routing. Specifically, when a query is issued to the system, the rout-

ing component first checks the vertex table maintained by the master. The index

entry maps the vertex id to the Pregel instance which can most efficiently execute

the query. After the query is routed to a particular Pregel instance, it is the duty

of the vertex index maintained by the Pregel instance to decide to which partition

the query should be forwarded. The detailed techniques of indexing vertices and

routing queries will be discussed in Section 6.5.

In order to facilitate different kinds of queries, in addition to vertex index,

it is desirable to design indices for the attributes of vertices and edges. Efficient

decentralized/distributed indexing techniques, such as [133], have come to the fore

in recent years. However, this topic is beyond the scope of this work.
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6.2.4 Performance Optimizer

The Performance Optimizer continuously collects runtime information

from all the Pregel instances via daemon processes and characterizes the exe-

cution of the query workload, such as vertex access times of each partition, and

the number of cross-machine messages/queries. The optimizer can update the

meta-data maintained by the master and evoke on-demand partitioning routine

as the workload varies. It is notable that although we depict the on-demand

partitioning as a component on the master side in Figure 6.2, the routine is actu-

ally executed by the Pregel instance on the worker side in a distributed manner.

Therefore the overhead of on-demand partitioning will be isolated and not affect

the performance of other Pregel instances.

6.3 Complementary Partitioning

Complementary partitioning is to find multiple partition sets such that their

partition boundaries do not overlap. Formally, we define the problem as:

Given a partition set {P1, P2, ..., Pk} on G and the cut edges Ec =

{e1, e2, ..., ei}. The problem is to partition G into a new partition set

{P ′
1, P

′
2, ..., P

′
k} satisfying the same partitioning criteria (e.g., minimum cut) such

that the new cut edges do not overlap with Ec.
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If we want to exclude more edges, Ec could be expanded to include edges near

the original cut edges. Without loss of generality, we assume G is an undirected

graph with unit edge weight. X is an n× k matrix, defined as follows,

xij =





1 vi ∈ V (Pj),

0 otherwise.

X gives a k-partition set of G. Furthermore, we define the following constraints

on X: (1) full coverage and disjoint : X1 = 1, where 1 is a all-ones vector with

appropriate size; (2) balance: XT1 ≤ m, where mi = (1 + σ)dn
k
e. mi is a

rough bound of partition size; σ controls the size balance. (3) edge constraint :

tr XTWX = 0, where W = (wij) is defined as an edge restrictive n × n Lapla-

cian matrix. Given the edge set Ec, if eij ∈ Ec, wij = −1, otherwise wij = 0.

Additionally, wii = −∑
j 6=i wij. The complementary partitioning problem can be

described below:

minimize
1

2
tr XTLX (6.1)

s.t. X is binary

X1 = 1, XT1 ≤ m

tr XTWX = 0

216



Chapter 6. Distributed Graph Processing

where L = (lij) is a n×n Laplacian matrix. By definition, if eij ∈ E(G), lij = −1,

otherwise lij = 0 and lii = −∑
j 6=i lij. The objective function gives the overall

cost of the cut edges with respect to a particular assignment of X.

The above problem is a nonconvex quadratically constrained quadratic integer

program (QCQIP). We rewrite the problem formulation so that we can reuse the

existing balanced partitioning algorithms:

minimize tr XT (L+ λW)X (6.2)

s.t. X is binary

X1 = 1, XT1 ≤ m

This new definition drops edge constraint in (6.1) and incorporate it into the

objective function using a weighting factor λ on the cut edges. By changing the

value of λ, we are able to control the overlap of the existing edge cut and the new

edge cut generated by the complementary partition set. It also provides a scalable

solution: Given the cut edges of the existing partition sets, we increase their weight

by λ and then run balanced partitioning algorithms such as METIS [74] to perform

graph partitioning.

The value of λ plays a critical role. Let the edge cut of the complementary

partition set be E ′
c. If its value is small, the partitioning algorithm can not distinct

the cut edges with the others. On the other hand, if the value is too large, the
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algorithm might have to cut significantly more edges in order to completely avoid

the existing edge cut. That is, E ′
c might be much larger than Ec, which is not

good too. In our implementation, we set λ = 2k and experiment different k with

a set of simulated graph queries. For each k, we check the ratio β = |E′c|−|Ec|
|Ec| . It

was observed that when k = 4 and β ≤ 0.1, the obtained partition set can achieve

good performance.

Another possible technique for complementary partitioning is to delete all the

edges in Ec first and then run classic partitioning algorithm. We argue that this

approach doesn’t work since (1) edge deletion destroys the structure of the graph,

and thus the new result may probably not reflect the real connections among the

graph partitions; (2) in order to preserve a good partition schema, i.e., minimum

cut, in complementary partitioning, some of the edges should be included in the

edge cut repeatedly.

The heuristic algorithm can be applied multiple times to generate a series of

complementary partition sets, each of which try to partition the graph such that

the boundary edges in one partition set will be internal edges in another partition

set. With multiple partition sets, for each vertex u, there could be several par-

titions P1, P2, . . . , Pl to handle queries submitted to u. Queries should be routed

to a partition where u is far away from partition boundaries. We define such a

partition as a safe partition for vertex u. As soon as a new complementary parti-
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tion set is generated, we can obtain the safe partitions for the vertices, especially

those on the boundary of the original partitions.

Remark. There are some extreme cases, e.g., complete graph, where no

complementary partition schema exists. However, for large graphs with small

dense substructures, we can continuously perform complementary partitioning.

In reality, due to space limitation, we can only afford a few sets of complementary

partitions, and resort to on-demand partitioning algorithms to handle skewed

query workloads that target some hotspots.

6.4 On-demand Partitioning

In the processing of many graph queries, primary partitions could have

hotspots that are frequently visited. The queries heading to these partitions will

suffer longer response time. There are two kinds of query hotspots: (1) internal

hotspots that are located in one partition; (2) cross-partition hotspots that are on

the boundary of multiple partitions. We developed two partitioning techniques,

partition replication and dynamic partitioning, to generate secondary partitions

on demand to handle hotspots.
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6.4.1 Partition Replication

Definition 2:[Partition Workload] Given a graph G, a partition P ⊆ G, and a

query set Q = {q1, q2, . . . , qm}, the query set of P , written W (P ), is the queries

that have accessed at least one vertex in P . The internal query set of P , written

Wint(P ), is the set of queries that only accessed vertices in P . The external

(cross-partition) query set of P , written Wext(P ), is equal to W (P )−Wint(P ). 2

Given a partition P , when its internal workload (Wint(P )) becomes intensive,

it will saturate the CPU cycles of the machine that holds P . One natural solution

is to replicate P to P ′. If there is an idle machine with free memory space, Sedge

will send P ′ to that machine. Otherwise, it will find a slack partition and replace

it with P ′. A slack partition is a secondary partition with low query workload on

it. By routing queries to P ′, the workload on P could be reduced.

6.4.2 Cross-partition Hotspots

When cross-partition hotspots exist, primary partitions have to communicate

with each other frequently to answer cross-partition queries. Instead of replicating

multiple partitions, it is better to generate new partitions that only cover cross-

partition hotspots. The new partitions will not only share heavy workload, but

also reduce communication overhead, thus improving query response time.

220



Chapter 6. Distributed Graph Processing

Hotspot Analysis. Before assembling a new partition, we need to find

cross-partition hotspots first. Given a partition, we calculate a ratio r =

|Wext(P )|
|Wint(P )|+|Wext(P )| and resort to a hypothesis testing method to detect abnormal

cross-partition query workload.

If a query is uniformly and randomly distributed over a partition P , we can

calculate the probability of observing a cross-partition query in P by either doing

a simulation or approximating it using the following external edge ratio, p =

|Eext(P )|
|Eint(P )|+|Eext(P )| , where |Eext(P )| is the number of cross-partition edges between

P and other partitions, and |Eint(P )| is the number of internal edges. If r is

significantly higher than p, it could be reasonably assumed that there are cross-

partition hotspots in P . Let n = |Wint(P )| + |Wext(P )| and k = |Wext(P )|. The

chance to have ≥ k cross-partition queries is

Pr(x ≥ k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i.

When Pr(x ≥ k) is very small (e.g., 0.01), it means there is an abnormal large

number of cross-partition queries in P .

6.4.3 Track Cross-partition Queries

Besides detecting cross-partition hotspots, we need a method to track the trail

of cross-partition queries and pack them to form a new partition. It is intuitive
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to record each query in the form of its exact search path. However, it is not only

space and time consuming for profiling, but also difficult to generalize. Instead

we mark the search path of a cross-partition query with coarse-granularity units,

color-blocks.

A color-block is a set of vertices Vi ⊂ V where they are assigned with a unique

color ci. For any vertex v ∈ V , it has one and only one color. Using color-blocks,

we are able to coarsen a graph with a much smaller number of units. To form color-

blocks, we experimented on several algorithms, i.e., nearest-k neighbors, neighbors

within k-hops, etc, and found that neighbors within 1-hop outperforms the others.

Disjointed 1-hop color-blocks could be generated as follows: (1) randomly select

one vertex, find its 1-hop neighbors, and form a color-block; (2) delete the vertices

of this color-block; (3) repeat (1) and (2) until no vertex is left.

6.4.4 Dynamic Partitioning

[Query Profiling] Given a set C = {c1, c2, ..., cn} of color-blocks, we track

the trail of a query with a subset of color-blocks, Lj = {cj1 , cj2 , ..., cjl
}. Since

these color-blocks will be grouped together later, it is not necessary to record the

visiting order of color-blocks. Lj is termed an envelope of the query.

By tracking cross-partition queries using color-blocks, each query can be pro-

filed as an envelope. Figure 6.5 shows the relation among partitions, color-blocks
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Figure 6.5: Color-block and envelop collection.

and envelopes. Given a set of candidate envelopes, a partition cannot assemble

all of them due to its space constraint. Herein we formulate the problem as an

envelopes collection problem.

[Envelopes Collection] Given a partition with the storage capacity M , there

are a set L = {L1, L2, ..., Ln} of envelopes and a set
⋃n

j=1 Lj of m colors, each

envelope Lj encapsulates a set Lj = {ci1 , ci2 , ..., cil} of colors and the size of color

ck is wk. If D ⊆ L and R =
⋃

Lj∈D Lj, the objective is to find such a set D

that maximizes |D| with the constraint
∑

ck∈R wk ≤ M , where M is the default

partition size.

Envelopes collection is reminiscent of the Set-Union Knapsack Problem, which

is a classic NP-complete problem. We propose a greedy algorithm based on the

intuition that combining similar envelopes consumes less space than combining

non-similar ones. Given two envelopes Li and Lj, the overlap of their color-

block sets is measured as the Jaccard coefficient Sim(Li, Lj) =
|Li∩Lj |
|Li∪Lj | . Given n

223



Chapter 6. Distributed Graph Processing

envelopes, performing pair-wise similarity comparison is a procedure running in

O(n2). To cope with this challenge, we employ a hash-based algorithm, called

Locality Sensitive Hashing (LSH) [51] to perform similarity search in a provably

sublinear time.

LSH is a probabilistic method that hashes items so that similar items can be

mapped to the same buckets with high probability [51]. In our case, we adopt a

LSH scheme called Min-Hash [32]. The basic idea of Min-Hash is to randomly

permute the involved set of color-blocks and for each envelope Li we compute its

hash value h(Li) as the index of the first color-block under the permutation that

belongs to Li. It has been shown in [32] that if we randomly choose a permutation

that is uniformly distributed, the probability that two envelopes will be mapped

to the same cluster is exactly equal to their similarity. We use Min-Hash as a

probabilistic clustering method that assigns a pair of envelopes to the same bucket

with a probability proportional to the similarity between them. Each bucket is

considered as a cluster and the envelopes within the same bucket are combined

together.

[Partition Generation] After obtaining a set of independent clusters, each

cluster is assigned with a benefit score, ρ = |W (C)|
|C| , to measure the quality of the

cluster. Here |W (C)| is the number of cross-partition queries denoted by all the

envelopes in the cluster C (more accurately, the times of the color-blocks in C
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are accessed) and |C| is the size of the cluster. We create an empty partition and

iteratively assemble the cluster with the highest ρ at each step as long as the total

size is no greater than the default partition size M .

Algorithm 9 Similarity-Based Greedy Clustering Algorithm

Input: Envelope set L = {Li};

Output: New partition P ;

1: Initialize hash functions;

2: for each Li ∈ L do

3: hash value = h(Li);

4: add Li to Chash value;

5: end for

6: C = {Chash value} for each Chash value 6= ∅;

7: for each cluster Ci in C do

8: ρ[i] = |W (Ci)|/|Ci|;

9: end for

10: Sort clusters on ρ in descending order;

11: cluster set P = ∅;

12: Add clusters to P as many as possible, s.t., size(P ) ≤ M ;

Scalability issues. The greedy algorithm is outlined in Algorithm 9. For

n envelopes, the complexity of Min-Hash clustering is O(n) (lines 1-5) and the
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sorting runs in O(mlog(m)) (line 9) where m is the number of the clusters gener-

ated (line 6). In the worst case, combining the clusters needs O(nm) (line 12). In

total, the complexity of this greedy algorithm is O(nm). There is still a concern

that if n and m are large, this algorithm would lead to poor scalability. To cope

with this challenge, we limit the growth of n and m in the following way. On one

hand, we use a sampling method to constrain the size of n. For example, when

the dynamic partitioning procedure is triggered, among a set of cross-partition

queries we randomly select a number of queries as a sample to generate the new

partition. On the other hand, we could coarsen the size of color-blocks by increas-

ing the number of vertices included in these blocks. This will result in a color

set much smaller than the vertex set. In the experiment, we show that these two

methods collectively guarantee that the dynamic partitioning method works in an

efficient way.

Discussion: Duplicate Sensitive Graph Query. As a design principle,

primary partitions are disjointed: each vertex only has one copy in the partitions.

However, when secondary partitions exist, it is often the case that there are two

copies v and v′ for the same vertex. It might cause a potential issue, as illustrated

in Figure 6.6. Figure 6.6(a) shows the original graph. In Figure 6.6(b), secondary

partition P2 is added and v′ is a duplicate vertex v. Suppose we run the following

algorithm to calculate the number of v’s 2-hop friends :
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Figure 6.6: Duplicate vertex.

[Method 1] Starting at v′, we send a message to its 1-hop friends and these

friends send another message to their 1-hop friends. Each partition reports the

number of vertices who received messages. Sum up the numbers.

The above algorithm works correctly in primary partitions. However, for Fig-

ure 6.6(b), it will produce a wrong answer. Due to this complication, it is not

straightforward to run queries correctly in secondary partitions. Fortunately, for

many local graph queries, there are implementations that are not sensitive to

overlapping partitions. If we change Method 1 slightly, it will work correctly.

[Method 2] Starting at v′, we send a message to its 1-hop friends and these

friends send another message to their 1-hop friends. Each partition reports the

vertices who received messages. Union the results by removing duplicates.

Other graph queries such as random walk, personalized PageRank, hitting

time and neighborhood intersection have implementations that are not sensitive

to duplications. We call queries that can be correctly answered on overlapping

partitions Duplicate Insensitive Graph Queries. If a duplicate sensitive graph
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query running on a secondary partition exceeds the boundary of the partition,

the query will be terminated and restarted in a primary partition. In Sedge,

the query routing component (described in the next section) maintains a vertex-

partition fitness list for the start vertex of a query. It helps route the query to a

partition that can serve it locally with high probability.

6.5 Runtime Optimization

6.5.1 Query Routing

An incoming query arrives with at least one initial vertex. The master node

dispatches the query to a Pregel instance according to the initiated vertex. As

shown in Figure 6.3, if possible, a query shall be routed to a Pregel instance (PI

for short) where its initiated vertex is in the safe region. Here, we devise a data

structure in the master node to coordinate query routing:

• Instance Workload Table (IWT ): I → W (I), where I is the ID of a PI and

W (I) is the workload of the PI.

• Vertex-Instance Fitness List (VFL): v → Lv{I}, where Lv{I} is an id list

of the PIs.
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Given a vertex v, the PIs where v is in safe region are ranked higher in VFL.

Since some vertices, such as those with very high degree, might not be in any safe

region, we assign a random order of PIs to their VFLs. During the runtime, the

IWT is updated by the monitoring routine. Given a query, the algorithm routes

the query to the first PI in its VFL that is not busy with respect to the IWT. Once

the query is finished, if the query cannot be served locally in its assigned PI, the

query fitness list will shift the PI to the end of the list. Since the number of Pregel

instances is small, VFL is implemented using bitset. Bitset is an array optimized

for space allocation: each element occupies only one bit. For example, it uses only

3 bits to represent up to 8 PIs. Our experimental results show that the simple

greedy routing strategy can outperform random query routing significantly.

Vertex-Partition Mapping. In order to process queries, each Pregel in-

stance needs to maintain the following tables to map vertices to partitions. All

partitions are mapped onto unique IDs.

• Partition Workload Table (PWT ): P → W (P ), where P is the ID of a

partition and W (P ) is the workload.

• Vertex-Primary Partition Table (VPT ): v → P , where P is a primary par-

tition. Each vertex is mapped to one and only one primary partition.
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• Partition-Replicates Table (PRT ): P → {SR}, where {SR} are the identical

replicates of P . For ∀v ∈ P , it may associate with several SR.

• Vertex-Dynamic Partitions Table (VDT ): v → {SD|v ∈ SD}, where {SD}

are the new partitions generated by the dynamic partitioning method.

Space complexity. Due to the limited number of partitions in practice, the

size of the PWT and the PRT is negligible. VPT is O(n), where n is the number

of vertices in G. It only takes several gigabytes to store a VPT table for billions

of vertices. The size of VDT depends on the number of vertices covered by the

secondary partitions. Usually, the size is far smaller than O(n).

In particular, each secondary partition is associated with one primary partition

set from which it is created. When a secondary partition is generated or deleted,

an entry in PRT or VDT needs to be updated accordingly. For K Pregel instances,

we maintain their tables separately. That is, we will have K sets of PWT, VPT,

PRT and VDT. These tables are stored in main memory.

6.5.2 Partition Workload Monitoring

The workload monitoring component in Sedge is built in the optimizer module

(Figure 6.2). Report messages from all Pregel instances are sent to the master

at the end of each period. Typically a report message from a Pregel instance I
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includes the number of the queries served in I (i.e., Wint(I) and Wext(I)), the

total access times of the vertices (
∑

q∈W (I) |V (q)|), and the CPU run time of the

machines holding I. These messages encode the workload information of Pregel

instances. The master updates the IWT accordingly. Analogously, each Pregel

instance collects runtime information of their partitions and calculates the ratio

between the total access times of the vertices and the size of the partition and

sorts the partitions based on the ratio. Then with respect to the threshold ratio,

a partition can be marked as a hot or a slack one. The information is maintained

in the PWT.

6.5.3 Partition Replacement

As discussed in Section 6.4, secondary partitions are generated to deal with

query hotspots. In practice, the space that can be used to accommodate additional

partitions is often limited. Therefore, it is unlikely to create as many secondary

partitions as possible. At the same time, in real-world applications, query hotspots

may become “slack” ones after a period. This practical issue motivates a parti-

tion replacement scheme that replaces a slack secondary partition with a newly

generated one. In Sedge, when a replacement is needed, we simply select the

slackest secondary partition and replace it with the one newly generated.
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6.5.4 Dynamic Update and Synchronization

Real-world graphs usually change over time in terms of insertion and deletion

of nodes and edges. Sedge can adapt to these dynamic changes. Here we take

the update on one Pregel instance as an example. Since the information of a

vertex can be obtained by referring to the vertex-partition map, edge insertion

and deletion can be accomplished directly. For the insertion/deletion of edge

(u, v), find the primary and secondary partitions of u and v, insert or delete the

edge. To delete vertex v, one can retrieve all of its edges and delete them, and

then retrieve all of partitions containing v and delete v. For insertion of vertex v

and its edges, one can first locate a primary partition P where the majority of v’s

neighbors are located, and then add v to that partition. Meanwhile, update all of

the replicates of P and then submit edge insertion requests. For vertex insertion

and deletion, we also need to update the vertex-partition map, i.e., VFL, VPT and

VDT. Note that the update should be applied to all the Pregel instances. When

the insertion of vertices and the following edge insertions make a primary partition

too big, we need to redo the partitioning from scratch. Additionally, when a query

changes vertex values during its execution, the cost of keeping the vertex values

in sync is usually quite high especially when there are many duplicates. In Sedge,

we adopt a simple strategy: when a query changes a vertex value, a new update
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query is issued to all the corresponding partitions. An experiment in Section 6.6.2

demonstrates the efficiency of dynamic update in Sedge.

6.6 Experimental Evaluation

The system is programmed in Java. We use a distributed version of METIS

[74] to generate primary partitions. To evaluate Sedge on a diversified set of

graphs and queries, we test datasets in two categories: RDF benchmarks and real

graph datasets using different sets of graph queries. Our experiments are going

to demonstrate that (1) Sedge is efficient and scalable, in comparison with the

situation without partition management, and (2) the design of each component

including complementary partitioning and on-demand partitioning is effective for

performance improvement.

The experiments are conducted on a cluster with 31 computing nodes: each

has 4 GB RAM, two quad-core 2.60GHz Xeon Processors and a 160 GB hard

drive. Among these nodes, one serves as the master and the rest as workers. The

cluster is connected by a gigabit ethernet. In each experiment, we perform three

cold runs over the same experimental setting and report the average performance.

For each graph in the following experiments, we generate 5 complementary

partition sets beforehand. We use CP1 to denote the performance when only
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using the first primary partition set while CP2, CP3, CP4 and CP5 to denote the

performance when using 2, 3, 4 and 5 partition sets, respectively. Each primary

partition set consists of 12 primary partitions, which fill in 6 workers.

6.6.1 Evaluation with a SPARQL Benchmark

We first evaluate the system performance of Sedge on a SPARQL benchmark

graph. SPARQL is an emerging standard for RDF. Efficient storage techniques

for large-scale RDF data and evaluation strategies for SPARQL are currently

under exploration in the database community [9,128]. In this experiment, we will

illustrate that our partitioning techniques can improve SPARQL query execution

significantly.

The SP2Bench Benchmark [128] chooses the DBLP library as its simulation

basis. It can generate arbitrary large RDF test data which mirrors vital real-world

distributions found in the original DBLP data. Using the generator provided

by [128], we create an RDF graph with 100M edges (11.24GB). It is a heterogenous

graph with the subjects/objects as the vertices and the predicates as the links.

SP2Bench provides 12 query templates, Q1, Q2, . . . , Q12 that are delicately

designed to capture all key features of the SPARQL query language. In this work,

we select five categories in which the existing SPARQL engines have difficulties.

These queries are listed in the Appendix. From the view of query operation, Q6 and
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Figure 6.7: Number of cross-partition queries.

The missing bars for the CP4 and CP5 of Q2 , the CP5 of Q4 and the CP5 of Q6

correspond to the value of 0, i.e., the cross-partition query vanishes.

Q7 encode the operations of OPTIONAL (akin to left outer joins) with FILTER

and BOUND; from the view of access pattern, Q2 and Q4 contain two distinctive

graph patterns, “long path chains” and “bushy patterns” [128]; Q8, extracting

the Erdös Number of the authors, showcases the queries that concentrate on a

“hotspot.” We map the queries against specific vertices as the query starts and

thereafter match the variables to the nodes or edges during the query execution.

In order to validate the complementary partitioning approach, we generate a

workload with 10, 000 queries, which are the equal mixture of the 5 query types

with randomly selected starts. The queries are routed automatically to the corre-

sponding partitions with the assistance of the query routing module. We compare

the performance by varying the number of the used primary partition sets. Fig-

ure 6.7 shows the effect of the approach. Note that the Y-axis is plotted in loga-
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rithmic scale to accommodate the significant differences in the number of queries

that access at least two partitions. It is observed that by adding more comple-

mentary partition sets, the number of cross-partition queries can be dramatically

reduced. It vanishes for Queries Q2, Q4 and Q6 when 4 or more complementary

partition sets are used. A close look at the difference in the performance between

the variants of query types reveals that Q2, Q4 and Q6 exhibit high locality. In

contrast, Q7 and Q8 exhibit more complex access pattern. Figure 6.7 shows for

the queries of Q7 and Q8, CP5 outperforms CP1 by up to almost one order of

magnitude. The result suggests that our complementary partitioning is an effec-

tive way in response to cross-partition queries of various types. Figure 6.7 also

shows, with respect to different queries, how the percentage of vertices in safe

partitions changes when the number of complementary partition sets increases.

For example, for Q7, the percentage of vertices in safe partitions increases from

50.9% (1 partition set) to 94.7% (5 complementary partition sets); and for Q8, it

increases from 81.4% to 97.6%.

To demonstrate how Sedge responds to skewed workloads, we generate a syn-

thetic evolving workload which contains 10 timesteps. In each timestep, the work-

load consists of 10, 000 queries which are the mixture of the 5 query types with

equal number. To control the evolution of the workload, each query is assigned

with a lifetime value. If the query is internal (finished within a partition), it
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(b) Lifetimec = 5

Figure 6.8: Performance of complementary and on-demand partitioning.

has lifetime, lifetimeI ; otherwise, it has lifetime, lifetimeC . When a query ex-

pires, it will restart in the next timestep with a new lifetime and a randomly

selected start. Since random internal queries do not contribute to a skewed

workload, we set lifetimeI = 1 for simplicity and vary the value of lifetimeC in

the following experiments. Note that when lifetimeC > lifetimeI , the number of

cross-partition queries will increase gradually because more internal queries will

become cross-partition queries than the reverse along the time.

We compare the approaches from two perspectives: complementary partition-

ing and on-demand partitioning. CP1 × 5 uses 5 static replicates of the first

partition set (i.e., run five Pregel’s independently, each with 1/5 workload), and

CP5 uses all the 5 complementary partition sets. Both of the two approaches use

up 30 worker space. Note that we run these two settings only using Pregel in-

stances where no query profiling (on-demand partitioning) is applied. CP4 + DP
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uses 4 complementary partition sets and employs the rest worker space for on-

demand partitioning. To maintain a fair comparison, the number of secondary

partitions can not exceed 12, the size of one partition set in our experiments.

Figure 6.8 reports the accumulated time cost of the query workload at each

timestep with respect to the three approaches. The overhead of on-demand parti-

tioning is also included in the workload cost. Figure 6.8(a) shows the performance

of these approaches when lifetimeC = 2. The curve of CP5 illustrates that the

complementary partitioning technique significantly outperforms the static replica-

tion (CP1×5). The advantage becomes more obvious along with the accumulation

of the cross-partition queries. It can also be seen that due to the generation of

new secondary partitions, CP4 + DP outperforms CP5 after timestep 3. When

lifetimeC = 5, Figure 6.8(b) shows a similar result of the comparison between

CP1 × 5 and CP5 as in Figure 6.8(a). However, in Figure 6.8(a), CP4 + DP

outperforms CP5 noticeably after timestep 3 and the time cost almost remains

steady. This is because when lifetimeC = 2, due to the dynamics of the queries,

the system invokes on-demand partitioning more frequently (6 times) than that

when lifetimeC = 5 (3 times).
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6.6.2 Evaluation with Real Graph Datasets

Next, we evaluate the design of Sedge by testing the effectiveness of each

component. We use another set of graphs and queries to show the broad usage

of Sedge. Nevertheless, the same test can be conducted on SP2Bench and similar

results will be observed.

Datasets. We use both real-world graphs and the synthetic graph in

the test. Web graph. It is a uk-2007-05 web graph data from

http://webgraph.dsi.unimi.it [12], which is a collection of UK websites. It con-

tains 30M vertices and 956M edges. Twitter graph. The Twitter graph is

crawled from Twitter, consisting of 40.1M users. There are 1.4B edges (includ-

ing multi-edges) in this dataset. For simplicity, we aggregated the multi-edges

and the associated attributes as one edge which represents several messages sent

from one user to another at different time. Bio graph. The Bio graph is a de

Bruijn Graph built from a sample of mRNA. In this graph, vertices represent

sub-sequences of DNA symbols with length of twenty one (a.k.a. k-mer length)

and edges represent the adjacent relationships between vertices: the two vertices

differ by a single symbol [164]. We collect 50M vertices and construct 68M edges.

The resulting de Bruijn graph is like a tree.
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Graph Size (GB) Partition (s) VFL (MB) VPT (MB)
Web 14.8 120 81.5 35.3
Twitter 24 180 109.0 45.4
Bio 13 40 135.9 55.3
Syn. 17 800 543.7 205

Table 6.1: Graph datasets.

Synthetic scale-free graph. The graph is generated based on R-MAT [21].

It consists of 0.2 billion vertices and 1.0 billion edges. The graph matches “pow-

law” behaviors and naturally exhibits “community” structure.

Table 6.1 summarizes the size of the graphs, the time cost of building one

primary (complementary) partition set, the size of the vertex-instance fitness list

(VFL), and the size of the vertex-partition table (VPT ). It can be seen that the

auxiliary meta-data is much smaller than the graph it serves, only 0.5%− 5% of

its size.

We use three classic local graph queries to experiment the performance: (1)

h-hop Neighbor Search (h-NS): the query starts from a vertex v and does a breath-

first search for all the vertices within h hops of v; (2) h-step Random Walk (h-RW):

the query starts at a vertex and at each following step jumps to one of its neighbors

with equal probability. The query consists of h steps; (3) h-step Random Walk

with Restart (h-RWR): it is a h-step random walk query; but at each step it

may return to its start vertex with p probability. We set p = 10% by default.
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For global graph algorithms like single-source shortest distance, Sedge could also

support them. However, they are not the focus of this work.

We test the effectiveness of our proposed algorithms: complementary partition-

ing, partition replication and dynamic partitioning. Due to the space limitation,

we first show the experiments on the Web graph with different test settings. For

the other datasets, we get quite similar results. We will then give an evaluation

of the system on the scalability, using all of the four graphs.

Complementary Partitioning

Figure 6.9 shows the effect of complementary partitioning in reducing the

communication cost. In this experiment, we use CP1 as the baseline (the result

will not change if we replicate CP1 five times) and test 10, 000 h-RWR queries

using different number of complementary partition sets. By varying the step of the

h-RWR, it can be seen that the complementary partitioning method can reduce the

inter-machine messages. As to queries with longer random walk, the performance

of Sedge degrades. However, with more complementary partitions, e.g., CP4 and

CP5, Sedge can still achieve good performance in message reduction.
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Figure 6.9: Complementary partitioning.

Partition Replication

To evaluate the performance of partition replication on unbalanced workload,

we randomly generate a workload with mixed queries, i.e., 3-NS, 5-RW, 5-RWR,

on a specific graph partition (denoted as P1) and continuously increase the number

of queries from 10, 000 to 50, 000. We run this changing workload under 3 different

settings: (1) CP1 (the baseline); (2) CP1 and 1 replicate of P1 (ref. as CP1 +PS);

(3) CP1 and 2 replicates of P1 (ref. as CP1+PS×2). Figure 6.10 shows the number

of queries can be served per second (throughput) for each setting. It is observed

that the throughput by using partition replication significantly outperforms that

of no replication one. This is because the query workload on P1 is distributed

and processed in parallel among the primary partition and its replicates.
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Figure 6.10: Partition replication.

Dynamic Partitioning

To test the performance of dynamic partitioning, we focus on queries that

access multiple partitions. We randomly generate mixed cross-partition queries (3-

NS, 5-RW and 5-RWR) and test the system performance by varying the number

of queries from 10, 000 to 50, 000. We run Sedge with only one primary partition

set (CP1) as well as with one primary partition set and on-demand generated

secondary partitions (CP1 + DP ), respectively.

Figure 6.11 shows the runtime cost of dynamic partitioning. It measures the

run time of each stage to finish a dynamic partitioning process: query profiling,

envelopes collection and new partition generation. The figure shows the cost per

query by varying the number of cross-partition queries. For all the three stages,

it is observed that the cost remains almost constant. Therefore the dynamic par-

titioning method is scalable with respect to the number of cross-partition queries.
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Figure 6.11: Dynamic Partitioning: runtime cost.

10,000 20,000 30,000 40,000 50,000
0

2

4

6

8

10

Number of cross−partition queries

A
vg

. R
es

po
ns

e 
T

im
e 

(m
s)

 

 

CP
1

CP
1
 + DP

Figure 6.12: Dynamic partitioning: response time.

We next use the same query workload to test the effect of dynamic partitioning.

Figure 6.12 shows the average response time by varying the number of cross-

partition queries. Note that the response time here only indicates the query

answering time. From the figure, we can observe the query response time is

significantly improved compared to the static partitioning method. This also

explains that our algorithms are effective for serving cross-partition queries. In

the above experiments, Sedge uses slightly larger space with secondary partitions.
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Scalability Evaluation

Additionally, we test the capability of Sedge to handle intensive cross-partition

queries. We generate five sets of query workload, each of which contains 100, 000

random queries and set the percentage of the cross-partition queries as 0%, 25%,

50%, 75% and 100%, respectively. For this experiment, we use CP1 as the baseline

and demonstrate the performance of CP1 + DP , where DP denotes secondary

partitions generated by dynamic partitioning on demand. We employ 6 machines

to hold CP1 and assign additional machines gradually to accommodate the new

partitions.
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Figure 6.13: Cross-partition queries vs. improvement ratio.

Figure 6.13 shows the improvement ratio in average response time. In this

figure, we plot the lift of the average response time by using on-demand parti-

tioning compared with the baseline. The response time includes both the query

answering time and the overhead of on-demand partitioning. As we increase the
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percentage of cross-partition queries, it can be seen that for all the four datasets,

there is a significant improvement in average response time. In detail, however,

we observe different improvement performance with respect to the changing work-

load. For the Twitter graph and Synthetic graph, the ratio increases constantly.

This can be explained as follows. In these two graphs, there are many tightly

connected substructures (communities). If these substructures are divided among

multiple partitions, the cross-partition queries on them will visit these partitions

frequently and as a result produce much inter-machine communication. In this

case, by collecting the hot substructures together, our system can dramatically

improve the efficiency. As for the Bio graph, it is a tree-like structure. Hence,

the cross-partition query does not visit many partitions and the improvement in

query response time is not remarkable when compared with the baseline method.

The characteristics of the Web graph are between these two types.
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Figure 6.14: Dynamic update and synchronization cost.
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Dynamic Updates and Synchronization

To test the performance of dynamic update/synchronization, we experiment on

vertex addition and deletion on the large Synthetic graph. To assure updates are

indeed executed globally, 5 primary (complementary) partition sets are initially

loaded and runs in parallel. In the experiment of vertex addition, we generate new

vertices with respect to the degree distribution of the graph, which is a “power-

law” distribution with γ = 2.43 (a.k.a scaling parameter, [6]). New edges are

constructed according to preferential attachment. As to the experiment of vertex

deletion, we randomly select vertices in the graph to delete. Figure 6.14 shows

the average run time for each vertex addition/deletion operation by varying the

number of vertices. It is observed that the addition and deletion operation per

vertex can be accomplished in about 0.2ms and 0.4ms respectively and the time

is almost constant with respect to the number of updated vertices.

6.7 Related Work

Graph partitioning is an important problem with extensive applications in

many areas, including circuit placement, parallel computing and scientific sim-

ulation. Large-scale graph partitioning tools are available, e.g. METIS [74],

Chaco [63], and SCOTCH [116], just to name a few. This study is not to propose
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a new graph partitioning algorithm. Instead, it is focused on a workload driven

method to manage partitions in large graphs.

Distributed memory systems in super-computing is able to process large-scale

linked data, e.g., [77, 108]. These systems could map shared data into the ad-

dress space of multiple processors. They are usually very general, supporting

random memory access that has less locality than the graph queries introduced in

this work, thus could not benefit from query locality. Malewicz et al. [98] intro-

duced Pregel, which could run graph algorithms in a distributed and fault-tolerant

manner. Logothetis et al. [93] introduced a generalized architecture for continu-

ous bulk processing (CBP) that is good for building incremental applications in

large datasets including graphs. Najork proposed the scalable hyperlink store,

SHS [108]. SHS studied several key issues in large graph processing: real-time

response, graph compression, fault tolerance, etc. Our study touches another as-

pect on managing partitions to fit workload changes. Kang et al. [73] developed a

peta-scale graph mining system, PEGASUS, built on the top of the Hadoop plat-

form. PEGASUS proposed and optimized iterative matrix-vector multiplication

operators. The difference between Pregel and MapReduce can be referred to [98].

In this work, we implement and leverage the computing environment provided by

Pregel, but focus on graph partition management, not optimization techniques for

specific algorithms. COSI [15] is a framework that is able to partition very large
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social networks according to query history. Such work is optimized for static query

workload and hence cannot be readily applied to dynamic query workload. Pujol

et al. [120] developed a social partitioning and replication middle-ware, SPAR,

to achieve data locality while minimizing replication. SPAR aims to optimize

performance based on social network structures, e.g., communities, while our sys-

tem develops partitioning techniques that adapt to query workload change. As

discussed before, network structures might not reflect actual query workload. In

addition to in-memory solutions, Nodine et al. [111] considered the problem of

using disk blocks efficiently in searching graphs that are too large to fit in mem-

ory. The idea of using redundant blocks is related to complementary partitioning

proposed in Sedge.

Distributed query processing has also been studied on semistructured data

[18,135], relational data [35] and RDF [7]. The key technique is minimizing data

movement by partial evaluation, hybrid shipping, two-phase optimization and

replication (see [81] for a survey). Additionally, as the emerging of Semantic

Web, more and more data sources on the Web are organized in the RDF model

and linked together. With the observation of the heterogeneity and scalability

challenges existing in the management of RDF data, innovative data schemas

have been proposed. One of the widely used techniques has been termed the

property table [16,155]. The technique is to cluster subjects sharing similar prop-
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erties/predicates. Another technique, vertical table [3], is to vertically partition

the schemas on property value. Efficient RDF data management is still an open

problem and has not been addressed thoroughly.

6.8 Summary

We introduced an emerging data management problem in large-scale social

and information networks. In order to process graph queries in parallel, these

networks need to be partitioned and distributed across clusters. How to gener-

ate and manage partitions becomes an important issue. We illustrated that, for

graph queries which have strong locality and skewed workload, static partition

scheme does not work well. Thus, we proposed two partitioning techniques, com-

plementary partitioning and on-demand partitioning. Based on these techniques,

we introduced an architecture with a two-level partition structure, primary and

secondary partitions, to handle graph queries with changing workload. The exper-

iments demonstrated the developed system can effectively minimize inter-machine

communication during distributed graph query processing. For future work, it is

interesting to explore efficient RDF storage mechanisms and distributed metadata

indexing solutions.
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The Architecture of SLQ

7.1 System Design

The system SLQ consists of back-end and front-end modules, as illustrated in

Figure 7.1. For the back-end, SLQ integrates (1) a full fledged indexing module

(the lower left part in Figure 7.1) which implements all the indices in Section 2.6,

and (2) an offline learning module for the ranking model (the lower right part

in Figure 7.1). Each module in the back-end can be maintained dynamically

in response to data updates, without affecting the front-end, i.e., online query

processing. We also separate the information for graph structure and its node

and edge content, and store the latter in the database. This enables SLQ to

perform fast graph traversal by only loading much smaller graph structure into

the memory, while accessing richer content, e.g., attribute values, documents,

pictures in the database.
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Figure 7.1: SLQ: architecture.

The front-end modules reside in the application layer (online query process-

ing), as shown in the upper level in Figure 7.1. Upon receiving a query, (1) the

“query prepare” module first interprets the query to an internal format, and

prepares the match candidates by looking up the indices; (2) SLQ next invokes

“top-k query process” using the ranking model to find accurate matches; (3)

once the top-k results are generated, SLQ directly renders the results to the user

through our “GUI/REST service”; (4) SLQ can also provide the users with the

summarized views of the results via “summarize”; and (5) the user queries and

result preferences are memorized by “Logger” to improve the ranking model.
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SLQ is designed with elasticity. It can be scaled up easily by duplicating a

module without affecting the others. For example, when there are intensive query

requests, we can duplicate the application layer in multiple servers and then evenly

distribute the queries among the servers.

7.2 Demonstration

Setup. We demonstrate SLQ over the knowledge graphs in Table 1.1. The system

is implemented in Java and is deployed on an Intel Core i7 2.8GHz, 32GB server.

Demo Scenario. SLQ provides user interfaces for query formalization and query

result exploration (Figure 7.2). We invite users to experience (1) how to easily

form a query without prior training in query languages or graph databases, (2)

how the results, summaries and even the data graph can be conveniently navigated

and viewed.

As shown in Fig 7.2(a), the query formalization interface renders the users

with two major query panels to form queries. (1) Users can conveniently draw

a graph query in the query drawing panel, and can freely add and edit the

properties and values in the the property panel for each query node or edge.

(2) Alternatively, users are invited to use our built-in query language SLQL in

the query editing panel. SLQL is designed for simplicity. It consists of two
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types of statements: (1) the node statement, “$x.property = value,” where “$x”

denotes a query node with a label constraint “property = value,” and (2) the

edge statement, “$x predicate $y,” where “$x” and “$y” are the query nodes as

in (1) and “predicate” indicates the relationship between the two nodes. A graph

query and its SLQL representation is shown in Figure 7.2(a).

The second demonstration scenario invites users to run their queries and in-

spect the results. A user can also run the query on various knowledge graphs,

e.g.,Freebase, chosen from setting. The results of the query in Figure 7.2(a) are

shown in the graph exploration interface (Fig 7.2(b)). The graph explore panel

renders top-1 result (the highlighted part) as well as its peripheral structure (the

dim part) in the data graph. The user can then inspect the detail information of a

node/edge shown in the information panel. By double-clicking a node, users are

able to explore the one-hop neighbors of the node from the data graph. Moreover,

the result control panel enables the user to navigate the next/previous result

or return to the top-1 result. The user feedback will be recorded if they click the

like button on specific results. We also invite users to try the summarize button

to view the summarized results from a large collection of returned matches, and

drill down to find details.
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query drawing panel

(a) Query formalization interface

(b) Graph exploration interface

Figure 7.2: SLQ: user interface.
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

Knowledge graph and other complex graph data have been emerging as a

foundation for many real-world applications, including search, recommendation,

advertisement, Question&Answering and other intelligent systems. However, the

current techniques cannot satisfy the practical requirements by leveraging the

knowledge graphs. On one hand, due to the various data providers, knowledge

graphs are usually quite heterogeneous, with a complex schema defined on the

entities and the relationships. This fact exposes great challenges to the end users

who do not possess any understanding of the data and the schema but still post

their great information need. This paradox calls for effective techniques that can

bridge the gap between the users and the underlying knowledge graphs. On the

other hand, the volume of the graph data increases dramatically. To retrieve the
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information w.r.t. the user’s request requires great computation effort and time

cost. This contrasts the requirement for online applications where the users are

impatient. This challenge suggests the efficient techniques that can be executed

in query time.

In response to the many challenges, we propose SLQ, which is a uniform system

for querying knowledge graphs. It intends to effectively process the request from

users in arbitrary format, e.g., keywords, nature language questions and graph

queries. Overall, SLQ incorporates the following novel techniques.

Schemaless graph querying. It matches user’s queries by a set of transforma-

tion functions and then adopts a learning-to-rank strategy to efficiently retrieve

the best results. The ranking model considers the syntax/semantic matching sig-

nals and thus provides high-quality results. Moreover, we design a strategy to

automatically generate training instances for the ranking model from the data

graph. This is especially helpful in the cold-start stage where no manual effort

is required for instances labeling. According to the validation on several real-life

large knowledge graphs, the technique outperforms traditional keyword and ap-

proximate graph searching algorithms in terms of quality and efficiency: (a) it is

able to find matches that are semantically meaningful to the queries which cannot

be answered by the existing keyword or graph query methods; (b) it is 2-4 times

faster than the baseline algorithm, and is orders of magnitude faster than a naive
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top-k algorithm that inspects every match; (c) for ranking quality, it achieves up

to 50% improvement in the mean average precision, compared with its previous

counterparts.

Fast top-k search. Given a query, it is important to extract and return the best

answers from a large number of results. The top-k search technique is designed

for this purpose and has been required in many real-world systems. Thus, we

propose STAR, a top-k subgraph matching framework that deals with these new

challenges. It develops fast query processing algorithms for popular star-shaped

queries and makes use of this engine to solve more complex graph queries. Ex-

tensive experiments have been conducted on STAR and demonstrated its superior

performance over the traditional approaches. For star queries, we found that

STAR is 5-10 times faster than TA and 10-100 times faster than BP. While for

general queries, our query optimization technique can achieve up to 45% runtime

improvement over the baseline algorithms.

Semantic matching and indexing. Since the users’ queries are often ambigu-

ous and expressed in different vocabulary from that in the knowledge graph, this

is a great need to identify answers that are not only identical or similar, but also

semantically close to the query’s words. To this end, SLQ also integrates a tech-

nique based on both the data graph and the ontology graph. This gives rise to
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the ontology-based graph querying technique. We introduce an ontology index,

which is built together with the data graph. Based on the index, we propose a

filtering-and-verification framework for computing the top-k results. By verifying

the methods on several real graphs, the ontology-based graph querying can iden-

tify much more meaningful matches than traditional subgraph querying methods.

The framework is efficient and scales well with the size of the data graphs, queries,

and ontology graphs while comes with little indexing overhead.

Result summarization. Result summarization is an effective approach to ren-

der a large number of answers to the users. We formulate several interesting

summarization problems for graph querying, α-summarization and K summa-

rization. The complexity of these problems ranges from PTIME to NP-complete.

We propose exact and heuristic algorithms for these summarization problems. As

shown in the experimental study, our algorithms effectively summarize the answer

graphs: they generate summary graphs that cover every pair of keywords with size

in average 24% of the answer graphs. They also scale well with the size of the

answer graphs.

Distributed graph process. Due to the excessive volume of the graph data, we

introduce the distributed solutions for graph management and query processing.

Based on a careful study of the query workload on large graphs, we propose two
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partitioning techniques, i.e., complementary partitioning and dynamic partition-

ing. Complementary partitioning is designed to serve queries locally which need

cross partition boundaries previously, thus can reduce the communication cost.

Dynamic Partitioning can further reduce this cost by constructing new partitions.

The balance problem is also investigated by employing partition replication. We

compare our technique with several state-of-the-art frameworks on large graphs

and find it is extremely efficient for graph traversal queries.

To the best of our knowledge, SLQ is among the first efforts of developing

a unified system for querying large knowledge graphs. SLQ provides a set of

solutions that help non-professional users access complex graph data in a much

easier manner.

8.2 Future Directions

Since SLQ is designed for flexibility and being capable of incorporating any

new components in need, we plan to extend it to the following directions in the

future.

Nature language querying. Nature language is a user-friendly way of query-

ing knowledge graphs. To answer a natural language question, the traditional

techniques first transform it into graph format which serves as an intermediate
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representation that can be effectively processed by existing techniques, such as

SLQ. However, this transformation poses great challenges. (1) It is difficult to

infer proper entities and relationships from a short question, without the full con-

text of the user’s search intent. (2) The natural language question could be quite

ambiguous, leading to many possible graph query transformations.

Distributed top-k search. Although there are many distributed top-k search

techniques, they cannot be leveraged for top-k graph querying. With the in-

creasing scale of the graph data and the emerging of many mature distributed

frameworks, it is urgent to explore the top-k graph querying in a distributed set-

ting. This implies several challenges: (1) graph querying exhibits non-locality,

which usually results in a large amount of communication in the distributed en-

vironment. (2) The traditional join-then-bound strategy cannot work effectively

since the bound is usually quite loose. Hence it is likely to extract an excessive

number of results for the top-k search, even when k is small; (3) The query op-

timization problem, such as graph query decomposition, will dramatically affect

the efficiency.

Some other interesting but important directions, such as graph querying bench-

mark and better ranking technique with user feedbacks, are also worth exploring

in the future.
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[25] M. Charikar, S. Guha, É. Tardos, and D. Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem. In STOC, pages 1–10,
1999.

[26] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on structured and
semi-structured data. In SIGMOD, 2009.

[27] G. Cheng and Y. Qu. Term dependence on the semantic web. In Interna-
tional Semantic Web Conference, 2008.

[28] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern
matching. In ICDE, 2008.

[29] J. Cheng, X. Zeng, and J. X. Yu. Top-k graph pattern matching over large
graphs. In ICDE, 2013.

[30] C. Choi, M. Cho, J. Choi, M. Hwang, J. Park, and P. Kim. Travel ontology
for intelligent recommendation system. In AMS, 2009.

[31] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based technologies for
intelligence analysis. Commun. ACM, 47, 2004.

[32] E. Cohen. Size-estimation framework with applications to transitive closure
and reachability. J. Comput. Syst. Sci., 55(3):441–453, 1997.

[33] O. Corby, R. Dieng-Kuntz, F. Gandon, and C. Faron-Zucker. Searching the
semantic web: approximate query processing based on ontologies. Intelligent
Systems, IEEE, 21(1):20 – 27, 2006.

[34] V. Cord̀ı, P. Lombardi, M. Martelli, and V. Mascardi. An ontology-based
similarity between sets of concepts. In WOA, pages 16–21, 2005.

[35] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. In VLDB, pages 48–57,
2010.

[36] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. Divq: diversification
for keyword search over structured databases. In SIGIR, pages 331–338,
2010.

[37] R. Dieng-Kuntz and O. Corby. Conceptual graphs for semantic web appli-
cations. In ICCS, volume 3596, pages 19–50, 2005.

264



Bibliography

[38] X. Ding, J. Jia, J. Li, J. Liu, and H. Jin. Top-k similarity matching in large
graphs with attributes. In Database Systems for Advanced Applications,
pages 156–170, 2014.

[39] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr: Live migration
in shared nothing databases for elastic cloud platforms. In SIGMOD, pages
301–312, 2011.

[40] R. Fagin. Combining fuzzy information from multiple systems. In PODS,
1996.

[41] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-
dleware. Journal of Computer and System Sciences, 66(4):614–656, 2003.

[42] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. Incremental graph
pattern matching. In SIGMOD, 2011.

[43] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism revisited
for graph matching. PVLDB, 3, 2010.

[44] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching.
VLDB, 2013.

[45] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. Rex: Explaining relation-
ships between entity pairs. PVLDB, 5(3):241–252, 2011.

[46] H. Fu and K. Anyanwu. Effectively interpreting keyword queries on rdf
databases with a rear view. In ISWC, 2011.

[47] M. A. Gallego, J. D. Fernández, M. A. Mart́ınez-Prieto, and P. de la Fuente.
An empirical study of real-world SPARQL queries. In USEWOD workshop,
2011.

[48] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. 1979.

[49] R. Gentilini, C. Piazza, and A. Policriti. From bisimulation to simulation:
Coarsest partition problems. J. Automated Reasoning, 2003.

[50] J. Gilbert, G. Miller, and S.-H. Teng. Geometric mesh partitioning: imple-
mentation and experiments. SIAM J. Sci. Comput., 19:2091–2110, 1998.

[51] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions
via hashing. In VLDB, pages 518–529, 1999.

265



Bibliography

[52] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz. Multi-document
summarization by sentence extraction. In NAACL-ANLPWorkshop on Au-
tomatic summarization, pages 40–48, 2000.

[53] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI, 2012.

[54] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In OSDI, 2014.

[55] G. Gou and R. Chirkova. Efficient algorithms for exact ranked twig-pattern
matching over graphs. In SIGMOD, 2008.

[56] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: ranked
keyword search over XML documents. In SIGMOD, 2003.

[57] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: ranked
keyword search over xml documents. In SIGMOD, 2003.

[58] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. Top-k interesting subgraph
discovery in information networks. In ICDE, 2014.

[59] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches
on graphs. In SIGMOD, 2007.

[60] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches
on graphs. In SIGMOD, pages 305–316, 2007.

[61] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, 2011.

[62] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel
computing. Parallel Computing, 26(12):1519–1534, 2000.

[63] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proc. of Supercomputing, 1995.

[64] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations
on finite and infinite graphs. In FOCS, 1995.

[65] H. H. Hoang and A. M. Tjoa. The state of the art of ontology-based query
systems: A comparison of existing approaches. In In Proc. of ICOCI06,
2006.

266



Bibliography

[66] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
and G. Weikum. Yago2: Exploring and querying world knowledge in time,
space, context, and many languages. In WWW, 2011.

[67] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf
graphs. VLDB, 2011.

[68] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet generation in xml
search. In SIGMOD, pages 315–326, 2008.

[69] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries
in relational databases. The VLDB Journal, 13(3):207–221, 2004.

[70] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query pro-
cessing techniques in relational database systems. ACM Computing Surveys
(CSUR), 40(4):11, 2008.

[71] G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages
271–279, 2003.

[72] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In VLDB, 2005.

[73] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph
mining system. In ICDM, pages 229–238, 2009.

[74] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359 – 392, 1999.

[75] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga:
Searching and ranking knowledge. In ICDE, 2008.

[76] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local simi-
larity for indexing paths in graph-structured data. In ICDE, pages 129–140,
2002.

[77] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release consistency for soft-
ware distributed shared memory. In ISCA, pages 13–21, 1992.

[78] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(1):291–307, 1970.

267



Bibliography

[79] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: fast graph search
with label similarity. In VLDB, 2013.

[80] R. Knappe, H. Bulskov, and T. Andreasen. Perspectives on ontology-based
querying. Int. J. Intell. Syst., 22(7):739–761, 2007.

[81] D. Kossmann. The state of the art in distributed query processing. ACM
Trans. Database Syst., 32(4):422–469, 2000.

[82] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data clouds: summarizing
keyword search results over structured data. In EDBT, pages 391–402, 2009.

[83] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. On semi-
automated web taxonomy construction. In WebDB, 2001.

[84] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[85] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, 2008.

[86] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an effective 3-in-1
keyword search method for unstructured, semi-structured and structured
data. In SIGMOD, 2008.

[87] P. Li, Q. Wu, and C. J. Burges. Mcrank: Learning to rank using multiple
classification and gradient boosting. In NIPS, 2007.

[88] E. Little, K. Sambhoos, and J. Llinas. Enhancing graph matching techniques
with ontologies. In Information Fusion, pages 1–8, 2008.

[89] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[90] Z. Liu and Y. Chen. Query results ready, now what? IEEE Data Eng.
Bull., 33(1):46–53, 2010.

[91] Z. Liu and Y. Chen. Return specification inference and result clustering for
keyword search on xml. TODS, 35(2):10, 2010.

[92] Z. Liu, S. Natarajan, and Y. Chen. Query expansion based on clustered
results. PVLDB, 4(6):350–361, 2011.

268



Bibliography

[93] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum. Stateful
bulk processing for incremental algorithms. In SOCC, pages 51–62, 2010.

[94] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-
stein. Distributed graphlab: a framework for machine learning and data
mining in the cloud. Proc. VLDB Endow., 5(8):716–727, 2012.

[95] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures
and joins with synonyms. In SIGMOD, 2013.

[96] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in
relational databases. In SIGMOD, 2007.
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